]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kmod.c
usermodehelper: ____call_usermodehelper() doesn't need do_exit()
[mirror_ubuntu-artful-kernel.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <asm/uaccess.h>
41
42 #include <trace/events/module.h>
43
44 extern int max_threads;
45
46 static struct workqueue_struct *khelper_wq;
47
48 #define CAP_BSET (void *)1
49 #define CAP_PI (void *)2
50
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55
56 #ifdef CONFIG_MODULES
57
58 /*
59 modprobe_path is set via /proc/sys.
60 */
61 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
62
63 /**
64 * __request_module - try to load a kernel module
65 * @wait: wait (or not) for the operation to complete
66 * @fmt: printf style format string for the name of the module
67 * @...: arguments as specified in the format string
68 *
69 * Load a module using the user mode module loader. The function returns
70 * zero on success or a negative errno code on failure. Note that a
71 * successful module load does not mean the module did not then unload
72 * and exit on an error of its own. Callers must check that the service
73 * they requested is now available not blindly invoke it.
74 *
75 * If module auto-loading support is disabled then this function
76 * becomes a no-operation.
77 */
78 int __request_module(bool wait, const char *fmt, ...)
79 {
80 va_list args;
81 char module_name[MODULE_NAME_LEN];
82 unsigned int max_modprobes;
83 int ret;
84 char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
85 static char *envp[] = { "HOME=/",
86 "TERM=linux",
87 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
88 NULL };
89 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
90 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
91 static int kmod_loop_msg;
92
93 va_start(args, fmt);
94 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
95 va_end(args);
96 if (ret >= MODULE_NAME_LEN)
97 return -ENAMETOOLONG;
98
99 ret = security_kernel_module_request(module_name);
100 if (ret)
101 return ret;
102
103 /* If modprobe needs a service that is in a module, we get a recursive
104 * loop. Limit the number of running kmod threads to max_threads/2 or
105 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
106 * would be to run the parents of this process, counting how many times
107 * kmod was invoked. That would mean accessing the internals of the
108 * process tables to get the command line, proc_pid_cmdline is static
109 * and it is not worth changing the proc code just to handle this case.
110 * KAO.
111 *
112 * "trace the ppid" is simple, but will fail if someone's
113 * parent exits. I think this is as good as it gets. --RR
114 */
115 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
116 atomic_inc(&kmod_concurrent);
117 if (atomic_read(&kmod_concurrent) > max_modprobes) {
118 /* We may be blaming an innocent here, but unlikely */
119 if (kmod_loop_msg < 5) {
120 printk(KERN_ERR
121 "request_module: runaway loop modprobe %s\n",
122 module_name);
123 kmod_loop_msg++;
124 }
125 atomic_dec(&kmod_concurrent);
126 return -ENOMEM;
127 }
128
129 trace_module_request(module_name, wait, _RET_IP_);
130
131 ret = call_usermodehelper_fns(modprobe_path, argv, envp,
132 wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC,
133 NULL, NULL, NULL);
134
135 atomic_dec(&kmod_concurrent);
136 return ret;
137 }
138 EXPORT_SYMBOL(__request_module);
139 #endif /* CONFIG_MODULES */
140
141 /*
142 * This is the task which runs the usermode application
143 */
144 static int ____call_usermodehelper(void *data)
145 {
146 struct subprocess_info *sub_info = data;
147 struct cred *new;
148 int retval;
149
150 spin_lock_irq(&current->sighand->siglock);
151 flush_signal_handlers(current, 1);
152 spin_unlock_irq(&current->sighand->siglock);
153
154 /* We can run anywhere, unlike our parent keventd(). */
155 set_cpus_allowed_ptr(current, cpu_all_mask);
156
157 /*
158 * Our parent is keventd, which runs with elevated scheduling priority.
159 * Avoid propagating that into the userspace child.
160 */
161 set_user_nice(current, 0);
162
163 retval = -ENOMEM;
164 new = prepare_kernel_cred(current);
165 if (!new)
166 goto fail;
167
168 spin_lock(&umh_sysctl_lock);
169 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
170 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
171 new->cap_inheritable);
172 spin_unlock(&umh_sysctl_lock);
173
174 if (sub_info->init) {
175 retval = sub_info->init(sub_info, new);
176 if (retval) {
177 abort_creds(new);
178 goto fail;
179 }
180 }
181
182 commit_creds(new);
183
184 retval = kernel_execve(sub_info->path,
185 (const char *const *)sub_info->argv,
186 (const char *const *)sub_info->envp);
187
188 /* Exec failed? */
189 fail:
190 sub_info->retval = retval;
191 return 0;
192 }
193
194 void call_usermodehelper_freeinfo(struct subprocess_info *info)
195 {
196 if (info->cleanup)
197 (*info->cleanup)(info);
198 kfree(info);
199 }
200 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
201
202 static void umh_complete(struct subprocess_info *sub_info)
203 {
204 struct completion *comp = xchg(&sub_info->complete, NULL);
205 /*
206 * See call_usermodehelper_exec(). If xchg() returns NULL
207 * we own sub_info, the UMH_KILLABLE caller has gone away.
208 */
209 if (comp)
210 complete(comp);
211 else
212 call_usermodehelper_freeinfo(sub_info);
213 }
214
215 /* Keventd can't block, but this (a child) can. */
216 static int wait_for_helper(void *data)
217 {
218 struct subprocess_info *sub_info = data;
219 pid_t pid;
220
221 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
222 spin_lock_irq(&current->sighand->siglock);
223 current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
224 spin_unlock_irq(&current->sighand->siglock);
225
226 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
227 if (pid < 0) {
228 sub_info->retval = pid;
229 } else {
230 int ret = -ECHILD;
231 /*
232 * Normally it is bogus to call wait4() from in-kernel because
233 * wait4() wants to write the exit code to a userspace address.
234 * But wait_for_helper() always runs as keventd, and put_user()
235 * to a kernel address works OK for kernel threads, due to their
236 * having an mm_segment_t which spans the entire address space.
237 *
238 * Thus the __user pointer cast is valid here.
239 */
240 sys_wait4(pid, (int __user *)&ret, 0, NULL);
241
242 /*
243 * If ret is 0, either ____call_usermodehelper failed and the
244 * real error code is already in sub_info->retval or
245 * sub_info->retval is 0 anyway, so don't mess with it then.
246 */
247 if (ret)
248 sub_info->retval = ret;
249 }
250
251 umh_complete(sub_info);
252 return 0;
253 }
254
255 /* This is run by khelper thread */
256 static void __call_usermodehelper(struct work_struct *work)
257 {
258 struct subprocess_info *sub_info =
259 container_of(work, struct subprocess_info, work);
260 int wait = sub_info->wait & ~UMH_KILLABLE;
261 pid_t pid;
262
263 /* CLONE_VFORK: wait until the usermode helper has execve'd
264 * successfully We need the data structures to stay around
265 * until that is done. */
266 if (wait == UMH_WAIT_PROC)
267 pid = kernel_thread(wait_for_helper, sub_info,
268 CLONE_FS | CLONE_FILES | SIGCHLD);
269 else
270 pid = kernel_thread(____call_usermodehelper, sub_info,
271 CLONE_VFORK | SIGCHLD);
272
273 switch (wait) {
274 case UMH_NO_WAIT:
275 call_usermodehelper_freeinfo(sub_info);
276 break;
277
278 case UMH_WAIT_PROC:
279 if (pid > 0)
280 break;
281 /* FALLTHROUGH */
282 case UMH_WAIT_EXEC:
283 if (pid < 0)
284 sub_info->retval = pid;
285 umh_complete(sub_info);
286 }
287 }
288
289 /*
290 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
291 * (used for preventing user land processes from being created after the user
292 * land has been frozen during a system-wide hibernation or suspend operation).
293 * Should always be manipulated under umhelper_sem acquired for write.
294 */
295 static int usermodehelper_disabled = 1;
296
297 /* Number of helpers running */
298 static atomic_t running_helpers = ATOMIC_INIT(0);
299
300 /*
301 * Wait queue head used by usermodehelper_disable() to wait for all running
302 * helpers to finish.
303 */
304 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
305
306 /*
307 * Time to wait for running_helpers to become zero before the setting of
308 * usermodehelper_disabled in usermodehelper_disable() fails
309 */
310 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
311
312 void read_lock_usermodehelper(void)
313 {
314 down_read(&umhelper_sem);
315 }
316 EXPORT_SYMBOL_GPL(read_lock_usermodehelper);
317
318 void read_unlock_usermodehelper(void)
319 {
320 up_read(&umhelper_sem);
321 }
322 EXPORT_SYMBOL_GPL(read_unlock_usermodehelper);
323
324 /**
325 * usermodehelper_disable - prevent new helpers from being started
326 */
327 int usermodehelper_disable(void)
328 {
329 long retval;
330
331 down_write(&umhelper_sem);
332 usermodehelper_disabled = 1;
333 up_write(&umhelper_sem);
334
335 /*
336 * From now on call_usermodehelper_exec() won't start any new
337 * helpers, so it is sufficient if running_helpers turns out to
338 * be zero at one point (it may be increased later, but that
339 * doesn't matter).
340 */
341 retval = wait_event_timeout(running_helpers_waitq,
342 atomic_read(&running_helpers) == 0,
343 RUNNING_HELPERS_TIMEOUT);
344 if (retval)
345 return 0;
346
347 down_write(&umhelper_sem);
348 usermodehelper_disabled = 0;
349 up_write(&umhelper_sem);
350 return -EAGAIN;
351 }
352
353 /**
354 * usermodehelper_enable - allow new helpers to be started again
355 */
356 void usermodehelper_enable(void)
357 {
358 down_write(&umhelper_sem);
359 usermodehelper_disabled = 0;
360 up_write(&umhelper_sem);
361 }
362
363 /**
364 * usermodehelper_is_disabled - check if new helpers are allowed to be started
365 */
366 bool usermodehelper_is_disabled(void)
367 {
368 return usermodehelper_disabled;
369 }
370 EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);
371
372 static void helper_lock(void)
373 {
374 atomic_inc(&running_helpers);
375 smp_mb__after_atomic_inc();
376 }
377
378 static void helper_unlock(void)
379 {
380 if (atomic_dec_and_test(&running_helpers))
381 wake_up(&running_helpers_waitq);
382 }
383
384 /**
385 * call_usermodehelper_setup - prepare to call a usermode helper
386 * @path: path to usermode executable
387 * @argv: arg vector for process
388 * @envp: environment for process
389 * @gfp_mask: gfp mask for memory allocation
390 *
391 * Returns either %NULL on allocation failure, or a subprocess_info
392 * structure. This should be passed to call_usermodehelper_exec to
393 * exec the process and free the structure.
394 */
395 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
396 char **envp, gfp_t gfp_mask)
397 {
398 struct subprocess_info *sub_info;
399 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
400 if (!sub_info)
401 goto out;
402
403 INIT_WORK(&sub_info->work, __call_usermodehelper);
404 sub_info->path = path;
405 sub_info->argv = argv;
406 sub_info->envp = envp;
407 out:
408 return sub_info;
409 }
410 EXPORT_SYMBOL(call_usermodehelper_setup);
411
412 /**
413 * call_usermodehelper_setfns - set a cleanup/init function
414 * @info: a subprocess_info returned by call_usermodehelper_setup
415 * @cleanup: a cleanup function
416 * @init: an init function
417 * @data: arbitrary context sensitive data
418 *
419 * The init function is used to customize the helper process prior to
420 * exec. A non-zero return code causes the process to error out, exit,
421 * and return the failure to the calling process
422 *
423 * The cleanup function is just before ethe subprocess_info is about to
424 * be freed. This can be used for freeing the argv and envp. The
425 * Function must be runnable in either a process context or the
426 * context in which call_usermodehelper_exec is called.
427 */
428 void call_usermodehelper_setfns(struct subprocess_info *info,
429 int (*init)(struct subprocess_info *info, struct cred *new),
430 void (*cleanup)(struct subprocess_info *info),
431 void *data)
432 {
433 info->cleanup = cleanup;
434 info->init = init;
435 info->data = data;
436 }
437 EXPORT_SYMBOL(call_usermodehelper_setfns);
438
439 /**
440 * call_usermodehelper_exec - start a usermode application
441 * @sub_info: information about the subprocessa
442 * @wait: wait for the application to finish and return status.
443 * when -1 don't wait at all, but you get no useful error back when
444 * the program couldn't be exec'ed. This makes it safe to call
445 * from interrupt context.
446 *
447 * Runs a user-space application. The application is started
448 * asynchronously if wait is not set, and runs as a child of keventd.
449 * (ie. it runs with full root capabilities).
450 */
451 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
452 {
453 DECLARE_COMPLETION_ONSTACK(done);
454 int retval = 0;
455
456 helper_lock();
457 if (sub_info->path[0] == '\0')
458 goto out;
459
460 if (!khelper_wq || usermodehelper_disabled) {
461 retval = -EBUSY;
462 goto out;
463 }
464
465 sub_info->complete = &done;
466 sub_info->wait = wait;
467
468 queue_work(khelper_wq, &sub_info->work);
469 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
470 goto unlock;
471
472 if (wait & UMH_KILLABLE) {
473 retval = wait_for_completion_killable(&done);
474 if (!retval)
475 goto wait_done;
476
477 /* umh_complete() will see NULL and free sub_info */
478 if (xchg(&sub_info->complete, NULL))
479 goto unlock;
480 /* fallthrough, umh_complete() was already called */
481 }
482
483 wait_for_completion(&done);
484 wait_done:
485 retval = sub_info->retval;
486 out:
487 call_usermodehelper_freeinfo(sub_info);
488 unlock:
489 helper_unlock();
490 return retval;
491 }
492 EXPORT_SYMBOL(call_usermodehelper_exec);
493
494 static int proc_cap_handler(struct ctl_table *table, int write,
495 void __user *buffer, size_t *lenp, loff_t *ppos)
496 {
497 struct ctl_table t;
498 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
499 kernel_cap_t new_cap;
500 int err, i;
501
502 if (write && (!capable(CAP_SETPCAP) ||
503 !capable(CAP_SYS_MODULE)))
504 return -EPERM;
505
506 /*
507 * convert from the global kernel_cap_t to the ulong array to print to
508 * userspace if this is a read.
509 */
510 spin_lock(&umh_sysctl_lock);
511 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
512 if (table->data == CAP_BSET)
513 cap_array[i] = usermodehelper_bset.cap[i];
514 else if (table->data == CAP_PI)
515 cap_array[i] = usermodehelper_inheritable.cap[i];
516 else
517 BUG();
518 }
519 spin_unlock(&umh_sysctl_lock);
520
521 t = *table;
522 t.data = &cap_array;
523
524 /*
525 * actually read or write and array of ulongs from userspace. Remember
526 * these are least significant 32 bits first
527 */
528 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
529 if (err < 0)
530 return err;
531
532 /*
533 * convert from the sysctl array of ulongs to the kernel_cap_t
534 * internal representation
535 */
536 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
537 new_cap.cap[i] = cap_array[i];
538
539 /*
540 * Drop everything not in the new_cap (but don't add things)
541 */
542 spin_lock(&umh_sysctl_lock);
543 if (write) {
544 if (table->data == CAP_BSET)
545 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
546 if (table->data == CAP_PI)
547 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
548 }
549 spin_unlock(&umh_sysctl_lock);
550
551 return 0;
552 }
553
554 struct ctl_table usermodehelper_table[] = {
555 {
556 .procname = "bset",
557 .data = CAP_BSET,
558 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
559 .mode = 0600,
560 .proc_handler = proc_cap_handler,
561 },
562 {
563 .procname = "inheritable",
564 .data = CAP_PI,
565 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
566 .mode = 0600,
567 .proc_handler = proc_cap_handler,
568 },
569 { }
570 };
571
572 void __init usermodehelper_init(void)
573 {
574 khelper_wq = create_singlethread_workqueue("khelper");
575 BUG_ON(!khelper_wq);
576 }