]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kmod.c
Merge tag 'sh-for-linus' of git://github.com/pmundt/linux-sh
[mirror_ubuntu-artful-kernel.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <asm/uaccess.h>
41
42 #include <trace/events/module.h>
43
44 extern int max_threads;
45
46 static struct workqueue_struct *khelper_wq;
47
48 #define CAP_BSET (void *)1
49 #define CAP_PI (void *)2
50
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55
56 #ifdef CONFIG_MODULES
57
58 /*
59 modprobe_path is set via /proc/sys.
60 */
61 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
62
63 static void free_modprobe_argv(struct subprocess_info *info)
64 {
65 kfree(info->argv[3]); /* check call_modprobe() */
66 kfree(info->argv);
67 }
68
69 static int call_modprobe(char *module_name, int wait)
70 {
71 static char *envp[] = {
72 "HOME=/",
73 "TERM=linux",
74 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
75 NULL
76 };
77
78 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
79 if (!argv)
80 goto out;
81
82 module_name = kstrdup(module_name, GFP_KERNEL);
83 if (!module_name)
84 goto free_argv;
85
86 argv[0] = modprobe_path;
87 argv[1] = "-q";
88 argv[2] = "--";
89 argv[3] = module_name; /* check free_modprobe_argv() */
90 argv[4] = NULL;
91
92 return call_usermodehelper_fns(modprobe_path, argv, envp,
93 wait | UMH_KILLABLE, NULL, free_modprobe_argv, NULL);
94 free_argv:
95 kfree(argv);
96 out:
97 return -ENOMEM;
98 }
99
100 /**
101 * __request_module - try to load a kernel module
102 * @wait: wait (or not) for the operation to complete
103 * @fmt: printf style format string for the name of the module
104 * @...: arguments as specified in the format string
105 *
106 * Load a module using the user mode module loader. The function returns
107 * zero on success or a negative errno code on failure. Note that a
108 * successful module load does not mean the module did not then unload
109 * and exit on an error of its own. Callers must check that the service
110 * they requested is now available not blindly invoke it.
111 *
112 * If module auto-loading support is disabled then this function
113 * becomes a no-operation.
114 */
115 int __request_module(bool wait, const char *fmt, ...)
116 {
117 va_list args;
118 char module_name[MODULE_NAME_LEN];
119 unsigned int max_modprobes;
120 int ret;
121 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
122 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
123 static int kmod_loop_msg;
124
125 va_start(args, fmt);
126 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
127 va_end(args);
128 if (ret >= MODULE_NAME_LEN)
129 return -ENAMETOOLONG;
130
131 ret = security_kernel_module_request(module_name);
132 if (ret)
133 return ret;
134
135 /* If modprobe needs a service that is in a module, we get a recursive
136 * loop. Limit the number of running kmod threads to max_threads/2 or
137 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
138 * would be to run the parents of this process, counting how many times
139 * kmod was invoked. That would mean accessing the internals of the
140 * process tables to get the command line, proc_pid_cmdline is static
141 * and it is not worth changing the proc code just to handle this case.
142 * KAO.
143 *
144 * "trace the ppid" is simple, but will fail if someone's
145 * parent exits. I think this is as good as it gets. --RR
146 */
147 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
148 atomic_inc(&kmod_concurrent);
149 if (atomic_read(&kmod_concurrent) > max_modprobes) {
150 /* We may be blaming an innocent here, but unlikely */
151 if (kmod_loop_msg < 5) {
152 printk(KERN_ERR
153 "request_module: runaway loop modprobe %s\n",
154 module_name);
155 kmod_loop_msg++;
156 }
157 atomic_dec(&kmod_concurrent);
158 return -ENOMEM;
159 }
160
161 trace_module_request(module_name, wait, _RET_IP_);
162
163 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
164
165 atomic_dec(&kmod_concurrent);
166 return ret;
167 }
168 EXPORT_SYMBOL(__request_module);
169 #endif /* CONFIG_MODULES */
170
171 /*
172 * This is the task which runs the usermode application
173 */
174 static int ____call_usermodehelper(void *data)
175 {
176 struct subprocess_info *sub_info = data;
177 struct cred *new;
178 int retval;
179
180 spin_lock_irq(&current->sighand->siglock);
181 flush_signal_handlers(current, 1);
182 spin_unlock_irq(&current->sighand->siglock);
183
184 /* We can run anywhere, unlike our parent keventd(). */
185 set_cpus_allowed_ptr(current, cpu_all_mask);
186
187 /*
188 * Our parent is keventd, which runs with elevated scheduling priority.
189 * Avoid propagating that into the userspace child.
190 */
191 set_user_nice(current, 0);
192
193 retval = -ENOMEM;
194 new = prepare_kernel_cred(current);
195 if (!new)
196 goto fail;
197
198 spin_lock(&umh_sysctl_lock);
199 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
200 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
201 new->cap_inheritable);
202 spin_unlock(&umh_sysctl_lock);
203
204 if (sub_info->init) {
205 retval = sub_info->init(sub_info, new);
206 if (retval) {
207 abort_creds(new);
208 goto fail;
209 }
210 }
211
212 commit_creds(new);
213
214 retval = kernel_execve(sub_info->path,
215 (const char *const *)sub_info->argv,
216 (const char *const *)sub_info->envp);
217
218 /* Exec failed? */
219 fail:
220 sub_info->retval = retval;
221 return 0;
222 }
223
224 void call_usermodehelper_freeinfo(struct subprocess_info *info)
225 {
226 if (info->cleanup)
227 (*info->cleanup)(info);
228 kfree(info);
229 }
230 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
231
232 static void umh_complete(struct subprocess_info *sub_info)
233 {
234 struct completion *comp = xchg(&sub_info->complete, NULL);
235 /*
236 * See call_usermodehelper_exec(). If xchg() returns NULL
237 * we own sub_info, the UMH_KILLABLE caller has gone away.
238 */
239 if (comp)
240 complete(comp);
241 else
242 call_usermodehelper_freeinfo(sub_info);
243 }
244
245 /* Keventd can't block, but this (a child) can. */
246 static int wait_for_helper(void *data)
247 {
248 struct subprocess_info *sub_info = data;
249 pid_t pid;
250
251 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
252 spin_lock_irq(&current->sighand->siglock);
253 current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
254 spin_unlock_irq(&current->sighand->siglock);
255
256 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
257 if (pid < 0) {
258 sub_info->retval = pid;
259 } else {
260 int ret = -ECHILD;
261 /*
262 * Normally it is bogus to call wait4() from in-kernel because
263 * wait4() wants to write the exit code to a userspace address.
264 * But wait_for_helper() always runs as keventd, and put_user()
265 * to a kernel address works OK for kernel threads, due to their
266 * having an mm_segment_t which spans the entire address space.
267 *
268 * Thus the __user pointer cast is valid here.
269 */
270 sys_wait4(pid, (int __user *)&ret, 0, NULL);
271
272 /*
273 * If ret is 0, either ____call_usermodehelper failed and the
274 * real error code is already in sub_info->retval or
275 * sub_info->retval is 0 anyway, so don't mess with it then.
276 */
277 if (ret)
278 sub_info->retval = ret;
279 }
280
281 umh_complete(sub_info);
282 return 0;
283 }
284
285 /* This is run by khelper thread */
286 static void __call_usermodehelper(struct work_struct *work)
287 {
288 struct subprocess_info *sub_info =
289 container_of(work, struct subprocess_info, work);
290 int wait = sub_info->wait & ~UMH_KILLABLE;
291 pid_t pid;
292
293 /* CLONE_VFORK: wait until the usermode helper has execve'd
294 * successfully We need the data structures to stay around
295 * until that is done. */
296 if (wait == UMH_WAIT_PROC)
297 pid = kernel_thread(wait_for_helper, sub_info,
298 CLONE_FS | CLONE_FILES | SIGCHLD);
299 else
300 pid = kernel_thread(____call_usermodehelper, sub_info,
301 CLONE_VFORK | SIGCHLD);
302
303 switch (wait) {
304 case UMH_NO_WAIT:
305 call_usermodehelper_freeinfo(sub_info);
306 break;
307
308 case UMH_WAIT_PROC:
309 if (pid > 0)
310 break;
311 /* FALLTHROUGH */
312 case UMH_WAIT_EXEC:
313 if (pid < 0)
314 sub_info->retval = pid;
315 umh_complete(sub_info);
316 }
317 }
318
319 /*
320 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
321 * (used for preventing user land processes from being created after the user
322 * land has been frozen during a system-wide hibernation or suspend operation).
323 * Should always be manipulated under umhelper_sem acquired for write.
324 */
325 static int usermodehelper_disabled = 1;
326
327 /* Number of helpers running */
328 static atomic_t running_helpers = ATOMIC_INIT(0);
329
330 /*
331 * Wait queue head used by usermodehelper_disable() to wait for all running
332 * helpers to finish.
333 */
334 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
335
336 /*
337 * Time to wait for running_helpers to become zero before the setting of
338 * usermodehelper_disabled in usermodehelper_disable() fails
339 */
340 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
341
342 void read_lock_usermodehelper(void)
343 {
344 down_read(&umhelper_sem);
345 }
346 EXPORT_SYMBOL_GPL(read_lock_usermodehelper);
347
348 void read_unlock_usermodehelper(void)
349 {
350 up_read(&umhelper_sem);
351 }
352 EXPORT_SYMBOL_GPL(read_unlock_usermodehelper);
353
354 /**
355 * usermodehelper_disable - prevent new helpers from being started
356 */
357 int usermodehelper_disable(void)
358 {
359 long retval;
360
361 down_write(&umhelper_sem);
362 usermodehelper_disabled = 1;
363 up_write(&umhelper_sem);
364
365 /*
366 * From now on call_usermodehelper_exec() won't start any new
367 * helpers, so it is sufficient if running_helpers turns out to
368 * be zero at one point (it may be increased later, but that
369 * doesn't matter).
370 */
371 retval = wait_event_timeout(running_helpers_waitq,
372 atomic_read(&running_helpers) == 0,
373 RUNNING_HELPERS_TIMEOUT);
374 if (retval)
375 return 0;
376
377 down_write(&umhelper_sem);
378 usermodehelper_disabled = 0;
379 up_write(&umhelper_sem);
380 return -EAGAIN;
381 }
382
383 /**
384 * usermodehelper_enable - allow new helpers to be started again
385 */
386 void usermodehelper_enable(void)
387 {
388 down_write(&umhelper_sem);
389 usermodehelper_disabled = 0;
390 up_write(&umhelper_sem);
391 }
392
393 /**
394 * usermodehelper_is_disabled - check if new helpers are allowed to be started
395 */
396 bool usermodehelper_is_disabled(void)
397 {
398 return usermodehelper_disabled;
399 }
400 EXPORT_SYMBOL_GPL(usermodehelper_is_disabled);
401
402 static void helper_lock(void)
403 {
404 atomic_inc(&running_helpers);
405 smp_mb__after_atomic_inc();
406 }
407
408 static void helper_unlock(void)
409 {
410 if (atomic_dec_and_test(&running_helpers))
411 wake_up(&running_helpers_waitq);
412 }
413
414 /**
415 * call_usermodehelper_setup - prepare to call a usermode helper
416 * @path: path to usermode executable
417 * @argv: arg vector for process
418 * @envp: environment for process
419 * @gfp_mask: gfp mask for memory allocation
420 *
421 * Returns either %NULL on allocation failure, or a subprocess_info
422 * structure. This should be passed to call_usermodehelper_exec to
423 * exec the process and free the structure.
424 */
425 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
426 char **envp, gfp_t gfp_mask)
427 {
428 struct subprocess_info *sub_info;
429 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
430 if (!sub_info)
431 goto out;
432
433 INIT_WORK(&sub_info->work, __call_usermodehelper);
434 sub_info->path = path;
435 sub_info->argv = argv;
436 sub_info->envp = envp;
437 out:
438 return sub_info;
439 }
440 EXPORT_SYMBOL(call_usermodehelper_setup);
441
442 /**
443 * call_usermodehelper_setfns - set a cleanup/init function
444 * @info: a subprocess_info returned by call_usermodehelper_setup
445 * @cleanup: a cleanup function
446 * @init: an init function
447 * @data: arbitrary context sensitive data
448 *
449 * The init function is used to customize the helper process prior to
450 * exec. A non-zero return code causes the process to error out, exit,
451 * and return the failure to the calling process
452 *
453 * The cleanup function is just before ethe subprocess_info is about to
454 * be freed. This can be used for freeing the argv and envp. The
455 * Function must be runnable in either a process context or the
456 * context in which call_usermodehelper_exec is called.
457 */
458 void call_usermodehelper_setfns(struct subprocess_info *info,
459 int (*init)(struct subprocess_info *info, struct cred *new),
460 void (*cleanup)(struct subprocess_info *info),
461 void *data)
462 {
463 info->cleanup = cleanup;
464 info->init = init;
465 info->data = data;
466 }
467 EXPORT_SYMBOL(call_usermodehelper_setfns);
468
469 /**
470 * call_usermodehelper_exec - start a usermode application
471 * @sub_info: information about the subprocessa
472 * @wait: wait for the application to finish and return status.
473 * when -1 don't wait at all, but you get no useful error back when
474 * the program couldn't be exec'ed. This makes it safe to call
475 * from interrupt context.
476 *
477 * Runs a user-space application. The application is started
478 * asynchronously if wait is not set, and runs as a child of keventd.
479 * (ie. it runs with full root capabilities).
480 */
481 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
482 {
483 DECLARE_COMPLETION_ONSTACK(done);
484 int retval = 0;
485
486 helper_lock();
487 if (sub_info->path[0] == '\0')
488 goto out;
489
490 if (!khelper_wq || usermodehelper_disabled) {
491 retval = -EBUSY;
492 goto out;
493 }
494
495 sub_info->complete = &done;
496 sub_info->wait = wait;
497
498 queue_work(khelper_wq, &sub_info->work);
499 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
500 goto unlock;
501
502 if (wait & UMH_KILLABLE) {
503 retval = wait_for_completion_killable(&done);
504 if (!retval)
505 goto wait_done;
506
507 /* umh_complete() will see NULL and free sub_info */
508 if (xchg(&sub_info->complete, NULL))
509 goto unlock;
510 /* fallthrough, umh_complete() was already called */
511 }
512
513 wait_for_completion(&done);
514 wait_done:
515 retval = sub_info->retval;
516 out:
517 call_usermodehelper_freeinfo(sub_info);
518 unlock:
519 helper_unlock();
520 return retval;
521 }
522 EXPORT_SYMBOL(call_usermodehelper_exec);
523
524 static int proc_cap_handler(struct ctl_table *table, int write,
525 void __user *buffer, size_t *lenp, loff_t *ppos)
526 {
527 struct ctl_table t;
528 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
529 kernel_cap_t new_cap;
530 int err, i;
531
532 if (write && (!capable(CAP_SETPCAP) ||
533 !capable(CAP_SYS_MODULE)))
534 return -EPERM;
535
536 /*
537 * convert from the global kernel_cap_t to the ulong array to print to
538 * userspace if this is a read.
539 */
540 spin_lock(&umh_sysctl_lock);
541 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
542 if (table->data == CAP_BSET)
543 cap_array[i] = usermodehelper_bset.cap[i];
544 else if (table->data == CAP_PI)
545 cap_array[i] = usermodehelper_inheritable.cap[i];
546 else
547 BUG();
548 }
549 spin_unlock(&umh_sysctl_lock);
550
551 t = *table;
552 t.data = &cap_array;
553
554 /*
555 * actually read or write and array of ulongs from userspace. Remember
556 * these are least significant 32 bits first
557 */
558 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
559 if (err < 0)
560 return err;
561
562 /*
563 * convert from the sysctl array of ulongs to the kernel_cap_t
564 * internal representation
565 */
566 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
567 new_cap.cap[i] = cap_array[i];
568
569 /*
570 * Drop everything not in the new_cap (but don't add things)
571 */
572 spin_lock(&umh_sysctl_lock);
573 if (write) {
574 if (table->data == CAP_BSET)
575 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
576 if (table->data == CAP_PI)
577 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
578 }
579 spin_unlock(&umh_sysctl_lock);
580
581 return 0;
582 }
583
584 struct ctl_table usermodehelper_table[] = {
585 {
586 .procname = "bset",
587 .data = CAP_BSET,
588 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
589 .mode = 0600,
590 .proc_handler = proc_cap_handler,
591 },
592 {
593 .procname = "inheritable",
594 .data = CAP_PI,
595 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
596 .mode = 0600,
597 .proc_handler = proc_cap_handler,
598 },
599 { }
600 };
601
602 void __init usermodehelper_init(void)
603 {
604 khelper_wq = create_singlethread_workqueue("khelper");
605 BUG_ON(!khelper_wq);
606 }