]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kmod.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task.h>
24 #include <linux/syscalls.h>
25 #include <linux/unistd.h>
26 #include <linux/kmod.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/cred.h>
30 #include <linux/file.h>
31 #include <linux/fdtable.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/mount.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/resource.h>
38 #include <linux/notifier.h>
39 #include <linux/suspend.h>
40 #include <linux/rwsem.h>
41 #include <linux/ptrace.h>
42 #include <linux/async.h>
43 #include <linux/uaccess.h>
44
45 #include <trace/events/module.h>
46
47 extern int max_threads;
48
49 #define CAP_BSET (void *)1
50 #define CAP_PI (void *)2
51
52 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
53 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
54 static DEFINE_SPINLOCK(umh_sysctl_lock);
55 static DECLARE_RWSEM(umhelper_sem);
56
57 #ifdef CONFIG_MODULES
58
59 /*
60 modprobe_path is set via /proc/sys.
61 */
62 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
63
64 static void free_modprobe_argv(struct subprocess_info *info)
65 {
66 kfree(info->argv[3]); /* check call_modprobe() */
67 kfree(info->argv);
68 }
69
70 static int call_modprobe(char *module_name, int wait)
71 {
72 struct subprocess_info *info;
73 static char *envp[] = {
74 "HOME=/",
75 "TERM=linux",
76 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
77 NULL
78 };
79
80 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
81 if (!argv)
82 goto out;
83
84 module_name = kstrdup(module_name, GFP_KERNEL);
85 if (!module_name)
86 goto free_argv;
87
88 argv[0] = modprobe_path;
89 argv[1] = "-q";
90 argv[2] = "--";
91 argv[3] = module_name; /* check free_modprobe_argv() */
92 argv[4] = NULL;
93
94 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
95 NULL, free_modprobe_argv, NULL);
96 if (!info)
97 goto free_module_name;
98
99 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
100
101 free_module_name:
102 kfree(module_name);
103 free_argv:
104 kfree(argv);
105 out:
106 return -ENOMEM;
107 }
108
109 /**
110 * __request_module - try to load a kernel module
111 * @wait: wait (or not) for the operation to complete
112 * @fmt: printf style format string for the name of the module
113 * @...: arguments as specified in the format string
114 *
115 * Load a module using the user mode module loader. The function returns
116 * zero on success or a negative errno code or positive exit code from
117 * "modprobe" on failure. Note that a successful module load does not mean
118 * the module did not then unload and exit on an error of its own. Callers
119 * must check that the service they requested is now available not blindly
120 * invoke it.
121 *
122 * If module auto-loading support is disabled then this function
123 * becomes a no-operation.
124 */
125 int __request_module(bool wait, const char *fmt, ...)
126 {
127 va_list args;
128 char module_name[MODULE_NAME_LEN];
129 unsigned int max_modprobes;
130 int ret;
131 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
132 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
133 static int kmod_loop_msg;
134
135 /*
136 * We don't allow synchronous module loading from async. Module
137 * init may invoke async_synchronize_full() which will end up
138 * waiting for this task which already is waiting for the module
139 * loading to complete, leading to a deadlock.
140 */
141 WARN_ON_ONCE(wait && current_is_async());
142
143 if (!modprobe_path[0])
144 return 0;
145
146 va_start(args, fmt);
147 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
148 va_end(args);
149 if (ret >= MODULE_NAME_LEN)
150 return -ENAMETOOLONG;
151
152 ret = security_kernel_module_request(module_name);
153 if (ret)
154 return ret;
155
156 /* If modprobe needs a service that is in a module, we get a recursive
157 * loop. Limit the number of running kmod threads to max_threads/2 or
158 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
159 * would be to run the parents of this process, counting how many times
160 * kmod was invoked. That would mean accessing the internals of the
161 * process tables to get the command line, proc_pid_cmdline is static
162 * and it is not worth changing the proc code just to handle this case.
163 * KAO.
164 *
165 * "trace the ppid" is simple, but will fail if someone's
166 * parent exits. I think this is as good as it gets. --RR
167 */
168 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
169 atomic_inc(&kmod_concurrent);
170 if (atomic_read(&kmod_concurrent) > max_modprobes) {
171 /* We may be blaming an innocent here, but unlikely */
172 if (kmod_loop_msg < 5) {
173 printk(KERN_ERR
174 "request_module: runaway loop modprobe %s\n",
175 module_name);
176 kmod_loop_msg++;
177 }
178 atomic_dec(&kmod_concurrent);
179 return -ENOMEM;
180 }
181
182 trace_module_request(module_name, wait, _RET_IP_);
183
184 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
185
186 atomic_dec(&kmod_concurrent);
187 return ret;
188 }
189 EXPORT_SYMBOL(__request_module);
190 #endif /* CONFIG_MODULES */
191
192 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
193 {
194 if (info->cleanup)
195 (*info->cleanup)(info);
196 kfree(info);
197 }
198
199 static void umh_complete(struct subprocess_info *sub_info)
200 {
201 struct completion *comp = xchg(&sub_info->complete, NULL);
202 /*
203 * See call_usermodehelper_exec(). If xchg() returns NULL
204 * we own sub_info, the UMH_KILLABLE caller has gone away
205 * or the caller used UMH_NO_WAIT.
206 */
207 if (comp)
208 complete(comp);
209 else
210 call_usermodehelper_freeinfo(sub_info);
211 }
212
213 /*
214 * This is the task which runs the usermode application
215 */
216 static int call_usermodehelper_exec_async(void *data)
217 {
218 struct subprocess_info *sub_info = data;
219 struct cred *new;
220 int retval;
221
222 spin_lock_irq(&current->sighand->siglock);
223 flush_signal_handlers(current, 1);
224 spin_unlock_irq(&current->sighand->siglock);
225
226 /*
227 * Our parent (unbound workqueue) runs with elevated scheduling
228 * priority. Avoid propagating that into the userspace child.
229 */
230 set_user_nice(current, 0);
231
232 retval = -ENOMEM;
233 new = prepare_kernel_cred(current);
234 if (!new)
235 goto out;
236
237 spin_lock(&umh_sysctl_lock);
238 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
239 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
240 new->cap_inheritable);
241 spin_unlock(&umh_sysctl_lock);
242
243 if (sub_info->init) {
244 retval = sub_info->init(sub_info, new);
245 if (retval) {
246 abort_creds(new);
247 goto out;
248 }
249 }
250
251 commit_creds(new);
252
253 retval = do_execve(getname_kernel(sub_info->path),
254 (const char __user *const __user *)sub_info->argv,
255 (const char __user *const __user *)sub_info->envp);
256 out:
257 sub_info->retval = retval;
258 /*
259 * call_usermodehelper_exec_sync() will call umh_complete
260 * if UHM_WAIT_PROC.
261 */
262 if (!(sub_info->wait & UMH_WAIT_PROC))
263 umh_complete(sub_info);
264 if (!retval)
265 return 0;
266 do_exit(0);
267 }
268
269 /* Handles UMH_WAIT_PROC. */
270 static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
271 {
272 pid_t pid;
273
274 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
275 kernel_sigaction(SIGCHLD, SIG_DFL);
276 pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
277 if (pid < 0) {
278 sub_info->retval = pid;
279 } else {
280 int ret = -ECHILD;
281 /*
282 * Normally it is bogus to call wait4() from in-kernel because
283 * wait4() wants to write the exit code to a userspace address.
284 * But call_usermodehelper_exec_sync() always runs as kernel
285 * thread (workqueue) and put_user() to a kernel address works
286 * OK for kernel threads, due to their having an mm_segment_t
287 * which spans the entire address space.
288 *
289 * Thus the __user pointer cast is valid here.
290 */
291 sys_wait4(pid, (int __user *)&ret, 0, NULL);
292
293 /*
294 * If ret is 0, either call_usermodehelper_exec_async failed and
295 * the real error code is already in sub_info->retval or
296 * sub_info->retval is 0 anyway, so don't mess with it then.
297 */
298 if (ret)
299 sub_info->retval = ret;
300 }
301
302 /* Restore default kernel sig handler */
303 kernel_sigaction(SIGCHLD, SIG_IGN);
304
305 umh_complete(sub_info);
306 }
307
308 /*
309 * We need to create the usermodehelper kernel thread from a task that is affine
310 * to an optimized set of CPUs (or nohz housekeeping ones) such that they
311 * inherit a widest affinity irrespective of call_usermodehelper() callers with
312 * possibly reduced affinity (eg: per-cpu workqueues). We don't want
313 * usermodehelper targets to contend a busy CPU.
314 *
315 * Unbound workqueues provide such wide affinity and allow to block on
316 * UMH_WAIT_PROC requests without blocking pending request (up to some limit).
317 *
318 * Besides, workqueues provide the privilege level that caller might not have
319 * to perform the usermodehelper request.
320 *
321 */
322 static void call_usermodehelper_exec_work(struct work_struct *work)
323 {
324 struct subprocess_info *sub_info =
325 container_of(work, struct subprocess_info, work);
326
327 if (sub_info->wait & UMH_WAIT_PROC) {
328 call_usermodehelper_exec_sync(sub_info);
329 } else {
330 pid_t pid;
331 /*
332 * Use CLONE_PARENT to reparent it to kthreadd; we do not
333 * want to pollute current->children, and we need a parent
334 * that always ignores SIGCHLD to ensure auto-reaping.
335 */
336 pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
337 CLONE_PARENT | SIGCHLD);
338 if (pid < 0) {
339 sub_info->retval = pid;
340 umh_complete(sub_info);
341 }
342 }
343 }
344
345 /*
346 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
347 * (used for preventing user land processes from being created after the user
348 * land has been frozen during a system-wide hibernation or suspend operation).
349 * Should always be manipulated under umhelper_sem acquired for write.
350 */
351 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
352
353 /* Number of helpers running */
354 static atomic_t running_helpers = ATOMIC_INIT(0);
355
356 /*
357 * Wait queue head used by usermodehelper_disable() to wait for all running
358 * helpers to finish.
359 */
360 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
361
362 /*
363 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
364 * to become 'false'.
365 */
366 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
367
368 /*
369 * Time to wait for running_helpers to become zero before the setting of
370 * usermodehelper_disabled in usermodehelper_disable() fails
371 */
372 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
373
374 int usermodehelper_read_trylock(void)
375 {
376 DEFINE_WAIT(wait);
377 int ret = 0;
378
379 down_read(&umhelper_sem);
380 for (;;) {
381 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
382 TASK_INTERRUPTIBLE);
383 if (!usermodehelper_disabled)
384 break;
385
386 if (usermodehelper_disabled == UMH_DISABLED)
387 ret = -EAGAIN;
388
389 up_read(&umhelper_sem);
390
391 if (ret)
392 break;
393
394 schedule();
395 try_to_freeze();
396
397 down_read(&umhelper_sem);
398 }
399 finish_wait(&usermodehelper_disabled_waitq, &wait);
400 return ret;
401 }
402 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
403
404 long usermodehelper_read_lock_wait(long timeout)
405 {
406 DEFINE_WAIT(wait);
407
408 if (timeout < 0)
409 return -EINVAL;
410
411 down_read(&umhelper_sem);
412 for (;;) {
413 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
414 TASK_UNINTERRUPTIBLE);
415 if (!usermodehelper_disabled)
416 break;
417
418 up_read(&umhelper_sem);
419
420 timeout = schedule_timeout(timeout);
421 if (!timeout)
422 break;
423
424 down_read(&umhelper_sem);
425 }
426 finish_wait(&usermodehelper_disabled_waitq, &wait);
427 return timeout;
428 }
429 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
430
431 void usermodehelper_read_unlock(void)
432 {
433 up_read(&umhelper_sem);
434 }
435 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
436
437 /**
438 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
439 * @depth: New value to assign to usermodehelper_disabled.
440 *
441 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
442 * writing) and wakeup tasks waiting for it to change.
443 */
444 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
445 {
446 down_write(&umhelper_sem);
447 usermodehelper_disabled = depth;
448 wake_up(&usermodehelper_disabled_waitq);
449 up_write(&umhelper_sem);
450 }
451
452 /**
453 * __usermodehelper_disable - Prevent new helpers from being started.
454 * @depth: New value to assign to usermodehelper_disabled.
455 *
456 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
457 */
458 int __usermodehelper_disable(enum umh_disable_depth depth)
459 {
460 long retval;
461
462 if (!depth)
463 return -EINVAL;
464
465 down_write(&umhelper_sem);
466 usermodehelper_disabled = depth;
467 up_write(&umhelper_sem);
468
469 /*
470 * From now on call_usermodehelper_exec() won't start any new
471 * helpers, so it is sufficient if running_helpers turns out to
472 * be zero at one point (it may be increased later, but that
473 * doesn't matter).
474 */
475 retval = wait_event_timeout(running_helpers_waitq,
476 atomic_read(&running_helpers) == 0,
477 RUNNING_HELPERS_TIMEOUT);
478 if (retval)
479 return 0;
480
481 __usermodehelper_set_disable_depth(UMH_ENABLED);
482 return -EAGAIN;
483 }
484
485 static void helper_lock(void)
486 {
487 atomic_inc(&running_helpers);
488 smp_mb__after_atomic();
489 }
490
491 static void helper_unlock(void)
492 {
493 if (atomic_dec_and_test(&running_helpers))
494 wake_up(&running_helpers_waitq);
495 }
496
497 /**
498 * call_usermodehelper_setup - prepare to call a usermode helper
499 * @path: path to usermode executable
500 * @argv: arg vector for process
501 * @envp: environment for process
502 * @gfp_mask: gfp mask for memory allocation
503 * @cleanup: a cleanup function
504 * @init: an init function
505 * @data: arbitrary context sensitive data
506 *
507 * Returns either %NULL on allocation failure, or a subprocess_info
508 * structure. This should be passed to call_usermodehelper_exec to
509 * exec the process and free the structure.
510 *
511 * The init function is used to customize the helper process prior to
512 * exec. A non-zero return code causes the process to error out, exit,
513 * and return the failure to the calling process
514 *
515 * The cleanup function is just before ethe subprocess_info is about to
516 * be freed. This can be used for freeing the argv and envp. The
517 * Function must be runnable in either a process context or the
518 * context in which call_usermodehelper_exec is called.
519 */
520 struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv,
521 char **envp, gfp_t gfp_mask,
522 int (*init)(struct subprocess_info *info, struct cred *new),
523 void (*cleanup)(struct subprocess_info *info),
524 void *data)
525 {
526 struct subprocess_info *sub_info;
527 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
528 if (!sub_info)
529 goto out;
530
531 INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
532
533 #ifdef CONFIG_STATIC_USERMODEHELPER
534 sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH;
535 #else
536 sub_info->path = path;
537 #endif
538 sub_info->argv = argv;
539 sub_info->envp = envp;
540
541 sub_info->cleanup = cleanup;
542 sub_info->init = init;
543 sub_info->data = data;
544 out:
545 return sub_info;
546 }
547 EXPORT_SYMBOL(call_usermodehelper_setup);
548
549 /**
550 * call_usermodehelper_exec - start a usermode application
551 * @sub_info: information about the subprocessa
552 * @wait: wait for the application to finish and return status.
553 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
554 * when the program couldn't be exec'ed. This makes it safe to call
555 * from interrupt context.
556 *
557 * Runs a user-space application. The application is started
558 * asynchronously if wait is not set, and runs as a child of system workqueues.
559 * (ie. it runs with full root capabilities and optimized affinity).
560 */
561 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
562 {
563 DECLARE_COMPLETION_ONSTACK(done);
564 int retval = 0;
565
566 if (!sub_info->path) {
567 call_usermodehelper_freeinfo(sub_info);
568 return -EINVAL;
569 }
570 helper_lock();
571 if (usermodehelper_disabled) {
572 retval = -EBUSY;
573 goto out;
574 }
575
576 /*
577 * If there is no binary for us to call, then just return and get out of
578 * here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and
579 * disable all call_usermodehelper() calls.
580 */
581 if (strlen(sub_info->path) == 0)
582 goto out;
583
584 /*
585 * Set the completion pointer only if there is a waiter.
586 * This makes it possible to use umh_complete to free
587 * the data structure in case of UMH_NO_WAIT.
588 */
589 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
590 sub_info->wait = wait;
591
592 queue_work(system_unbound_wq, &sub_info->work);
593 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
594 goto unlock;
595
596 if (wait & UMH_KILLABLE) {
597 retval = wait_for_completion_killable(&done);
598 if (!retval)
599 goto wait_done;
600
601 /* umh_complete() will see NULL and free sub_info */
602 if (xchg(&sub_info->complete, NULL))
603 goto unlock;
604 /* fallthrough, umh_complete() was already called */
605 }
606
607 wait_for_completion(&done);
608 wait_done:
609 retval = sub_info->retval;
610 out:
611 call_usermodehelper_freeinfo(sub_info);
612 unlock:
613 helper_unlock();
614 return retval;
615 }
616 EXPORT_SYMBOL(call_usermodehelper_exec);
617
618 /**
619 * call_usermodehelper() - prepare and start a usermode application
620 * @path: path to usermode executable
621 * @argv: arg vector for process
622 * @envp: environment for process
623 * @wait: wait for the application to finish and return status.
624 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
625 * when the program couldn't be exec'ed. This makes it safe to call
626 * from interrupt context.
627 *
628 * This function is the equivalent to use call_usermodehelper_setup() and
629 * call_usermodehelper_exec().
630 */
631 int call_usermodehelper(const char *path, char **argv, char **envp, int wait)
632 {
633 struct subprocess_info *info;
634 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
635
636 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
637 NULL, NULL, NULL);
638 if (info == NULL)
639 return -ENOMEM;
640
641 return call_usermodehelper_exec(info, wait);
642 }
643 EXPORT_SYMBOL(call_usermodehelper);
644
645 static int proc_cap_handler(struct ctl_table *table, int write,
646 void __user *buffer, size_t *lenp, loff_t *ppos)
647 {
648 struct ctl_table t;
649 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
650 kernel_cap_t new_cap;
651 int err, i;
652
653 if (write && (!capable(CAP_SETPCAP) ||
654 !capable(CAP_SYS_MODULE)))
655 return -EPERM;
656
657 /*
658 * convert from the global kernel_cap_t to the ulong array to print to
659 * userspace if this is a read.
660 */
661 spin_lock(&umh_sysctl_lock);
662 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
663 if (table->data == CAP_BSET)
664 cap_array[i] = usermodehelper_bset.cap[i];
665 else if (table->data == CAP_PI)
666 cap_array[i] = usermodehelper_inheritable.cap[i];
667 else
668 BUG();
669 }
670 spin_unlock(&umh_sysctl_lock);
671
672 t = *table;
673 t.data = &cap_array;
674
675 /*
676 * actually read or write and array of ulongs from userspace. Remember
677 * these are least significant 32 bits first
678 */
679 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
680 if (err < 0)
681 return err;
682
683 /*
684 * convert from the sysctl array of ulongs to the kernel_cap_t
685 * internal representation
686 */
687 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
688 new_cap.cap[i] = cap_array[i];
689
690 /*
691 * Drop everything not in the new_cap (but don't add things)
692 */
693 spin_lock(&umh_sysctl_lock);
694 if (write) {
695 if (table->data == CAP_BSET)
696 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
697 if (table->data == CAP_PI)
698 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
699 }
700 spin_unlock(&umh_sysctl_lock);
701
702 return 0;
703 }
704
705 struct ctl_table usermodehelper_table[] = {
706 {
707 .procname = "bset",
708 .data = CAP_BSET,
709 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
710 .mode = 0600,
711 .proc_handler = proc_cap_handler,
712 },
713 {
714 .procname = "inheritable",
715 .data = CAP_PI,
716 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
717 .mode = 0600,
718 .proc_handler = proc_cap_handler,
719 },
720 { }
721 };