]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kmod.c
netfilter: expect: fix crash when putting uninited expectation
[mirror_ubuntu-artful-kernel.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task.h>
24 #include <linux/binfmts.h>
25 #include <linux/syscalls.h>
26 #include <linux/unistd.h>
27 #include <linux/kmod.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/cred.h>
31 #include <linux/file.h>
32 #include <linux/fdtable.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/mount.h>
36 #include <linux/kernel.h>
37 #include <linux/init.h>
38 #include <linux/resource.h>
39 #include <linux/notifier.h>
40 #include <linux/suspend.h>
41 #include <linux/rwsem.h>
42 #include <linux/ptrace.h>
43 #include <linux/async.h>
44 #include <linux/uaccess.h>
45
46 #include <trace/events/module.h>
47
48 #define CAP_BSET (void *)1
49 #define CAP_PI (void *)2
50
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55
56 #ifdef CONFIG_MODULES
57 /*
58 * Assuming:
59 *
60 * threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
61 * (u64) THREAD_SIZE * 8UL);
62 *
63 * If you need less than 50 threads would mean we're dealing with systems
64 * smaller than 3200 pages. This assuems you are capable of having ~13M memory,
65 * and this would only be an be an upper limit, after which the OOM killer
66 * would take effect. Systems like these are very unlikely if modules are
67 * enabled.
68 */
69 #define MAX_KMOD_CONCURRENT 50
70 static atomic_t kmod_concurrent_max = ATOMIC_INIT(MAX_KMOD_CONCURRENT);
71
72 /*
73 modprobe_path is set via /proc/sys.
74 */
75 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
76
77 static void free_modprobe_argv(struct subprocess_info *info)
78 {
79 kfree(info->argv[3]); /* check call_modprobe() */
80 kfree(info->argv);
81 }
82
83 static int call_modprobe(char *module_name, int wait)
84 {
85 struct subprocess_info *info;
86 static char *envp[] = {
87 "HOME=/",
88 "TERM=linux",
89 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
90 NULL
91 };
92
93 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
94 if (!argv)
95 goto out;
96
97 module_name = kstrdup(module_name, GFP_KERNEL);
98 if (!module_name)
99 goto free_argv;
100
101 argv[0] = modprobe_path;
102 argv[1] = "-q";
103 argv[2] = "--";
104 argv[3] = module_name; /* check free_modprobe_argv() */
105 argv[4] = NULL;
106
107 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
108 NULL, free_modprobe_argv, NULL);
109 if (!info)
110 goto free_module_name;
111
112 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
113
114 free_module_name:
115 kfree(module_name);
116 free_argv:
117 kfree(argv);
118 out:
119 return -ENOMEM;
120 }
121
122 /**
123 * __request_module - try to load a kernel module
124 * @wait: wait (or not) for the operation to complete
125 * @fmt: printf style format string for the name of the module
126 * @...: arguments as specified in the format string
127 *
128 * Load a module using the user mode module loader. The function returns
129 * zero on success or a negative errno code or positive exit code from
130 * "modprobe" on failure. Note that a successful module load does not mean
131 * the module did not then unload and exit on an error of its own. Callers
132 * must check that the service they requested is now available not blindly
133 * invoke it.
134 *
135 * If module auto-loading support is disabled then this function
136 * becomes a no-operation.
137 */
138 int __request_module(bool wait, const char *fmt, ...)
139 {
140 va_list args;
141 char module_name[MODULE_NAME_LEN];
142 int ret;
143 static int kmod_loop_msg;
144
145 /*
146 * We don't allow synchronous module loading from async. Module
147 * init may invoke async_synchronize_full() which will end up
148 * waiting for this task which already is waiting for the module
149 * loading to complete, leading to a deadlock.
150 */
151 WARN_ON_ONCE(wait && current_is_async());
152
153 if (!modprobe_path[0])
154 return 0;
155
156 va_start(args, fmt);
157 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
158 va_end(args);
159 if (ret >= MODULE_NAME_LEN)
160 return -ENAMETOOLONG;
161
162 ret = security_kernel_module_request(module_name);
163 if (ret)
164 return ret;
165
166 if (atomic_dec_if_positive(&kmod_concurrent_max) < 0) {
167 /* We may be blaming an innocent here, but unlikely */
168 if (kmod_loop_msg < 5) {
169 printk(KERN_ERR
170 "request_module: runaway loop modprobe %s\n",
171 module_name);
172 kmod_loop_msg++;
173 }
174 return -ENOMEM;
175 }
176
177 trace_module_request(module_name, wait, _RET_IP_);
178
179 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
180
181 atomic_inc(&kmod_concurrent_max);
182
183 return ret;
184 }
185 EXPORT_SYMBOL(__request_module);
186
187 #endif /* CONFIG_MODULES */
188
189 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
190 {
191 if (info->cleanup)
192 (*info->cleanup)(info);
193 kfree(info);
194 }
195
196 static void umh_complete(struct subprocess_info *sub_info)
197 {
198 struct completion *comp = xchg(&sub_info->complete, NULL);
199 /*
200 * See call_usermodehelper_exec(). If xchg() returns NULL
201 * we own sub_info, the UMH_KILLABLE caller has gone away
202 * or the caller used UMH_NO_WAIT.
203 */
204 if (comp)
205 complete(comp);
206 else
207 call_usermodehelper_freeinfo(sub_info);
208 }
209
210 /*
211 * This is the task which runs the usermode application
212 */
213 static int call_usermodehelper_exec_async(void *data)
214 {
215 struct subprocess_info *sub_info = data;
216 struct cred *new;
217 int retval;
218
219 spin_lock_irq(&current->sighand->siglock);
220 flush_signal_handlers(current, 1);
221 spin_unlock_irq(&current->sighand->siglock);
222
223 /*
224 * Our parent (unbound workqueue) runs with elevated scheduling
225 * priority. Avoid propagating that into the userspace child.
226 */
227 set_user_nice(current, 0);
228
229 retval = -ENOMEM;
230 new = prepare_kernel_cred(current);
231 if (!new)
232 goto out;
233
234 spin_lock(&umh_sysctl_lock);
235 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
236 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
237 new->cap_inheritable);
238 spin_unlock(&umh_sysctl_lock);
239
240 if (sub_info->init) {
241 retval = sub_info->init(sub_info, new);
242 if (retval) {
243 abort_creds(new);
244 goto out;
245 }
246 }
247
248 commit_creds(new);
249
250 retval = do_execve(getname_kernel(sub_info->path),
251 (const char __user *const __user *)sub_info->argv,
252 (const char __user *const __user *)sub_info->envp);
253 out:
254 sub_info->retval = retval;
255 /*
256 * call_usermodehelper_exec_sync() will call umh_complete
257 * if UHM_WAIT_PROC.
258 */
259 if (!(sub_info->wait & UMH_WAIT_PROC))
260 umh_complete(sub_info);
261 if (!retval)
262 return 0;
263 do_exit(0);
264 }
265
266 /* Handles UMH_WAIT_PROC. */
267 static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
268 {
269 pid_t pid;
270
271 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
272 kernel_sigaction(SIGCHLD, SIG_DFL);
273 pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
274 if (pid < 0) {
275 sub_info->retval = pid;
276 } else {
277 int ret = -ECHILD;
278 /*
279 * Normally it is bogus to call wait4() from in-kernel because
280 * wait4() wants to write the exit code to a userspace address.
281 * But call_usermodehelper_exec_sync() always runs as kernel
282 * thread (workqueue) and put_user() to a kernel address works
283 * OK for kernel threads, due to their having an mm_segment_t
284 * which spans the entire address space.
285 *
286 * Thus the __user pointer cast is valid here.
287 */
288 sys_wait4(pid, (int __user *)&ret, 0, NULL);
289
290 /*
291 * If ret is 0, either call_usermodehelper_exec_async failed and
292 * the real error code is already in sub_info->retval or
293 * sub_info->retval is 0 anyway, so don't mess with it then.
294 */
295 if (ret)
296 sub_info->retval = ret;
297 }
298
299 /* Restore default kernel sig handler */
300 kernel_sigaction(SIGCHLD, SIG_IGN);
301
302 umh_complete(sub_info);
303 }
304
305 /*
306 * We need to create the usermodehelper kernel thread from a task that is affine
307 * to an optimized set of CPUs (or nohz housekeeping ones) such that they
308 * inherit a widest affinity irrespective of call_usermodehelper() callers with
309 * possibly reduced affinity (eg: per-cpu workqueues). We don't want
310 * usermodehelper targets to contend a busy CPU.
311 *
312 * Unbound workqueues provide such wide affinity and allow to block on
313 * UMH_WAIT_PROC requests without blocking pending request (up to some limit).
314 *
315 * Besides, workqueues provide the privilege level that caller might not have
316 * to perform the usermodehelper request.
317 *
318 */
319 static void call_usermodehelper_exec_work(struct work_struct *work)
320 {
321 struct subprocess_info *sub_info =
322 container_of(work, struct subprocess_info, work);
323
324 if (sub_info->wait & UMH_WAIT_PROC) {
325 call_usermodehelper_exec_sync(sub_info);
326 } else {
327 pid_t pid;
328 /*
329 * Use CLONE_PARENT to reparent it to kthreadd; we do not
330 * want to pollute current->children, and we need a parent
331 * that always ignores SIGCHLD to ensure auto-reaping.
332 */
333 pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
334 CLONE_PARENT | SIGCHLD);
335 if (pid < 0) {
336 sub_info->retval = pid;
337 umh_complete(sub_info);
338 }
339 }
340 }
341
342 /*
343 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
344 * (used for preventing user land processes from being created after the user
345 * land has been frozen during a system-wide hibernation or suspend operation).
346 * Should always be manipulated under umhelper_sem acquired for write.
347 */
348 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
349
350 /* Number of helpers running */
351 static atomic_t running_helpers = ATOMIC_INIT(0);
352
353 /*
354 * Wait queue head used by usermodehelper_disable() to wait for all running
355 * helpers to finish.
356 */
357 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
358
359 /*
360 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
361 * to become 'false'.
362 */
363 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
364
365 /*
366 * Time to wait for running_helpers to become zero before the setting of
367 * usermodehelper_disabled in usermodehelper_disable() fails
368 */
369 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
370
371 int usermodehelper_read_trylock(void)
372 {
373 DEFINE_WAIT(wait);
374 int ret = 0;
375
376 down_read(&umhelper_sem);
377 for (;;) {
378 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
379 TASK_INTERRUPTIBLE);
380 if (!usermodehelper_disabled)
381 break;
382
383 if (usermodehelper_disabled == UMH_DISABLED)
384 ret = -EAGAIN;
385
386 up_read(&umhelper_sem);
387
388 if (ret)
389 break;
390
391 schedule();
392 try_to_freeze();
393
394 down_read(&umhelper_sem);
395 }
396 finish_wait(&usermodehelper_disabled_waitq, &wait);
397 return ret;
398 }
399 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
400
401 long usermodehelper_read_lock_wait(long timeout)
402 {
403 DEFINE_WAIT(wait);
404
405 if (timeout < 0)
406 return -EINVAL;
407
408 down_read(&umhelper_sem);
409 for (;;) {
410 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
411 TASK_UNINTERRUPTIBLE);
412 if (!usermodehelper_disabled)
413 break;
414
415 up_read(&umhelper_sem);
416
417 timeout = schedule_timeout(timeout);
418 if (!timeout)
419 break;
420
421 down_read(&umhelper_sem);
422 }
423 finish_wait(&usermodehelper_disabled_waitq, &wait);
424 return timeout;
425 }
426 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
427
428 void usermodehelper_read_unlock(void)
429 {
430 up_read(&umhelper_sem);
431 }
432 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
433
434 /**
435 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
436 * @depth: New value to assign to usermodehelper_disabled.
437 *
438 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
439 * writing) and wakeup tasks waiting for it to change.
440 */
441 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
442 {
443 down_write(&umhelper_sem);
444 usermodehelper_disabled = depth;
445 wake_up(&usermodehelper_disabled_waitq);
446 up_write(&umhelper_sem);
447 }
448
449 /**
450 * __usermodehelper_disable - Prevent new helpers from being started.
451 * @depth: New value to assign to usermodehelper_disabled.
452 *
453 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
454 */
455 int __usermodehelper_disable(enum umh_disable_depth depth)
456 {
457 long retval;
458
459 if (!depth)
460 return -EINVAL;
461
462 down_write(&umhelper_sem);
463 usermodehelper_disabled = depth;
464 up_write(&umhelper_sem);
465
466 /*
467 * From now on call_usermodehelper_exec() won't start any new
468 * helpers, so it is sufficient if running_helpers turns out to
469 * be zero at one point (it may be increased later, but that
470 * doesn't matter).
471 */
472 retval = wait_event_timeout(running_helpers_waitq,
473 atomic_read(&running_helpers) == 0,
474 RUNNING_HELPERS_TIMEOUT);
475 if (retval)
476 return 0;
477
478 __usermodehelper_set_disable_depth(UMH_ENABLED);
479 return -EAGAIN;
480 }
481
482 static void helper_lock(void)
483 {
484 atomic_inc(&running_helpers);
485 smp_mb__after_atomic();
486 }
487
488 static void helper_unlock(void)
489 {
490 if (atomic_dec_and_test(&running_helpers))
491 wake_up(&running_helpers_waitq);
492 }
493
494 /**
495 * call_usermodehelper_setup - prepare to call a usermode helper
496 * @path: path to usermode executable
497 * @argv: arg vector for process
498 * @envp: environment for process
499 * @gfp_mask: gfp mask for memory allocation
500 * @cleanup: a cleanup function
501 * @init: an init function
502 * @data: arbitrary context sensitive data
503 *
504 * Returns either %NULL on allocation failure, or a subprocess_info
505 * structure. This should be passed to call_usermodehelper_exec to
506 * exec the process and free the structure.
507 *
508 * The init function is used to customize the helper process prior to
509 * exec. A non-zero return code causes the process to error out, exit,
510 * and return the failure to the calling process
511 *
512 * The cleanup function is just before ethe subprocess_info is about to
513 * be freed. This can be used for freeing the argv and envp. The
514 * Function must be runnable in either a process context or the
515 * context in which call_usermodehelper_exec is called.
516 */
517 struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv,
518 char **envp, gfp_t gfp_mask,
519 int (*init)(struct subprocess_info *info, struct cred *new),
520 void (*cleanup)(struct subprocess_info *info),
521 void *data)
522 {
523 struct subprocess_info *sub_info;
524 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
525 if (!sub_info)
526 goto out;
527
528 INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
529
530 #ifdef CONFIG_STATIC_USERMODEHELPER
531 sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH;
532 #else
533 sub_info->path = path;
534 #endif
535 sub_info->argv = argv;
536 sub_info->envp = envp;
537
538 sub_info->cleanup = cleanup;
539 sub_info->init = init;
540 sub_info->data = data;
541 out:
542 return sub_info;
543 }
544 EXPORT_SYMBOL(call_usermodehelper_setup);
545
546 /**
547 * call_usermodehelper_exec - start a usermode application
548 * @sub_info: information about the subprocessa
549 * @wait: wait for the application to finish and return status.
550 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
551 * when the program couldn't be exec'ed. This makes it safe to call
552 * from interrupt context.
553 *
554 * Runs a user-space application. The application is started
555 * asynchronously if wait is not set, and runs as a child of system workqueues.
556 * (ie. it runs with full root capabilities and optimized affinity).
557 */
558 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
559 {
560 DECLARE_COMPLETION_ONSTACK(done);
561 int retval = 0;
562
563 if (!sub_info->path) {
564 call_usermodehelper_freeinfo(sub_info);
565 return -EINVAL;
566 }
567 helper_lock();
568 if (usermodehelper_disabled) {
569 retval = -EBUSY;
570 goto out;
571 }
572
573 /*
574 * If there is no binary for us to call, then just return and get out of
575 * here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and
576 * disable all call_usermodehelper() calls.
577 */
578 if (strlen(sub_info->path) == 0)
579 goto out;
580
581 /*
582 * Set the completion pointer only if there is a waiter.
583 * This makes it possible to use umh_complete to free
584 * the data structure in case of UMH_NO_WAIT.
585 */
586 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
587 sub_info->wait = wait;
588
589 queue_work(system_unbound_wq, &sub_info->work);
590 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
591 goto unlock;
592
593 if (wait & UMH_KILLABLE) {
594 retval = wait_for_completion_killable(&done);
595 if (!retval)
596 goto wait_done;
597
598 /* umh_complete() will see NULL and free sub_info */
599 if (xchg(&sub_info->complete, NULL))
600 goto unlock;
601 /* fallthrough, umh_complete() was already called */
602 }
603
604 wait_for_completion(&done);
605 wait_done:
606 retval = sub_info->retval;
607 out:
608 call_usermodehelper_freeinfo(sub_info);
609 unlock:
610 helper_unlock();
611 return retval;
612 }
613 EXPORT_SYMBOL(call_usermodehelper_exec);
614
615 /**
616 * call_usermodehelper() - prepare and start a usermode application
617 * @path: path to usermode executable
618 * @argv: arg vector for process
619 * @envp: environment for process
620 * @wait: wait for the application to finish and return status.
621 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
622 * when the program couldn't be exec'ed. This makes it safe to call
623 * from interrupt context.
624 *
625 * This function is the equivalent to use call_usermodehelper_setup() and
626 * call_usermodehelper_exec().
627 */
628 int call_usermodehelper(const char *path, char **argv, char **envp, int wait)
629 {
630 struct subprocess_info *info;
631 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
632
633 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
634 NULL, NULL, NULL);
635 if (info == NULL)
636 return -ENOMEM;
637
638 return call_usermodehelper_exec(info, wait);
639 }
640 EXPORT_SYMBOL(call_usermodehelper);
641
642 static int proc_cap_handler(struct ctl_table *table, int write,
643 void __user *buffer, size_t *lenp, loff_t *ppos)
644 {
645 struct ctl_table t;
646 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
647 kernel_cap_t new_cap;
648 int err, i;
649
650 if (write && (!capable(CAP_SETPCAP) ||
651 !capable(CAP_SYS_MODULE)))
652 return -EPERM;
653
654 /*
655 * convert from the global kernel_cap_t to the ulong array to print to
656 * userspace if this is a read.
657 */
658 spin_lock(&umh_sysctl_lock);
659 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
660 if (table->data == CAP_BSET)
661 cap_array[i] = usermodehelper_bset.cap[i];
662 else if (table->data == CAP_PI)
663 cap_array[i] = usermodehelper_inheritable.cap[i];
664 else
665 BUG();
666 }
667 spin_unlock(&umh_sysctl_lock);
668
669 t = *table;
670 t.data = &cap_array;
671
672 /*
673 * actually read or write and array of ulongs from userspace. Remember
674 * these are least significant 32 bits first
675 */
676 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
677 if (err < 0)
678 return err;
679
680 /*
681 * convert from the sysctl array of ulongs to the kernel_cap_t
682 * internal representation
683 */
684 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
685 new_cap.cap[i] = cap_array[i];
686
687 /*
688 * Drop everything not in the new_cap (but don't add things)
689 */
690 spin_lock(&umh_sysctl_lock);
691 if (write) {
692 if (table->data == CAP_BSET)
693 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
694 if (table->data == CAP_PI)
695 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
696 }
697 spin_unlock(&umh_sysctl_lock);
698
699 return 0;
700 }
701
702 struct ctl_table usermodehelper_table[] = {
703 {
704 .procname = "bset",
705 .data = CAP_BSET,
706 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
707 .mode = 0600,
708 .proc_handler = proc_cap_handler,
709 },
710 {
711 .procname = "inheritable",
712 .data = CAP_PI,
713 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
714 .mode = 0600,
715 .proc_handler = proc_cap_handler,
716 },
717 { }
718 };