]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kprobes.c
btrfs: Verify that every chunk has corresponding block group at mount time
[mirror_ubuntu-bionic-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506 }
507
508 /*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512 static void do_unoptimize_kprobes(void)
513 {
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
583 */
584 synchronize_rcu_tasks();
585
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
588
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
591
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
595
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
599 }
600
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604 mutex_lock(&kprobe_mutex);
605
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
608
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
613
614 mutex_lock(&kprobe_mutex);
615 }
616
617 mutex_unlock(&kprobe_mutex);
618 }
619
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623 struct optimized_kprobe *op;
624
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
629
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
633
634 op = container_of(p, struct optimized_kprobe, kp);
635
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
639
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
651 }
652 }
653
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
661 }
662
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666 struct optimized_kprobe *op;
667
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
670
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
675 /*
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
679 */
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
682 }
683 return;
684 }
685
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
691 }
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
699 }
700 }
701
702 /* Cancel unoptimizing for reusing */
703 static int reuse_unused_kprobe(struct kprobe *ap)
704 {
705 struct optimized_kprobe *op;
706 int ret;
707
708 BUG_ON(!kprobe_unused(ap));
709 /*
710 * Unused kprobe MUST be on the way of delayed unoptimizing (means
711 * there is still a relative jump) and disabled.
712 */
713 op = container_of(ap, struct optimized_kprobe, kp);
714 WARN_ON_ONCE(list_empty(&op->list));
715 /* Enable the probe again */
716 ap->flags &= ~KPROBE_FLAG_DISABLED;
717 /* Optimize it again (remove from op->list) */
718 ret = kprobe_optready(ap);
719 if (ret)
720 return ret;
721
722 optimize_kprobe(ap);
723 return 0;
724 }
725
726 /* Remove optimized instructions */
727 static void kill_optimized_kprobe(struct kprobe *p)
728 {
729 struct optimized_kprobe *op;
730
731 op = container_of(p, struct optimized_kprobe, kp);
732 if (!list_empty(&op->list))
733 /* Dequeue from the (un)optimization queue */
734 list_del_init(&op->list);
735 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
736
737 if (kprobe_unused(p)) {
738 /* Enqueue if it is unused */
739 list_add(&op->list, &freeing_list);
740 /*
741 * Remove unused probes from the hash list. After waiting
742 * for synchronization, this probe is reclaimed.
743 * (reclaiming is done by do_free_cleaned_kprobes().)
744 */
745 hlist_del_rcu(&op->kp.hlist);
746 }
747
748 /* Don't touch the code, because it is already freed. */
749 arch_remove_optimized_kprobe(op);
750 }
751
752 static inline
753 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
754 {
755 if (!kprobe_ftrace(p))
756 arch_prepare_optimized_kprobe(op, p);
757 }
758
759 /* Try to prepare optimized instructions */
760 static void prepare_optimized_kprobe(struct kprobe *p)
761 {
762 struct optimized_kprobe *op;
763
764 op = container_of(p, struct optimized_kprobe, kp);
765 __prepare_optimized_kprobe(op, p);
766 }
767
768 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
769 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
770 {
771 struct optimized_kprobe *op;
772
773 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
774 if (!op)
775 return NULL;
776
777 INIT_LIST_HEAD(&op->list);
778 op->kp.addr = p->addr;
779 __prepare_optimized_kprobe(op, p);
780
781 return &op->kp;
782 }
783
784 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
785
786 /*
787 * Prepare an optimized_kprobe and optimize it
788 * NOTE: p must be a normal registered kprobe
789 */
790 static void try_to_optimize_kprobe(struct kprobe *p)
791 {
792 struct kprobe *ap;
793 struct optimized_kprobe *op;
794
795 /* Impossible to optimize ftrace-based kprobe */
796 if (kprobe_ftrace(p))
797 return;
798
799 /* For preparing optimization, jump_label_text_reserved() is called */
800 cpus_read_lock();
801 jump_label_lock();
802 mutex_lock(&text_mutex);
803
804 ap = alloc_aggr_kprobe(p);
805 if (!ap)
806 goto out;
807
808 op = container_of(ap, struct optimized_kprobe, kp);
809 if (!arch_prepared_optinsn(&op->optinsn)) {
810 /* If failed to setup optimizing, fallback to kprobe */
811 arch_remove_optimized_kprobe(op);
812 kfree(op);
813 goto out;
814 }
815
816 init_aggr_kprobe(ap, p);
817 optimize_kprobe(ap); /* This just kicks optimizer thread */
818
819 out:
820 mutex_unlock(&text_mutex);
821 jump_label_unlock();
822 cpus_read_unlock();
823 }
824
825 #ifdef CONFIG_SYSCTL
826 static void optimize_all_kprobes(void)
827 {
828 struct hlist_head *head;
829 struct kprobe *p;
830 unsigned int i;
831
832 mutex_lock(&kprobe_mutex);
833 /* If optimization is already allowed, just return */
834 if (kprobes_allow_optimization)
835 goto out;
836
837 cpus_read_lock();
838 kprobes_allow_optimization = true;
839 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
840 head = &kprobe_table[i];
841 hlist_for_each_entry_rcu(p, head, hlist)
842 if (!kprobe_disabled(p))
843 optimize_kprobe(p);
844 }
845 cpus_read_unlock();
846 printk(KERN_INFO "Kprobes globally optimized\n");
847 out:
848 mutex_unlock(&kprobe_mutex);
849 }
850
851 static void unoptimize_all_kprobes(void)
852 {
853 struct hlist_head *head;
854 struct kprobe *p;
855 unsigned int i;
856
857 mutex_lock(&kprobe_mutex);
858 /* If optimization is already prohibited, just return */
859 if (!kprobes_allow_optimization) {
860 mutex_unlock(&kprobe_mutex);
861 return;
862 }
863
864 cpus_read_lock();
865 kprobes_allow_optimization = false;
866 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
867 head = &kprobe_table[i];
868 hlist_for_each_entry_rcu(p, head, hlist) {
869 if (!kprobe_disabled(p))
870 unoptimize_kprobe(p, false);
871 }
872 }
873 cpus_read_unlock();
874 mutex_unlock(&kprobe_mutex);
875
876 /* Wait for unoptimizing completion */
877 wait_for_kprobe_optimizer();
878 printk(KERN_INFO "Kprobes globally unoptimized\n");
879 }
880
881 static DEFINE_MUTEX(kprobe_sysctl_mutex);
882 int sysctl_kprobes_optimization;
883 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
884 void __user *buffer, size_t *length,
885 loff_t *ppos)
886 {
887 int ret;
888
889 mutex_lock(&kprobe_sysctl_mutex);
890 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
891 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
892
893 if (sysctl_kprobes_optimization)
894 optimize_all_kprobes();
895 else
896 unoptimize_all_kprobes();
897 mutex_unlock(&kprobe_sysctl_mutex);
898
899 return ret;
900 }
901 #endif /* CONFIG_SYSCTL */
902
903 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
904 static void __arm_kprobe(struct kprobe *p)
905 {
906 struct kprobe *_p;
907
908 /* Check collision with other optimized kprobes */
909 _p = get_optimized_kprobe((unsigned long)p->addr);
910 if (unlikely(_p))
911 /* Fallback to unoptimized kprobe */
912 unoptimize_kprobe(_p, true);
913
914 arch_arm_kprobe(p);
915 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
916 }
917
918 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
919 static void __disarm_kprobe(struct kprobe *p, bool reopt)
920 {
921 struct kprobe *_p;
922
923 /* Try to unoptimize */
924 unoptimize_kprobe(p, kprobes_all_disarmed);
925
926 if (!kprobe_queued(p)) {
927 arch_disarm_kprobe(p);
928 /* If another kprobe was blocked, optimize it. */
929 _p = get_optimized_kprobe((unsigned long)p->addr);
930 if (unlikely(_p) && reopt)
931 optimize_kprobe(_p);
932 }
933 /* TODO: reoptimize others after unoptimized this probe */
934 }
935
936 #else /* !CONFIG_OPTPROBES */
937
938 #define optimize_kprobe(p) do {} while (0)
939 #define unoptimize_kprobe(p, f) do {} while (0)
940 #define kill_optimized_kprobe(p) do {} while (0)
941 #define prepare_optimized_kprobe(p) do {} while (0)
942 #define try_to_optimize_kprobe(p) do {} while (0)
943 #define __arm_kprobe(p) arch_arm_kprobe(p)
944 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
945 #define kprobe_disarmed(p) kprobe_disabled(p)
946 #define wait_for_kprobe_optimizer() do {} while (0)
947
948 static int reuse_unused_kprobe(struct kprobe *ap)
949 {
950 /*
951 * If the optimized kprobe is NOT supported, the aggr kprobe is
952 * released at the same time that the last aggregated kprobe is
953 * unregistered.
954 * Thus there should be no chance to reuse unused kprobe.
955 */
956 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
957 return -EINVAL;
958 }
959
960 static void free_aggr_kprobe(struct kprobe *p)
961 {
962 arch_remove_kprobe(p);
963 kfree(p);
964 }
965
966 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
967 {
968 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
969 }
970 #endif /* CONFIG_OPTPROBES */
971
972 #ifdef CONFIG_KPROBES_ON_FTRACE
973 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
974 .func = kprobe_ftrace_handler,
975 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
976 };
977 static int kprobe_ftrace_enabled;
978
979 /* Must ensure p->addr is really on ftrace */
980 static int prepare_kprobe(struct kprobe *p)
981 {
982 if (!kprobe_ftrace(p))
983 return arch_prepare_kprobe(p);
984
985 return arch_prepare_kprobe_ftrace(p);
986 }
987
988 /* Caller must lock kprobe_mutex */
989 static void arm_kprobe_ftrace(struct kprobe *p)
990 {
991 int ret;
992
993 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
994 (unsigned long)p->addr, 0, 0);
995 WARN(ret < 0, "Failed to arm kprobe-ftrace at %pS (%d)\n", p->addr, ret);
996 kprobe_ftrace_enabled++;
997 if (kprobe_ftrace_enabled == 1) {
998 ret = register_ftrace_function(&kprobe_ftrace_ops);
999 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1000 }
1001 }
1002
1003 /* Caller must lock kprobe_mutex */
1004 static void disarm_kprobe_ftrace(struct kprobe *p)
1005 {
1006 int ret;
1007
1008 kprobe_ftrace_enabled--;
1009 if (kprobe_ftrace_enabled == 0) {
1010 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1011 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1012 }
1013 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1014 (unsigned long)p->addr, 1, 0);
1015 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", p->addr, ret);
1016 }
1017 #else /* !CONFIG_KPROBES_ON_FTRACE */
1018 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1019 #define arm_kprobe_ftrace(p) do {} while (0)
1020 #define disarm_kprobe_ftrace(p) do {} while (0)
1021 #endif
1022
1023 /* Arm a kprobe with text_mutex */
1024 static void arm_kprobe(struct kprobe *kp)
1025 {
1026 if (unlikely(kprobe_ftrace(kp))) {
1027 arm_kprobe_ftrace(kp);
1028 return;
1029 }
1030 cpus_read_lock();
1031 mutex_lock(&text_mutex);
1032 __arm_kprobe(kp);
1033 mutex_unlock(&text_mutex);
1034 cpus_read_unlock();
1035 }
1036
1037 /* Disarm a kprobe with text_mutex */
1038 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1039 {
1040 if (unlikely(kprobe_ftrace(kp))) {
1041 disarm_kprobe_ftrace(kp);
1042 return;
1043 }
1044
1045 cpus_read_lock();
1046 mutex_lock(&text_mutex);
1047 __disarm_kprobe(kp, reopt);
1048 mutex_unlock(&text_mutex);
1049 cpus_read_unlock();
1050 }
1051
1052 /*
1053 * Aggregate handlers for multiple kprobes support - these handlers
1054 * take care of invoking the individual kprobe handlers on p->list
1055 */
1056 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1057 {
1058 struct kprobe *kp;
1059
1060 list_for_each_entry_rcu(kp, &p->list, list) {
1061 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1062 set_kprobe_instance(kp);
1063 if (kp->pre_handler(kp, regs))
1064 return 1;
1065 }
1066 reset_kprobe_instance();
1067 }
1068 return 0;
1069 }
1070 NOKPROBE_SYMBOL(aggr_pre_handler);
1071
1072 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1073 unsigned long flags)
1074 {
1075 struct kprobe *kp;
1076
1077 list_for_each_entry_rcu(kp, &p->list, list) {
1078 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1079 set_kprobe_instance(kp);
1080 kp->post_handler(kp, regs, flags);
1081 reset_kprobe_instance();
1082 }
1083 }
1084 }
1085 NOKPROBE_SYMBOL(aggr_post_handler);
1086
1087 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1088 int trapnr)
1089 {
1090 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1091
1092 /*
1093 * if we faulted "during" the execution of a user specified
1094 * probe handler, invoke just that probe's fault handler
1095 */
1096 if (cur && cur->fault_handler) {
1097 if (cur->fault_handler(cur, regs, trapnr))
1098 return 1;
1099 }
1100 return 0;
1101 }
1102 NOKPROBE_SYMBOL(aggr_fault_handler);
1103
1104 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1105 {
1106 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1107 int ret = 0;
1108
1109 if (cur && cur->break_handler) {
1110 if (cur->break_handler(cur, regs))
1111 ret = 1;
1112 }
1113 reset_kprobe_instance();
1114 return ret;
1115 }
1116 NOKPROBE_SYMBOL(aggr_break_handler);
1117
1118 /* Walks the list and increments nmissed count for multiprobe case */
1119 void kprobes_inc_nmissed_count(struct kprobe *p)
1120 {
1121 struct kprobe *kp;
1122 if (!kprobe_aggrprobe(p)) {
1123 p->nmissed++;
1124 } else {
1125 list_for_each_entry_rcu(kp, &p->list, list)
1126 kp->nmissed++;
1127 }
1128 return;
1129 }
1130 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1131
1132 void recycle_rp_inst(struct kretprobe_instance *ri,
1133 struct hlist_head *head)
1134 {
1135 struct kretprobe *rp = ri->rp;
1136
1137 /* remove rp inst off the rprobe_inst_table */
1138 hlist_del(&ri->hlist);
1139 INIT_HLIST_NODE(&ri->hlist);
1140 if (likely(rp)) {
1141 raw_spin_lock(&rp->lock);
1142 hlist_add_head(&ri->hlist, &rp->free_instances);
1143 raw_spin_unlock(&rp->lock);
1144 } else
1145 /* Unregistering */
1146 hlist_add_head(&ri->hlist, head);
1147 }
1148 NOKPROBE_SYMBOL(recycle_rp_inst);
1149
1150 void kretprobe_hash_lock(struct task_struct *tsk,
1151 struct hlist_head **head, unsigned long *flags)
1152 __acquires(hlist_lock)
1153 {
1154 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1155 raw_spinlock_t *hlist_lock;
1156
1157 *head = &kretprobe_inst_table[hash];
1158 hlist_lock = kretprobe_table_lock_ptr(hash);
1159 raw_spin_lock_irqsave(hlist_lock, *flags);
1160 }
1161 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1162
1163 static void kretprobe_table_lock(unsigned long hash,
1164 unsigned long *flags)
1165 __acquires(hlist_lock)
1166 {
1167 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1168 raw_spin_lock_irqsave(hlist_lock, *flags);
1169 }
1170 NOKPROBE_SYMBOL(kretprobe_table_lock);
1171
1172 void kretprobe_hash_unlock(struct task_struct *tsk,
1173 unsigned long *flags)
1174 __releases(hlist_lock)
1175 {
1176 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1177 raw_spinlock_t *hlist_lock;
1178
1179 hlist_lock = kretprobe_table_lock_ptr(hash);
1180 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1181 }
1182 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1183
1184 static void kretprobe_table_unlock(unsigned long hash,
1185 unsigned long *flags)
1186 __releases(hlist_lock)
1187 {
1188 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1189 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1190 }
1191 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1192
1193 /*
1194 * This function is called from finish_task_switch when task tk becomes dead,
1195 * so that we can recycle any function-return probe instances associated
1196 * with this task. These left over instances represent probed functions
1197 * that have been called but will never return.
1198 */
1199 void kprobe_flush_task(struct task_struct *tk)
1200 {
1201 struct kretprobe_instance *ri;
1202 struct hlist_head *head, empty_rp;
1203 struct hlist_node *tmp;
1204 unsigned long hash, flags = 0;
1205
1206 if (unlikely(!kprobes_initialized))
1207 /* Early boot. kretprobe_table_locks not yet initialized. */
1208 return;
1209
1210 INIT_HLIST_HEAD(&empty_rp);
1211 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1212 head = &kretprobe_inst_table[hash];
1213 kretprobe_table_lock(hash, &flags);
1214 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1215 if (ri->task == tk)
1216 recycle_rp_inst(ri, &empty_rp);
1217 }
1218 kretprobe_table_unlock(hash, &flags);
1219 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1220 hlist_del(&ri->hlist);
1221 kfree(ri);
1222 }
1223 }
1224 NOKPROBE_SYMBOL(kprobe_flush_task);
1225
1226 static inline void free_rp_inst(struct kretprobe *rp)
1227 {
1228 struct kretprobe_instance *ri;
1229 struct hlist_node *next;
1230
1231 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1232 hlist_del(&ri->hlist);
1233 kfree(ri);
1234 }
1235 }
1236
1237 static void cleanup_rp_inst(struct kretprobe *rp)
1238 {
1239 unsigned long flags, hash;
1240 struct kretprobe_instance *ri;
1241 struct hlist_node *next;
1242 struct hlist_head *head;
1243
1244 /* No race here */
1245 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1246 kretprobe_table_lock(hash, &flags);
1247 head = &kretprobe_inst_table[hash];
1248 hlist_for_each_entry_safe(ri, next, head, hlist) {
1249 if (ri->rp == rp)
1250 ri->rp = NULL;
1251 }
1252 kretprobe_table_unlock(hash, &flags);
1253 }
1254 free_rp_inst(rp);
1255 }
1256 NOKPROBE_SYMBOL(cleanup_rp_inst);
1257
1258 /*
1259 * Add the new probe to ap->list. Fail if this is the
1260 * second jprobe at the address - two jprobes can't coexist
1261 */
1262 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1263 {
1264 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1265
1266 if (p->break_handler || p->post_handler)
1267 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1268
1269 if (p->break_handler) {
1270 if (ap->break_handler)
1271 return -EEXIST;
1272 list_add_tail_rcu(&p->list, &ap->list);
1273 ap->break_handler = aggr_break_handler;
1274 } else
1275 list_add_rcu(&p->list, &ap->list);
1276 if (p->post_handler && !ap->post_handler)
1277 ap->post_handler = aggr_post_handler;
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * Fill in the required fields of the "manager kprobe". Replace the
1284 * earlier kprobe in the hlist with the manager kprobe
1285 */
1286 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1287 {
1288 /* Copy p's insn slot to ap */
1289 copy_kprobe(p, ap);
1290 flush_insn_slot(ap);
1291 ap->addr = p->addr;
1292 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1293 ap->pre_handler = aggr_pre_handler;
1294 ap->fault_handler = aggr_fault_handler;
1295 /* We don't care the kprobe which has gone. */
1296 if (p->post_handler && !kprobe_gone(p))
1297 ap->post_handler = aggr_post_handler;
1298 if (p->break_handler && !kprobe_gone(p))
1299 ap->break_handler = aggr_break_handler;
1300
1301 INIT_LIST_HEAD(&ap->list);
1302 INIT_HLIST_NODE(&ap->hlist);
1303
1304 list_add_rcu(&p->list, &ap->list);
1305 hlist_replace_rcu(&p->hlist, &ap->hlist);
1306 }
1307
1308 /*
1309 * This is the second or subsequent kprobe at the address - handle
1310 * the intricacies
1311 */
1312 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1313 {
1314 int ret = 0;
1315 struct kprobe *ap = orig_p;
1316
1317 cpus_read_lock();
1318
1319 /* For preparing optimization, jump_label_text_reserved() is called */
1320 jump_label_lock();
1321 mutex_lock(&text_mutex);
1322
1323 if (!kprobe_aggrprobe(orig_p)) {
1324 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1325 ap = alloc_aggr_kprobe(orig_p);
1326 if (!ap) {
1327 ret = -ENOMEM;
1328 goto out;
1329 }
1330 init_aggr_kprobe(ap, orig_p);
1331 } else if (kprobe_unused(ap)) {
1332 /* This probe is going to die. Rescue it */
1333 ret = reuse_unused_kprobe(ap);
1334 if (ret)
1335 goto out;
1336 }
1337
1338 if (kprobe_gone(ap)) {
1339 /*
1340 * Attempting to insert new probe at the same location that
1341 * had a probe in the module vaddr area which already
1342 * freed. So, the instruction slot has already been
1343 * released. We need a new slot for the new probe.
1344 */
1345 ret = arch_prepare_kprobe(ap);
1346 if (ret)
1347 /*
1348 * Even if fail to allocate new slot, don't need to
1349 * free aggr_probe. It will be used next time, or
1350 * freed by unregister_kprobe.
1351 */
1352 goto out;
1353
1354 /* Prepare optimized instructions if possible. */
1355 prepare_optimized_kprobe(ap);
1356
1357 /*
1358 * Clear gone flag to prevent allocating new slot again, and
1359 * set disabled flag because it is not armed yet.
1360 */
1361 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1362 | KPROBE_FLAG_DISABLED;
1363 }
1364
1365 /* Copy ap's insn slot to p */
1366 copy_kprobe(ap, p);
1367 ret = add_new_kprobe(ap, p);
1368
1369 out:
1370 mutex_unlock(&text_mutex);
1371 jump_label_unlock();
1372 cpus_read_unlock();
1373
1374 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1375 ap->flags &= ~KPROBE_FLAG_DISABLED;
1376 if (!kprobes_all_disarmed)
1377 /* Arm the breakpoint again. */
1378 arm_kprobe(ap);
1379 }
1380 return ret;
1381 }
1382
1383 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1384 {
1385 /* The __kprobes marked functions and entry code must not be probed */
1386 return addr >= (unsigned long)__kprobes_text_start &&
1387 addr < (unsigned long)__kprobes_text_end;
1388 }
1389
1390 bool within_kprobe_blacklist(unsigned long addr)
1391 {
1392 struct kprobe_blacklist_entry *ent;
1393
1394 if (arch_within_kprobe_blacklist(addr))
1395 return true;
1396 /*
1397 * If there exists a kprobe_blacklist, verify and
1398 * fail any probe registration in the prohibited area
1399 */
1400 list_for_each_entry(ent, &kprobe_blacklist, list) {
1401 if (addr >= ent->start_addr && addr < ent->end_addr)
1402 return true;
1403 }
1404
1405 return false;
1406 }
1407
1408 /*
1409 * If we have a symbol_name argument, look it up and add the offset field
1410 * to it. This way, we can specify a relative address to a symbol.
1411 * This returns encoded errors if it fails to look up symbol or invalid
1412 * combination of parameters.
1413 */
1414 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1415 const char *symbol_name, unsigned int offset)
1416 {
1417 if ((symbol_name && addr) || (!symbol_name && !addr))
1418 goto invalid;
1419
1420 if (symbol_name) {
1421 addr = kprobe_lookup_name(symbol_name, offset);
1422 if (!addr)
1423 return ERR_PTR(-ENOENT);
1424 }
1425
1426 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1427 if (addr)
1428 return addr;
1429
1430 invalid:
1431 return ERR_PTR(-EINVAL);
1432 }
1433
1434 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1435 {
1436 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1437 }
1438
1439 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1440 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1441 {
1442 struct kprobe *ap, *list_p;
1443
1444 ap = get_kprobe(p->addr);
1445 if (unlikely(!ap))
1446 return NULL;
1447
1448 if (p != ap) {
1449 list_for_each_entry_rcu(list_p, &ap->list, list)
1450 if (list_p == p)
1451 /* kprobe p is a valid probe */
1452 goto valid;
1453 return NULL;
1454 }
1455 valid:
1456 return ap;
1457 }
1458
1459 /* Return error if the kprobe is being re-registered */
1460 static inline int check_kprobe_rereg(struct kprobe *p)
1461 {
1462 int ret = 0;
1463
1464 mutex_lock(&kprobe_mutex);
1465 if (__get_valid_kprobe(p))
1466 ret = -EINVAL;
1467 mutex_unlock(&kprobe_mutex);
1468
1469 return ret;
1470 }
1471
1472 int __weak arch_check_ftrace_location(struct kprobe *p)
1473 {
1474 unsigned long ftrace_addr;
1475
1476 ftrace_addr = ftrace_location((unsigned long)p->addr);
1477 if (ftrace_addr) {
1478 #ifdef CONFIG_KPROBES_ON_FTRACE
1479 /* Given address is not on the instruction boundary */
1480 if ((unsigned long)p->addr != ftrace_addr)
1481 return -EILSEQ;
1482 p->flags |= KPROBE_FLAG_FTRACE;
1483 #else /* !CONFIG_KPROBES_ON_FTRACE */
1484 return -EINVAL;
1485 #endif
1486 }
1487 return 0;
1488 }
1489
1490 static int check_kprobe_address_safe(struct kprobe *p,
1491 struct module **probed_mod)
1492 {
1493 int ret;
1494
1495 ret = arch_check_ftrace_location(p);
1496 if (ret)
1497 return ret;
1498 jump_label_lock();
1499 preempt_disable();
1500
1501 /* Ensure it is not in reserved area nor out of text */
1502 if (!kernel_text_address((unsigned long) p->addr) ||
1503 within_kprobe_blacklist((unsigned long) p->addr) ||
1504 jump_label_text_reserved(p->addr, p->addr)) {
1505 ret = -EINVAL;
1506 goto out;
1507 }
1508
1509 /* Check if are we probing a module */
1510 *probed_mod = __module_text_address((unsigned long) p->addr);
1511 if (*probed_mod) {
1512 /*
1513 * We must hold a refcount of the probed module while updating
1514 * its code to prohibit unexpected unloading.
1515 */
1516 if (unlikely(!try_module_get(*probed_mod))) {
1517 ret = -ENOENT;
1518 goto out;
1519 }
1520
1521 /*
1522 * If the module freed .init.text, we couldn't insert
1523 * kprobes in there.
1524 */
1525 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1526 (*probed_mod)->state != MODULE_STATE_COMING) {
1527 module_put(*probed_mod);
1528 *probed_mod = NULL;
1529 ret = -ENOENT;
1530 }
1531 }
1532 out:
1533 preempt_enable();
1534 jump_label_unlock();
1535
1536 return ret;
1537 }
1538
1539 int register_kprobe(struct kprobe *p)
1540 {
1541 int ret;
1542 struct kprobe *old_p;
1543 struct module *probed_mod;
1544 kprobe_opcode_t *addr;
1545
1546 /* Adjust probe address from symbol */
1547 addr = kprobe_addr(p);
1548 if (IS_ERR(addr))
1549 return PTR_ERR(addr);
1550 p->addr = addr;
1551
1552 ret = check_kprobe_rereg(p);
1553 if (ret)
1554 return ret;
1555
1556 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1557 p->flags &= KPROBE_FLAG_DISABLED;
1558 p->nmissed = 0;
1559 INIT_LIST_HEAD(&p->list);
1560
1561 ret = check_kprobe_address_safe(p, &probed_mod);
1562 if (ret)
1563 return ret;
1564
1565 mutex_lock(&kprobe_mutex);
1566
1567 old_p = get_kprobe(p->addr);
1568 if (old_p) {
1569 /* Since this may unoptimize old_p, locking text_mutex. */
1570 ret = register_aggr_kprobe(old_p, p);
1571 goto out;
1572 }
1573
1574 cpus_read_lock();
1575 /* Prevent text modification */
1576 mutex_lock(&text_mutex);
1577 ret = prepare_kprobe(p);
1578 mutex_unlock(&text_mutex);
1579 cpus_read_unlock();
1580 if (ret)
1581 goto out;
1582
1583 INIT_HLIST_NODE(&p->hlist);
1584 hlist_add_head_rcu(&p->hlist,
1585 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1586
1587 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1588 arm_kprobe(p);
1589
1590 /* Try to optimize kprobe */
1591 try_to_optimize_kprobe(p);
1592 out:
1593 mutex_unlock(&kprobe_mutex);
1594
1595 if (probed_mod)
1596 module_put(probed_mod);
1597
1598 return ret;
1599 }
1600 EXPORT_SYMBOL_GPL(register_kprobe);
1601
1602 /* Check if all probes on the aggrprobe are disabled */
1603 static int aggr_kprobe_disabled(struct kprobe *ap)
1604 {
1605 struct kprobe *kp;
1606
1607 list_for_each_entry_rcu(kp, &ap->list, list)
1608 if (!kprobe_disabled(kp))
1609 /*
1610 * There is an active probe on the list.
1611 * We can't disable this ap.
1612 */
1613 return 0;
1614
1615 return 1;
1616 }
1617
1618 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1619 static struct kprobe *__disable_kprobe(struct kprobe *p)
1620 {
1621 struct kprobe *orig_p;
1622
1623 /* Get an original kprobe for return */
1624 orig_p = __get_valid_kprobe(p);
1625 if (unlikely(orig_p == NULL))
1626 return NULL;
1627
1628 if (!kprobe_disabled(p)) {
1629 /* Disable probe if it is a child probe */
1630 if (p != orig_p)
1631 p->flags |= KPROBE_FLAG_DISABLED;
1632
1633 /* Try to disarm and disable this/parent probe */
1634 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1635 /*
1636 * If kprobes_all_disarmed is set, orig_p
1637 * should have already been disarmed, so
1638 * skip unneed disarming process.
1639 */
1640 if (!kprobes_all_disarmed)
1641 disarm_kprobe(orig_p, true);
1642 orig_p->flags |= KPROBE_FLAG_DISABLED;
1643 }
1644 }
1645
1646 return orig_p;
1647 }
1648
1649 /*
1650 * Unregister a kprobe without a scheduler synchronization.
1651 */
1652 static int __unregister_kprobe_top(struct kprobe *p)
1653 {
1654 struct kprobe *ap, *list_p;
1655
1656 /* Disable kprobe. This will disarm it if needed. */
1657 ap = __disable_kprobe(p);
1658 if (ap == NULL)
1659 return -EINVAL;
1660
1661 if (ap == p)
1662 /*
1663 * This probe is an independent(and non-optimized) kprobe
1664 * (not an aggrprobe). Remove from the hash list.
1665 */
1666 goto disarmed;
1667
1668 /* Following process expects this probe is an aggrprobe */
1669 WARN_ON(!kprobe_aggrprobe(ap));
1670
1671 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1672 /*
1673 * !disarmed could be happen if the probe is under delayed
1674 * unoptimizing.
1675 */
1676 goto disarmed;
1677 else {
1678 /* If disabling probe has special handlers, update aggrprobe */
1679 if (p->break_handler && !kprobe_gone(p))
1680 ap->break_handler = NULL;
1681 if (p->post_handler && !kprobe_gone(p)) {
1682 list_for_each_entry_rcu(list_p, &ap->list, list) {
1683 if ((list_p != p) && (list_p->post_handler))
1684 goto noclean;
1685 }
1686 ap->post_handler = NULL;
1687 }
1688 noclean:
1689 /*
1690 * Remove from the aggrprobe: this path will do nothing in
1691 * __unregister_kprobe_bottom().
1692 */
1693 list_del_rcu(&p->list);
1694 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1695 /*
1696 * Try to optimize this probe again, because post
1697 * handler may have been changed.
1698 */
1699 optimize_kprobe(ap);
1700 }
1701 return 0;
1702
1703 disarmed:
1704 BUG_ON(!kprobe_disarmed(ap));
1705 hlist_del_rcu(&ap->hlist);
1706 return 0;
1707 }
1708
1709 static void __unregister_kprobe_bottom(struct kprobe *p)
1710 {
1711 struct kprobe *ap;
1712
1713 if (list_empty(&p->list))
1714 /* This is an independent kprobe */
1715 arch_remove_kprobe(p);
1716 else if (list_is_singular(&p->list)) {
1717 /* This is the last child of an aggrprobe */
1718 ap = list_entry(p->list.next, struct kprobe, list);
1719 list_del(&p->list);
1720 free_aggr_kprobe(ap);
1721 }
1722 /* Otherwise, do nothing. */
1723 }
1724
1725 int register_kprobes(struct kprobe **kps, int num)
1726 {
1727 int i, ret = 0;
1728
1729 if (num <= 0)
1730 return -EINVAL;
1731 for (i = 0; i < num; i++) {
1732 ret = register_kprobe(kps[i]);
1733 if (ret < 0) {
1734 if (i > 0)
1735 unregister_kprobes(kps, i);
1736 break;
1737 }
1738 }
1739 return ret;
1740 }
1741 EXPORT_SYMBOL_GPL(register_kprobes);
1742
1743 void unregister_kprobe(struct kprobe *p)
1744 {
1745 unregister_kprobes(&p, 1);
1746 }
1747 EXPORT_SYMBOL_GPL(unregister_kprobe);
1748
1749 void unregister_kprobes(struct kprobe **kps, int num)
1750 {
1751 int i;
1752
1753 if (num <= 0)
1754 return;
1755 mutex_lock(&kprobe_mutex);
1756 for (i = 0; i < num; i++)
1757 if (__unregister_kprobe_top(kps[i]) < 0)
1758 kps[i]->addr = NULL;
1759 mutex_unlock(&kprobe_mutex);
1760
1761 synchronize_sched();
1762 for (i = 0; i < num; i++)
1763 if (kps[i]->addr)
1764 __unregister_kprobe_bottom(kps[i]);
1765 }
1766 EXPORT_SYMBOL_GPL(unregister_kprobes);
1767
1768 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1769 unsigned long val, void *data)
1770 {
1771 return NOTIFY_DONE;
1772 }
1773 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1774
1775 static struct notifier_block kprobe_exceptions_nb = {
1776 .notifier_call = kprobe_exceptions_notify,
1777 .priority = 0x7fffffff /* we need to be notified first */
1778 };
1779
1780 unsigned long __weak arch_deref_entry_point(void *entry)
1781 {
1782 return (unsigned long)entry;
1783 }
1784
1785 #if 0
1786 int register_jprobes(struct jprobe **jps, int num)
1787 {
1788 int ret = 0, i;
1789
1790 if (num <= 0)
1791 return -EINVAL;
1792
1793 for (i = 0; i < num; i++) {
1794 ret = register_jprobe(jps[i]);
1795
1796 if (ret < 0) {
1797 if (i > 0)
1798 unregister_jprobes(jps, i);
1799 break;
1800 }
1801 }
1802
1803 return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(register_jprobes);
1806
1807 int register_jprobe(struct jprobe *jp)
1808 {
1809 unsigned long addr, offset;
1810 struct kprobe *kp = &jp->kp;
1811
1812 /*
1813 * Verify probepoint as well as the jprobe handler are
1814 * valid function entry points.
1815 */
1816 addr = arch_deref_entry_point(jp->entry);
1817
1818 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1819 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1820 kp->pre_handler = setjmp_pre_handler;
1821 kp->break_handler = longjmp_break_handler;
1822 return register_kprobe(kp);
1823 }
1824
1825 return -EINVAL;
1826 }
1827 EXPORT_SYMBOL_GPL(register_jprobe);
1828
1829 void unregister_jprobe(struct jprobe *jp)
1830 {
1831 unregister_jprobes(&jp, 1);
1832 }
1833 EXPORT_SYMBOL_GPL(unregister_jprobe);
1834
1835 void unregister_jprobes(struct jprobe **jps, int num)
1836 {
1837 int i;
1838
1839 if (num <= 0)
1840 return;
1841 mutex_lock(&kprobe_mutex);
1842 for (i = 0; i < num; i++)
1843 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1844 jps[i]->kp.addr = NULL;
1845 mutex_unlock(&kprobe_mutex);
1846
1847 synchronize_sched();
1848 for (i = 0; i < num; i++) {
1849 if (jps[i]->kp.addr)
1850 __unregister_kprobe_bottom(&jps[i]->kp);
1851 }
1852 }
1853 EXPORT_SYMBOL_GPL(unregister_jprobes);
1854 #endif
1855
1856 #ifdef CONFIG_KRETPROBES
1857 /*
1858 * This kprobe pre_handler is registered with every kretprobe. When probe
1859 * hits it will set up the return probe.
1860 */
1861 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1862 {
1863 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1864 unsigned long hash, flags = 0;
1865 struct kretprobe_instance *ri;
1866
1867 /*
1868 * To avoid deadlocks, prohibit return probing in NMI contexts,
1869 * just skip the probe and increase the (inexact) 'nmissed'
1870 * statistical counter, so that the user is informed that
1871 * something happened:
1872 */
1873 if (unlikely(in_nmi())) {
1874 rp->nmissed++;
1875 return 0;
1876 }
1877
1878 /* TODO: consider to only swap the RA after the last pre_handler fired */
1879 hash = hash_ptr(current, KPROBE_HASH_BITS);
1880 raw_spin_lock_irqsave(&rp->lock, flags);
1881 if (!hlist_empty(&rp->free_instances)) {
1882 ri = hlist_entry(rp->free_instances.first,
1883 struct kretprobe_instance, hlist);
1884 hlist_del(&ri->hlist);
1885 raw_spin_unlock_irqrestore(&rp->lock, flags);
1886
1887 ri->rp = rp;
1888 ri->task = current;
1889
1890 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1891 raw_spin_lock_irqsave(&rp->lock, flags);
1892 hlist_add_head(&ri->hlist, &rp->free_instances);
1893 raw_spin_unlock_irqrestore(&rp->lock, flags);
1894 return 0;
1895 }
1896
1897 arch_prepare_kretprobe(ri, regs);
1898
1899 /* XXX(hch): why is there no hlist_move_head? */
1900 INIT_HLIST_NODE(&ri->hlist);
1901 kretprobe_table_lock(hash, &flags);
1902 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1903 kretprobe_table_unlock(hash, &flags);
1904 } else {
1905 rp->nmissed++;
1906 raw_spin_unlock_irqrestore(&rp->lock, flags);
1907 }
1908 return 0;
1909 }
1910 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1911
1912 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1913 {
1914 return !offset;
1915 }
1916
1917 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1918 {
1919 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1920
1921 if (IS_ERR(kp_addr))
1922 return false;
1923
1924 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1925 !arch_kprobe_on_func_entry(offset))
1926 return false;
1927
1928 return true;
1929 }
1930
1931 int register_kretprobe(struct kretprobe *rp)
1932 {
1933 int ret = 0;
1934 struct kretprobe_instance *inst;
1935 int i;
1936 void *addr;
1937
1938 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1939 return -EINVAL;
1940
1941 if (kretprobe_blacklist_size) {
1942 addr = kprobe_addr(&rp->kp);
1943 if (IS_ERR(addr))
1944 return PTR_ERR(addr);
1945
1946 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1947 if (kretprobe_blacklist[i].addr == addr)
1948 return -EINVAL;
1949 }
1950 }
1951
1952 rp->kp.pre_handler = pre_handler_kretprobe;
1953 rp->kp.post_handler = NULL;
1954 rp->kp.fault_handler = NULL;
1955 rp->kp.break_handler = NULL;
1956
1957 /* Pre-allocate memory for max kretprobe instances */
1958 if (rp->maxactive <= 0) {
1959 #ifdef CONFIG_PREEMPT
1960 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1961 #else
1962 rp->maxactive = num_possible_cpus();
1963 #endif
1964 }
1965 raw_spin_lock_init(&rp->lock);
1966 INIT_HLIST_HEAD(&rp->free_instances);
1967 for (i = 0; i < rp->maxactive; i++) {
1968 inst = kmalloc(sizeof(struct kretprobe_instance) +
1969 rp->data_size, GFP_KERNEL);
1970 if (inst == NULL) {
1971 free_rp_inst(rp);
1972 return -ENOMEM;
1973 }
1974 INIT_HLIST_NODE(&inst->hlist);
1975 hlist_add_head(&inst->hlist, &rp->free_instances);
1976 }
1977
1978 rp->nmissed = 0;
1979 /* Establish function entry probe point */
1980 ret = register_kprobe(&rp->kp);
1981 if (ret != 0)
1982 free_rp_inst(rp);
1983 return ret;
1984 }
1985 EXPORT_SYMBOL_GPL(register_kretprobe);
1986
1987 int register_kretprobes(struct kretprobe **rps, int num)
1988 {
1989 int ret = 0, i;
1990
1991 if (num <= 0)
1992 return -EINVAL;
1993 for (i = 0; i < num; i++) {
1994 ret = register_kretprobe(rps[i]);
1995 if (ret < 0) {
1996 if (i > 0)
1997 unregister_kretprobes(rps, i);
1998 break;
1999 }
2000 }
2001 return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(register_kretprobes);
2004
2005 void unregister_kretprobe(struct kretprobe *rp)
2006 {
2007 unregister_kretprobes(&rp, 1);
2008 }
2009 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2010
2011 void unregister_kretprobes(struct kretprobe **rps, int num)
2012 {
2013 int i;
2014
2015 if (num <= 0)
2016 return;
2017 mutex_lock(&kprobe_mutex);
2018 for (i = 0; i < num; i++)
2019 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2020 rps[i]->kp.addr = NULL;
2021 mutex_unlock(&kprobe_mutex);
2022
2023 synchronize_sched();
2024 for (i = 0; i < num; i++) {
2025 if (rps[i]->kp.addr) {
2026 __unregister_kprobe_bottom(&rps[i]->kp);
2027 cleanup_rp_inst(rps[i]);
2028 }
2029 }
2030 }
2031 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2032
2033 #else /* CONFIG_KRETPROBES */
2034 int register_kretprobe(struct kretprobe *rp)
2035 {
2036 return -ENOSYS;
2037 }
2038 EXPORT_SYMBOL_GPL(register_kretprobe);
2039
2040 int register_kretprobes(struct kretprobe **rps, int num)
2041 {
2042 return -ENOSYS;
2043 }
2044 EXPORT_SYMBOL_GPL(register_kretprobes);
2045
2046 void unregister_kretprobe(struct kretprobe *rp)
2047 {
2048 }
2049 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2050
2051 void unregister_kretprobes(struct kretprobe **rps, int num)
2052 {
2053 }
2054 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2055
2056 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2057 {
2058 return 0;
2059 }
2060 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2061
2062 #endif /* CONFIG_KRETPROBES */
2063
2064 /* Set the kprobe gone and remove its instruction buffer. */
2065 static void kill_kprobe(struct kprobe *p)
2066 {
2067 struct kprobe *kp;
2068
2069 p->flags |= KPROBE_FLAG_GONE;
2070 if (kprobe_aggrprobe(p)) {
2071 /*
2072 * If this is an aggr_kprobe, we have to list all the
2073 * chained probes and mark them GONE.
2074 */
2075 list_for_each_entry_rcu(kp, &p->list, list)
2076 kp->flags |= KPROBE_FLAG_GONE;
2077 p->post_handler = NULL;
2078 p->break_handler = NULL;
2079 kill_optimized_kprobe(p);
2080 }
2081 /*
2082 * Here, we can remove insn_slot safely, because no thread calls
2083 * the original probed function (which will be freed soon) any more.
2084 */
2085 arch_remove_kprobe(p);
2086 }
2087
2088 /* Disable one kprobe */
2089 int disable_kprobe(struct kprobe *kp)
2090 {
2091 int ret = 0;
2092
2093 mutex_lock(&kprobe_mutex);
2094
2095 /* Disable this kprobe */
2096 if (__disable_kprobe(kp) == NULL)
2097 ret = -EINVAL;
2098
2099 mutex_unlock(&kprobe_mutex);
2100 return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(disable_kprobe);
2103
2104 /* Enable one kprobe */
2105 int enable_kprobe(struct kprobe *kp)
2106 {
2107 int ret = 0;
2108 struct kprobe *p;
2109
2110 mutex_lock(&kprobe_mutex);
2111
2112 /* Check whether specified probe is valid. */
2113 p = __get_valid_kprobe(kp);
2114 if (unlikely(p == NULL)) {
2115 ret = -EINVAL;
2116 goto out;
2117 }
2118
2119 if (kprobe_gone(kp)) {
2120 /* This kprobe has gone, we couldn't enable it. */
2121 ret = -EINVAL;
2122 goto out;
2123 }
2124
2125 if (p != kp)
2126 kp->flags &= ~KPROBE_FLAG_DISABLED;
2127
2128 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2129 p->flags &= ~KPROBE_FLAG_DISABLED;
2130 arm_kprobe(p);
2131 }
2132 out:
2133 mutex_unlock(&kprobe_mutex);
2134 return ret;
2135 }
2136 EXPORT_SYMBOL_GPL(enable_kprobe);
2137
2138 /* Caller must NOT call this in usual path. This is only for critical case */
2139 void dump_kprobe(struct kprobe *kp)
2140 {
2141 pr_err("Dumping kprobe:\n");
2142 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2143 kp->symbol_name, kp->offset, kp->addr);
2144 }
2145 NOKPROBE_SYMBOL(dump_kprobe);
2146
2147 /*
2148 * Lookup and populate the kprobe_blacklist.
2149 *
2150 * Unlike the kretprobe blacklist, we'll need to determine
2151 * the range of addresses that belong to the said functions,
2152 * since a kprobe need not necessarily be at the beginning
2153 * of a function.
2154 */
2155 static int __init populate_kprobe_blacklist(unsigned long *start,
2156 unsigned long *end)
2157 {
2158 unsigned long *iter;
2159 struct kprobe_blacklist_entry *ent;
2160 unsigned long entry, offset = 0, size = 0;
2161
2162 for (iter = start; iter < end; iter++) {
2163 entry = arch_deref_entry_point((void *)*iter);
2164
2165 if (!kernel_text_address(entry) ||
2166 !kallsyms_lookup_size_offset(entry, &size, &offset))
2167 continue;
2168
2169 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2170 if (!ent)
2171 return -ENOMEM;
2172 ent->start_addr = entry;
2173 ent->end_addr = entry + size;
2174 INIT_LIST_HEAD(&ent->list);
2175 list_add_tail(&ent->list, &kprobe_blacklist);
2176 }
2177 return 0;
2178 }
2179
2180 /* Module notifier call back, checking kprobes on the module */
2181 static int kprobes_module_callback(struct notifier_block *nb,
2182 unsigned long val, void *data)
2183 {
2184 struct module *mod = data;
2185 struct hlist_head *head;
2186 struct kprobe *p;
2187 unsigned int i;
2188 int checkcore = (val == MODULE_STATE_GOING);
2189
2190 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2191 return NOTIFY_DONE;
2192
2193 /*
2194 * When MODULE_STATE_GOING was notified, both of module .text and
2195 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2196 * notified, only .init.text section would be freed. We need to
2197 * disable kprobes which have been inserted in the sections.
2198 */
2199 mutex_lock(&kprobe_mutex);
2200 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2201 head = &kprobe_table[i];
2202 hlist_for_each_entry_rcu(p, head, hlist)
2203 if (within_module_init((unsigned long)p->addr, mod) ||
2204 (checkcore &&
2205 within_module_core((unsigned long)p->addr, mod))) {
2206 /*
2207 * The vaddr this probe is installed will soon
2208 * be vfreed buy not synced to disk. Hence,
2209 * disarming the breakpoint isn't needed.
2210 *
2211 * Note, this will also move any optimized probes
2212 * that are pending to be removed from their
2213 * corresponding lists to the freeing_list and
2214 * will not be touched by the delayed
2215 * kprobe_optimizer work handler.
2216 */
2217 kill_kprobe(p);
2218 }
2219 }
2220 mutex_unlock(&kprobe_mutex);
2221 return NOTIFY_DONE;
2222 }
2223
2224 static struct notifier_block kprobe_module_nb = {
2225 .notifier_call = kprobes_module_callback,
2226 .priority = 0
2227 };
2228
2229 /* Markers of _kprobe_blacklist section */
2230 extern unsigned long __start_kprobe_blacklist[];
2231 extern unsigned long __stop_kprobe_blacklist[];
2232
2233 static int __init init_kprobes(void)
2234 {
2235 int i, err = 0;
2236
2237 /* FIXME allocate the probe table, currently defined statically */
2238 /* initialize all list heads */
2239 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2240 INIT_HLIST_HEAD(&kprobe_table[i]);
2241 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2242 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2243 }
2244
2245 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2246 __stop_kprobe_blacklist);
2247 if (err) {
2248 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2249 pr_err("Please take care of using kprobes.\n");
2250 }
2251
2252 if (kretprobe_blacklist_size) {
2253 /* lookup the function address from its name */
2254 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2255 kretprobe_blacklist[i].addr =
2256 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2257 if (!kretprobe_blacklist[i].addr)
2258 printk("kretprobe: lookup failed: %s\n",
2259 kretprobe_blacklist[i].name);
2260 }
2261 }
2262
2263 #if defined(CONFIG_OPTPROBES)
2264 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2265 /* Init kprobe_optinsn_slots */
2266 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2267 #endif
2268 /* By default, kprobes can be optimized */
2269 kprobes_allow_optimization = true;
2270 #endif
2271
2272 /* By default, kprobes are armed */
2273 kprobes_all_disarmed = false;
2274
2275 err = arch_init_kprobes();
2276 if (!err)
2277 err = register_die_notifier(&kprobe_exceptions_nb);
2278 if (!err)
2279 err = register_module_notifier(&kprobe_module_nb);
2280
2281 kprobes_initialized = (err == 0);
2282
2283 if (!err)
2284 init_test_probes();
2285 return err;
2286 }
2287
2288 #ifdef CONFIG_DEBUG_FS
2289 static void report_probe(struct seq_file *pi, struct kprobe *p,
2290 const char *sym, int offset, char *modname, struct kprobe *pp)
2291 {
2292 char *kprobe_type;
2293
2294 if (p->pre_handler == pre_handler_kretprobe)
2295 kprobe_type = "r";
2296 else if (p->pre_handler == setjmp_pre_handler)
2297 kprobe_type = "j";
2298 else
2299 kprobe_type = "k";
2300
2301 if (sym)
2302 seq_printf(pi, "%p %s %s+0x%x %s ",
2303 p->addr, kprobe_type, sym, offset,
2304 (modname ? modname : " "));
2305 else
2306 seq_printf(pi, "%p %s %p ",
2307 p->addr, kprobe_type, p->addr);
2308
2309 if (!pp)
2310 pp = p;
2311 seq_printf(pi, "%s%s%s%s\n",
2312 (kprobe_gone(p) ? "[GONE]" : ""),
2313 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2314 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2315 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2316 }
2317
2318 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2319 {
2320 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2321 }
2322
2323 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2324 {
2325 (*pos)++;
2326 if (*pos >= KPROBE_TABLE_SIZE)
2327 return NULL;
2328 return pos;
2329 }
2330
2331 static void kprobe_seq_stop(struct seq_file *f, void *v)
2332 {
2333 /* Nothing to do */
2334 }
2335
2336 static int show_kprobe_addr(struct seq_file *pi, void *v)
2337 {
2338 struct hlist_head *head;
2339 struct kprobe *p, *kp;
2340 const char *sym = NULL;
2341 unsigned int i = *(loff_t *) v;
2342 unsigned long offset = 0;
2343 char *modname, namebuf[KSYM_NAME_LEN];
2344
2345 head = &kprobe_table[i];
2346 preempt_disable();
2347 hlist_for_each_entry_rcu(p, head, hlist) {
2348 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2349 &offset, &modname, namebuf);
2350 if (kprobe_aggrprobe(p)) {
2351 list_for_each_entry_rcu(kp, &p->list, list)
2352 report_probe(pi, kp, sym, offset, modname, p);
2353 } else
2354 report_probe(pi, p, sym, offset, modname, NULL);
2355 }
2356 preempt_enable();
2357 return 0;
2358 }
2359
2360 static const struct seq_operations kprobes_seq_ops = {
2361 .start = kprobe_seq_start,
2362 .next = kprobe_seq_next,
2363 .stop = kprobe_seq_stop,
2364 .show = show_kprobe_addr
2365 };
2366
2367 static int kprobes_open(struct inode *inode, struct file *filp)
2368 {
2369 return seq_open(filp, &kprobes_seq_ops);
2370 }
2371
2372 static const struct file_operations debugfs_kprobes_operations = {
2373 .open = kprobes_open,
2374 .read = seq_read,
2375 .llseek = seq_lseek,
2376 .release = seq_release,
2377 };
2378
2379 /* kprobes/blacklist -- shows which functions can not be probed */
2380 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2381 {
2382 return seq_list_start(&kprobe_blacklist, *pos);
2383 }
2384
2385 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2386 {
2387 return seq_list_next(v, &kprobe_blacklist, pos);
2388 }
2389
2390 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2391 {
2392 struct kprobe_blacklist_entry *ent =
2393 list_entry(v, struct kprobe_blacklist_entry, list);
2394
2395 /*
2396 * If /proc/kallsyms is not showing kernel address, we won't
2397 * show them here either.
2398 */
2399 if (!kallsyms_show_value())
2400 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2401 (void *)ent->start_addr);
2402 else
2403 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2404 (void *)ent->end_addr, (void *)ent->start_addr);
2405 return 0;
2406 }
2407
2408 static const struct seq_operations kprobe_blacklist_seq_ops = {
2409 .start = kprobe_blacklist_seq_start,
2410 .next = kprobe_blacklist_seq_next,
2411 .stop = kprobe_seq_stop, /* Reuse void function */
2412 .show = kprobe_blacklist_seq_show,
2413 };
2414
2415 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2416 {
2417 return seq_open(filp, &kprobe_blacklist_seq_ops);
2418 }
2419
2420 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2421 .open = kprobe_blacklist_open,
2422 .read = seq_read,
2423 .llseek = seq_lseek,
2424 .release = seq_release,
2425 };
2426
2427 static void arm_all_kprobes(void)
2428 {
2429 struct hlist_head *head;
2430 struct kprobe *p;
2431 unsigned int i;
2432
2433 mutex_lock(&kprobe_mutex);
2434
2435 /* If kprobes are armed, just return */
2436 if (!kprobes_all_disarmed)
2437 goto already_enabled;
2438
2439 /*
2440 * optimize_kprobe() called by arm_kprobe() checks
2441 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2442 * arm_kprobe.
2443 */
2444 kprobes_all_disarmed = false;
2445 /* Arming kprobes doesn't optimize kprobe itself */
2446 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2447 head = &kprobe_table[i];
2448 hlist_for_each_entry_rcu(p, head, hlist)
2449 if (!kprobe_disabled(p))
2450 arm_kprobe(p);
2451 }
2452
2453 printk(KERN_INFO "Kprobes globally enabled\n");
2454
2455 already_enabled:
2456 mutex_unlock(&kprobe_mutex);
2457 return;
2458 }
2459
2460 static void disarm_all_kprobes(void)
2461 {
2462 struct hlist_head *head;
2463 struct kprobe *p;
2464 unsigned int i;
2465
2466 mutex_lock(&kprobe_mutex);
2467
2468 /* If kprobes are already disarmed, just return */
2469 if (kprobes_all_disarmed) {
2470 mutex_unlock(&kprobe_mutex);
2471 return;
2472 }
2473
2474 kprobes_all_disarmed = true;
2475 printk(KERN_INFO "Kprobes globally disabled\n");
2476
2477 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2478 head = &kprobe_table[i];
2479 hlist_for_each_entry_rcu(p, head, hlist) {
2480 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2481 disarm_kprobe(p, false);
2482 }
2483 }
2484 mutex_unlock(&kprobe_mutex);
2485
2486 /* Wait for disarming all kprobes by optimizer */
2487 wait_for_kprobe_optimizer();
2488 }
2489
2490 /*
2491 * XXX: The debugfs bool file interface doesn't allow for callbacks
2492 * when the bool state is switched. We can reuse that facility when
2493 * available
2494 */
2495 static ssize_t read_enabled_file_bool(struct file *file,
2496 char __user *user_buf, size_t count, loff_t *ppos)
2497 {
2498 char buf[3];
2499
2500 if (!kprobes_all_disarmed)
2501 buf[0] = '1';
2502 else
2503 buf[0] = '0';
2504 buf[1] = '\n';
2505 buf[2] = 0x00;
2506 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2507 }
2508
2509 static ssize_t write_enabled_file_bool(struct file *file,
2510 const char __user *user_buf, size_t count, loff_t *ppos)
2511 {
2512 char buf[32];
2513 size_t buf_size;
2514
2515 buf_size = min(count, (sizeof(buf)-1));
2516 if (copy_from_user(buf, user_buf, buf_size))
2517 return -EFAULT;
2518
2519 buf[buf_size] = '\0';
2520 switch (buf[0]) {
2521 case 'y':
2522 case 'Y':
2523 case '1':
2524 arm_all_kprobes();
2525 break;
2526 case 'n':
2527 case 'N':
2528 case '0':
2529 disarm_all_kprobes();
2530 break;
2531 default:
2532 return -EINVAL;
2533 }
2534
2535 return count;
2536 }
2537
2538 static const struct file_operations fops_kp = {
2539 .read = read_enabled_file_bool,
2540 .write = write_enabled_file_bool,
2541 .llseek = default_llseek,
2542 };
2543
2544 static int __init debugfs_kprobe_init(void)
2545 {
2546 struct dentry *dir, *file;
2547 unsigned int value = 1;
2548
2549 dir = debugfs_create_dir("kprobes", NULL);
2550 if (!dir)
2551 return -ENOMEM;
2552
2553 file = debugfs_create_file("list", 0400, dir, NULL,
2554 &debugfs_kprobes_operations);
2555 if (!file)
2556 goto error;
2557
2558 file = debugfs_create_file("enabled", 0600, dir,
2559 &value, &fops_kp);
2560 if (!file)
2561 goto error;
2562
2563 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2564 &debugfs_kprobe_blacklist_ops);
2565 if (!file)
2566 goto error;
2567
2568 return 0;
2569
2570 error:
2571 debugfs_remove(dir);
2572 return -ENOMEM;
2573 }
2574
2575 late_initcall(debugfs_kprobe_init);
2576 #endif /* CONFIG_DEBUG_FS */
2577
2578 module_init(init_kprobes);
2579
2580 /* defined in arch/.../kernel/kprobes.c */
2581 EXPORT_SYMBOL_GPL(jprobe_return);