]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/kprobes.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-hirsute-kernel.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52 * Or
53 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54 */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
57
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64 static struct {
65 raw_spinlock_t lock ____cacheline_aligned_in_smp;
66 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
67
68 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69 unsigned int __unused)
70 {
71 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72 }
73
74 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
75 {
76 return &(kretprobe_table_locks[hash].lock);
77 }
78
79 /* Blacklist -- list of struct kprobe_blacklist_entry */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84 * kprobe->ainsn.insn points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89 struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115 return module_alloc(PAGE_SIZE);
116 }
117
118 void __weak free_insn_page(void *page)
119 {
120 module_memfree(page);
121 }
122
123 struct kprobe_insn_cache kprobe_insn_slots = {
124 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
125 .alloc = alloc_insn_page,
126 .free = free_insn_page,
127 .sym = KPROBE_INSN_PAGE_SYM,
128 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
129 .insn_size = MAX_INSN_SIZE,
130 .nr_garbage = 0,
131 };
132 static int collect_garbage_slots(struct kprobe_insn_cache *c);
133
134 /**
135 * __get_insn_slot() - Find a slot on an executable page for an instruction.
136 * We allocate an executable page if there's no room on existing ones.
137 */
138 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
139 {
140 struct kprobe_insn_page *kip;
141 kprobe_opcode_t *slot = NULL;
142
143 /* Since the slot array is not protected by rcu, we need a mutex */
144 mutex_lock(&c->mutex);
145 retry:
146 rcu_read_lock();
147 list_for_each_entry_rcu(kip, &c->pages, list) {
148 if (kip->nused < slots_per_page(c)) {
149 int i;
150 for (i = 0; i < slots_per_page(c); i++) {
151 if (kip->slot_used[i] == SLOT_CLEAN) {
152 kip->slot_used[i] = SLOT_USED;
153 kip->nused++;
154 slot = kip->insns + (i * c->insn_size);
155 rcu_read_unlock();
156 goto out;
157 }
158 }
159 /* kip->nused is broken. Fix it. */
160 kip->nused = slots_per_page(c);
161 WARN_ON(1);
162 }
163 }
164 rcu_read_unlock();
165
166 /* If there are any garbage slots, collect it and try again. */
167 if (c->nr_garbage && collect_garbage_slots(c) == 0)
168 goto retry;
169
170 /* All out of space. Need to allocate a new page. */
171 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
172 if (!kip)
173 goto out;
174
175 /*
176 * Use module_alloc so this page is within +/- 2GB of where the
177 * kernel image and loaded module images reside. This is required
178 * so x86_64 can correctly handle the %rip-relative fixups.
179 */
180 kip->insns = c->alloc();
181 if (!kip->insns) {
182 kfree(kip);
183 goto out;
184 }
185 INIT_LIST_HEAD(&kip->list);
186 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
187 kip->slot_used[0] = SLOT_USED;
188 kip->nused = 1;
189 kip->ngarbage = 0;
190 kip->cache = c;
191 list_add_rcu(&kip->list, &c->pages);
192 slot = kip->insns;
193
194 /* Record the perf ksymbol register event after adding the page */
195 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
196 PAGE_SIZE, false, c->sym);
197 out:
198 mutex_unlock(&c->mutex);
199 return slot;
200 }
201
202 /* Return 1 if all garbages are collected, otherwise 0. */
203 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
204 {
205 kip->slot_used[idx] = SLOT_CLEAN;
206 kip->nused--;
207 if (kip->nused == 0) {
208 /*
209 * Page is no longer in use. Free it unless
210 * it's the last one. We keep the last one
211 * so as not to have to set it up again the
212 * next time somebody inserts a probe.
213 */
214 if (!list_is_singular(&kip->list)) {
215 /*
216 * Record perf ksymbol unregister event before removing
217 * the page.
218 */
219 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
220 (unsigned long)kip->insns, PAGE_SIZE, true,
221 kip->cache->sym);
222 list_del_rcu(&kip->list);
223 synchronize_rcu();
224 kip->cache->free(kip->insns);
225 kfree(kip);
226 }
227 return 1;
228 }
229 return 0;
230 }
231
232 static int collect_garbage_slots(struct kprobe_insn_cache *c)
233 {
234 struct kprobe_insn_page *kip, *next;
235
236 /* Ensure no-one is interrupted on the garbages */
237 synchronize_rcu();
238
239 list_for_each_entry_safe(kip, next, &c->pages, list) {
240 int i;
241 if (kip->ngarbage == 0)
242 continue;
243 kip->ngarbage = 0; /* we will collect all garbages */
244 for (i = 0; i < slots_per_page(c); i++) {
245 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
246 break;
247 }
248 }
249 c->nr_garbage = 0;
250 return 0;
251 }
252
253 void __free_insn_slot(struct kprobe_insn_cache *c,
254 kprobe_opcode_t *slot, int dirty)
255 {
256 struct kprobe_insn_page *kip;
257 long idx;
258
259 mutex_lock(&c->mutex);
260 rcu_read_lock();
261 list_for_each_entry_rcu(kip, &c->pages, list) {
262 idx = ((long)slot - (long)kip->insns) /
263 (c->insn_size * sizeof(kprobe_opcode_t));
264 if (idx >= 0 && idx < slots_per_page(c))
265 goto out;
266 }
267 /* Could not find this slot. */
268 WARN_ON(1);
269 kip = NULL;
270 out:
271 rcu_read_unlock();
272 /* Mark and sweep: this may sleep */
273 if (kip) {
274 /* Check double free */
275 WARN_ON(kip->slot_used[idx] != SLOT_USED);
276 if (dirty) {
277 kip->slot_used[idx] = SLOT_DIRTY;
278 kip->ngarbage++;
279 if (++c->nr_garbage > slots_per_page(c))
280 collect_garbage_slots(c);
281 } else {
282 collect_one_slot(kip, idx);
283 }
284 }
285 mutex_unlock(&c->mutex);
286 }
287
288 /*
289 * Check given address is on the page of kprobe instruction slots.
290 * This will be used for checking whether the address on a stack
291 * is on a text area or not.
292 */
293 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
294 {
295 struct kprobe_insn_page *kip;
296 bool ret = false;
297
298 rcu_read_lock();
299 list_for_each_entry_rcu(kip, &c->pages, list) {
300 if (addr >= (unsigned long)kip->insns &&
301 addr < (unsigned long)kip->insns + PAGE_SIZE) {
302 ret = true;
303 break;
304 }
305 }
306 rcu_read_unlock();
307
308 return ret;
309 }
310
311 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
312 unsigned long *value, char *type, char *sym)
313 {
314 struct kprobe_insn_page *kip;
315 int ret = -ERANGE;
316
317 rcu_read_lock();
318 list_for_each_entry_rcu(kip, &c->pages, list) {
319 if ((*symnum)--)
320 continue;
321 strlcpy(sym, c->sym, KSYM_NAME_LEN);
322 *type = 't';
323 *value = (unsigned long)kip->insns;
324 ret = 0;
325 break;
326 }
327 rcu_read_unlock();
328
329 return ret;
330 }
331
332 #ifdef CONFIG_OPTPROBES
333 /* For optimized_kprobe buffer */
334 struct kprobe_insn_cache kprobe_optinsn_slots = {
335 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
336 .alloc = alloc_insn_page,
337 .free = free_insn_page,
338 .sym = KPROBE_OPTINSN_PAGE_SYM,
339 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
340 /* .insn_size is initialized later */
341 .nr_garbage = 0,
342 };
343 #endif
344 #endif
345
346 /* We have preemption disabled.. so it is safe to use __ versions */
347 static inline void set_kprobe_instance(struct kprobe *kp)
348 {
349 __this_cpu_write(kprobe_instance, kp);
350 }
351
352 static inline void reset_kprobe_instance(void)
353 {
354 __this_cpu_write(kprobe_instance, NULL);
355 }
356
357 /*
358 * This routine is called either:
359 * - under the kprobe_mutex - during kprobe_[un]register()
360 * OR
361 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
362 */
363 struct kprobe *get_kprobe(void *addr)
364 {
365 struct hlist_head *head;
366 struct kprobe *p;
367
368 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
369 hlist_for_each_entry_rcu(p, head, hlist,
370 lockdep_is_held(&kprobe_mutex)) {
371 if (p->addr == addr)
372 return p;
373 }
374
375 return NULL;
376 }
377 NOKPROBE_SYMBOL(get_kprobe);
378
379 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
380
381 /* Return true if the kprobe is an aggregator */
382 static inline int kprobe_aggrprobe(struct kprobe *p)
383 {
384 return p->pre_handler == aggr_pre_handler;
385 }
386
387 /* Return true(!0) if the kprobe is unused */
388 static inline int kprobe_unused(struct kprobe *p)
389 {
390 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
391 list_empty(&p->list);
392 }
393
394 /*
395 * Keep all fields in the kprobe consistent
396 */
397 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
398 {
399 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
400 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
401 }
402
403 #ifdef CONFIG_OPTPROBES
404 /* NOTE: change this value only with kprobe_mutex held */
405 static bool kprobes_allow_optimization;
406
407 /*
408 * Call all pre_handler on the list, but ignores its return value.
409 * This must be called from arch-dep optimized caller.
410 */
411 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
412 {
413 struct kprobe *kp;
414
415 list_for_each_entry_rcu(kp, &p->list, list) {
416 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
417 set_kprobe_instance(kp);
418 kp->pre_handler(kp, regs);
419 }
420 reset_kprobe_instance();
421 }
422 }
423 NOKPROBE_SYMBOL(opt_pre_handler);
424
425 /* Free optimized instructions and optimized_kprobe */
426 static void free_aggr_kprobe(struct kprobe *p)
427 {
428 struct optimized_kprobe *op;
429
430 op = container_of(p, struct optimized_kprobe, kp);
431 arch_remove_optimized_kprobe(op);
432 arch_remove_kprobe(p);
433 kfree(op);
434 }
435
436 /* Return true(!0) if the kprobe is ready for optimization. */
437 static inline int kprobe_optready(struct kprobe *p)
438 {
439 struct optimized_kprobe *op;
440
441 if (kprobe_aggrprobe(p)) {
442 op = container_of(p, struct optimized_kprobe, kp);
443 return arch_prepared_optinsn(&op->optinsn);
444 }
445
446 return 0;
447 }
448
449 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
450 static inline int kprobe_disarmed(struct kprobe *p)
451 {
452 struct optimized_kprobe *op;
453
454 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
455 if (!kprobe_aggrprobe(p))
456 return kprobe_disabled(p);
457
458 op = container_of(p, struct optimized_kprobe, kp);
459
460 return kprobe_disabled(p) && list_empty(&op->list);
461 }
462
463 /* Return true(!0) if the probe is queued on (un)optimizing lists */
464 static int kprobe_queued(struct kprobe *p)
465 {
466 struct optimized_kprobe *op;
467
468 if (kprobe_aggrprobe(p)) {
469 op = container_of(p, struct optimized_kprobe, kp);
470 if (!list_empty(&op->list))
471 return 1;
472 }
473 return 0;
474 }
475
476 /*
477 * Return an optimized kprobe whose optimizing code replaces
478 * instructions including addr (exclude breakpoint).
479 */
480 static struct kprobe *get_optimized_kprobe(unsigned long addr)
481 {
482 int i;
483 struct kprobe *p = NULL;
484 struct optimized_kprobe *op;
485
486 /* Don't check i == 0, since that is a breakpoint case. */
487 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
488 p = get_kprobe((void *)(addr - i));
489
490 if (p && kprobe_optready(p)) {
491 op = container_of(p, struct optimized_kprobe, kp);
492 if (arch_within_optimized_kprobe(op, addr))
493 return p;
494 }
495
496 return NULL;
497 }
498
499 /* Optimization staging list, protected by kprobe_mutex */
500 static LIST_HEAD(optimizing_list);
501 static LIST_HEAD(unoptimizing_list);
502 static LIST_HEAD(freeing_list);
503
504 static void kprobe_optimizer(struct work_struct *work);
505 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
506 #define OPTIMIZE_DELAY 5
507
508 /*
509 * Optimize (replace a breakpoint with a jump) kprobes listed on
510 * optimizing_list.
511 */
512 static void do_optimize_kprobes(void)
513 {
514 lockdep_assert_held(&text_mutex);
515 /*
516 * The optimization/unoptimization refers online_cpus via
517 * stop_machine() and cpu-hotplug modifies online_cpus.
518 * And same time, text_mutex will be held in cpu-hotplug and here.
519 * This combination can cause a deadlock (cpu-hotplug try to lock
520 * text_mutex but stop_machine can not be done because online_cpus
521 * has been changed)
522 * To avoid this deadlock, caller must have locked cpu hotplug
523 * for preventing cpu-hotplug outside of text_mutex locking.
524 */
525 lockdep_assert_cpus_held();
526
527 /* Optimization never be done when disarmed */
528 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
529 list_empty(&optimizing_list))
530 return;
531
532 arch_optimize_kprobes(&optimizing_list);
533 }
534
535 /*
536 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
537 * if need) kprobes listed on unoptimizing_list.
538 */
539 static void do_unoptimize_kprobes(void)
540 {
541 struct optimized_kprobe *op, *tmp;
542
543 lockdep_assert_held(&text_mutex);
544 /* See comment in do_optimize_kprobes() */
545 lockdep_assert_cpus_held();
546
547 /* Unoptimization must be done anytime */
548 if (list_empty(&unoptimizing_list))
549 return;
550
551 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
552 /* Loop free_list for disarming */
553 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
554 /* Switching from detour code to origin */
555 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
556 /* Disarm probes if marked disabled */
557 if (kprobe_disabled(&op->kp))
558 arch_disarm_kprobe(&op->kp);
559 if (kprobe_unused(&op->kp)) {
560 /*
561 * Remove unused probes from hash list. After waiting
562 * for synchronization, these probes are reclaimed.
563 * (reclaiming is done by do_free_cleaned_kprobes.)
564 */
565 hlist_del_rcu(&op->kp.hlist);
566 } else
567 list_del_init(&op->list);
568 }
569 }
570
571 /* Reclaim all kprobes on the free_list */
572 static void do_free_cleaned_kprobes(void)
573 {
574 struct optimized_kprobe *op, *tmp;
575
576 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
577 list_del_init(&op->list);
578 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
579 /*
580 * This must not happen, but if there is a kprobe
581 * still in use, keep it on kprobes hash list.
582 */
583 continue;
584 }
585 free_aggr_kprobe(&op->kp);
586 }
587 }
588
589 /* Start optimizer after OPTIMIZE_DELAY passed */
590 static void kick_kprobe_optimizer(void)
591 {
592 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
593 }
594
595 /* Kprobe jump optimizer */
596 static void kprobe_optimizer(struct work_struct *work)
597 {
598 mutex_lock(&kprobe_mutex);
599 cpus_read_lock();
600 mutex_lock(&text_mutex);
601
602 /*
603 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
604 * kprobes before waiting for quiesence period.
605 */
606 do_unoptimize_kprobes();
607
608 /*
609 * Step 2: Wait for quiesence period to ensure all potentially
610 * preempted tasks to have normally scheduled. Because optprobe
611 * may modify multiple instructions, there is a chance that Nth
612 * instruction is preempted. In that case, such tasks can return
613 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
614 * Note that on non-preemptive kernel, this is transparently converted
615 * to synchronoze_sched() to wait for all interrupts to have completed.
616 */
617 synchronize_rcu_tasks();
618
619 /* Step 3: Optimize kprobes after quiesence period */
620 do_optimize_kprobes();
621
622 /* Step 4: Free cleaned kprobes after quiesence period */
623 do_free_cleaned_kprobes();
624
625 mutex_unlock(&text_mutex);
626 cpus_read_unlock();
627
628 /* Step 5: Kick optimizer again if needed */
629 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
630 kick_kprobe_optimizer();
631
632 mutex_unlock(&kprobe_mutex);
633 }
634
635 /* Wait for completing optimization and unoptimization */
636 void wait_for_kprobe_optimizer(void)
637 {
638 mutex_lock(&kprobe_mutex);
639
640 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
641 mutex_unlock(&kprobe_mutex);
642
643 /* this will also make optimizing_work execute immmediately */
644 flush_delayed_work(&optimizing_work);
645 /* @optimizing_work might not have been queued yet, relax */
646 cpu_relax();
647
648 mutex_lock(&kprobe_mutex);
649 }
650
651 mutex_unlock(&kprobe_mutex);
652 }
653
654 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
655 {
656 struct optimized_kprobe *_op;
657
658 list_for_each_entry(_op, &unoptimizing_list, list) {
659 if (op == _op)
660 return true;
661 }
662
663 return false;
664 }
665
666 /* Optimize kprobe if p is ready to be optimized */
667 static void optimize_kprobe(struct kprobe *p)
668 {
669 struct optimized_kprobe *op;
670
671 /* Check if the kprobe is disabled or not ready for optimization. */
672 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
673 (kprobe_disabled(p) || kprobes_all_disarmed))
674 return;
675
676 /* kprobes with post_handler can not be optimized */
677 if (p->post_handler)
678 return;
679
680 op = container_of(p, struct optimized_kprobe, kp);
681
682 /* Check there is no other kprobes at the optimized instructions */
683 if (arch_check_optimized_kprobe(op) < 0)
684 return;
685
686 /* Check if it is already optimized. */
687 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
688 if (optprobe_queued_unopt(op)) {
689 /* This is under unoptimizing. Just dequeue the probe */
690 list_del_init(&op->list);
691 }
692 return;
693 }
694 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
695
696 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
697 if (WARN_ON_ONCE(!list_empty(&op->list)))
698 return;
699
700 list_add(&op->list, &optimizing_list);
701 kick_kprobe_optimizer();
702 }
703
704 /* Short cut to direct unoptimizing */
705 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
706 {
707 lockdep_assert_cpus_held();
708 arch_unoptimize_kprobe(op);
709 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
710 }
711
712 /* Unoptimize a kprobe if p is optimized */
713 static void unoptimize_kprobe(struct kprobe *p, bool force)
714 {
715 struct optimized_kprobe *op;
716
717 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
718 return; /* This is not an optprobe nor optimized */
719
720 op = container_of(p, struct optimized_kprobe, kp);
721 if (!kprobe_optimized(p))
722 return;
723
724 if (!list_empty(&op->list)) {
725 if (optprobe_queued_unopt(op)) {
726 /* Queued in unoptimizing queue */
727 if (force) {
728 /*
729 * Forcibly unoptimize the kprobe here, and queue it
730 * in the freeing list for release afterwards.
731 */
732 force_unoptimize_kprobe(op);
733 list_move(&op->list, &freeing_list);
734 }
735 } else {
736 /* Dequeue from the optimizing queue */
737 list_del_init(&op->list);
738 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739 }
740 return;
741 }
742
743 /* Optimized kprobe case */
744 if (force) {
745 /* Forcibly update the code: this is a special case */
746 force_unoptimize_kprobe(op);
747 } else {
748 list_add(&op->list, &unoptimizing_list);
749 kick_kprobe_optimizer();
750 }
751 }
752
753 /* Cancel unoptimizing for reusing */
754 static int reuse_unused_kprobe(struct kprobe *ap)
755 {
756 struct optimized_kprobe *op;
757
758 /*
759 * Unused kprobe MUST be on the way of delayed unoptimizing (means
760 * there is still a relative jump) and disabled.
761 */
762 op = container_of(ap, struct optimized_kprobe, kp);
763 WARN_ON_ONCE(list_empty(&op->list));
764 /* Enable the probe again */
765 ap->flags &= ~KPROBE_FLAG_DISABLED;
766 /* Optimize it again (remove from op->list) */
767 if (!kprobe_optready(ap))
768 return -EINVAL;
769
770 optimize_kprobe(ap);
771 return 0;
772 }
773
774 /* Remove optimized instructions */
775 static void kill_optimized_kprobe(struct kprobe *p)
776 {
777 struct optimized_kprobe *op;
778
779 op = container_of(p, struct optimized_kprobe, kp);
780 if (!list_empty(&op->list))
781 /* Dequeue from the (un)optimization queue */
782 list_del_init(&op->list);
783 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
784
785 if (kprobe_unused(p)) {
786 /* Enqueue if it is unused */
787 list_add(&op->list, &freeing_list);
788 /*
789 * Remove unused probes from the hash list. After waiting
790 * for synchronization, this probe is reclaimed.
791 * (reclaiming is done by do_free_cleaned_kprobes().)
792 */
793 hlist_del_rcu(&op->kp.hlist);
794 }
795
796 /* Don't touch the code, because it is already freed. */
797 arch_remove_optimized_kprobe(op);
798 }
799
800 static inline
801 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
802 {
803 if (!kprobe_ftrace(p))
804 arch_prepare_optimized_kprobe(op, p);
805 }
806
807 /* Try to prepare optimized instructions */
808 static void prepare_optimized_kprobe(struct kprobe *p)
809 {
810 struct optimized_kprobe *op;
811
812 op = container_of(p, struct optimized_kprobe, kp);
813 __prepare_optimized_kprobe(op, p);
814 }
815
816 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
817 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
818 {
819 struct optimized_kprobe *op;
820
821 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
822 if (!op)
823 return NULL;
824
825 INIT_LIST_HEAD(&op->list);
826 op->kp.addr = p->addr;
827 __prepare_optimized_kprobe(op, p);
828
829 return &op->kp;
830 }
831
832 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
833
834 /*
835 * Prepare an optimized_kprobe and optimize it
836 * NOTE: p must be a normal registered kprobe
837 */
838 static void try_to_optimize_kprobe(struct kprobe *p)
839 {
840 struct kprobe *ap;
841 struct optimized_kprobe *op;
842
843 /* Impossible to optimize ftrace-based kprobe */
844 if (kprobe_ftrace(p))
845 return;
846
847 /* For preparing optimization, jump_label_text_reserved() is called */
848 cpus_read_lock();
849 jump_label_lock();
850 mutex_lock(&text_mutex);
851
852 ap = alloc_aggr_kprobe(p);
853 if (!ap)
854 goto out;
855
856 op = container_of(ap, struct optimized_kprobe, kp);
857 if (!arch_prepared_optinsn(&op->optinsn)) {
858 /* If failed to setup optimizing, fallback to kprobe */
859 arch_remove_optimized_kprobe(op);
860 kfree(op);
861 goto out;
862 }
863
864 init_aggr_kprobe(ap, p);
865 optimize_kprobe(ap); /* This just kicks optimizer thread */
866
867 out:
868 mutex_unlock(&text_mutex);
869 jump_label_unlock();
870 cpus_read_unlock();
871 }
872
873 #ifdef CONFIG_SYSCTL
874 static void optimize_all_kprobes(void)
875 {
876 struct hlist_head *head;
877 struct kprobe *p;
878 unsigned int i;
879
880 mutex_lock(&kprobe_mutex);
881 /* If optimization is already allowed, just return */
882 if (kprobes_allow_optimization)
883 goto out;
884
885 cpus_read_lock();
886 kprobes_allow_optimization = true;
887 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888 head = &kprobe_table[i];
889 hlist_for_each_entry(p, head, hlist)
890 if (!kprobe_disabled(p))
891 optimize_kprobe(p);
892 }
893 cpus_read_unlock();
894 printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896 mutex_unlock(&kprobe_mutex);
897 }
898
899 static void unoptimize_all_kprobes(void)
900 {
901 struct hlist_head *head;
902 struct kprobe *p;
903 unsigned int i;
904
905 mutex_lock(&kprobe_mutex);
906 /* If optimization is already prohibited, just return */
907 if (!kprobes_allow_optimization) {
908 mutex_unlock(&kprobe_mutex);
909 return;
910 }
911
912 cpus_read_lock();
913 kprobes_allow_optimization = false;
914 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
915 head = &kprobe_table[i];
916 hlist_for_each_entry(p, head, hlist) {
917 if (!kprobe_disabled(p))
918 unoptimize_kprobe(p, false);
919 }
920 }
921 cpus_read_unlock();
922 mutex_unlock(&kprobe_mutex);
923
924 /* Wait for unoptimizing completion */
925 wait_for_kprobe_optimizer();
926 printk(KERN_INFO "Kprobes globally unoptimized\n");
927 }
928
929 static DEFINE_MUTEX(kprobe_sysctl_mutex);
930 int sysctl_kprobes_optimization;
931 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
932 void *buffer, size_t *length,
933 loff_t *ppos)
934 {
935 int ret;
936
937 mutex_lock(&kprobe_sysctl_mutex);
938 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940
941 if (sysctl_kprobes_optimization)
942 optimize_all_kprobes();
943 else
944 unoptimize_all_kprobes();
945 mutex_unlock(&kprobe_sysctl_mutex);
946
947 return ret;
948 }
949 #endif /* CONFIG_SYSCTL */
950
951 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
952 static void __arm_kprobe(struct kprobe *p)
953 {
954 struct kprobe *_p;
955
956 /* Check collision with other optimized kprobes */
957 _p = get_optimized_kprobe((unsigned long)p->addr);
958 if (unlikely(_p))
959 /* Fallback to unoptimized kprobe */
960 unoptimize_kprobe(_p, true);
961
962 arch_arm_kprobe(p);
963 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
964 }
965
966 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
967 static void __disarm_kprobe(struct kprobe *p, bool reopt)
968 {
969 struct kprobe *_p;
970
971 /* Try to unoptimize */
972 unoptimize_kprobe(p, kprobes_all_disarmed);
973
974 if (!kprobe_queued(p)) {
975 arch_disarm_kprobe(p);
976 /* If another kprobe was blocked, optimize it. */
977 _p = get_optimized_kprobe((unsigned long)p->addr);
978 if (unlikely(_p) && reopt)
979 optimize_kprobe(_p);
980 }
981 /* TODO: reoptimize others after unoptimized this probe */
982 }
983
984 #else /* !CONFIG_OPTPROBES */
985
986 #define optimize_kprobe(p) do {} while (0)
987 #define unoptimize_kprobe(p, f) do {} while (0)
988 #define kill_optimized_kprobe(p) do {} while (0)
989 #define prepare_optimized_kprobe(p) do {} while (0)
990 #define try_to_optimize_kprobe(p) do {} while (0)
991 #define __arm_kprobe(p) arch_arm_kprobe(p)
992 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
993 #define kprobe_disarmed(p) kprobe_disabled(p)
994 #define wait_for_kprobe_optimizer() do {} while (0)
995
996 static int reuse_unused_kprobe(struct kprobe *ap)
997 {
998 /*
999 * If the optimized kprobe is NOT supported, the aggr kprobe is
1000 * released at the same time that the last aggregated kprobe is
1001 * unregistered.
1002 * Thus there should be no chance to reuse unused kprobe.
1003 */
1004 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005 return -EINVAL;
1006 }
1007
1008 static void free_aggr_kprobe(struct kprobe *p)
1009 {
1010 arch_remove_kprobe(p);
1011 kfree(p);
1012 }
1013
1014 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015 {
1016 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017 }
1018 #endif /* CONFIG_OPTPROBES */
1019
1020 #ifdef CONFIG_KPROBES_ON_FTRACE
1021 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022 .func = kprobe_ftrace_handler,
1023 .flags = FTRACE_OPS_FL_SAVE_REGS,
1024 };
1025
1026 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027 .func = kprobe_ftrace_handler,
1028 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029 };
1030
1031 static int kprobe_ipmodify_enabled;
1032 static int kprobe_ftrace_enabled;
1033
1034 /* Must ensure p->addr is really on ftrace */
1035 static int prepare_kprobe(struct kprobe *p)
1036 {
1037 if (!kprobe_ftrace(p))
1038 return arch_prepare_kprobe(p);
1039
1040 return arch_prepare_kprobe_ftrace(p);
1041 }
1042
1043 /* Caller must lock kprobe_mutex */
1044 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045 int *cnt)
1046 {
1047 int ret = 0;
1048
1049 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050 if (ret) {
1051 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052 p->addr, ret);
1053 return ret;
1054 }
1055
1056 if (*cnt == 0) {
1057 ret = register_ftrace_function(ops);
1058 if (ret) {
1059 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060 goto err_ftrace;
1061 }
1062 }
1063
1064 (*cnt)++;
1065 return ret;
1066
1067 err_ftrace:
1068 /*
1069 * At this point, sinec ops is not registered, we should be sefe from
1070 * registering empty filter.
1071 */
1072 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073 return ret;
1074 }
1075
1076 static int arm_kprobe_ftrace(struct kprobe *p)
1077 {
1078 bool ipmodify = (p->post_handler != NULL);
1079
1080 return __arm_kprobe_ftrace(p,
1081 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083 }
1084
1085 /* Caller must lock kprobe_mutex */
1086 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087 int *cnt)
1088 {
1089 int ret = 0;
1090
1091 if (*cnt == 1) {
1092 ret = unregister_ftrace_function(ops);
1093 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094 return ret;
1095 }
1096
1097 (*cnt)--;
1098
1099 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101 p->addr, ret);
1102 return ret;
1103 }
1104
1105 static int disarm_kprobe_ftrace(struct kprobe *p)
1106 {
1107 bool ipmodify = (p->post_handler != NULL);
1108
1109 return __disarm_kprobe_ftrace(p,
1110 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112 }
1113 #else /* !CONFIG_KPROBES_ON_FTRACE */
1114 static inline int prepare_kprobe(struct kprobe *p)
1115 {
1116 return arch_prepare_kprobe(p);
1117 }
1118
1119 static inline int arm_kprobe_ftrace(struct kprobe *p)
1120 {
1121 return -ENODEV;
1122 }
1123
1124 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1125 {
1126 return -ENODEV;
1127 }
1128 #endif
1129
1130 /* Arm a kprobe with text_mutex */
1131 static int arm_kprobe(struct kprobe *kp)
1132 {
1133 if (unlikely(kprobe_ftrace(kp)))
1134 return arm_kprobe_ftrace(kp);
1135
1136 cpus_read_lock();
1137 mutex_lock(&text_mutex);
1138 __arm_kprobe(kp);
1139 mutex_unlock(&text_mutex);
1140 cpus_read_unlock();
1141
1142 return 0;
1143 }
1144
1145 /* Disarm a kprobe with text_mutex */
1146 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1147 {
1148 if (unlikely(kprobe_ftrace(kp)))
1149 return disarm_kprobe_ftrace(kp);
1150
1151 cpus_read_lock();
1152 mutex_lock(&text_mutex);
1153 __disarm_kprobe(kp, reopt);
1154 mutex_unlock(&text_mutex);
1155 cpus_read_unlock();
1156
1157 return 0;
1158 }
1159
1160 /*
1161 * Aggregate handlers for multiple kprobes support - these handlers
1162 * take care of invoking the individual kprobe handlers on p->list
1163 */
1164 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1165 {
1166 struct kprobe *kp;
1167
1168 list_for_each_entry_rcu(kp, &p->list, list) {
1169 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1170 set_kprobe_instance(kp);
1171 if (kp->pre_handler(kp, regs))
1172 return 1;
1173 }
1174 reset_kprobe_instance();
1175 }
1176 return 0;
1177 }
1178 NOKPROBE_SYMBOL(aggr_pre_handler);
1179
1180 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1181 unsigned long flags)
1182 {
1183 struct kprobe *kp;
1184
1185 list_for_each_entry_rcu(kp, &p->list, list) {
1186 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1187 set_kprobe_instance(kp);
1188 kp->post_handler(kp, regs, flags);
1189 reset_kprobe_instance();
1190 }
1191 }
1192 }
1193 NOKPROBE_SYMBOL(aggr_post_handler);
1194
1195 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1196 int trapnr)
1197 {
1198 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1199
1200 /*
1201 * if we faulted "during" the execution of a user specified
1202 * probe handler, invoke just that probe's fault handler
1203 */
1204 if (cur && cur->fault_handler) {
1205 if (cur->fault_handler(cur, regs, trapnr))
1206 return 1;
1207 }
1208 return 0;
1209 }
1210 NOKPROBE_SYMBOL(aggr_fault_handler);
1211
1212 /* Walks the list and increments nmissed count for multiprobe case */
1213 void kprobes_inc_nmissed_count(struct kprobe *p)
1214 {
1215 struct kprobe *kp;
1216 if (!kprobe_aggrprobe(p)) {
1217 p->nmissed++;
1218 } else {
1219 list_for_each_entry_rcu(kp, &p->list, list)
1220 kp->nmissed++;
1221 }
1222 return;
1223 }
1224 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1225
1226 void recycle_rp_inst(struct kretprobe_instance *ri,
1227 struct hlist_head *head)
1228 {
1229 struct kretprobe *rp = ri->rp;
1230
1231 /* remove rp inst off the rprobe_inst_table */
1232 hlist_del(&ri->hlist);
1233 INIT_HLIST_NODE(&ri->hlist);
1234 if (likely(rp)) {
1235 raw_spin_lock(&rp->lock);
1236 hlist_add_head(&ri->hlist, &rp->free_instances);
1237 raw_spin_unlock(&rp->lock);
1238 } else
1239 /* Unregistering */
1240 hlist_add_head(&ri->hlist, head);
1241 }
1242 NOKPROBE_SYMBOL(recycle_rp_inst);
1243
1244 void kretprobe_hash_lock(struct task_struct *tsk,
1245 struct hlist_head **head, unsigned long *flags)
1246 __acquires(hlist_lock)
1247 {
1248 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1249 raw_spinlock_t *hlist_lock;
1250
1251 *head = &kretprobe_inst_table[hash];
1252 hlist_lock = kretprobe_table_lock_ptr(hash);
1253 raw_spin_lock_irqsave(hlist_lock, *flags);
1254 }
1255 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1256
1257 static void kretprobe_table_lock(unsigned long hash,
1258 unsigned long *flags)
1259 __acquires(hlist_lock)
1260 {
1261 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1262 raw_spin_lock_irqsave(hlist_lock, *flags);
1263 }
1264 NOKPROBE_SYMBOL(kretprobe_table_lock);
1265
1266 void kretprobe_hash_unlock(struct task_struct *tsk,
1267 unsigned long *flags)
1268 __releases(hlist_lock)
1269 {
1270 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1271 raw_spinlock_t *hlist_lock;
1272
1273 hlist_lock = kretprobe_table_lock_ptr(hash);
1274 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1275 }
1276 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1277
1278 static void kretprobe_table_unlock(unsigned long hash,
1279 unsigned long *flags)
1280 __releases(hlist_lock)
1281 {
1282 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1283 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1284 }
1285 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1286
1287 struct kprobe kprobe_busy = {
1288 .addr = (void *) get_kprobe,
1289 };
1290
1291 void kprobe_busy_begin(void)
1292 {
1293 struct kprobe_ctlblk *kcb;
1294
1295 preempt_disable();
1296 __this_cpu_write(current_kprobe, &kprobe_busy);
1297 kcb = get_kprobe_ctlblk();
1298 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1299 }
1300
1301 void kprobe_busy_end(void)
1302 {
1303 __this_cpu_write(current_kprobe, NULL);
1304 preempt_enable();
1305 }
1306
1307 /*
1308 * This function is called from finish_task_switch when task tk becomes dead,
1309 * so that we can recycle any function-return probe instances associated
1310 * with this task. These left over instances represent probed functions
1311 * that have been called but will never return.
1312 */
1313 void kprobe_flush_task(struct task_struct *tk)
1314 {
1315 struct kretprobe_instance *ri;
1316 struct hlist_head *head, empty_rp;
1317 struct hlist_node *tmp;
1318 unsigned long hash, flags = 0;
1319
1320 if (unlikely(!kprobes_initialized))
1321 /* Early boot. kretprobe_table_locks not yet initialized. */
1322 return;
1323
1324 kprobe_busy_begin();
1325
1326 INIT_HLIST_HEAD(&empty_rp);
1327 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1328 head = &kretprobe_inst_table[hash];
1329 kretprobe_table_lock(hash, &flags);
1330 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1331 if (ri->task == tk)
1332 recycle_rp_inst(ri, &empty_rp);
1333 }
1334 kretprobe_table_unlock(hash, &flags);
1335 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1336 hlist_del(&ri->hlist);
1337 kfree(ri);
1338 }
1339
1340 kprobe_busy_end();
1341 }
1342 NOKPROBE_SYMBOL(kprobe_flush_task);
1343
1344 static inline void free_rp_inst(struct kretprobe *rp)
1345 {
1346 struct kretprobe_instance *ri;
1347 struct hlist_node *next;
1348
1349 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1350 hlist_del(&ri->hlist);
1351 kfree(ri);
1352 }
1353 }
1354
1355 static void cleanup_rp_inst(struct kretprobe *rp)
1356 {
1357 unsigned long flags, hash;
1358 struct kretprobe_instance *ri;
1359 struct hlist_node *next;
1360 struct hlist_head *head;
1361
1362 /* No race here */
1363 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1364 kretprobe_table_lock(hash, &flags);
1365 head = &kretprobe_inst_table[hash];
1366 hlist_for_each_entry_safe(ri, next, head, hlist) {
1367 if (ri->rp == rp)
1368 ri->rp = NULL;
1369 }
1370 kretprobe_table_unlock(hash, &flags);
1371 }
1372 free_rp_inst(rp);
1373 }
1374 NOKPROBE_SYMBOL(cleanup_rp_inst);
1375
1376 /* Add the new probe to ap->list */
1377 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1378 {
1379 if (p->post_handler)
1380 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1381
1382 list_add_rcu(&p->list, &ap->list);
1383 if (p->post_handler && !ap->post_handler)
1384 ap->post_handler = aggr_post_handler;
1385
1386 return 0;
1387 }
1388
1389 /*
1390 * Fill in the required fields of the "manager kprobe". Replace the
1391 * earlier kprobe in the hlist with the manager kprobe
1392 */
1393 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1394 {
1395 /* Copy p's insn slot to ap */
1396 copy_kprobe(p, ap);
1397 flush_insn_slot(ap);
1398 ap->addr = p->addr;
1399 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1400 ap->pre_handler = aggr_pre_handler;
1401 ap->fault_handler = aggr_fault_handler;
1402 /* We don't care the kprobe which has gone. */
1403 if (p->post_handler && !kprobe_gone(p))
1404 ap->post_handler = aggr_post_handler;
1405
1406 INIT_LIST_HEAD(&ap->list);
1407 INIT_HLIST_NODE(&ap->hlist);
1408
1409 list_add_rcu(&p->list, &ap->list);
1410 hlist_replace_rcu(&p->hlist, &ap->hlist);
1411 }
1412
1413 /*
1414 * This is the second or subsequent kprobe at the address - handle
1415 * the intricacies
1416 */
1417 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1418 {
1419 int ret = 0;
1420 struct kprobe *ap = orig_p;
1421
1422 cpus_read_lock();
1423
1424 /* For preparing optimization, jump_label_text_reserved() is called */
1425 jump_label_lock();
1426 mutex_lock(&text_mutex);
1427
1428 if (!kprobe_aggrprobe(orig_p)) {
1429 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1430 ap = alloc_aggr_kprobe(orig_p);
1431 if (!ap) {
1432 ret = -ENOMEM;
1433 goto out;
1434 }
1435 init_aggr_kprobe(ap, orig_p);
1436 } else if (kprobe_unused(ap)) {
1437 /* This probe is going to die. Rescue it */
1438 ret = reuse_unused_kprobe(ap);
1439 if (ret)
1440 goto out;
1441 }
1442
1443 if (kprobe_gone(ap)) {
1444 /*
1445 * Attempting to insert new probe at the same location that
1446 * had a probe in the module vaddr area which already
1447 * freed. So, the instruction slot has already been
1448 * released. We need a new slot for the new probe.
1449 */
1450 ret = arch_prepare_kprobe(ap);
1451 if (ret)
1452 /*
1453 * Even if fail to allocate new slot, don't need to
1454 * free aggr_probe. It will be used next time, or
1455 * freed by unregister_kprobe.
1456 */
1457 goto out;
1458
1459 /* Prepare optimized instructions if possible. */
1460 prepare_optimized_kprobe(ap);
1461
1462 /*
1463 * Clear gone flag to prevent allocating new slot again, and
1464 * set disabled flag because it is not armed yet.
1465 */
1466 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1467 | KPROBE_FLAG_DISABLED;
1468 }
1469
1470 /* Copy ap's insn slot to p */
1471 copy_kprobe(ap, p);
1472 ret = add_new_kprobe(ap, p);
1473
1474 out:
1475 mutex_unlock(&text_mutex);
1476 jump_label_unlock();
1477 cpus_read_unlock();
1478
1479 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1480 ap->flags &= ~KPROBE_FLAG_DISABLED;
1481 if (!kprobes_all_disarmed) {
1482 /* Arm the breakpoint again. */
1483 ret = arm_kprobe(ap);
1484 if (ret) {
1485 ap->flags |= KPROBE_FLAG_DISABLED;
1486 list_del_rcu(&p->list);
1487 synchronize_rcu();
1488 }
1489 }
1490 }
1491 return ret;
1492 }
1493
1494 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1495 {
1496 /* The __kprobes marked functions and entry code must not be probed */
1497 return addr >= (unsigned long)__kprobes_text_start &&
1498 addr < (unsigned long)__kprobes_text_end;
1499 }
1500
1501 static bool __within_kprobe_blacklist(unsigned long addr)
1502 {
1503 struct kprobe_blacklist_entry *ent;
1504
1505 if (arch_within_kprobe_blacklist(addr))
1506 return true;
1507 /*
1508 * If there exists a kprobe_blacklist, verify and
1509 * fail any probe registration in the prohibited area
1510 */
1511 list_for_each_entry(ent, &kprobe_blacklist, list) {
1512 if (addr >= ent->start_addr && addr < ent->end_addr)
1513 return true;
1514 }
1515 return false;
1516 }
1517
1518 bool within_kprobe_blacklist(unsigned long addr)
1519 {
1520 char symname[KSYM_NAME_LEN], *p;
1521
1522 if (__within_kprobe_blacklist(addr))
1523 return true;
1524
1525 /* Check if the address is on a suffixed-symbol */
1526 if (!lookup_symbol_name(addr, symname)) {
1527 p = strchr(symname, '.');
1528 if (!p)
1529 return false;
1530 *p = '\0';
1531 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1532 if (addr)
1533 return __within_kprobe_blacklist(addr);
1534 }
1535 return false;
1536 }
1537
1538 /*
1539 * If we have a symbol_name argument, look it up and add the offset field
1540 * to it. This way, we can specify a relative address to a symbol.
1541 * This returns encoded errors if it fails to look up symbol or invalid
1542 * combination of parameters.
1543 */
1544 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1545 const char *symbol_name, unsigned int offset)
1546 {
1547 if ((symbol_name && addr) || (!symbol_name && !addr))
1548 goto invalid;
1549
1550 if (symbol_name) {
1551 addr = kprobe_lookup_name(symbol_name, offset);
1552 if (!addr)
1553 return ERR_PTR(-ENOENT);
1554 }
1555
1556 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1557 if (addr)
1558 return addr;
1559
1560 invalid:
1561 return ERR_PTR(-EINVAL);
1562 }
1563
1564 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1565 {
1566 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1567 }
1568
1569 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1570 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1571 {
1572 struct kprobe *ap, *list_p;
1573
1574 lockdep_assert_held(&kprobe_mutex);
1575
1576 ap = get_kprobe(p->addr);
1577 if (unlikely(!ap))
1578 return NULL;
1579
1580 if (p != ap) {
1581 list_for_each_entry(list_p, &ap->list, list)
1582 if (list_p == p)
1583 /* kprobe p is a valid probe */
1584 goto valid;
1585 return NULL;
1586 }
1587 valid:
1588 return ap;
1589 }
1590
1591 /* Return error if the kprobe is being re-registered */
1592 static inline int check_kprobe_rereg(struct kprobe *p)
1593 {
1594 int ret = 0;
1595
1596 mutex_lock(&kprobe_mutex);
1597 if (__get_valid_kprobe(p))
1598 ret = -EINVAL;
1599 mutex_unlock(&kprobe_mutex);
1600
1601 return ret;
1602 }
1603
1604 int __weak arch_check_ftrace_location(struct kprobe *p)
1605 {
1606 unsigned long ftrace_addr;
1607
1608 ftrace_addr = ftrace_location((unsigned long)p->addr);
1609 if (ftrace_addr) {
1610 #ifdef CONFIG_KPROBES_ON_FTRACE
1611 /* Given address is not on the instruction boundary */
1612 if ((unsigned long)p->addr != ftrace_addr)
1613 return -EILSEQ;
1614 p->flags |= KPROBE_FLAG_FTRACE;
1615 #else /* !CONFIG_KPROBES_ON_FTRACE */
1616 return -EINVAL;
1617 #endif
1618 }
1619 return 0;
1620 }
1621
1622 static int check_kprobe_address_safe(struct kprobe *p,
1623 struct module **probed_mod)
1624 {
1625 int ret;
1626
1627 ret = arch_check_ftrace_location(p);
1628 if (ret)
1629 return ret;
1630 jump_label_lock();
1631 preempt_disable();
1632
1633 /* Ensure it is not in reserved area nor out of text */
1634 if (!kernel_text_address((unsigned long) p->addr) ||
1635 within_kprobe_blacklist((unsigned long) p->addr) ||
1636 jump_label_text_reserved(p->addr, p->addr) ||
1637 find_bug((unsigned long)p->addr)) {
1638 ret = -EINVAL;
1639 goto out;
1640 }
1641
1642 /* Check if are we probing a module */
1643 *probed_mod = __module_text_address((unsigned long) p->addr);
1644 if (*probed_mod) {
1645 /*
1646 * We must hold a refcount of the probed module while updating
1647 * its code to prohibit unexpected unloading.
1648 */
1649 if (unlikely(!try_module_get(*probed_mod))) {
1650 ret = -ENOENT;
1651 goto out;
1652 }
1653
1654 /*
1655 * If the module freed .init.text, we couldn't insert
1656 * kprobes in there.
1657 */
1658 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1659 (*probed_mod)->state != MODULE_STATE_COMING) {
1660 module_put(*probed_mod);
1661 *probed_mod = NULL;
1662 ret = -ENOENT;
1663 }
1664 }
1665 out:
1666 preempt_enable();
1667 jump_label_unlock();
1668
1669 return ret;
1670 }
1671
1672 int register_kprobe(struct kprobe *p)
1673 {
1674 int ret;
1675 struct kprobe *old_p;
1676 struct module *probed_mod;
1677 kprobe_opcode_t *addr;
1678
1679 /* Adjust probe address from symbol */
1680 addr = kprobe_addr(p);
1681 if (IS_ERR(addr))
1682 return PTR_ERR(addr);
1683 p->addr = addr;
1684
1685 ret = check_kprobe_rereg(p);
1686 if (ret)
1687 return ret;
1688
1689 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1690 p->flags &= KPROBE_FLAG_DISABLED;
1691 p->nmissed = 0;
1692 INIT_LIST_HEAD(&p->list);
1693
1694 ret = check_kprobe_address_safe(p, &probed_mod);
1695 if (ret)
1696 return ret;
1697
1698 mutex_lock(&kprobe_mutex);
1699
1700 old_p = get_kprobe(p->addr);
1701 if (old_p) {
1702 /* Since this may unoptimize old_p, locking text_mutex. */
1703 ret = register_aggr_kprobe(old_p, p);
1704 goto out;
1705 }
1706
1707 cpus_read_lock();
1708 /* Prevent text modification */
1709 mutex_lock(&text_mutex);
1710 ret = prepare_kprobe(p);
1711 mutex_unlock(&text_mutex);
1712 cpus_read_unlock();
1713 if (ret)
1714 goto out;
1715
1716 INIT_HLIST_NODE(&p->hlist);
1717 hlist_add_head_rcu(&p->hlist,
1718 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1719
1720 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1721 ret = arm_kprobe(p);
1722 if (ret) {
1723 hlist_del_rcu(&p->hlist);
1724 synchronize_rcu();
1725 goto out;
1726 }
1727 }
1728
1729 /* Try to optimize kprobe */
1730 try_to_optimize_kprobe(p);
1731 out:
1732 mutex_unlock(&kprobe_mutex);
1733
1734 if (probed_mod)
1735 module_put(probed_mod);
1736
1737 return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(register_kprobe);
1740
1741 /* Check if all probes on the aggrprobe are disabled */
1742 static int aggr_kprobe_disabled(struct kprobe *ap)
1743 {
1744 struct kprobe *kp;
1745
1746 lockdep_assert_held(&kprobe_mutex);
1747
1748 list_for_each_entry(kp, &ap->list, list)
1749 if (!kprobe_disabled(kp))
1750 /*
1751 * There is an active probe on the list.
1752 * We can't disable this ap.
1753 */
1754 return 0;
1755
1756 return 1;
1757 }
1758
1759 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1760 static struct kprobe *__disable_kprobe(struct kprobe *p)
1761 {
1762 struct kprobe *orig_p;
1763 int ret;
1764
1765 /* Get an original kprobe for return */
1766 orig_p = __get_valid_kprobe(p);
1767 if (unlikely(orig_p == NULL))
1768 return ERR_PTR(-EINVAL);
1769
1770 if (!kprobe_disabled(p)) {
1771 /* Disable probe if it is a child probe */
1772 if (p != orig_p)
1773 p->flags |= KPROBE_FLAG_DISABLED;
1774
1775 /* Try to disarm and disable this/parent probe */
1776 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1777 /*
1778 * If kprobes_all_disarmed is set, orig_p
1779 * should have already been disarmed, so
1780 * skip unneed disarming process.
1781 */
1782 if (!kprobes_all_disarmed) {
1783 ret = disarm_kprobe(orig_p, true);
1784 if (ret) {
1785 p->flags &= ~KPROBE_FLAG_DISABLED;
1786 return ERR_PTR(ret);
1787 }
1788 }
1789 orig_p->flags |= KPROBE_FLAG_DISABLED;
1790 }
1791 }
1792
1793 return orig_p;
1794 }
1795
1796 /*
1797 * Unregister a kprobe without a scheduler synchronization.
1798 */
1799 static int __unregister_kprobe_top(struct kprobe *p)
1800 {
1801 struct kprobe *ap, *list_p;
1802
1803 /* Disable kprobe. This will disarm it if needed. */
1804 ap = __disable_kprobe(p);
1805 if (IS_ERR(ap))
1806 return PTR_ERR(ap);
1807
1808 if (ap == p)
1809 /*
1810 * This probe is an independent(and non-optimized) kprobe
1811 * (not an aggrprobe). Remove from the hash list.
1812 */
1813 goto disarmed;
1814
1815 /* Following process expects this probe is an aggrprobe */
1816 WARN_ON(!kprobe_aggrprobe(ap));
1817
1818 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1819 /*
1820 * !disarmed could be happen if the probe is under delayed
1821 * unoptimizing.
1822 */
1823 goto disarmed;
1824 else {
1825 /* If disabling probe has special handlers, update aggrprobe */
1826 if (p->post_handler && !kprobe_gone(p)) {
1827 list_for_each_entry(list_p, &ap->list, list) {
1828 if ((list_p != p) && (list_p->post_handler))
1829 goto noclean;
1830 }
1831 ap->post_handler = NULL;
1832 }
1833 noclean:
1834 /*
1835 * Remove from the aggrprobe: this path will do nothing in
1836 * __unregister_kprobe_bottom().
1837 */
1838 list_del_rcu(&p->list);
1839 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1840 /*
1841 * Try to optimize this probe again, because post
1842 * handler may have been changed.
1843 */
1844 optimize_kprobe(ap);
1845 }
1846 return 0;
1847
1848 disarmed:
1849 hlist_del_rcu(&ap->hlist);
1850 return 0;
1851 }
1852
1853 static void __unregister_kprobe_bottom(struct kprobe *p)
1854 {
1855 struct kprobe *ap;
1856
1857 if (list_empty(&p->list))
1858 /* This is an independent kprobe */
1859 arch_remove_kprobe(p);
1860 else if (list_is_singular(&p->list)) {
1861 /* This is the last child of an aggrprobe */
1862 ap = list_entry(p->list.next, struct kprobe, list);
1863 list_del(&p->list);
1864 free_aggr_kprobe(ap);
1865 }
1866 /* Otherwise, do nothing. */
1867 }
1868
1869 int register_kprobes(struct kprobe **kps, int num)
1870 {
1871 int i, ret = 0;
1872
1873 if (num <= 0)
1874 return -EINVAL;
1875 for (i = 0; i < num; i++) {
1876 ret = register_kprobe(kps[i]);
1877 if (ret < 0) {
1878 if (i > 0)
1879 unregister_kprobes(kps, i);
1880 break;
1881 }
1882 }
1883 return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(register_kprobes);
1886
1887 void unregister_kprobe(struct kprobe *p)
1888 {
1889 unregister_kprobes(&p, 1);
1890 }
1891 EXPORT_SYMBOL_GPL(unregister_kprobe);
1892
1893 void unregister_kprobes(struct kprobe **kps, int num)
1894 {
1895 int i;
1896
1897 if (num <= 0)
1898 return;
1899 mutex_lock(&kprobe_mutex);
1900 for (i = 0; i < num; i++)
1901 if (__unregister_kprobe_top(kps[i]) < 0)
1902 kps[i]->addr = NULL;
1903 mutex_unlock(&kprobe_mutex);
1904
1905 synchronize_rcu();
1906 for (i = 0; i < num; i++)
1907 if (kps[i]->addr)
1908 __unregister_kprobe_bottom(kps[i]);
1909 }
1910 EXPORT_SYMBOL_GPL(unregister_kprobes);
1911
1912 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1913 unsigned long val, void *data)
1914 {
1915 return NOTIFY_DONE;
1916 }
1917 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1918
1919 static struct notifier_block kprobe_exceptions_nb = {
1920 .notifier_call = kprobe_exceptions_notify,
1921 .priority = 0x7fffffff /* we need to be notified first */
1922 };
1923
1924 unsigned long __weak arch_deref_entry_point(void *entry)
1925 {
1926 return (unsigned long)entry;
1927 }
1928
1929 #ifdef CONFIG_KRETPROBES
1930 /*
1931 * This kprobe pre_handler is registered with every kretprobe. When probe
1932 * hits it will set up the return probe.
1933 */
1934 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1935 {
1936 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1937 unsigned long hash, flags = 0;
1938 struct kretprobe_instance *ri;
1939
1940 /*
1941 * To avoid deadlocks, prohibit return probing in NMI contexts,
1942 * just skip the probe and increase the (inexact) 'nmissed'
1943 * statistical counter, so that the user is informed that
1944 * something happened:
1945 */
1946 if (unlikely(in_nmi())) {
1947 rp->nmissed++;
1948 return 0;
1949 }
1950
1951 /* TODO: consider to only swap the RA after the last pre_handler fired */
1952 hash = hash_ptr(current, KPROBE_HASH_BITS);
1953 raw_spin_lock_irqsave(&rp->lock, flags);
1954 if (!hlist_empty(&rp->free_instances)) {
1955 ri = hlist_entry(rp->free_instances.first,
1956 struct kretprobe_instance, hlist);
1957 hlist_del(&ri->hlist);
1958 raw_spin_unlock_irqrestore(&rp->lock, flags);
1959
1960 ri->rp = rp;
1961 ri->task = current;
1962
1963 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1964 raw_spin_lock_irqsave(&rp->lock, flags);
1965 hlist_add_head(&ri->hlist, &rp->free_instances);
1966 raw_spin_unlock_irqrestore(&rp->lock, flags);
1967 return 0;
1968 }
1969
1970 arch_prepare_kretprobe(ri, regs);
1971
1972 /* XXX(hch): why is there no hlist_move_head? */
1973 INIT_HLIST_NODE(&ri->hlist);
1974 kretprobe_table_lock(hash, &flags);
1975 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1976 kretprobe_table_unlock(hash, &flags);
1977 } else {
1978 rp->nmissed++;
1979 raw_spin_unlock_irqrestore(&rp->lock, flags);
1980 }
1981 return 0;
1982 }
1983 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1984
1985 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1986 {
1987 return !offset;
1988 }
1989
1990 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1991 {
1992 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1993
1994 if (IS_ERR(kp_addr))
1995 return false;
1996
1997 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1998 !arch_kprobe_on_func_entry(offset))
1999 return false;
2000
2001 return true;
2002 }
2003
2004 int register_kretprobe(struct kretprobe *rp)
2005 {
2006 int ret = 0;
2007 struct kretprobe_instance *inst;
2008 int i;
2009 void *addr;
2010
2011 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2012 return -EINVAL;
2013
2014 if (kretprobe_blacklist_size) {
2015 addr = kprobe_addr(&rp->kp);
2016 if (IS_ERR(addr))
2017 return PTR_ERR(addr);
2018
2019 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020 if (kretprobe_blacklist[i].addr == addr)
2021 return -EINVAL;
2022 }
2023 }
2024
2025 rp->kp.pre_handler = pre_handler_kretprobe;
2026 rp->kp.post_handler = NULL;
2027 rp->kp.fault_handler = NULL;
2028
2029 /* Pre-allocate memory for max kretprobe instances */
2030 if (rp->maxactive <= 0) {
2031 #ifdef CONFIG_PREEMPTION
2032 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033 #else
2034 rp->maxactive = num_possible_cpus();
2035 #endif
2036 }
2037 raw_spin_lock_init(&rp->lock);
2038 INIT_HLIST_HEAD(&rp->free_instances);
2039 for (i = 0; i < rp->maxactive; i++) {
2040 inst = kmalloc(sizeof(struct kretprobe_instance) +
2041 rp->data_size, GFP_KERNEL);
2042 if (inst == NULL) {
2043 free_rp_inst(rp);
2044 return -ENOMEM;
2045 }
2046 INIT_HLIST_NODE(&inst->hlist);
2047 hlist_add_head(&inst->hlist, &rp->free_instances);
2048 }
2049
2050 rp->nmissed = 0;
2051 /* Establish function entry probe point */
2052 ret = register_kprobe(&rp->kp);
2053 if (ret != 0)
2054 free_rp_inst(rp);
2055 return ret;
2056 }
2057 EXPORT_SYMBOL_GPL(register_kretprobe);
2058
2059 int register_kretprobes(struct kretprobe **rps, int num)
2060 {
2061 int ret = 0, i;
2062
2063 if (num <= 0)
2064 return -EINVAL;
2065 for (i = 0; i < num; i++) {
2066 ret = register_kretprobe(rps[i]);
2067 if (ret < 0) {
2068 if (i > 0)
2069 unregister_kretprobes(rps, i);
2070 break;
2071 }
2072 }
2073 return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(register_kretprobes);
2076
2077 void unregister_kretprobe(struct kretprobe *rp)
2078 {
2079 unregister_kretprobes(&rp, 1);
2080 }
2081 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083 void unregister_kretprobes(struct kretprobe **rps, int num)
2084 {
2085 int i;
2086
2087 if (num <= 0)
2088 return;
2089 mutex_lock(&kprobe_mutex);
2090 for (i = 0; i < num; i++)
2091 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2092 rps[i]->kp.addr = NULL;
2093 mutex_unlock(&kprobe_mutex);
2094
2095 synchronize_rcu();
2096 for (i = 0; i < num; i++) {
2097 if (rps[i]->kp.addr) {
2098 __unregister_kprobe_bottom(&rps[i]->kp);
2099 cleanup_rp_inst(rps[i]);
2100 }
2101 }
2102 }
2103 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105 #else /* CONFIG_KRETPROBES */
2106 int register_kretprobe(struct kretprobe *rp)
2107 {
2108 return -ENOSYS;
2109 }
2110 EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112 int register_kretprobes(struct kretprobe **rps, int num)
2113 {
2114 return -ENOSYS;
2115 }
2116 EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118 void unregister_kretprobe(struct kretprobe *rp)
2119 {
2120 }
2121 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123 void unregister_kretprobes(struct kretprobe **rps, int num)
2124 {
2125 }
2126 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129 {
2130 return 0;
2131 }
2132 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134 #endif /* CONFIG_KRETPROBES */
2135
2136 /* Set the kprobe gone and remove its instruction buffer. */
2137 static void kill_kprobe(struct kprobe *p)
2138 {
2139 struct kprobe *kp;
2140
2141 lockdep_assert_held(&kprobe_mutex);
2142
2143 p->flags |= KPROBE_FLAG_GONE;
2144 if (kprobe_aggrprobe(p)) {
2145 /*
2146 * If this is an aggr_kprobe, we have to list all the
2147 * chained probes and mark them GONE.
2148 */
2149 list_for_each_entry(kp, &p->list, list)
2150 kp->flags |= KPROBE_FLAG_GONE;
2151 p->post_handler = NULL;
2152 kill_optimized_kprobe(p);
2153 }
2154 /*
2155 * Here, we can remove insn_slot safely, because no thread calls
2156 * the original probed function (which will be freed soon) any more.
2157 */
2158 arch_remove_kprobe(p);
2159
2160 /*
2161 * The module is going away. We should disarm the kprobe which
2162 * is using ftrace.
2163 */
2164 if (kprobe_ftrace(p))
2165 disarm_kprobe_ftrace(p);
2166 }
2167
2168 /* Disable one kprobe */
2169 int disable_kprobe(struct kprobe *kp)
2170 {
2171 int ret = 0;
2172 struct kprobe *p;
2173
2174 mutex_lock(&kprobe_mutex);
2175
2176 /* Disable this kprobe */
2177 p = __disable_kprobe(kp);
2178 if (IS_ERR(p))
2179 ret = PTR_ERR(p);
2180
2181 mutex_unlock(&kprobe_mutex);
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(disable_kprobe);
2185
2186 /* Enable one kprobe */
2187 int enable_kprobe(struct kprobe *kp)
2188 {
2189 int ret = 0;
2190 struct kprobe *p;
2191
2192 mutex_lock(&kprobe_mutex);
2193
2194 /* Check whether specified probe is valid. */
2195 p = __get_valid_kprobe(kp);
2196 if (unlikely(p == NULL)) {
2197 ret = -EINVAL;
2198 goto out;
2199 }
2200
2201 if (kprobe_gone(kp)) {
2202 /* This kprobe has gone, we couldn't enable it. */
2203 ret = -EINVAL;
2204 goto out;
2205 }
2206
2207 if (p != kp)
2208 kp->flags &= ~KPROBE_FLAG_DISABLED;
2209
2210 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2211 p->flags &= ~KPROBE_FLAG_DISABLED;
2212 ret = arm_kprobe(p);
2213 if (ret)
2214 p->flags |= KPROBE_FLAG_DISABLED;
2215 }
2216 out:
2217 mutex_unlock(&kprobe_mutex);
2218 return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(enable_kprobe);
2221
2222 /* Caller must NOT call this in usual path. This is only for critical case */
2223 void dump_kprobe(struct kprobe *kp)
2224 {
2225 pr_err("Dumping kprobe:\n");
2226 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2227 kp->symbol_name, kp->offset, kp->addr);
2228 }
2229 NOKPROBE_SYMBOL(dump_kprobe);
2230
2231 int kprobe_add_ksym_blacklist(unsigned long entry)
2232 {
2233 struct kprobe_blacklist_entry *ent;
2234 unsigned long offset = 0, size = 0;
2235
2236 if (!kernel_text_address(entry) ||
2237 !kallsyms_lookup_size_offset(entry, &size, &offset))
2238 return -EINVAL;
2239
2240 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2241 if (!ent)
2242 return -ENOMEM;
2243 ent->start_addr = entry;
2244 ent->end_addr = entry + size;
2245 INIT_LIST_HEAD(&ent->list);
2246 list_add_tail(&ent->list, &kprobe_blacklist);
2247
2248 return (int)size;
2249 }
2250
2251 /* Add all symbols in given area into kprobe blacklist */
2252 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2253 {
2254 unsigned long entry;
2255 int ret = 0;
2256
2257 for (entry = start; entry < end; entry += ret) {
2258 ret = kprobe_add_ksym_blacklist(entry);
2259 if (ret < 0)
2260 return ret;
2261 if (ret == 0) /* In case of alias symbol */
2262 ret = 1;
2263 }
2264 return 0;
2265 }
2266
2267 /* Remove all symbols in given area from kprobe blacklist */
2268 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2269 {
2270 struct kprobe_blacklist_entry *ent, *n;
2271
2272 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2273 if (ent->start_addr < start || ent->start_addr >= end)
2274 continue;
2275 list_del(&ent->list);
2276 kfree(ent);
2277 }
2278 }
2279
2280 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2281 {
2282 kprobe_remove_area_blacklist(entry, entry + 1);
2283 }
2284
2285 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2286 char *type, char *sym)
2287 {
2288 return -ERANGE;
2289 }
2290
2291 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2292 char *sym)
2293 {
2294 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2295 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2296 return 0;
2297 #ifdef CONFIG_OPTPROBES
2298 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2299 return 0;
2300 #endif
2301 #endif
2302 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2303 return 0;
2304 return -ERANGE;
2305 }
2306
2307 int __init __weak arch_populate_kprobe_blacklist(void)
2308 {
2309 return 0;
2310 }
2311
2312 /*
2313 * Lookup and populate the kprobe_blacklist.
2314 *
2315 * Unlike the kretprobe blacklist, we'll need to determine
2316 * the range of addresses that belong to the said functions,
2317 * since a kprobe need not necessarily be at the beginning
2318 * of a function.
2319 */
2320 static int __init populate_kprobe_blacklist(unsigned long *start,
2321 unsigned long *end)
2322 {
2323 unsigned long entry;
2324 unsigned long *iter;
2325 int ret;
2326
2327 for (iter = start; iter < end; iter++) {
2328 entry = arch_deref_entry_point((void *)*iter);
2329 ret = kprobe_add_ksym_blacklist(entry);
2330 if (ret == -EINVAL)
2331 continue;
2332 if (ret < 0)
2333 return ret;
2334 }
2335
2336 /* Symbols in __kprobes_text are blacklisted */
2337 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2338 (unsigned long)__kprobes_text_end);
2339 if (ret)
2340 return ret;
2341
2342 /* Symbols in noinstr section are blacklisted */
2343 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2344 (unsigned long)__noinstr_text_end);
2345
2346 return ret ? : arch_populate_kprobe_blacklist();
2347 }
2348
2349 static void add_module_kprobe_blacklist(struct module *mod)
2350 {
2351 unsigned long start, end;
2352 int i;
2353
2354 if (mod->kprobe_blacklist) {
2355 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2356 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2357 }
2358
2359 start = (unsigned long)mod->kprobes_text_start;
2360 if (start) {
2361 end = start + mod->kprobes_text_size;
2362 kprobe_add_area_blacklist(start, end);
2363 }
2364
2365 start = (unsigned long)mod->noinstr_text_start;
2366 if (start) {
2367 end = start + mod->noinstr_text_size;
2368 kprobe_add_area_blacklist(start, end);
2369 }
2370 }
2371
2372 static void remove_module_kprobe_blacklist(struct module *mod)
2373 {
2374 unsigned long start, end;
2375 int i;
2376
2377 if (mod->kprobe_blacklist) {
2378 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2379 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2380 }
2381
2382 start = (unsigned long)mod->kprobes_text_start;
2383 if (start) {
2384 end = start + mod->kprobes_text_size;
2385 kprobe_remove_area_blacklist(start, end);
2386 }
2387
2388 start = (unsigned long)mod->noinstr_text_start;
2389 if (start) {
2390 end = start + mod->noinstr_text_size;
2391 kprobe_remove_area_blacklist(start, end);
2392 }
2393 }
2394
2395 /* Module notifier call back, checking kprobes on the module */
2396 static int kprobes_module_callback(struct notifier_block *nb,
2397 unsigned long val, void *data)
2398 {
2399 struct module *mod = data;
2400 struct hlist_head *head;
2401 struct kprobe *p;
2402 unsigned int i;
2403 int checkcore = (val == MODULE_STATE_GOING);
2404
2405 if (val == MODULE_STATE_COMING) {
2406 mutex_lock(&kprobe_mutex);
2407 add_module_kprobe_blacklist(mod);
2408 mutex_unlock(&kprobe_mutex);
2409 }
2410 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2411 return NOTIFY_DONE;
2412
2413 /*
2414 * When MODULE_STATE_GOING was notified, both of module .text and
2415 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2416 * notified, only .init.text section would be freed. We need to
2417 * disable kprobes which have been inserted in the sections.
2418 */
2419 mutex_lock(&kprobe_mutex);
2420 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2421 head = &kprobe_table[i];
2422 hlist_for_each_entry(p, head, hlist)
2423 if (within_module_init((unsigned long)p->addr, mod) ||
2424 (checkcore &&
2425 within_module_core((unsigned long)p->addr, mod))) {
2426 /*
2427 * The vaddr this probe is installed will soon
2428 * be vfreed buy not synced to disk. Hence,
2429 * disarming the breakpoint isn't needed.
2430 *
2431 * Note, this will also move any optimized probes
2432 * that are pending to be removed from their
2433 * corresponding lists to the freeing_list and
2434 * will not be touched by the delayed
2435 * kprobe_optimizer work handler.
2436 */
2437 kill_kprobe(p);
2438 }
2439 }
2440 if (val == MODULE_STATE_GOING)
2441 remove_module_kprobe_blacklist(mod);
2442 mutex_unlock(&kprobe_mutex);
2443 return NOTIFY_DONE;
2444 }
2445
2446 static struct notifier_block kprobe_module_nb = {
2447 .notifier_call = kprobes_module_callback,
2448 .priority = 0
2449 };
2450
2451 /* Markers of _kprobe_blacklist section */
2452 extern unsigned long __start_kprobe_blacklist[];
2453 extern unsigned long __stop_kprobe_blacklist[];
2454
2455 static int __init init_kprobes(void)
2456 {
2457 int i, err = 0;
2458
2459 /* FIXME allocate the probe table, currently defined statically */
2460 /* initialize all list heads */
2461 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2462 INIT_HLIST_HEAD(&kprobe_table[i]);
2463 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2464 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2465 }
2466
2467 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2468 __stop_kprobe_blacklist);
2469 if (err) {
2470 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2471 pr_err("Please take care of using kprobes.\n");
2472 }
2473
2474 if (kretprobe_blacklist_size) {
2475 /* lookup the function address from its name */
2476 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2477 kretprobe_blacklist[i].addr =
2478 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2479 if (!kretprobe_blacklist[i].addr)
2480 printk("kretprobe: lookup failed: %s\n",
2481 kretprobe_blacklist[i].name);
2482 }
2483 }
2484
2485 #if defined(CONFIG_OPTPROBES)
2486 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2487 /* Init kprobe_optinsn_slots */
2488 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2489 #endif
2490 /* By default, kprobes can be optimized */
2491 kprobes_allow_optimization = true;
2492 #endif
2493
2494 /* By default, kprobes are armed */
2495 kprobes_all_disarmed = false;
2496
2497 err = arch_init_kprobes();
2498 if (!err)
2499 err = register_die_notifier(&kprobe_exceptions_nb);
2500 if (!err)
2501 err = register_module_notifier(&kprobe_module_nb);
2502
2503 kprobes_initialized = (err == 0);
2504
2505 if (!err)
2506 init_test_probes();
2507 return err;
2508 }
2509 subsys_initcall(init_kprobes);
2510
2511 #ifdef CONFIG_DEBUG_FS
2512 static void report_probe(struct seq_file *pi, struct kprobe *p,
2513 const char *sym, int offset, char *modname, struct kprobe *pp)
2514 {
2515 char *kprobe_type;
2516 void *addr = p->addr;
2517
2518 if (p->pre_handler == pre_handler_kretprobe)
2519 kprobe_type = "r";
2520 else
2521 kprobe_type = "k";
2522
2523 if (!kallsyms_show_value(pi->file->f_cred))
2524 addr = NULL;
2525
2526 if (sym)
2527 seq_printf(pi, "%px %s %s+0x%x %s ",
2528 addr, kprobe_type, sym, offset,
2529 (modname ? modname : " "));
2530 else /* try to use %pS */
2531 seq_printf(pi, "%px %s %pS ",
2532 addr, kprobe_type, p->addr);
2533
2534 if (!pp)
2535 pp = p;
2536 seq_printf(pi, "%s%s%s%s\n",
2537 (kprobe_gone(p) ? "[GONE]" : ""),
2538 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2539 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2540 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2541 }
2542
2543 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2544 {
2545 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2546 }
2547
2548 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2549 {
2550 (*pos)++;
2551 if (*pos >= KPROBE_TABLE_SIZE)
2552 return NULL;
2553 return pos;
2554 }
2555
2556 static void kprobe_seq_stop(struct seq_file *f, void *v)
2557 {
2558 /* Nothing to do */
2559 }
2560
2561 static int show_kprobe_addr(struct seq_file *pi, void *v)
2562 {
2563 struct hlist_head *head;
2564 struct kprobe *p, *kp;
2565 const char *sym = NULL;
2566 unsigned int i = *(loff_t *) v;
2567 unsigned long offset = 0;
2568 char *modname, namebuf[KSYM_NAME_LEN];
2569
2570 head = &kprobe_table[i];
2571 preempt_disable();
2572 hlist_for_each_entry_rcu(p, head, hlist) {
2573 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2574 &offset, &modname, namebuf);
2575 if (kprobe_aggrprobe(p)) {
2576 list_for_each_entry_rcu(kp, &p->list, list)
2577 report_probe(pi, kp, sym, offset, modname, p);
2578 } else
2579 report_probe(pi, p, sym, offset, modname, NULL);
2580 }
2581 preempt_enable();
2582 return 0;
2583 }
2584
2585 static const struct seq_operations kprobes_sops = {
2586 .start = kprobe_seq_start,
2587 .next = kprobe_seq_next,
2588 .stop = kprobe_seq_stop,
2589 .show = show_kprobe_addr
2590 };
2591
2592 DEFINE_SEQ_ATTRIBUTE(kprobes);
2593
2594 /* kprobes/blacklist -- shows which functions can not be probed */
2595 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2596 {
2597 mutex_lock(&kprobe_mutex);
2598 return seq_list_start(&kprobe_blacklist, *pos);
2599 }
2600
2601 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2602 {
2603 return seq_list_next(v, &kprobe_blacklist, pos);
2604 }
2605
2606 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2607 {
2608 struct kprobe_blacklist_entry *ent =
2609 list_entry(v, struct kprobe_blacklist_entry, list);
2610
2611 /*
2612 * If /proc/kallsyms is not showing kernel address, we won't
2613 * show them here either.
2614 */
2615 if (!kallsyms_show_value(m->file->f_cred))
2616 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2617 (void *)ent->start_addr);
2618 else
2619 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2620 (void *)ent->end_addr, (void *)ent->start_addr);
2621 return 0;
2622 }
2623
2624 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2625 {
2626 mutex_unlock(&kprobe_mutex);
2627 }
2628
2629 static const struct seq_operations kprobe_blacklist_sops = {
2630 .start = kprobe_blacklist_seq_start,
2631 .next = kprobe_blacklist_seq_next,
2632 .stop = kprobe_blacklist_seq_stop,
2633 .show = kprobe_blacklist_seq_show,
2634 };
2635 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2636
2637 static int arm_all_kprobes(void)
2638 {
2639 struct hlist_head *head;
2640 struct kprobe *p;
2641 unsigned int i, total = 0, errors = 0;
2642 int err, ret = 0;
2643
2644 mutex_lock(&kprobe_mutex);
2645
2646 /* If kprobes are armed, just return */
2647 if (!kprobes_all_disarmed)
2648 goto already_enabled;
2649
2650 /*
2651 * optimize_kprobe() called by arm_kprobe() checks
2652 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2653 * arm_kprobe.
2654 */
2655 kprobes_all_disarmed = false;
2656 /* Arming kprobes doesn't optimize kprobe itself */
2657 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2658 head = &kprobe_table[i];
2659 /* Arm all kprobes on a best-effort basis */
2660 hlist_for_each_entry(p, head, hlist) {
2661 if (!kprobe_disabled(p)) {
2662 err = arm_kprobe(p);
2663 if (err) {
2664 errors++;
2665 ret = err;
2666 }
2667 total++;
2668 }
2669 }
2670 }
2671
2672 if (errors)
2673 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2674 errors, total);
2675 else
2676 pr_info("Kprobes globally enabled\n");
2677
2678 already_enabled:
2679 mutex_unlock(&kprobe_mutex);
2680 return ret;
2681 }
2682
2683 static int disarm_all_kprobes(void)
2684 {
2685 struct hlist_head *head;
2686 struct kprobe *p;
2687 unsigned int i, total = 0, errors = 0;
2688 int err, ret = 0;
2689
2690 mutex_lock(&kprobe_mutex);
2691
2692 /* If kprobes are already disarmed, just return */
2693 if (kprobes_all_disarmed) {
2694 mutex_unlock(&kprobe_mutex);
2695 return 0;
2696 }
2697
2698 kprobes_all_disarmed = true;
2699
2700 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2701 head = &kprobe_table[i];
2702 /* Disarm all kprobes on a best-effort basis */
2703 hlist_for_each_entry(p, head, hlist) {
2704 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2705 err = disarm_kprobe(p, false);
2706 if (err) {
2707 errors++;
2708 ret = err;
2709 }
2710 total++;
2711 }
2712 }
2713 }
2714
2715 if (errors)
2716 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2717 errors, total);
2718 else
2719 pr_info("Kprobes globally disabled\n");
2720
2721 mutex_unlock(&kprobe_mutex);
2722
2723 /* Wait for disarming all kprobes by optimizer */
2724 wait_for_kprobe_optimizer();
2725
2726 return ret;
2727 }
2728
2729 /*
2730 * XXX: The debugfs bool file interface doesn't allow for callbacks
2731 * when the bool state is switched. We can reuse that facility when
2732 * available
2733 */
2734 static ssize_t read_enabled_file_bool(struct file *file,
2735 char __user *user_buf, size_t count, loff_t *ppos)
2736 {
2737 char buf[3];
2738
2739 if (!kprobes_all_disarmed)
2740 buf[0] = '1';
2741 else
2742 buf[0] = '0';
2743 buf[1] = '\n';
2744 buf[2] = 0x00;
2745 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2746 }
2747
2748 static ssize_t write_enabled_file_bool(struct file *file,
2749 const char __user *user_buf, size_t count, loff_t *ppos)
2750 {
2751 char buf[32];
2752 size_t buf_size;
2753 int ret = 0;
2754
2755 buf_size = min(count, (sizeof(buf)-1));
2756 if (copy_from_user(buf, user_buf, buf_size))
2757 return -EFAULT;
2758
2759 buf[buf_size] = '\0';
2760 switch (buf[0]) {
2761 case 'y':
2762 case 'Y':
2763 case '1':
2764 ret = arm_all_kprobes();
2765 break;
2766 case 'n':
2767 case 'N':
2768 case '0':
2769 ret = disarm_all_kprobes();
2770 break;
2771 default:
2772 return -EINVAL;
2773 }
2774
2775 if (ret)
2776 return ret;
2777
2778 return count;
2779 }
2780
2781 static const struct file_operations fops_kp = {
2782 .read = read_enabled_file_bool,
2783 .write = write_enabled_file_bool,
2784 .llseek = default_llseek,
2785 };
2786
2787 static int __init debugfs_kprobe_init(void)
2788 {
2789 struct dentry *dir;
2790 unsigned int value = 1;
2791
2792 dir = debugfs_create_dir("kprobes", NULL);
2793
2794 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2795
2796 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2797
2798 debugfs_create_file("blacklist", 0400, dir, NULL,
2799 &kprobe_blacklist_fops);
2800
2801 return 0;
2802 }
2803
2804 late_initcall(debugfs_kprobe_init);
2805 #endif /* CONFIG_DEBUG_FS */