]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/kprobes.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/static_call.h>
39 #include <linux/perf_event.h>
40
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53 * Or
54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55 */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64
65 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66 unsigned int __unused)
67 {
68 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69 }
70
71 /* Blacklist -- list of struct kprobe_blacklist_entry */
72 static LIST_HEAD(kprobe_blacklist);
73
74 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75 /*
76 * kprobe->ainsn.insn points to the copy of the instruction to be
77 * single-stepped. x86_64, POWER4 and above have no-exec support and
78 * stepping on the instruction on a vmalloced/kmalloced/data page
79 * is a recipe for disaster
80 */
81 struct kprobe_insn_page {
82 struct list_head list;
83 kprobe_opcode_t *insns; /* Page of instruction slots */
84 struct kprobe_insn_cache *cache;
85 int nused;
86 int ngarbage;
87 char slot_used[];
88 };
89
90 #define KPROBE_INSN_PAGE_SIZE(slots) \
91 (offsetof(struct kprobe_insn_page, slot_used) + \
92 (sizeof(char) * (slots)))
93
94 static int slots_per_page(struct kprobe_insn_cache *c)
95 {
96 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97 }
98
99 enum kprobe_slot_state {
100 SLOT_CLEAN = 0,
101 SLOT_DIRTY = 1,
102 SLOT_USED = 2,
103 };
104
105 void __weak *alloc_insn_page(void)
106 {
107 return module_alloc(PAGE_SIZE);
108 }
109
110 static void free_insn_page(void *page)
111 {
112 module_memfree(page);
113 }
114
115 struct kprobe_insn_cache kprobe_insn_slots = {
116 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117 .alloc = alloc_insn_page,
118 .free = free_insn_page,
119 .sym = KPROBE_INSN_PAGE_SYM,
120 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121 .insn_size = MAX_INSN_SIZE,
122 .nr_garbage = 0,
123 };
124 static int collect_garbage_slots(struct kprobe_insn_cache *c);
125
126 /**
127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
128 * We allocate an executable page if there's no room on existing ones.
129 */
130 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131 {
132 struct kprobe_insn_page *kip;
133 kprobe_opcode_t *slot = NULL;
134
135 /* Since the slot array is not protected by rcu, we need a mutex */
136 mutex_lock(&c->mutex);
137 retry:
138 rcu_read_lock();
139 list_for_each_entry_rcu(kip, &c->pages, list) {
140 if (kip->nused < slots_per_page(c)) {
141 int i;
142 for (i = 0; i < slots_per_page(c); i++) {
143 if (kip->slot_used[i] == SLOT_CLEAN) {
144 kip->slot_used[i] = SLOT_USED;
145 kip->nused++;
146 slot = kip->insns + (i * c->insn_size);
147 rcu_read_unlock();
148 goto out;
149 }
150 }
151 /* kip->nused is broken. Fix it. */
152 kip->nused = slots_per_page(c);
153 WARN_ON(1);
154 }
155 }
156 rcu_read_unlock();
157
158 /* If there are any garbage slots, collect it and try again. */
159 if (c->nr_garbage && collect_garbage_slots(c) == 0)
160 goto retry;
161
162 /* All out of space. Need to allocate a new page. */
163 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164 if (!kip)
165 goto out;
166
167 /*
168 * Use module_alloc so this page is within +/- 2GB of where the
169 * kernel image and loaded module images reside. This is required
170 * so x86_64 can correctly handle the %rip-relative fixups.
171 */
172 kip->insns = c->alloc();
173 if (!kip->insns) {
174 kfree(kip);
175 goto out;
176 }
177 INIT_LIST_HEAD(&kip->list);
178 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179 kip->slot_used[0] = SLOT_USED;
180 kip->nused = 1;
181 kip->ngarbage = 0;
182 kip->cache = c;
183 list_add_rcu(&kip->list, &c->pages);
184 slot = kip->insns;
185
186 /* Record the perf ksymbol register event after adding the page */
187 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 PAGE_SIZE, false, c->sym);
189 out:
190 mutex_unlock(&c->mutex);
191 return slot;
192 }
193
194 /* Return 1 if all garbages are collected, otherwise 0. */
195 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196 {
197 kip->slot_used[idx] = SLOT_CLEAN;
198 kip->nused--;
199 if (kip->nused == 0) {
200 /*
201 * Page is no longer in use. Free it unless
202 * it's the last one. We keep the last one
203 * so as not to have to set it up again the
204 * next time somebody inserts a probe.
205 */
206 if (!list_is_singular(&kip->list)) {
207 /*
208 * Record perf ksymbol unregister event before removing
209 * the page.
210 */
211 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212 (unsigned long)kip->insns, PAGE_SIZE, true,
213 kip->cache->sym);
214 list_del_rcu(&kip->list);
215 synchronize_rcu();
216 kip->cache->free(kip->insns);
217 kfree(kip);
218 }
219 return 1;
220 }
221 return 0;
222 }
223
224 static int collect_garbage_slots(struct kprobe_insn_cache *c)
225 {
226 struct kprobe_insn_page *kip, *next;
227
228 /* Ensure no-one is interrupted on the garbages */
229 synchronize_rcu();
230
231 list_for_each_entry_safe(kip, next, &c->pages, list) {
232 int i;
233 if (kip->ngarbage == 0)
234 continue;
235 kip->ngarbage = 0; /* we will collect all garbages */
236 for (i = 0; i < slots_per_page(c); i++) {
237 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 break;
239 }
240 }
241 c->nr_garbage = 0;
242 return 0;
243 }
244
245 void __free_insn_slot(struct kprobe_insn_cache *c,
246 kprobe_opcode_t *slot, int dirty)
247 {
248 struct kprobe_insn_page *kip;
249 long idx;
250
251 mutex_lock(&c->mutex);
252 rcu_read_lock();
253 list_for_each_entry_rcu(kip, &c->pages, list) {
254 idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c))
257 goto out;
258 }
259 /* Could not find this slot. */
260 WARN_ON(1);
261 kip = NULL;
262 out:
263 rcu_read_unlock();
264 /* Mark and sweep: this may sleep */
265 if (kip) {
266 /* Check double free */
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else {
274 collect_one_slot(kip, idx);
275 }
276 }
277 mutex_unlock(&c->mutex);
278 }
279
280 /*
281 * Check given address is on the page of kprobe instruction slots.
282 * This will be used for checking whether the address on a stack
283 * is on a text area or not.
284 */
285 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286 {
287 struct kprobe_insn_page *kip;
288 bool ret = false;
289
290 rcu_read_lock();
291 list_for_each_entry_rcu(kip, &c->pages, list) {
292 if (addr >= (unsigned long)kip->insns &&
293 addr < (unsigned long)kip->insns + PAGE_SIZE) {
294 ret = true;
295 break;
296 }
297 }
298 rcu_read_unlock();
299
300 return ret;
301 }
302
303 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304 unsigned long *value, char *type, char *sym)
305 {
306 struct kprobe_insn_page *kip;
307 int ret = -ERANGE;
308
309 rcu_read_lock();
310 list_for_each_entry_rcu(kip, &c->pages, list) {
311 if ((*symnum)--)
312 continue;
313 strlcpy(sym, c->sym, KSYM_NAME_LEN);
314 *type = 't';
315 *value = (unsigned long)kip->insns;
316 ret = 0;
317 break;
318 }
319 rcu_read_unlock();
320
321 return ret;
322 }
323
324 #ifdef CONFIG_OPTPROBES
325 void __weak *alloc_optinsn_page(void)
326 {
327 return alloc_insn_page();
328 }
329
330 void __weak free_optinsn_page(void *page)
331 {
332 free_insn_page(page);
333 }
334
335 /* For optimized_kprobe buffer */
336 struct kprobe_insn_cache kprobe_optinsn_slots = {
337 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338 .alloc = alloc_optinsn_page,
339 .free = free_optinsn_page,
340 .sym = KPROBE_OPTINSN_PAGE_SYM,
341 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342 /* .insn_size is initialized later */
343 .nr_garbage = 0,
344 };
345 #endif
346 #endif
347
348 /* We have preemption disabled.. so it is safe to use __ versions */
349 static inline void set_kprobe_instance(struct kprobe *kp)
350 {
351 __this_cpu_write(kprobe_instance, kp);
352 }
353
354 static inline void reset_kprobe_instance(void)
355 {
356 __this_cpu_write(kprobe_instance, NULL);
357 }
358
359 /*
360 * This routine is called either:
361 * - under the kprobe_mutex - during kprobe_[un]register()
362 * OR
363 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
364 */
365 struct kprobe *get_kprobe(void *addr)
366 {
367 struct hlist_head *head;
368 struct kprobe *p;
369
370 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371 hlist_for_each_entry_rcu(p, head, hlist,
372 lockdep_is_held(&kprobe_mutex)) {
373 if (p->addr == addr)
374 return p;
375 }
376
377 return NULL;
378 }
379 NOKPROBE_SYMBOL(get_kprobe);
380
381 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382
383 /* Return true if the kprobe is an aggregator */
384 static inline int kprobe_aggrprobe(struct kprobe *p)
385 {
386 return p->pre_handler == aggr_pre_handler;
387 }
388
389 /* Return true(!0) if the kprobe is unused */
390 static inline int kprobe_unused(struct kprobe *p)
391 {
392 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393 list_empty(&p->list);
394 }
395
396 /*
397 * Keep all fields in the kprobe consistent
398 */
399 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400 {
401 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403 }
404
405 #ifdef CONFIG_OPTPROBES
406 /* NOTE: change this value only with kprobe_mutex held */
407 static bool kprobes_allow_optimization;
408
409 /*
410 * Call all pre_handler on the list, but ignores its return value.
411 * This must be called from arch-dep optimized caller.
412 */
413 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414 {
415 struct kprobe *kp;
416
417 list_for_each_entry_rcu(kp, &p->list, list) {
418 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419 set_kprobe_instance(kp);
420 kp->pre_handler(kp, regs);
421 }
422 reset_kprobe_instance();
423 }
424 }
425 NOKPROBE_SYMBOL(opt_pre_handler);
426
427 /* Free optimized instructions and optimized_kprobe */
428 static void free_aggr_kprobe(struct kprobe *p)
429 {
430 struct optimized_kprobe *op;
431
432 op = container_of(p, struct optimized_kprobe, kp);
433 arch_remove_optimized_kprobe(op);
434 arch_remove_kprobe(p);
435 kfree(op);
436 }
437
438 /* Return true(!0) if the kprobe is ready for optimization. */
439 static inline int kprobe_optready(struct kprobe *p)
440 {
441 struct optimized_kprobe *op;
442
443 if (kprobe_aggrprobe(p)) {
444 op = container_of(p, struct optimized_kprobe, kp);
445 return arch_prepared_optinsn(&op->optinsn);
446 }
447
448 return 0;
449 }
450
451 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452 static inline int kprobe_disarmed(struct kprobe *p)
453 {
454 struct optimized_kprobe *op;
455
456 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457 if (!kprobe_aggrprobe(p))
458 return kprobe_disabled(p);
459
460 op = container_of(p, struct optimized_kprobe, kp);
461
462 return kprobe_disabled(p) && list_empty(&op->list);
463 }
464
465 /* Return true(!0) if the probe is queued on (un)optimizing lists */
466 static int kprobe_queued(struct kprobe *p)
467 {
468 struct optimized_kprobe *op;
469
470 if (kprobe_aggrprobe(p)) {
471 op = container_of(p, struct optimized_kprobe, kp);
472 if (!list_empty(&op->list))
473 return 1;
474 }
475 return 0;
476 }
477
478 /*
479 * Return an optimized kprobe whose optimizing code replaces
480 * instructions including addr (exclude breakpoint).
481 */
482 static struct kprobe *get_optimized_kprobe(unsigned long addr)
483 {
484 int i;
485 struct kprobe *p = NULL;
486 struct optimized_kprobe *op;
487
488 /* Don't check i == 0, since that is a breakpoint case. */
489 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490 p = get_kprobe((void *)(addr - i));
491
492 if (p && kprobe_optready(p)) {
493 op = container_of(p, struct optimized_kprobe, kp);
494 if (arch_within_optimized_kprobe(op, addr))
495 return p;
496 }
497
498 return NULL;
499 }
500
501 /* Optimization staging list, protected by kprobe_mutex */
502 static LIST_HEAD(optimizing_list);
503 static LIST_HEAD(unoptimizing_list);
504 static LIST_HEAD(freeing_list);
505
506 static void kprobe_optimizer(struct work_struct *work);
507 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508 #define OPTIMIZE_DELAY 5
509
510 /*
511 * Optimize (replace a breakpoint with a jump) kprobes listed on
512 * optimizing_list.
513 */
514 static void do_optimize_kprobes(void)
515 {
516 lockdep_assert_held(&text_mutex);
517 /*
518 * The optimization/unoptimization refers online_cpus via
519 * stop_machine() and cpu-hotplug modifies online_cpus.
520 * And same time, text_mutex will be held in cpu-hotplug and here.
521 * This combination can cause a deadlock (cpu-hotplug try to lock
522 * text_mutex but stop_machine can not be done because online_cpus
523 * has been changed)
524 * To avoid this deadlock, caller must have locked cpu hotplug
525 * for preventing cpu-hotplug outside of text_mutex locking.
526 */
527 lockdep_assert_cpus_held();
528
529 /* Optimization never be done when disarmed */
530 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531 list_empty(&optimizing_list))
532 return;
533
534 arch_optimize_kprobes(&optimizing_list);
535 }
536
537 /*
538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539 * if need) kprobes listed on unoptimizing_list.
540 */
541 static void do_unoptimize_kprobes(void)
542 {
543 struct optimized_kprobe *op, *tmp;
544
545 lockdep_assert_held(&text_mutex);
546 /* See comment in do_optimize_kprobes() */
547 lockdep_assert_cpus_held();
548
549 /* Unoptimization must be done anytime */
550 if (list_empty(&unoptimizing_list))
551 return;
552
553 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554 /* Loop free_list for disarming */
555 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556 /* Switching from detour code to origin */
557 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558 /* Disarm probes if marked disabled */
559 if (kprobe_disabled(&op->kp))
560 arch_disarm_kprobe(&op->kp);
561 if (kprobe_unused(&op->kp)) {
562 /*
563 * Remove unused probes from hash list. After waiting
564 * for synchronization, these probes are reclaimed.
565 * (reclaiming is done by do_free_cleaned_kprobes.)
566 */
567 hlist_del_rcu(&op->kp.hlist);
568 } else
569 list_del_init(&op->list);
570 }
571 }
572
573 /* Reclaim all kprobes on the free_list */
574 static void do_free_cleaned_kprobes(void)
575 {
576 struct optimized_kprobe *op, *tmp;
577
578 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579 list_del_init(&op->list);
580 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581 /*
582 * This must not happen, but if there is a kprobe
583 * still in use, keep it on kprobes hash list.
584 */
585 continue;
586 }
587 free_aggr_kprobe(&op->kp);
588 }
589 }
590
591 /* Start optimizer after OPTIMIZE_DELAY passed */
592 static void kick_kprobe_optimizer(void)
593 {
594 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595 }
596
597 /* Kprobe jump optimizer */
598 static void kprobe_optimizer(struct work_struct *work)
599 {
600 mutex_lock(&kprobe_mutex);
601 cpus_read_lock();
602 mutex_lock(&text_mutex);
603
604 /*
605 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606 * kprobes before waiting for quiesence period.
607 */
608 do_unoptimize_kprobes();
609
610 /*
611 * Step 2: Wait for quiesence period to ensure all potentially
612 * preempted tasks to have normally scheduled. Because optprobe
613 * may modify multiple instructions, there is a chance that Nth
614 * instruction is preempted. In that case, such tasks can return
615 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616 * Note that on non-preemptive kernel, this is transparently converted
617 * to synchronoze_sched() to wait for all interrupts to have completed.
618 */
619 synchronize_rcu_tasks();
620
621 /* Step 3: Optimize kprobes after quiesence period */
622 do_optimize_kprobes();
623
624 /* Step 4: Free cleaned kprobes after quiesence period */
625 do_free_cleaned_kprobes();
626
627 mutex_unlock(&text_mutex);
628 cpus_read_unlock();
629
630 /* Step 5: Kick optimizer again if needed */
631 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632 kick_kprobe_optimizer();
633
634 mutex_unlock(&kprobe_mutex);
635 }
636
637 /* Wait for completing optimization and unoptimization */
638 void wait_for_kprobe_optimizer(void)
639 {
640 mutex_lock(&kprobe_mutex);
641
642 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643 mutex_unlock(&kprobe_mutex);
644
645 /* this will also make optimizing_work execute immmediately */
646 flush_delayed_work(&optimizing_work);
647 /* @optimizing_work might not have been queued yet, relax */
648 cpu_relax();
649
650 mutex_lock(&kprobe_mutex);
651 }
652
653 mutex_unlock(&kprobe_mutex);
654 }
655
656 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657 {
658 struct optimized_kprobe *_op;
659
660 list_for_each_entry(_op, &unoptimizing_list, list) {
661 if (op == _op)
662 return true;
663 }
664
665 return false;
666 }
667
668 /* Optimize kprobe if p is ready to be optimized */
669 static void optimize_kprobe(struct kprobe *p)
670 {
671 struct optimized_kprobe *op;
672
673 /* Check if the kprobe is disabled or not ready for optimization. */
674 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675 (kprobe_disabled(p) || kprobes_all_disarmed))
676 return;
677
678 /* kprobes with post_handler can not be optimized */
679 if (p->post_handler)
680 return;
681
682 op = container_of(p, struct optimized_kprobe, kp);
683
684 /* Check there is no other kprobes at the optimized instructions */
685 if (arch_check_optimized_kprobe(op) < 0)
686 return;
687
688 /* Check if it is already optimized. */
689 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690 if (optprobe_queued_unopt(op)) {
691 /* This is under unoptimizing. Just dequeue the probe */
692 list_del_init(&op->list);
693 }
694 return;
695 }
696 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697
698 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699 if (WARN_ON_ONCE(!list_empty(&op->list)))
700 return;
701
702 list_add(&op->list, &optimizing_list);
703 kick_kprobe_optimizer();
704 }
705
706 /* Short cut to direct unoptimizing */
707 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708 {
709 lockdep_assert_cpus_held();
710 arch_unoptimize_kprobe(op);
711 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712 }
713
714 /* Unoptimize a kprobe if p is optimized */
715 static void unoptimize_kprobe(struct kprobe *p, bool force)
716 {
717 struct optimized_kprobe *op;
718
719 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720 return; /* This is not an optprobe nor optimized */
721
722 op = container_of(p, struct optimized_kprobe, kp);
723 if (!kprobe_optimized(p))
724 return;
725
726 if (!list_empty(&op->list)) {
727 if (optprobe_queued_unopt(op)) {
728 /* Queued in unoptimizing queue */
729 if (force) {
730 /*
731 * Forcibly unoptimize the kprobe here, and queue it
732 * in the freeing list for release afterwards.
733 */
734 force_unoptimize_kprobe(op);
735 list_move(&op->list, &freeing_list);
736 }
737 } else {
738 /* Dequeue from the optimizing queue */
739 list_del_init(&op->list);
740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 }
742 return;
743 }
744
745 /* Optimized kprobe case */
746 if (force) {
747 /* Forcibly update the code: this is a special case */
748 force_unoptimize_kprobe(op);
749 } else {
750 list_add(&op->list, &unoptimizing_list);
751 kick_kprobe_optimizer();
752 }
753 }
754
755 /* Cancel unoptimizing for reusing */
756 static int reuse_unused_kprobe(struct kprobe *ap)
757 {
758 struct optimized_kprobe *op;
759
760 /*
761 * Unused kprobe MUST be on the way of delayed unoptimizing (means
762 * there is still a relative jump) and disabled.
763 */
764 op = container_of(ap, struct optimized_kprobe, kp);
765 WARN_ON_ONCE(list_empty(&op->list));
766 /* Enable the probe again */
767 ap->flags &= ~KPROBE_FLAG_DISABLED;
768 /* Optimize it again (remove from op->list) */
769 if (!kprobe_optready(ap))
770 return -EINVAL;
771
772 optimize_kprobe(ap);
773 return 0;
774 }
775
776 /* Remove optimized instructions */
777 static void kill_optimized_kprobe(struct kprobe *p)
778 {
779 struct optimized_kprobe *op;
780
781 op = container_of(p, struct optimized_kprobe, kp);
782 if (!list_empty(&op->list))
783 /* Dequeue from the (un)optimization queue */
784 list_del_init(&op->list);
785 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786
787 if (kprobe_unused(p)) {
788 /* Enqueue if it is unused */
789 list_add(&op->list, &freeing_list);
790 /*
791 * Remove unused probes from the hash list. After waiting
792 * for synchronization, this probe is reclaimed.
793 * (reclaiming is done by do_free_cleaned_kprobes().)
794 */
795 hlist_del_rcu(&op->kp.hlist);
796 }
797
798 /* Don't touch the code, because it is already freed. */
799 arch_remove_optimized_kprobe(op);
800 }
801
802 static inline
803 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804 {
805 if (!kprobe_ftrace(p))
806 arch_prepare_optimized_kprobe(op, p);
807 }
808
809 /* Try to prepare optimized instructions */
810 static void prepare_optimized_kprobe(struct kprobe *p)
811 {
812 struct optimized_kprobe *op;
813
814 op = container_of(p, struct optimized_kprobe, kp);
815 __prepare_optimized_kprobe(op, p);
816 }
817
818 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
819 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820 {
821 struct optimized_kprobe *op;
822
823 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 if (!op)
825 return NULL;
826
827 INIT_LIST_HEAD(&op->list);
828 op->kp.addr = p->addr;
829 __prepare_optimized_kprobe(op, p);
830
831 return &op->kp;
832 }
833
834 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835
836 /*
837 * Prepare an optimized_kprobe and optimize it
838 * NOTE: p must be a normal registered kprobe
839 */
840 static void try_to_optimize_kprobe(struct kprobe *p)
841 {
842 struct kprobe *ap;
843 struct optimized_kprobe *op;
844
845 /* Impossible to optimize ftrace-based kprobe */
846 if (kprobe_ftrace(p))
847 return;
848
849 /* For preparing optimization, jump_label_text_reserved() is called */
850 cpus_read_lock();
851 jump_label_lock();
852 mutex_lock(&text_mutex);
853
854 ap = alloc_aggr_kprobe(p);
855 if (!ap)
856 goto out;
857
858 op = container_of(ap, struct optimized_kprobe, kp);
859 if (!arch_prepared_optinsn(&op->optinsn)) {
860 /* If failed to setup optimizing, fallback to kprobe */
861 arch_remove_optimized_kprobe(op);
862 kfree(op);
863 goto out;
864 }
865
866 init_aggr_kprobe(ap, p);
867 optimize_kprobe(ap); /* This just kicks optimizer thread */
868
869 out:
870 mutex_unlock(&text_mutex);
871 jump_label_unlock();
872 cpus_read_unlock();
873 }
874
875 static void optimize_all_kprobes(void)
876 {
877 struct hlist_head *head;
878 struct kprobe *p;
879 unsigned int i;
880
881 mutex_lock(&kprobe_mutex);
882 /* If optimization is already allowed, just return */
883 if (kprobes_allow_optimization)
884 goto out;
885
886 cpus_read_lock();
887 kprobes_allow_optimization = true;
888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 head = &kprobe_table[i];
890 hlist_for_each_entry(p, head, hlist)
891 if (!kprobe_disabled(p))
892 optimize_kprobe(p);
893 }
894 cpus_read_unlock();
895 printk(KERN_INFO "Kprobes globally optimized\n");
896 out:
897 mutex_unlock(&kprobe_mutex);
898 }
899
900 #ifdef CONFIG_SYSCTL
901 static void unoptimize_all_kprobes(void)
902 {
903 struct hlist_head *head;
904 struct kprobe *p;
905 unsigned int i;
906
907 mutex_lock(&kprobe_mutex);
908 /* If optimization is already prohibited, just return */
909 if (!kprobes_allow_optimization) {
910 mutex_unlock(&kprobe_mutex);
911 return;
912 }
913
914 cpus_read_lock();
915 kprobes_allow_optimization = false;
916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 head = &kprobe_table[i];
918 hlist_for_each_entry(p, head, hlist) {
919 if (!kprobe_disabled(p))
920 unoptimize_kprobe(p, false);
921 }
922 }
923 cpus_read_unlock();
924 mutex_unlock(&kprobe_mutex);
925
926 /* Wait for unoptimizing completion */
927 wait_for_kprobe_optimizer();
928 printk(KERN_INFO "Kprobes globally unoptimized\n");
929 }
930
931 static DEFINE_MUTEX(kprobe_sysctl_mutex);
932 int sysctl_kprobes_optimization;
933 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 void *buffer, size_t *length,
935 loff_t *ppos)
936 {
937 int ret;
938
939 mutex_lock(&kprobe_sysctl_mutex);
940 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942
943 if (sysctl_kprobes_optimization)
944 optimize_all_kprobes();
945 else
946 unoptimize_all_kprobes();
947 mutex_unlock(&kprobe_sysctl_mutex);
948
949 return ret;
950 }
951 #endif /* CONFIG_SYSCTL */
952
953 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
954 static void __arm_kprobe(struct kprobe *p)
955 {
956 struct kprobe *_p;
957
958 /* Check collision with other optimized kprobes */
959 _p = get_optimized_kprobe((unsigned long)p->addr);
960 if (unlikely(_p))
961 /* Fallback to unoptimized kprobe */
962 unoptimize_kprobe(_p, true);
963
964 arch_arm_kprobe(p);
965 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
966 }
967
968 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969 static void __disarm_kprobe(struct kprobe *p, bool reopt)
970 {
971 struct kprobe *_p;
972
973 /* Try to unoptimize */
974 unoptimize_kprobe(p, kprobes_all_disarmed);
975
976 if (!kprobe_queued(p)) {
977 arch_disarm_kprobe(p);
978 /* If another kprobe was blocked, optimize it. */
979 _p = get_optimized_kprobe((unsigned long)p->addr);
980 if (unlikely(_p) && reopt)
981 optimize_kprobe(_p);
982 }
983 /* TODO: reoptimize others after unoptimized this probe */
984 }
985
986 #else /* !CONFIG_OPTPROBES */
987
988 #define optimize_kprobe(p) do {} while (0)
989 #define unoptimize_kprobe(p, f) do {} while (0)
990 #define kill_optimized_kprobe(p) do {} while (0)
991 #define prepare_optimized_kprobe(p) do {} while (0)
992 #define try_to_optimize_kprobe(p) do {} while (0)
993 #define __arm_kprobe(p) arch_arm_kprobe(p)
994 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
995 #define kprobe_disarmed(p) kprobe_disabled(p)
996 #define wait_for_kprobe_optimizer() do {} while (0)
997
998 static int reuse_unused_kprobe(struct kprobe *ap)
999 {
1000 /*
1001 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 * released at the same time that the last aggregated kprobe is
1003 * unregistered.
1004 * Thus there should be no chance to reuse unused kprobe.
1005 */
1006 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007 return -EINVAL;
1008 }
1009
1010 static void free_aggr_kprobe(struct kprobe *p)
1011 {
1012 arch_remove_kprobe(p);
1013 kfree(p);
1014 }
1015
1016 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017 {
1018 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019 }
1020 #endif /* CONFIG_OPTPROBES */
1021
1022 #ifdef CONFIG_KPROBES_ON_FTRACE
1023 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 .func = kprobe_ftrace_handler,
1025 .flags = FTRACE_OPS_FL_SAVE_REGS,
1026 };
1027
1028 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 .func = kprobe_ftrace_handler,
1030 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031 };
1032
1033 static int kprobe_ipmodify_enabled;
1034 static int kprobe_ftrace_enabled;
1035
1036 /* Must ensure p->addr is really on ftrace */
1037 static int prepare_kprobe(struct kprobe *p)
1038 {
1039 if (!kprobe_ftrace(p))
1040 return arch_prepare_kprobe(p);
1041
1042 return arch_prepare_kprobe_ftrace(p);
1043 }
1044
1045 /* Caller must lock kprobe_mutex */
1046 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047 int *cnt)
1048 {
1049 int ret = 0;
1050
1051 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052 if (ret) {
1053 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054 p->addr, ret);
1055 return ret;
1056 }
1057
1058 if (*cnt == 0) {
1059 ret = register_ftrace_function(ops);
1060 if (ret) {
1061 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062 goto err_ftrace;
1063 }
1064 }
1065
1066 (*cnt)++;
1067 return ret;
1068
1069 err_ftrace:
1070 /*
1071 * At this point, sinec ops is not registered, we should be sefe from
1072 * registering empty filter.
1073 */
1074 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075 return ret;
1076 }
1077
1078 static int arm_kprobe_ftrace(struct kprobe *p)
1079 {
1080 bool ipmodify = (p->post_handler != NULL);
1081
1082 return __arm_kprobe_ftrace(p,
1083 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085 }
1086
1087 /* Caller must lock kprobe_mutex */
1088 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089 int *cnt)
1090 {
1091 int ret = 0;
1092
1093 if (*cnt == 1) {
1094 ret = unregister_ftrace_function(ops);
1095 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096 return ret;
1097 }
1098
1099 (*cnt)--;
1100
1101 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103 p->addr, ret);
1104 return ret;
1105 }
1106
1107 static int disarm_kprobe_ftrace(struct kprobe *p)
1108 {
1109 bool ipmodify = (p->post_handler != NULL);
1110
1111 return __disarm_kprobe_ftrace(p,
1112 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114 }
1115 #else /* !CONFIG_KPROBES_ON_FTRACE */
1116 static inline int prepare_kprobe(struct kprobe *p)
1117 {
1118 return arch_prepare_kprobe(p);
1119 }
1120
1121 static inline int arm_kprobe_ftrace(struct kprobe *p)
1122 {
1123 return -ENODEV;
1124 }
1125
1126 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127 {
1128 return -ENODEV;
1129 }
1130 #endif
1131
1132 /* Arm a kprobe with text_mutex */
1133 static int arm_kprobe(struct kprobe *kp)
1134 {
1135 if (unlikely(kprobe_ftrace(kp)))
1136 return arm_kprobe_ftrace(kp);
1137
1138 cpus_read_lock();
1139 mutex_lock(&text_mutex);
1140 __arm_kprobe(kp);
1141 mutex_unlock(&text_mutex);
1142 cpus_read_unlock();
1143
1144 return 0;
1145 }
1146
1147 /* Disarm a kprobe with text_mutex */
1148 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149 {
1150 if (unlikely(kprobe_ftrace(kp)))
1151 return disarm_kprobe_ftrace(kp);
1152
1153 cpus_read_lock();
1154 mutex_lock(&text_mutex);
1155 __disarm_kprobe(kp, reopt);
1156 mutex_unlock(&text_mutex);
1157 cpus_read_unlock();
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167 {
1168 struct kprobe *kp;
1169
1170 list_for_each_entry_rcu(kp, &p->list, list) {
1171 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172 set_kprobe_instance(kp);
1173 if (kp->pre_handler(kp, regs))
1174 return 1;
1175 }
1176 reset_kprobe_instance();
1177 }
1178 return 0;
1179 }
1180 NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183 unsigned long flags)
1184 {
1185 struct kprobe *kp;
1186
1187 list_for_each_entry_rcu(kp, &p->list, list) {
1188 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189 set_kprobe_instance(kp);
1190 kp->post_handler(kp, regs, flags);
1191 reset_kprobe_instance();
1192 }
1193 }
1194 }
1195 NOKPROBE_SYMBOL(aggr_post_handler);
1196
1197 /* Walks the list and increments nmissed count for multiprobe case */
1198 void kprobes_inc_nmissed_count(struct kprobe *p)
1199 {
1200 struct kprobe *kp;
1201 if (!kprobe_aggrprobe(p)) {
1202 p->nmissed++;
1203 } else {
1204 list_for_each_entry_rcu(kp, &p->list, list)
1205 kp->nmissed++;
1206 }
1207 return;
1208 }
1209 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211 static void free_rp_inst_rcu(struct rcu_head *head)
1212 {
1213 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215 if (refcount_dec_and_test(&ri->rph->ref))
1216 kfree(ri->rph);
1217 kfree(ri);
1218 }
1219 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221 static void recycle_rp_inst(struct kretprobe_instance *ri)
1222 {
1223 struct kretprobe *rp = get_kretprobe(ri);
1224
1225 if (likely(rp)) {
1226 freelist_add(&ri->freelist, &rp->freelist);
1227 } else
1228 call_rcu(&ri->rcu, free_rp_inst_rcu);
1229 }
1230 NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232 static struct kprobe kprobe_busy = {
1233 .addr = (void *) get_kprobe,
1234 };
1235
1236 void kprobe_busy_begin(void)
1237 {
1238 struct kprobe_ctlblk *kcb;
1239
1240 preempt_disable();
1241 __this_cpu_write(current_kprobe, &kprobe_busy);
1242 kcb = get_kprobe_ctlblk();
1243 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244 }
1245
1246 void kprobe_busy_end(void)
1247 {
1248 __this_cpu_write(current_kprobe, NULL);
1249 preempt_enable();
1250 }
1251
1252 /*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258 void kprobe_flush_task(struct task_struct *tk)
1259 {
1260 struct kretprobe_instance *ri;
1261 struct llist_node *node;
1262
1263 /* Early boot, not yet initialized. */
1264 if (unlikely(!kprobes_initialized))
1265 return;
1266
1267 kprobe_busy_begin();
1268
1269 node = __llist_del_all(&tk->kretprobe_instances);
1270 while (node) {
1271 ri = container_of(node, struct kretprobe_instance, llist);
1272 node = node->next;
1273
1274 recycle_rp_inst(ri);
1275 }
1276
1277 kprobe_busy_end();
1278 }
1279 NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281 static inline void free_rp_inst(struct kretprobe *rp)
1282 {
1283 struct kretprobe_instance *ri;
1284 struct freelist_node *node;
1285 int count = 0;
1286
1287 node = rp->freelist.head;
1288 while (node) {
1289 ri = container_of(node, struct kretprobe_instance, freelist);
1290 node = node->next;
1291
1292 kfree(ri);
1293 count++;
1294 }
1295
1296 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297 kfree(rp->rph);
1298 rp->rph = NULL;
1299 }
1300 }
1301
1302 /* Add the new probe to ap->list */
1303 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304 {
1305 if (p->post_handler)
1306 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1307
1308 list_add_rcu(&p->list, &ap->list);
1309 if (p->post_handler && !ap->post_handler)
1310 ap->post_handler = aggr_post_handler;
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320 {
1321 /* Copy p's insn slot to ap */
1322 copy_kprobe(p, ap);
1323 flush_insn_slot(ap);
1324 ap->addr = p->addr;
1325 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326 ap->pre_handler = aggr_pre_handler;
1327 /* We don't care the kprobe which has gone. */
1328 if (p->post_handler && !kprobe_gone(p))
1329 ap->post_handler = aggr_post_handler;
1330
1331 INIT_LIST_HEAD(&ap->list);
1332 INIT_HLIST_NODE(&ap->hlist);
1333
1334 list_add_rcu(&p->list, &ap->list);
1335 hlist_replace_rcu(&p->hlist, &ap->hlist);
1336 }
1337
1338 /*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343 {
1344 int ret = 0;
1345 struct kprobe *ap = orig_p;
1346
1347 cpus_read_lock();
1348
1349 /* For preparing optimization, jump_label_text_reserved() is called */
1350 jump_label_lock();
1351 mutex_lock(&text_mutex);
1352
1353 if (!kprobe_aggrprobe(orig_p)) {
1354 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355 ap = alloc_aggr_kprobe(orig_p);
1356 if (!ap) {
1357 ret = -ENOMEM;
1358 goto out;
1359 }
1360 init_aggr_kprobe(ap, orig_p);
1361 } else if (kprobe_unused(ap)) {
1362 /* This probe is going to die. Rescue it */
1363 ret = reuse_unused_kprobe(ap);
1364 if (ret)
1365 goto out;
1366 }
1367
1368 if (kprobe_gone(ap)) {
1369 /*
1370 * Attempting to insert new probe at the same location that
1371 * had a probe in the module vaddr area which already
1372 * freed. So, the instruction slot has already been
1373 * released. We need a new slot for the new probe.
1374 */
1375 ret = arch_prepare_kprobe(ap);
1376 if (ret)
1377 /*
1378 * Even if fail to allocate new slot, don't need to
1379 * free aggr_probe. It will be used next time, or
1380 * freed by unregister_kprobe.
1381 */
1382 goto out;
1383
1384 /* Prepare optimized instructions if possible. */
1385 prepare_optimized_kprobe(ap);
1386
1387 /*
1388 * Clear gone flag to prevent allocating new slot again, and
1389 * set disabled flag because it is not armed yet.
1390 */
1391 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392 | KPROBE_FLAG_DISABLED;
1393 }
1394
1395 /* Copy ap's insn slot to p */
1396 copy_kprobe(ap, p);
1397 ret = add_new_kprobe(ap, p);
1398
1399 out:
1400 mutex_unlock(&text_mutex);
1401 jump_label_unlock();
1402 cpus_read_unlock();
1403
1404 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405 ap->flags &= ~KPROBE_FLAG_DISABLED;
1406 if (!kprobes_all_disarmed) {
1407 /* Arm the breakpoint again. */
1408 ret = arm_kprobe(ap);
1409 if (ret) {
1410 ap->flags |= KPROBE_FLAG_DISABLED;
1411 list_del_rcu(&p->list);
1412 synchronize_rcu();
1413 }
1414 }
1415 }
1416 return ret;
1417 }
1418
1419 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420 {
1421 /* The __kprobes marked functions and entry code must not be probed */
1422 return addr >= (unsigned long)__kprobes_text_start &&
1423 addr < (unsigned long)__kprobes_text_end;
1424 }
1425
1426 static bool __within_kprobe_blacklist(unsigned long addr)
1427 {
1428 struct kprobe_blacklist_entry *ent;
1429
1430 if (arch_within_kprobe_blacklist(addr))
1431 return true;
1432 /*
1433 * If there exists a kprobe_blacklist, verify and
1434 * fail any probe registration in the prohibited area
1435 */
1436 list_for_each_entry(ent, &kprobe_blacklist, list) {
1437 if (addr >= ent->start_addr && addr < ent->end_addr)
1438 return true;
1439 }
1440 return false;
1441 }
1442
1443 bool within_kprobe_blacklist(unsigned long addr)
1444 {
1445 char symname[KSYM_NAME_LEN], *p;
1446
1447 if (__within_kprobe_blacklist(addr))
1448 return true;
1449
1450 /* Check if the address is on a suffixed-symbol */
1451 if (!lookup_symbol_name(addr, symname)) {
1452 p = strchr(symname, '.');
1453 if (!p)
1454 return false;
1455 *p = '\0';
1456 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457 if (addr)
1458 return __within_kprobe_blacklist(addr);
1459 }
1460 return false;
1461 }
1462
1463 /*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470 const char *symbol_name, unsigned int offset)
1471 {
1472 if ((symbol_name && addr) || (!symbol_name && !addr))
1473 goto invalid;
1474
1475 if (symbol_name) {
1476 addr = kprobe_lookup_name(symbol_name, offset);
1477 if (!addr)
1478 return ERR_PTR(-ENOENT);
1479 }
1480
1481 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482 if (addr)
1483 return addr;
1484
1485 invalid:
1486 return ERR_PTR(-EINVAL);
1487 }
1488
1489 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490 {
1491 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492 }
1493
1494 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496 {
1497 struct kprobe *ap, *list_p;
1498
1499 lockdep_assert_held(&kprobe_mutex);
1500
1501 ap = get_kprobe(p->addr);
1502 if (unlikely(!ap))
1503 return NULL;
1504
1505 if (p != ap) {
1506 list_for_each_entry(list_p, &ap->list, list)
1507 if (list_p == p)
1508 /* kprobe p is a valid probe */
1509 goto valid;
1510 return NULL;
1511 }
1512 valid:
1513 return ap;
1514 }
1515
1516 /*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520 static inline int warn_kprobe_rereg(struct kprobe *p)
1521 {
1522 int ret = 0;
1523
1524 mutex_lock(&kprobe_mutex);
1525 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526 ret = -EINVAL;
1527 mutex_unlock(&kprobe_mutex);
1528
1529 return ret;
1530 }
1531
1532 int __weak arch_check_ftrace_location(struct kprobe *p)
1533 {
1534 unsigned long ftrace_addr;
1535
1536 ftrace_addr = ftrace_location((unsigned long)p->addr);
1537 if (ftrace_addr) {
1538 #ifdef CONFIG_KPROBES_ON_FTRACE
1539 /* Given address is not on the instruction boundary */
1540 if ((unsigned long)p->addr != ftrace_addr)
1541 return -EILSEQ;
1542 p->flags |= KPROBE_FLAG_FTRACE;
1543 #else /* !CONFIG_KPROBES_ON_FTRACE */
1544 return -EINVAL;
1545 #endif
1546 }
1547 return 0;
1548 }
1549
1550 static int check_kprobe_address_safe(struct kprobe *p,
1551 struct module **probed_mod)
1552 {
1553 int ret;
1554
1555 ret = arch_check_ftrace_location(p);
1556 if (ret)
1557 return ret;
1558 jump_label_lock();
1559 preempt_disable();
1560
1561 /* Ensure it is not in reserved area nor out of text */
1562 if (!kernel_text_address((unsigned long) p->addr) ||
1563 within_kprobe_blacklist((unsigned long) p->addr) ||
1564 jump_label_text_reserved(p->addr, p->addr) ||
1565 static_call_text_reserved(p->addr, p->addr) ||
1566 find_bug((unsigned long)p->addr)) {
1567 ret = -EINVAL;
1568 goto out;
1569 }
1570
1571 /* Check if are we probing a module */
1572 *probed_mod = __module_text_address((unsigned long) p->addr);
1573 if (*probed_mod) {
1574 /*
1575 * We must hold a refcount of the probed module while updating
1576 * its code to prohibit unexpected unloading.
1577 */
1578 if (unlikely(!try_module_get(*probed_mod))) {
1579 ret = -ENOENT;
1580 goto out;
1581 }
1582
1583 /*
1584 * If the module freed .init.text, we couldn't insert
1585 * kprobes in there.
1586 */
1587 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588 (*probed_mod)->state != MODULE_STATE_COMING) {
1589 module_put(*probed_mod);
1590 *probed_mod = NULL;
1591 ret = -ENOENT;
1592 }
1593 }
1594 out:
1595 preempt_enable();
1596 jump_label_unlock();
1597
1598 return ret;
1599 }
1600
1601 int register_kprobe(struct kprobe *p)
1602 {
1603 int ret;
1604 struct kprobe *old_p;
1605 struct module *probed_mod;
1606 kprobe_opcode_t *addr;
1607
1608 /* Adjust probe address from symbol */
1609 addr = kprobe_addr(p);
1610 if (IS_ERR(addr))
1611 return PTR_ERR(addr);
1612 p->addr = addr;
1613
1614 ret = warn_kprobe_rereg(p);
1615 if (ret)
1616 return ret;
1617
1618 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619 p->flags &= KPROBE_FLAG_DISABLED;
1620 p->nmissed = 0;
1621 INIT_LIST_HEAD(&p->list);
1622
1623 ret = check_kprobe_address_safe(p, &probed_mod);
1624 if (ret)
1625 return ret;
1626
1627 mutex_lock(&kprobe_mutex);
1628
1629 old_p = get_kprobe(p->addr);
1630 if (old_p) {
1631 /* Since this may unoptimize old_p, locking text_mutex. */
1632 ret = register_aggr_kprobe(old_p, p);
1633 goto out;
1634 }
1635
1636 cpus_read_lock();
1637 /* Prevent text modification */
1638 mutex_lock(&text_mutex);
1639 ret = prepare_kprobe(p);
1640 mutex_unlock(&text_mutex);
1641 cpus_read_unlock();
1642 if (ret)
1643 goto out;
1644
1645 INIT_HLIST_NODE(&p->hlist);
1646 hlist_add_head_rcu(&p->hlist,
1647 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650 ret = arm_kprobe(p);
1651 if (ret) {
1652 hlist_del_rcu(&p->hlist);
1653 synchronize_rcu();
1654 goto out;
1655 }
1656 }
1657
1658 /* Try to optimize kprobe */
1659 try_to_optimize_kprobe(p);
1660 out:
1661 mutex_unlock(&kprobe_mutex);
1662
1663 if (probed_mod)
1664 module_put(probed_mod);
1665
1666 return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670 /* Check if all probes on the aggrprobe are disabled */
1671 static int aggr_kprobe_disabled(struct kprobe *ap)
1672 {
1673 struct kprobe *kp;
1674
1675 lockdep_assert_held(&kprobe_mutex);
1676
1677 list_for_each_entry(kp, &ap->list, list)
1678 if (!kprobe_disabled(kp))
1679 /*
1680 * There is an active probe on the list.
1681 * We can't disable this ap.
1682 */
1683 return 0;
1684
1685 return 1;
1686 }
1687
1688 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689 static struct kprobe *__disable_kprobe(struct kprobe *p)
1690 {
1691 struct kprobe *orig_p;
1692 int ret;
1693
1694 /* Get an original kprobe for return */
1695 orig_p = __get_valid_kprobe(p);
1696 if (unlikely(orig_p == NULL))
1697 return ERR_PTR(-EINVAL);
1698
1699 if (!kprobe_disabled(p)) {
1700 /* Disable probe if it is a child probe */
1701 if (p != orig_p)
1702 p->flags |= KPROBE_FLAG_DISABLED;
1703
1704 /* Try to disarm and disable this/parent probe */
1705 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706 /*
1707 * If kprobes_all_disarmed is set, orig_p
1708 * should have already been disarmed, so
1709 * skip unneed disarming process.
1710 */
1711 if (!kprobes_all_disarmed) {
1712 ret = disarm_kprobe(orig_p, true);
1713 if (ret) {
1714 p->flags &= ~KPROBE_FLAG_DISABLED;
1715 return ERR_PTR(ret);
1716 }
1717 }
1718 orig_p->flags |= KPROBE_FLAG_DISABLED;
1719 }
1720 }
1721
1722 return orig_p;
1723 }
1724
1725 /*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728 static int __unregister_kprobe_top(struct kprobe *p)
1729 {
1730 struct kprobe *ap, *list_p;
1731
1732 /* Disable kprobe. This will disarm it if needed. */
1733 ap = __disable_kprobe(p);
1734 if (IS_ERR(ap))
1735 return PTR_ERR(ap);
1736
1737 if (ap == p)
1738 /*
1739 * This probe is an independent(and non-optimized) kprobe
1740 * (not an aggrprobe). Remove from the hash list.
1741 */
1742 goto disarmed;
1743
1744 /* Following process expects this probe is an aggrprobe */
1745 WARN_ON(!kprobe_aggrprobe(ap));
1746
1747 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748 /*
1749 * !disarmed could be happen if the probe is under delayed
1750 * unoptimizing.
1751 */
1752 goto disarmed;
1753 else {
1754 /* If disabling probe has special handlers, update aggrprobe */
1755 if (p->post_handler && !kprobe_gone(p)) {
1756 list_for_each_entry(list_p, &ap->list, list) {
1757 if ((list_p != p) && (list_p->post_handler))
1758 goto noclean;
1759 }
1760 ap->post_handler = NULL;
1761 }
1762 noclean:
1763 /*
1764 * Remove from the aggrprobe: this path will do nothing in
1765 * __unregister_kprobe_bottom().
1766 */
1767 list_del_rcu(&p->list);
1768 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769 /*
1770 * Try to optimize this probe again, because post
1771 * handler may have been changed.
1772 */
1773 optimize_kprobe(ap);
1774 }
1775 return 0;
1776
1777 disarmed:
1778 hlist_del_rcu(&ap->hlist);
1779 return 0;
1780 }
1781
1782 static void __unregister_kprobe_bottom(struct kprobe *p)
1783 {
1784 struct kprobe *ap;
1785
1786 if (list_empty(&p->list))
1787 /* This is an independent kprobe */
1788 arch_remove_kprobe(p);
1789 else if (list_is_singular(&p->list)) {
1790 /* This is the last child of an aggrprobe */
1791 ap = list_entry(p->list.next, struct kprobe, list);
1792 list_del(&p->list);
1793 free_aggr_kprobe(ap);
1794 }
1795 /* Otherwise, do nothing. */
1796 }
1797
1798 int register_kprobes(struct kprobe **kps, int num)
1799 {
1800 int i, ret = 0;
1801
1802 if (num <= 0)
1803 return -EINVAL;
1804 for (i = 0; i < num; i++) {
1805 ret = register_kprobe(kps[i]);
1806 if (ret < 0) {
1807 if (i > 0)
1808 unregister_kprobes(kps, i);
1809 break;
1810 }
1811 }
1812 return ret;
1813 }
1814 EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816 void unregister_kprobe(struct kprobe *p)
1817 {
1818 unregister_kprobes(&p, 1);
1819 }
1820 EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822 void unregister_kprobes(struct kprobe **kps, int num)
1823 {
1824 int i;
1825
1826 if (num <= 0)
1827 return;
1828 mutex_lock(&kprobe_mutex);
1829 for (i = 0; i < num; i++)
1830 if (__unregister_kprobe_top(kps[i]) < 0)
1831 kps[i]->addr = NULL;
1832 mutex_unlock(&kprobe_mutex);
1833
1834 synchronize_rcu();
1835 for (i = 0; i < num; i++)
1836 if (kps[i]->addr)
1837 __unregister_kprobe_bottom(kps[i]);
1838 }
1839 EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842 unsigned long val, void *data)
1843 {
1844 return NOTIFY_DONE;
1845 }
1846 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848 static struct notifier_block kprobe_exceptions_nb = {
1849 .notifier_call = kprobe_exceptions_notify,
1850 .priority = 0x7fffffff /* we need to be notified first */
1851 };
1852
1853 unsigned long __weak arch_deref_entry_point(void *entry)
1854 {
1855 return (unsigned long)entry;
1856 }
1857
1858 #ifdef CONFIG_KRETPROBES
1859
1860 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861 void *trampoline_address,
1862 void *frame_pointer)
1863 {
1864 kprobe_opcode_t *correct_ret_addr = NULL;
1865 struct kretprobe_instance *ri = NULL;
1866 struct llist_node *first, *node;
1867 struct kretprobe *rp;
1868
1869 /* Find all nodes for this frame. */
1870 first = node = current->kretprobe_instances.first;
1871 while (node) {
1872 ri = container_of(node, struct kretprobe_instance, llist);
1873
1874 BUG_ON(ri->fp != frame_pointer);
1875
1876 if (ri->ret_addr != trampoline_address) {
1877 correct_ret_addr = ri->ret_addr;
1878 /*
1879 * This is the real return address. Any other
1880 * instances associated with this task are for
1881 * other calls deeper on the call stack
1882 */
1883 goto found;
1884 }
1885
1886 node = node->next;
1887 }
1888 pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889 BUG_ON(1);
1890
1891 found:
1892 /* Unlink all nodes for this frame. */
1893 current->kretprobe_instances.first = node->next;
1894 node->next = NULL;
1895
1896 /* Run them.. */
1897 while (first) {
1898 ri = container_of(first, struct kretprobe_instance, llist);
1899 first = first->next;
1900
1901 rp = get_kretprobe(ri);
1902 if (rp && rp->handler) {
1903 struct kprobe *prev = kprobe_running();
1904
1905 __this_cpu_write(current_kprobe, &rp->kp);
1906 ri->ret_addr = correct_ret_addr;
1907 rp->handler(ri, regs);
1908 __this_cpu_write(current_kprobe, prev);
1909 }
1910
1911 recycle_rp_inst(ri);
1912 }
1913
1914 return (unsigned long)correct_ret_addr;
1915 }
1916 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
1918 /*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923 {
1924 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1925 struct kretprobe_instance *ri;
1926 struct freelist_node *fn;
1927
1928 fn = freelist_try_get(&rp->freelist);
1929 if (!fn) {
1930 rp->nmissed++;
1931 return 0;
1932 }
1933
1934 ri = container_of(fn, struct kretprobe_instance, freelist);
1935
1936 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937 freelist_add(&ri->freelist, &rp->freelist);
1938 return 0;
1939 }
1940
1941 arch_prepare_kretprobe(ri, regs);
1942
1943 __llist_add(&ri->llist, &current->kretprobe_instances);
1944
1945 return 0;
1946 }
1947 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950 {
1951 return !offset;
1952 }
1953
1954 /**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym: Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968 {
1969 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971 if (IS_ERR(kp_addr))
1972 return PTR_ERR(kp_addr);
1973
1974 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975 return -ENOENT;
1976
1977 if (!arch_kprobe_on_func_entry(offset))
1978 return -EINVAL;
1979
1980 return 0;
1981 }
1982
1983 int register_kretprobe(struct kretprobe *rp)
1984 {
1985 int ret;
1986 struct kretprobe_instance *inst;
1987 int i;
1988 void *addr;
1989
1990 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991 if (ret)
1992 return ret;
1993
1994 /* If only rp->kp.addr is specified, check reregistering kprobes */
1995 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996 return -EINVAL;
1997
1998 if (kretprobe_blacklist_size) {
1999 addr = kprobe_addr(&rp->kp);
2000 if (IS_ERR(addr))
2001 return PTR_ERR(addr);
2002
2003 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004 if (kretprobe_blacklist[i].addr == addr)
2005 return -EINVAL;
2006 }
2007 }
2008
2009 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2010 return -E2BIG;
2011
2012 rp->kp.pre_handler = pre_handler_kretprobe;
2013 rp->kp.post_handler = NULL;
2014
2015 /* Pre-allocate memory for max kretprobe instances */
2016 if (rp->maxactive <= 0) {
2017 #ifdef CONFIG_PREEMPTION
2018 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2019 #else
2020 rp->maxactive = num_possible_cpus();
2021 #endif
2022 }
2023 rp->freelist.head = NULL;
2024 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2025 if (!rp->rph)
2026 return -ENOMEM;
2027
2028 rp->rph->rp = rp;
2029 for (i = 0; i < rp->maxactive; i++) {
2030 inst = kzalloc(sizeof(struct kretprobe_instance) +
2031 rp->data_size, GFP_KERNEL);
2032 if (inst == NULL) {
2033 refcount_set(&rp->rph->ref, i);
2034 free_rp_inst(rp);
2035 return -ENOMEM;
2036 }
2037 inst->rph = rp->rph;
2038 freelist_add(&inst->freelist, &rp->freelist);
2039 }
2040 refcount_set(&rp->rph->ref, i);
2041
2042 rp->nmissed = 0;
2043 /* Establish function entry probe point */
2044 ret = register_kprobe(&rp->kp);
2045 if (ret != 0)
2046 free_rp_inst(rp);
2047 return ret;
2048 }
2049 EXPORT_SYMBOL_GPL(register_kretprobe);
2050
2051 int register_kretprobes(struct kretprobe **rps, int num)
2052 {
2053 int ret = 0, i;
2054
2055 if (num <= 0)
2056 return -EINVAL;
2057 for (i = 0; i < num; i++) {
2058 ret = register_kretprobe(rps[i]);
2059 if (ret < 0) {
2060 if (i > 0)
2061 unregister_kretprobes(rps, i);
2062 break;
2063 }
2064 }
2065 return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(register_kretprobes);
2068
2069 void unregister_kretprobe(struct kretprobe *rp)
2070 {
2071 unregister_kretprobes(&rp, 1);
2072 }
2073 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2074
2075 void unregister_kretprobes(struct kretprobe **rps, int num)
2076 {
2077 int i;
2078
2079 if (num <= 0)
2080 return;
2081 mutex_lock(&kprobe_mutex);
2082 for (i = 0; i < num; i++) {
2083 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2084 rps[i]->kp.addr = NULL;
2085 rps[i]->rph->rp = NULL;
2086 }
2087 mutex_unlock(&kprobe_mutex);
2088
2089 synchronize_rcu();
2090 for (i = 0; i < num; i++) {
2091 if (rps[i]->kp.addr) {
2092 __unregister_kprobe_bottom(&rps[i]->kp);
2093 free_rp_inst(rps[i]);
2094 }
2095 }
2096 }
2097 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2098
2099 #else /* CONFIG_KRETPROBES */
2100 int register_kretprobe(struct kretprobe *rp)
2101 {
2102 return -ENOSYS;
2103 }
2104 EXPORT_SYMBOL_GPL(register_kretprobe);
2105
2106 int register_kretprobes(struct kretprobe **rps, int num)
2107 {
2108 return -ENOSYS;
2109 }
2110 EXPORT_SYMBOL_GPL(register_kretprobes);
2111
2112 void unregister_kretprobe(struct kretprobe *rp)
2113 {
2114 }
2115 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2116
2117 void unregister_kretprobes(struct kretprobe **rps, int num)
2118 {
2119 }
2120 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2121
2122 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2123 {
2124 return 0;
2125 }
2126 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2127
2128 #endif /* CONFIG_KRETPROBES */
2129
2130 /* Set the kprobe gone and remove its instruction buffer. */
2131 static void kill_kprobe(struct kprobe *p)
2132 {
2133 struct kprobe *kp;
2134
2135 lockdep_assert_held(&kprobe_mutex);
2136
2137 p->flags |= KPROBE_FLAG_GONE;
2138 if (kprobe_aggrprobe(p)) {
2139 /*
2140 * If this is an aggr_kprobe, we have to list all the
2141 * chained probes and mark them GONE.
2142 */
2143 list_for_each_entry(kp, &p->list, list)
2144 kp->flags |= KPROBE_FLAG_GONE;
2145 p->post_handler = NULL;
2146 kill_optimized_kprobe(p);
2147 }
2148 /*
2149 * Here, we can remove insn_slot safely, because no thread calls
2150 * the original probed function (which will be freed soon) any more.
2151 */
2152 arch_remove_kprobe(p);
2153
2154 /*
2155 * The module is going away. We should disarm the kprobe which
2156 * is using ftrace, because ftrace framework is still available at
2157 * MODULE_STATE_GOING notification.
2158 */
2159 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2160 disarm_kprobe_ftrace(p);
2161 }
2162
2163 /* Disable one kprobe */
2164 int disable_kprobe(struct kprobe *kp)
2165 {
2166 int ret = 0;
2167 struct kprobe *p;
2168
2169 mutex_lock(&kprobe_mutex);
2170
2171 /* Disable this kprobe */
2172 p = __disable_kprobe(kp);
2173 if (IS_ERR(p))
2174 ret = PTR_ERR(p);
2175
2176 mutex_unlock(&kprobe_mutex);
2177 return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(disable_kprobe);
2180
2181 /* Enable one kprobe */
2182 int enable_kprobe(struct kprobe *kp)
2183 {
2184 int ret = 0;
2185 struct kprobe *p;
2186
2187 mutex_lock(&kprobe_mutex);
2188
2189 /* Check whether specified probe is valid. */
2190 p = __get_valid_kprobe(kp);
2191 if (unlikely(p == NULL)) {
2192 ret = -EINVAL;
2193 goto out;
2194 }
2195
2196 if (kprobe_gone(kp)) {
2197 /* This kprobe has gone, we couldn't enable it. */
2198 ret = -EINVAL;
2199 goto out;
2200 }
2201
2202 if (p != kp)
2203 kp->flags &= ~KPROBE_FLAG_DISABLED;
2204
2205 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2206 p->flags &= ~KPROBE_FLAG_DISABLED;
2207 ret = arm_kprobe(p);
2208 if (ret)
2209 p->flags |= KPROBE_FLAG_DISABLED;
2210 }
2211 out:
2212 mutex_unlock(&kprobe_mutex);
2213 return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(enable_kprobe);
2216
2217 /* Caller must NOT call this in usual path. This is only for critical case */
2218 void dump_kprobe(struct kprobe *kp)
2219 {
2220 pr_err("Dumping kprobe:\n");
2221 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2222 kp->symbol_name, kp->offset, kp->addr);
2223 }
2224 NOKPROBE_SYMBOL(dump_kprobe);
2225
2226 int kprobe_add_ksym_blacklist(unsigned long entry)
2227 {
2228 struct kprobe_blacklist_entry *ent;
2229 unsigned long offset = 0, size = 0;
2230
2231 if (!kernel_text_address(entry) ||
2232 !kallsyms_lookup_size_offset(entry, &size, &offset))
2233 return -EINVAL;
2234
2235 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2236 if (!ent)
2237 return -ENOMEM;
2238 ent->start_addr = entry;
2239 ent->end_addr = entry + size;
2240 INIT_LIST_HEAD(&ent->list);
2241 list_add_tail(&ent->list, &kprobe_blacklist);
2242
2243 return (int)size;
2244 }
2245
2246 /* Add all symbols in given area into kprobe blacklist */
2247 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2248 {
2249 unsigned long entry;
2250 int ret = 0;
2251
2252 for (entry = start; entry < end; entry += ret) {
2253 ret = kprobe_add_ksym_blacklist(entry);
2254 if (ret < 0)
2255 return ret;
2256 if (ret == 0) /* In case of alias symbol */
2257 ret = 1;
2258 }
2259 return 0;
2260 }
2261
2262 /* Remove all symbols in given area from kprobe blacklist */
2263 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2264 {
2265 struct kprobe_blacklist_entry *ent, *n;
2266
2267 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2268 if (ent->start_addr < start || ent->start_addr >= end)
2269 continue;
2270 list_del(&ent->list);
2271 kfree(ent);
2272 }
2273 }
2274
2275 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2276 {
2277 kprobe_remove_area_blacklist(entry, entry + 1);
2278 }
2279
2280 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2281 char *type, char *sym)
2282 {
2283 return -ERANGE;
2284 }
2285
2286 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2287 char *sym)
2288 {
2289 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2290 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2291 return 0;
2292 #ifdef CONFIG_OPTPROBES
2293 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2294 return 0;
2295 #endif
2296 #endif
2297 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2298 return 0;
2299 return -ERANGE;
2300 }
2301
2302 int __init __weak arch_populate_kprobe_blacklist(void)
2303 {
2304 return 0;
2305 }
2306
2307 /*
2308 * Lookup and populate the kprobe_blacklist.
2309 *
2310 * Unlike the kretprobe blacklist, we'll need to determine
2311 * the range of addresses that belong to the said functions,
2312 * since a kprobe need not necessarily be at the beginning
2313 * of a function.
2314 */
2315 static int __init populate_kprobe_blacklist(unsigned long *start,
2316 unsigned long *end)
2317 {
2318 unsigned long entry;
2319 unsigned long *iter;
2320 int ret;
2321
2322 for (iter = start; iter < end; iter++) {
2323 entry = arch_deref_entry_point((void *)*iter);
2324 ret = kprobe_add_ksym_blacklist(entry);
2325 if (ret == -EINVAL)
2326 continue;
2327 if (ret < 0)
2328 return ret;
2329 }
2330
2331 /* Symbols in __kprobes_text are blacklisted */
2332 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2333 (unsigned long)__kprobes_text_end);
2334 if (ret)
2335 return ret;
2336
2337 /* Symbols in noinstr section are blacklisted */
2338 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2339 (unsigned long)__noinstr_text_end);
2340
2341 return ret ? : arch_populate_kprobe_blacklist();
2342 }
2343
2344 static void add_module_kprobe_blacklist(struct module *mod)
2345 {
2346 unsigned long start, end;
2347 int i;
2348
2349 if (mod->kprobe_blacklist) {
2350 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2351 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2352 }
2353
2354 start = (unsigned long)mod->kprobes_text_start;
2355 if (start) {
2356 end = start + mod->kprobes_text_size;
2357 kprobe_add_area_blacklist(start, end);
2358 }
2359
2360 start = (unsigned long)mod->noinstr_text_start;
2361 if (start) {
2362 end = start + mod->noinstr_text_size;
2363 kprobe_add_area_blacklist(start, end);
2364 }
2365 }
2366
2367 static void remove_module_kprobe_blacklist(struct module *mod)
2368 {
2369 unsigned long start, end;
2370 int i;
2371
2372 if (mod->kprobe_blacklist) {
2373 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2374 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2375 }
2376
2377 start = (unsigned long)mod->kprobes_text_start;
2378 if (start) {
2379 end = start + mod->kprobes_text_size;
2380 kprobe_remove_area_blacklist(start, end);
2381 }
2382
2383 start = (unsigned long)mod->noinstr_text_start;
2384 if (start) {
2385 end = start + mod->noinstr_text_size;
2386 kprobe_remove_area_blacklist(start, end);
2387 }
2388 }
2389
2390 /* Module notifier call back, checking kprobes on the module */
2391 static int kprobes_module_callback(struct notifier_block *nb,
2392 unsigned long val, void *data)
2393 {
2394 struct module *mod = data;
2395 struct hlist_head *head;
2396 struct kprobe *p;
2397 unsigned int i;
2398 int checkcore = (val == MODULE_STATE_GOING);
2399
2400 if (val == MODULE_STATE_COMING) {
2401 mutex_lock(&kprobe_mutex);
2402 add_module_kprobe_blacklist(mod);
2403 mutex_unlock(&kprobe_mutex);
2404 }
2405 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2406 return NOTIFY_DONE;
2407
2408 /*
2409 * When MODULE_STATE_GOING was notified, both of module .text and
2410 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2411 * notified, only .init.text section would be freed. We need to
2412 * disable kprobes which have been inserted in the sections.
2413 */
2414 mutex_lock(&kprobe_mutex);
2415 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2416 head = &kprobe_table[i];
2417 hlist_for_each_entry(p, head, hlist)
2418 if (within_module_init((unsigned long)p->addr, mod) ||
2419 (checkcore &&
2420 within_module_core((unsigned long)p->addr, mod))) {
2421 /*
2422 * The vaddr this probe is installed will soon
2423 * be vfreed buy not synced to disk. Hence,
2424 * disarming the breakpoint isn't needed.
2425 *
2426 * Note, this will also move any optimized probes
2427 * that are pending to be removed from their
2428 * corresponding lists to the freeing_list and
2429 * will not be touched by the delayed
2430 * kprobe_optimizer work handler.
2431 */
2432 kill_kprobe(p);
2433 }
2434 }
2435 if (val == MODULE_STATE_GOING)
2436 remove_module_kprobe_blacklist(mod);
2437 mutex_unlock(&kprobe_mutex);
2438 return NOTIFY_DONE;
2439 }
2440
2441 static struct notifier_block kprobe_module_nb = {
2442 .notifier_call = kprobes_module_callback,
2443 .priority = 0
2444 };
2445
2446 /* Markers of _kprobe_blacklist section */
2447 extern unsigned long __start_kprobe_blacklist[];
2448 extern unsigned long __stop_kprobe_blacklist[];
2449
2450 void kprobe_free_init_mem(void)
2451 {
2452 void *start = (void *)(&__init_begin);
2453 void *end = (void *)(&__init_end);
2454 struct hlist_head *head;
2455 struct kprobe *p;
2456 int i;
2457
2458 mutex_lock(&kprobe_mutex);
2459
2460 /* Kill all kprobes on initmem */
2461 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2462 head = &kprobe_table[i];
2463 hlist_for_each_entry(p, head, hlist) {
2464 if (start <= (void *)p->addr && (void *)p->addr < end)
2465 kill_kprobe(p);
2466 }
2467 }
2468
2469 mutex_unlock(&kprobe_mutex);
2470 }
2471
2472 static int __init init_kprobes(void)
2473 {
2474 int i, err = 0;
2475
2476 /* FIXME allocate the probe table, currently defined statically */
2477 /* initialize all list heads */
2478 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2479 INIT_HLIST_HEAD(&kprobe_table[i]);
2480
2481 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2482 __stop_kprobe_blacklist);
2483 if (err) {
2484 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2485 pr_err("Please take care of using kprobes.\n");
2486 }
2487
2488 if (kretprobe_blacklist_size) {
2489 /* lookup the function address from its name */
2490 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2491 kretprobe_blacklist[i].addr =
2492 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2493 if (!kretprobe_blacklist[i].addr)
2494 printk("kretprobe: lookup failed: %s\n",
2495 kretprobe_blacklist[i].name);
2496 }
2497 }
2498
2499 /* By default, kprobes are armed */
2500 kprobes_all_disarmed = false;
2501
2502 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2503 /* Init kprobe_optinsn_slots for allocation */
2504 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2505 #endif
2506
2507 err = arch_init_kprobes();
2508 if (!err)
2509 err = register_die_notifier(&kprobe_exceptions_nb);
2510 if (!err)
2511 err = register_module_notifier(&kprobe_module_nb);
2512
2513 kprobes_initialized = (err == 0);
2514
2515 if (!err)
2516 init_test_probes();
2517 return err;
2518 }
2519 early_initcall(init_kprobes);
2520
2521 #if defined(CONFIG_OPTPROBES)
2522 static int __init init_optprobes(void)
2523 {
2524 /*
2525 * Enable kprobe optimization - this kicks the optimizer which
2526 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2527 * not spawned in early initcall. So delay the optimization.
2528 */
2529 optimize_all_kprobes();
2530
2531 return 0;
2532 }
2533 subsys_initcall(init_optprobes);
2534 #endif
2535
2536 #ifdef CONFIG_DEBUG_FS
2537 static void report_probe(struct seq_file *pi, struct kprobe *p,
2538 const char *sym, int offset, char *modname, struct kprobe *pp)
2539 {
2540 char *kprobe_type;
2541 void *addr = p->addr;
2542
2543 if (p->pre_handler == pre_handler_kretprobe)
2544 kprobe_type = "r";
2545 else
2546 kprobe_type = "k";
2547
2548 if (!kallsyms_show_value(pi->file->f_cred))
2549 addr = NULL;
2550
2551 if (sym)
2552 seq_printf(pi, "%px %s %s+0x%x %s ",
2553 addr, kprobe_type, sym, offset,
2554 (modname ? modname : " "));
2555 else /* try to use %pS */
2556 seq_printf(pi, "%px %s %pS ",
2557 addr, kprobe_type, p->addr);
2558
2559 if (!pp)
2560 pp = p;
2561 seq_printf(pi, "%s%s%s%s\n",
2562 (kprobe_gone(p) ? "[GONE]" : ""),
2563 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2564 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2565 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2566 }
2567
2568 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2569 {
2570 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2571 }
2572
2573 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2574 {
2575 (*pos)++;
2576 if (*pos >= KPROBE_TABLE_SIZE)
2577 return NULL;
2578 return pos;
2579 }
2580
2581 static void kprobe_seq_stop(struct seq_file *f, void *v)
2582 {
2583 /* Nothing to do */
2584 }
2585
2586 static int show_kprobe_addr(struct seq_file *pi, void *v)
2587 {
2588 struct hlist_head *head;
2589 struct kprobe *p, *kp;
2590 const char *sym = NULL;
2591 unsigned int i = *(loff_t *) v;
2592 unsigned long offset = 0;
2593 char *modname, namebuf[KSYM_NAME_LEN];
2594
2595 head = &kprobe_table[i];
2596 preempt_disable();
2597 hlist_for_each_entry_rcu(p, head, hlist) {
2598 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2599 &offset, &modname, namebuf);
2600 if (kprobe_aggrprobe(p)) {
2601 list_for_each_entry_rcu(kp, &p->list, list)
2602 report_probe(pi, kp, sym, offset, modname, p);
2603 } else
2604 report_probe(pi, p, sym, offset, modname, NULL);
2605 }
2606 preempt_enable();
2607 return 0;
2608 }
2609
2610 static const struct seq_operations kprobes_sops = {
2611 .start = kprobe_seq_start,
2612 .next = kprobe_seq_next,
2613 .stop = kprobe_seq_stop,
2614 .show = show_kprobe_addr
2615 };
2616
2617 DEFINE_SEQ_ATTRIBUTE(kprobes);
2618
2619 /* kprobes/blacklist -- shows which functions can not be probed */
2620 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2621 {
2622 mutex_lock(&kprobe_mutex);
2623 return seq_list_start(&kprobe_blacklist, *pos);
2624 }
2625
2626 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2627 {
2628 return seq_list_next(v, &kprobe_blacklist, pos);
2629 }
2630
2631 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2632 {
2633 struct kprobe_blacklist_entry *ent =
2634 list_entry(v, struct kprobe_blacklist_entry, list);
2635
2636 /*
2637 * If /proc/kallsyms is not showing kernel address, we won't
2638 * show them here either.
2639 */
2640 if (!kallsyms_show_value(m->file->f_cred))
2641 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2642 (void *)ent->start_addr);
2643 else
2644 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2645 (void *)ent->end_addr, (void *)ent->start_addr);
2646 return 0;
2647 }
2648
2649 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2650 {
2651 mutex_unlock(&kprobe_mutex);
2652 }
2653
2654 static const struct seq_operations kprobe_blacklist_sops = {
2655 .start = kprobe_blacklist_seq_start,
2656 .next = kprobe_blacklist_seq_next,
2657 .stop = kprobe_blacklist_seq_stop,
2658 .show = kprobe_blacklist_seq_show,
2659 };
2660 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2661
2662 static int arm_all_kprobes(void)
2663 {
2664 struct hlist_head *head;
2665 struct kprobe *p;
2666 unsigned int i, total = 0, errors = 0;
2667 int err, ret = 0;
2668
2669 mutex_lock(&kprobe_mutex);
2670
2671 /* If kprobes are armed, just return */
2672 if (!kprobes_all_disarmed)
2673 goto already_enabled;
2674
2675 /*
2676 * optimize_kprobe() called by arm_kprobe() checks
2677 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2678 * arm_kprobe.
2679 */
2680 kprobes_all_disarmed = false;
2681 /* Arming kprobes doesn't optimize kprobe itself */
2682 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2683 head = &kprobe_table[i];
2684 /* Arm all kprobes on a best-effort basis */
2685 hlist_for_each_entry(p, head, hlist) {
2686 if (!kprobe_disabled(p)) {
2687 err = arm_kprobe(p);
2688 if (err) {
2689 errors++;
2690 ret = err;
2691 }
2692 total++;
2693 }
2694 }
2695 }
2696
2697 if (errors)
2698 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2699 errors, total);
2700 else
2701 pr_info("Kprobes globally enabled\n");
2702
2703 already_enabled:
2704 mutex_unlock(&kprobe_mutex);
2705 return ret;
2706 }
2707
2708 static int disarm_all_kprobes(void)
2709 {
2710 struct hlist_head *head;
2711 struct kprobe *p;
2712 unsigned int i, total = 0, errors = 0;
2713 int err, ret = 0;
2714
2715 mutex_lock(&kprobe_mutex);
2716
2717 /* If kprobes are already disarmed, just return */
2718 if (kprobes_all_disarmed) {
2719 mutex_unlock(&kprobe_mutex);
2720 return 0;
2721 }
2722
2723 kprobes_all_disarmed = true;
2724
2725 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2726 head = &kprobe_table[i];
2727 /* Disarm all kprobes on a best-effort basis */
2728 hlist_for_each_entry(p, head, hlist) {
2729 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2730 err = disarm_kprobe(p, false);
2731 if (err) {
2732 errors++;
2733 ret = err;
2734 }
2735 total++;
2736 }
2737 }
2738 }
2739
2740 if (errors)
2741 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2742 errors, total);
2743 else
2744 pr_info("Kprobes globally disabled\n");
2745
2746 mutex_unlock(&kprobe_mutex);
2747
2748 /* Wait for disarming all kprobes by optimizer */
2749 wait_for_kprobe_optimizer();
2750
2751 return ret;
2752 }
2753
2754 /*
2755 * XXX: The debugfs bool file interface doesn't allow for callbacks
2756 * when the bool state is switched. We can reuse that facility when
2757 * available
2758 */
2759 static ssize_t read_enabled_file_bool(struct file *file,
2760 char __user *user_buf, size_t count, loff_t *ppos)
2761 {
2762 char buf[3];
2763
2764 if (!kprobes_all_disarmed)
2765 buf[0] = '1';
2766 else
2767 buf[0] = '0';
2768 buf[1] = '\n';
2769 buf[2] = 0x00;
2770 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2771 }
2772
2773 static ssize_t write_enabled_file_bool(struct file *file,
2774 const char __user *user_buf, size_t count, loff_t *ppos)
2775 {
2776 char buf[32];
2777 size_t buf_size;
2778 int ret = 0;
2779
2780 buf_size = min(count, (sizeof(buf)-1));
2781 if (copy_from_user(buf, user_buf, buf_size))
2782 return -EFAULT;
2783
2784 buf[buf_size] = '\0';
2785 switch (buf[0]) {
2786 case 'y':
2787 case 'Y':
2788 case '1':
2789 ret = arm_all_kprobes();
2790 break;
2791 case 'n':
2792 case 'N':
2793 case '0':
2794 ret = disarm_all_kprobes();
2795 break;
2796 default:
2797 return -EINVAL;
2798 }
2799
2800 if (ret)
2801 return ret;
2802
2803 return count;
2804 }
2805
2806 static const struct file_operations fops_kp = {
2807 .read = read_enabled_file_bool,
2808 .write = write_enabled_file_bool,
2809 .llseek = default_llseek,
2810 };
2811
2812 static int __init debugfs_kprobe_init(void)
2813 {
2814 struct dentry *dir;
2815
2816 dir = debugfs_create_dir("kprobes", NULL);
2817
2818 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2819
2820 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2821
2822 debugfs_create_file("blacklist", 0400, dir, NULL,
2823 &kprobe_blacklist_fops);
2824
2825 return 0;
2826 }
2827
2828 late_initcall(debugfs_kprobe_init);
2829 #endif /* CONFIG_DEBUG_FS */