]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kprobes.c
VMCI: Release resource if the work is already queued
[mirror_ubuntu-bionic-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506 }
507
508 /*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512 static void do_unoptimize_kprobes(void)
513 {
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all potentially
577 * preempted tasks to have normally scheduled. Because optprobe
578 * may modify multiple instructions, there is a chance that Nth
579 * instruction is preempted. In that case, such tasks can return
580 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581 * Note that on non-preemptive kernel, this is transparently converted
582 * to synchronoze_sched() to wait for all interrupts to have completed.
583 */
584 synchronize_rcu_tasks();
585
586 /* Step 3: Optimize kprobes after quiesence period */
587 do_optimize_kprobes();
588
589 /* Step 4: Free cleaned kprobes after quiesence period */
590 do_free_cleaned_kprobes();
591
592 mutex_unlock(&module_mutex);
593 cpus_read_unlock();
594 mutex_unlock(&kprobe_mutex);
595
596 /* Step 5: Kick optimizer again if needed */
597 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598 kick_kprobe_optimizer();
599 }
600
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604 mutex_lock(&kprobe_mutex);
605
606 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607 mutex_unlock(&kprobe_mutex);
608
609 /* this will also make optimizing_work execute immmediately */
610 flush_delayed_work(&optimizing_work);
611 /* @optimizing_work might not have been queued yet, relax */
612 cpu_relax();
613
614 mutex_lock(&kprobe_mutex);
615 }
616
617 mutex_unlock(&kprobe_mutex);
618 }
619
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623 struct optimized_kprobe *op;
624
625 /* Check if the kprobe is disabled or not ready for optimization. */
626 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627 (kprobe_disabled(p) || kprobes_all_disarmed))
628 return;
629
630 /* Both of break_handler and post_handler are not supported. */
631 if (p->break_handler || p->post_handler)
632 return;
633
634 op = container_of(p, struct optimized_kprobe, kp);
635
636 /* Check there is no other kprobes at the optimized instructions */
637 if (arch_check_optimized_kprobe(op) < 0)
638 return;
639
640 /* Check if it is already optimized. */
641 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642 return;
643 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645 if (!list_empty(&op->list))
646 /* This is under unoptimizing. Just dequeue the probe */
647 list_del_init(&op->list);
648 else {
649 list_add(&op->list, &optimizing_list);
650 kick_kprobe_optimizer();
651 }
652 }
653
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657 lockdep_assert_cpus_held();
658 arch_unoptimize_kprobe(op);
659 if (kprobe_disabled(&op->kp))
660 arch_disarm_kprobe(&op->kp);
661 }
662
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666 struct optimized_kprobe *op;
667
668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669 return; /* This is not an optprobe nor optimized */
670
671 op = container_of(p, struct optimized_kprobe, kp);
672 if (!kprobe_optimized(p)) {
673 /* Unoptimized or unoptimizing case */
674 if (force && !list_empty(&op->list)) {
675 /*
676 * Only if this is unoptimizing kprobe and forced,
677 * forcibly unoptimize it. (No need to unoptimize
678 * unoptimized kprobe again :)
679 */
680 list_del_init(&op->list);
681 force_unoptimize_kprobe(op);
682 }
683 return;
684 }
685
686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687 if (!list_empty(&op->list)) {
688 /* Dequeue from the optimization queue */
689 list_del_init(&op->list);
690 return;
691 }
692 /* Optimized kprobe case */
693 if (force)
694 /* Forcibly update the code: this is a special case */
695 force_unoptimize_kprobe(op);
696 else {
697 list_add(&op->list, &unoptimizing_list);
698 kick_kprobe_optimizer();
699 }
700 }
701
702 /* Cancel unoptimizing for reusing */
703 static int reuse_unused_kprobe(struct kprobe *ap)
704 {
705 struct optimized_kprobe *op;
706
707 BUG_ON(!kprobe_unused(ap));
708 /*
709 * Unused kprobe MUST be on the way of delayed unoptimizing (means
710 * there is still a relative jump) and disabled.
711 */
712 op = container_of(ap, struct optimized_kprobe, kp);
713 WARN_ON_ONCE(list_empty(&op->list));
714 /* Enable the probe again */
715 ap->flags &= ~KPROBE_FLAG_DISABLED;
716 /* Optimize it again (remove from op->list) */
717 if (!kprobe_optready(ap))
718 return -EINVAL;
719
720 optimize_kprobe(ap);
721 return 0;
722 }
723
724 /* Remove optimized instructions */
725 static void kill_optimized_kprobe(struct kprobe *p)
726 {
727 struct optimized_kprobe *op;
728
729 op = container_of(p, struct optimized_kprobe, kp);
730 if (!list_empty(&op->list))
731 /* Dequeue from the (un)optimization queue */
732 list_del_init(&op->list);
733 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
734
735 if (kprobe_unused(p)) {
736 /* Enqueue if it is unused */
737 list_add(&op->list, &freeing_list);
738 /*
739 * Remove unused probes from the hash list. After waiting
740 * for synchronization, this probe is reclaimed.
741 * (reclaiming is done by do_free_cleaned_kprobes().)
742 */
743 hlist_del_rcu(&op->kp.hlist);
744 }
745
746 /* Don't touch the code, because it is already freed. */
747 arch_remove_optimized_kprobe(op);
748 }
749
750 static inline
751 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
752 {
753 if (!kprobe_ftrace(p))
754 arch_prepare_optimized_kprobe(op, p);
755 }
756
757 /* Try to prepare optimized instructions */
758 static void prepare_optimized_kprobe(struct kprobe *p)
759 {
760 struct optimized_kprobe *op;
761
762 op = container_of(p, struct optimized_kprobe, kp);
763 __prepare_optimized_kprobe(op, p);
764 }
765
766 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
767 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
768 {
769 struct optimized_kprobe *op;
770
771 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
772 if (!op)
773 return NULL;
774
775 INIT_LIST_HEAD(&op->list);
776 op->kp.addr = p->addr;
777 __prepare_optimized_kprobe(op, p);
778
779 return &op->kp;
780 }
781
782 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
783
784 /*
785 * Prepare an optimized_kprobe and optimize it
786 * NOTE: p must be a normal registered kprobe
787 */
788 static void try_to_optimize_kprobe(struct kprobe *p)
789 {
790 struct kprobe *ap;
791 struct optimized_kprobe *op;
792
793 /* Impossible to optimize ftrace-based kprobe */
794 if (kprobe_ftrace(p))
795 return;
796
797 /* For preparing optimization, jump_label_text_reserved() is called */
798 cpus_read_lock();
799 jump_label_lock();
800 mutex_lock(&text_mutex);
801
802 ap = alloc_aggr_kprobe(p);
803 if (!ap)
804 goto out;
805
806 op = container_of(ap, struct optimized_kprobe, kp);
807 if (!arch_prepared_optinsn(&op->optinsn)) {
808 /* If failed to setup optimizing, fallback to kprobe */
809 arch_remove_optimized_kprobe(op);
810 kfree(op);
811 goto out;
812 }
813
814 init_aggr_kprobe(ap, p);
815 optimize_kprobe(ap); /* This just kicks optimizer thread */
816
817 out:
818 mutex_unlock(&text_mutex);
819 jump_label_unlock();
820 cpus_read_unlock();
821 }
822
823 #ifdef CONFIG_SYSCTL
824 static void optimize_all_kprobes(void)
825 {
826 struct hlist_head *head;
827 struct kprobe *p;
828 unsigned int i;
829
830 mutex_lock(&kprobe_mutex);
831 /* If optimization is already allowed, just return */
832 if (kprobes_allow_optimization)
833 goto out;
834
835 cpus_read_lock();
836 kprobes_allow_optimization = true;
837 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
838 head = &kprobe_table[i];
839 hlist_for_each_entry_rcu(p, head, hlist)
840 if (!kprobe_disabled(p))
841 optimize_kprobe(p);
842 }
843 cpus_read_unlock();
844 printk(KERN_INFO "Kprobes globally optimized\n");
845 out:
846 mutex_unlock(&kprobe_mutex);
847 }
848
849 static void unoptimize_all_kprobes(void)
850 {
851 struct hlist_head *head;
852 struct kprobe *p;
853 unsigned int i;
854
855 mutex_lock(&kprobe_mutex);
856 /* If optimization is already prohibited, just return */
857 if (!kprobes_allow_optimization) {
858 mutex_unlock(&kprobe_mutex);
859 return;
860 }
861
862 cpus_read_lock();
863 kprobes_allow_optimization = false;
864 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
865 head = &kprobe_table[i];
866 hlist_for_each_entry_rcu(p, head, hlist) {
867 if (!kprobe_disabled(p))
868 unoptimize_kprobe(p, false);
869 }
870 }
871 cpus_read_unlock();
872 mutex_unlock(&kprobe_mutex);
873
874 /* Wait for unoptimizing completion */
875 wait_for_kprobe_optimizer();
876 printk(KERN_INFO "Kprobes globally unoptimized\n");
877 }
878
879 static DEFINE_MUTEX(kprobe_sysctl_mutex);
880 int sysctl_kprobes_optimization;
881 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
882 void __user *buffer, size_t *length,
883 loff_t *ppos)
884 {
885 int ret;
886
887 mutex_lock(&kprobe_sysctl_mutex);
888 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
889 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
890
891 if (sysctl_kprobes_optimization)
892 optimize_all_kprobes();
893 else
894 unoptimize_all_kprobes();
895 mutex_unlock(&kprobe_sysctl_mutex);
896
897 return ret;
898 }
899 #endif /* CONFIG_SYSCTL */
900
901 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
902 static void __arm_kprobe(struct kprobe *p)
903 {
904 struct kprobe *_p;
905
906 /* Check collision with other optimized kprobes */
907 _p = get_optimized_kprobe((unsigned long)p->addr);
908 if (unlikely(_p))
909 /* Fallback to unoptimized kprobe */
910 unoptimize_kprobe(_p, true);
911
912 arch_arm_kprobe(p);
913 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
914 }
915
916 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
917 static void __disarm_kprobe(struct kprobe *p, bool reopt)
918 {
919 struct kprobe *_p;
920
921 /* Try to unoptimize */
922 unoptimize_kprobe(p, kprobes_all_disarmed);
923
924 if (!kprobe_queued(p)) {
925 arch_disarm_kprobe(p);
926 /* If another kprobe was blocked, optimize it. */
927 _p = get_optimized_kprobe((unsigned long)p->addr);
928 if (unlikely(_p) && reopt)
929 optimize_kprobe(_p);
930 }
931 /* TODO: reoptimize others after unoptimized this probe */
932 }
933
934 #else /* !CONFIG_OPTPROBES */
935
936 #define optimize_kprobe(p) do {} while (0)
937 #define unoptimize_kprobe(p, f) do {} while (0)
938 #define kill_optimized_kprobe(p) do {} while (0)
939 #define prepare_optimized_kprobe(p) do {} while (0)
940 #define try_to_optimize_kprobe(p) do {} while (0)
941 #define __arm_kprobe(p) arch_arm_kprobe(p)
942 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
943 #define kprobe_disarmed(p) kprobe_disabled(p)
944 #define wait_for_kprobe_optimizer() do {} while (0)
945
946 static int reuse_unused_kprobe(struct kprobe *ap)
947 {
948 /*
949 * If the optimized kprobe is NOT supported, the aggr kprobe is
950 * released at the same time that the last aggregated kprobe is
951 * unregistered.
952 * Thus there should be no chance to reuse unused kprobe.
953 */
954 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
955 return -EINVAL;
956 }
957
958 static void free_aggr_kprobe(struct kprobe *p)
959 {
960 arch_remove_kprobe(p);
961 kfree(p);
962 }
963
964 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
965 {
966 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
967 }
968 #endif /* CONFIG_OPTPROBES */
969
970 #ifdef CONFIG_KPROBES_ON_FTRACE
971 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
972 .func = kprobe_ftrace_handler,
973 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
974 };
975 static int kprobe_ftrace_enabled;
976
977 /* Must ensure p->addr is really on ftrace */
978 static int prepare_kprobe(struct kprobe *p)
979 {
980 if (!kprobe_ftrace(p))
981 return arch_prepare_kprobe(p);
982
983 return arch_prepare_kprobe_ftrace(p);
984 }
985
986 /* Caller must lock kprobe_mutex */
987 static void arm_kprobe_ftrace(struct kprobe *p)
988 {
989 int ret;
990
991 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
992 (unsigned long)p->addr, 0, 0);
993 WARN(ret < 0, "Failed to arm kprobe-ftrace at %pS (%d)\n", p->addr, ret);
994 kprobe_ftrace_enabled++;
995 if (kprobe_ftrace_enabled == 1) {
996 ret = register_ftrace_function(&kprobe_ftrace_ops);
997 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
998 }
999 }
1000
1001 /* Caller must lock kprobe_mutex */
1002 static void disarm_kprobe_ftrace(struct kprobe *p)
1003 {
1004 int ret;
1005
1006 kprobe_ftrace_enabled--;
1007 if (kprobe_ftrace_enabled == 0) {
1008 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1009 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1010 }
1011 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1012 (unsigned long)p->addr, 1, 0);
1013 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", p->addr, ret);
1014 }
1015 #else /* !CONFIG_KPROBES_ON_FTRACE */
1016 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1017 #define arm_kprobe_ftrace(p) do {} while (0)
1018 #define disarm_kprobe_ftrace(p) do {} while (0)
1019 #endif
1020
1021 /* Arm a kprobe with text_mutex */
1022 static void arm_kprobe(struct kprobe *kp)
1023 {
1024 if (unlikely(kprobe_ftrace(kp))) {
1025 arm_kprobe_ftrace(kp);
1026 return;
1027 }
1028 cpus_read_lock();
1029 mutex_lock(&text_mutex);
1030 __arm_kprobe(kp);
1031 mutex_unlock(&text_mutex);
1032 cpus_read_unlock();
1033 }
1034
1035 /* Disarm a kprobe with text_mutex */
1036 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1037 {
1038 if (unlikely(kprobe_ftrace(kp))) {
1039 disarm_kprobe_ftrace(kp);
1040 return;
1041 }
1042
1043 cpus_read_lock();
1044 mutex_lock(&text_mutex);
1045 __disarm_kprobe(kp, reopt);
1046 mutex_unlock(&text_mutex);
1047 cpus_read_unlock();
1048 }
1049
1050 /*
1051 * Aggregate handlers for multiple kprobes support - these handlers
1052 * take care of invoking the individual kprobe handlers on p->list
1053 */
1054 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1055 {
1056 struct kprobe *kp;
1057
1058 list_for_each_entry_rcu(kp, &p->list, list) {
1059 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1060 set_kprobe_instance(kp);
1061 if (kp->pre_handler(kp, regs))
1062 return 1;
1063 }
1064 reset_kprobe_instance();
1065 }
1066 return 0;
1067 }
1068 NOKPROBE_SYMBOL(aggr_pre_handler);
1069
1070 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1071 unsigned long flags)
1072 {
1073 struct kprobe *kp;
1074
1075 list_for_each_entry_rcu(kp, &p->list, list) {
1076 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1077 set_kprobe_instance(kp);
1078 kp->post_handler(kp, regs, flags);
1079 reset_kprobe_instance();
1080 }
1081 }
1082 }
1083 NOKPROBE_SYMBOL(aggr_post_handler);
1084
1085 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1086 int trapnr)
1087 {
1088 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1089
1090 /*
1091 * if we faulted "during" the execution of a user specified
1092 * probe handler, invoke just that probe's fault handler
1093 */
1094 if (cur && cur->fault_handler) {
1095 if (cur->fault_handler(cur, regs, trapnr))
1096 return 1;
1097 }
1098 return 0;
1099 }
1100 NOKPROBE_SYMBOL(aggr_fault_handler);
1101
1102 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1103 {
1104 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1105 int ret = 0;
1106
1107 if (cur && cur->break_handler) {
1108 if (cur->break_handler(cur, regs))
1109 ret = 1;
1110 }
1111 reset_kprobe_instance();
1112 return ret;
1113 }
1114 NOKPROBE_SYMBOL(aggr_break_handler);
1115
1116 /* Walks the list and increments nmissed count for multiprobe case */
1117 void kprobes_inc_nmissed_count(struct kprobe *p)
1118 {
1119 struct kprobe *kp;
1120 if (!kprobe_aggrprobe(p)) {
1121 p->nmissed++;
1122 } else {
1123 list_for_each_entry_rcu(kp, &p->list, list)
1124 kp->nmissed++;
1125 }
1126 return;
1127 }
1128 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1129
1130 void recycle_rp_inst(struct kretprobe_instance *ri,
1131 struct hlist_head *head)
1132 {
1133 struct kretprobe *rp = ri->rp;
1134
1135 /* remove rp inst off the rprobe_inst_table */
1136 hlist_del(&ri->hlist);
1137 INIT_HLIST_NODE(&ri->hlist);
1138 if (likely(rp)) {
1139 raw_spin_lock(&rp->lock);
1140 hlist_add_head(&ri->hlist, &rp->free_instances);
1141 raw_spin_unlock(&rp->lock);
1142 } else
1143 /* Unregistering */
1144 hlist_add_head(&ri->hlist, head);
1145 }
1146 NOKPROBE_SYMBOL(recycle_rp_inst);
1147
1148 void kretprobe_hash_lock(struct task_struct *tsk,
1149 struct hlist_head **head, unsigned long *flags)
1150 __acquires(hlist_lock)
1151 {
1152 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1153 raw_spinlock_t *hlist_lock;
1154
1155 *head = &kretprobe_inst_table[hash];
1156 hlist_lock = kretprobe_table_lock_ptr(hash);
1157 raw_spin_lock_irqsave(hlist_lock, *flags);
1158 }
1159 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1160
1161 static void kretprobe_table_lock(unsigned long hash,
1162 unsigned long *flags)
1163 __acquires(hlist_lock)
1164 {
1165 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1166 raw_spin_lock_irqsave(hlist_lock, *flags);
1167 }
1168 NOKPROBE_SYMBOL(kretprobe_table_lock);
1169
1170 void kretprobe_hash_unlock(struct task_struct *tsk,
1171 unsigned long *flags)
1172 __releases(hlist_lock)
1173 {
1174 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1175 raw_spinlock_t *hlist_lock;
1176
1177 hlist_lock = kretprobe_table_lock_ptr(hash);
1178 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1179 }
1180 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1181
1182 static void kretprobe_table_unlock(unsigned long hash,
1183 unsigned long *flags)
1184 __releases(hlist_lock)
1185 {
1186 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1187 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1188 }
1189 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1190
1191 /*
1192 * This function is called from finish_task_switch when task tk becomes dead,
1193 * so that we can recycle any function-return probe instances associated
1194 * with this task. These left over instances represent probed functions
1195 * that have been called but will never return.
1196 */
1197 void kprobe_flush_task(struct task_struct *tk)
1198 {
1199 struct kretprobe_instance *ri;
1200 struct hlist_head *head, empty_rp;
1201 struct hlist_node *tmp;
1202 unsigned long hash, flags = 0;
1203
1204 if (unlikely(!kprobes_initialized))
1205 /* Early boot. kretprobe_table_locks not yet initialized. */
1206 return;
1207
1208 INIT_HLIST_HEAD(&empty_rp);
1209 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1210 head = &kretprobe_inst_table[hash];
1211 kretprobe_table_lock(hash, &flags);
1212 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1213 if (ri->task == tk)
1214 recycle_rp_inst(ri, &empty_rp);
1215 }
1216 kretprobe_table_unlock(hash, &flags);
1217 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1218 hlist_del(&ri->hlist);
1219 kfree(ri);
1220 }
1221 }
1222 NOKPROBE_SYMBOL(kprobe_flush_task);
1223
1224 static inline void free_rp_inst(struct kretprobe *rp)
1225 {
1226 struct kretprobe_instance *ri;
1227 struct hlist_node *next;
1228
1229 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1230 hlist_del(&ri->hlist);
1231 kfree(ri);
1232 }
1233 }
1234
1235 static void cleanup_rp_inst(struct kretprobe *rp)
1236 {
1237 unsigned long flags, hash;
1238 struct kretprobe_instance *ri;
1239 struct hlist_node *next;
1240 struct hlist_head *head;
1241
1242 /* No race here */
1243 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1244 kretprobe_table_lock(hash, &flags);
1245 head = &kretprobe_inst_table[hash];
1246 hlist_for_each_entry_safe(ri, next, head, hlist) {
1247 if (ri->rp == rp)
1248 ri->rp = NULL;
1249 }
1250 kretprobe_table_unlock(hash, &flags);
1251 }
1252 free_rp_inst(rp);
1253 }
1254 NOKPROBE_SYMBOL(cleanup_rp_inst);
1255
1256 /*
1257 * Add the new probe to ap->list. Fail if this is the
1258 * second jprobe at the address - two jprobes can't coexist
1259 */
1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1263
1264 if (p->break_handler || p->post_handler)
1265 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1266
1267 if (p->break_handler) {
1268 if (ap->break_handler)
1269 return -EEXIST;
1270 list_add_tail_rcu(&p->list, &ap->list);
1271 ap->break_handler = aggr_break_handler;
1272 } else
1273 list_add_rcu(&p->list, &ap->list);
1274 if (p->post_handler && !ap->post_handler)
1275 ap->post_handler = aggr_post_handler;
1276
1277 return 0;
1278 }
1279
1280 /*
1281 * Fill in the required fields of the "manager kprobe". Replace the
1282 * earlier kprobe in the hlist with the manager kprobe
1283 */
1284 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1285 {
1286 /* Copy p's insn slot to ap */
1287 copy_kprobe(p, ap);
1288 flush_insn_slot(ap);
1289 ap->addr = p->addr;
1290 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1291 ap->pre_handler = aggr_pre_handler;
1292 ap->fault_handler = aggr_fault_handler;
1293 /* We don't care the kprobe which has gone. */
1294 if (p->post_handler && !kprobe_gone(p))
1295 ap->post_handler = aggr_post_handler;
1296 if (p->break_handler && !kprobe_gone(p))
1297 ap->break_handler = aggr_break_handler;
1298
1299 INIT_LIST_HEAD(&ap->list);
1300 INIT_HLIST_NODE(&ap->hlist);
1301
1302 list_add_rcu(&p->list, &ap->list);
1303 hlist_replace_rcu(&p->hlist, &ap->hlist);
1304 }
1305
1306 /*
1307 * This is the second or subsequent kprobe at the address - handle
1308 * the intricacies
1309 */
1310 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1311 {
1312 int ret = 0;
1313 struct kprobe *ap = orig_p;
1314
1315 cpus_read_lock();
1316
1317 /* For preparing optimization, jump_label_text_reserved() is called */
1318 jump_label_lock();
1319 mutex_lock(&text_mutex);
1320
1321 if (!kprobe_aggrprobe(orig_p)) {
1322 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1323 ap = alloc_aggr_kprobe(orig_p);
1324 if (!ap) {
1325 ret = -ENOMEM;
1326 goto out;
1327 }
1328 init_aggr_kprobe(ap, orig_p);
1329 } else if (kprobe_unused(ap)) {
1330 /* This probe is going to die. Rescue it */
1331 ret = reuse_unused_kprobe(ap);
1332 if (ret)
1333 goto out;
1334 }
1335
1336 if (kprobe_gone(ap)) {
1337 /*
1338 * Attempting to insert new probe at the same location that
1339 * had a probe in the module vaddr area which already
1340 * freed. So, the instruction slot has already been
1341 * released. We need a new slot for the new probe.
1342 */
1343 ret = arch_prepare_kprobe(ap);
1344 if (ret)
1345 /*
1346 * Even if fail to allocate new slot, don't need to
1347 * free aggr_probe. It will be used next time, or
1348 * freed by unregister_kprobe.
1349 */
1350 goto out;
1351
1352 /* Prepare optimized instructions if possible. */
1353 prepare_optimized_kprobe(ap);
1354
1355 /*
1356 * Clear gone flag to prevent allocating new slot again, and
1357 * set disabled flag because it is not armed yet.
1358 */
1359 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1360 | KPROBE_FLAG_DISABLED;
1361 }
1362
1363 /* Copy ap's insn slot to p */
1364 copy_kprobe(ap, p);
1365 ret = add_new_kprobe(ap, p);
1366
1367 out:
1368 mutex_unlock(&text_mutex);
1369 jump_label_unlock();
1370 cpus_read_unlock();
1371
1372 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1373 ap->flags &= ~KPROBE_FLAG_DISABLED;
1374 if (!kprobes_all_disarmed)
1375 /* Arm the breakpoint again. */
1376 arm_kprobe(ap);
1377 }
1378 return ret;
1379 }
1380
1381 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1382 {
1383 /* The __kprobes marked functions and entry code must not be probed */
1384 return addr >= (unsigned long)__kprobes_text_start &&
1385 addr < (unsigned long)__kprobes_text_end;
1386 }
1387
1388 bool within_kprobe_blacklist(unsigned long addr)
1389 {
1390 struct kprobe_blacklist_entry *ent;
1391
1392 if (arch_within_kprobe_blacklist(addr))
1393 return true;
1394 /*
1395 * If there exists a kprobe_blacklist, verify and
1396 * fail any probe registration in the prohibited area
1397 */
1398 list_for_each_entry(ent, &kprobe_blacklist, list) {
1399 if (addr >= ent->start_addr && addr < ent->end_addr)
1400 return true;
1401 }
1402
1403 return false;
1404 }
1405
1406 /*
1407 * If we have a symbol_name argument, look it up and add the offset field
1408 * to it. This way, we can specify a relative address to a symbol.
1409 * This returns encoded errors if it fails to look up symbol or invalid
1410 * combination of parameters.
1411 */
1412 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1413 const char *symbol_name, unsigned int offset)
1414 {
1415 if ((symbol_name && addr) || (!symbol_name && !addr))
1416 goto invalid;
1417
1418 if (symbol_name) {
1419 addr = kprobe_lookup_name(symbol_name, offset);
1420 if (!addr)
1421 return ERR_PTR(-ENOENT);
1422 }
1423
1424 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1425 if (addr)
1426 return addr;
1427
1428 invalid:
1429 return ERR_PTR(-EINVAL);
1430 }
1431
1432 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1433 {
1434 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1435 }
1436
1437 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1438 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1439 {
1440 struct kprobe *ap, *list_p;
1441
1442 ap = get_kprobe(p->addr);
1443 if (unlikely(!ap))
1444 return NULL;
1445
1446 if (p != ap) {
1447 list_for_each_entry_rcu(list_p, &ap->list, list)
1448 if (list_p == p)
1449 /* kprobe p is a valid probe */
1450 goto valid;
1451 return NULL;
1452 }
1453 valid:
1454 return ap;
1455 }
1456
1457 /* Return error if the kprobe is being re-registered */
1458 static inline int check_kprobe_rereg(struct kprobe *p)
1459 {
1460 int ret = 0;
1461
1462 mutex_lock(&kprobe_mutex);
1463 if (__get_valid_kprobe(p))
1464 ret = -EINVAL;
1465 mutex_unlock(&kprobe_mutex);
1466
1467 return ret;
1468 }
1469
1470 int __weak arch_check_ftrace_location(struct kprobe *p)
1471 {
1472 unsigned long ftrace_addr;
1473
1474 ftrace_addr = ftrace_location((unsigned long)p->addr);
1475 if (ftrace_addr) {
1476 #ifdef CONFIG_KPROBES_ON_FTRACE
1477 /* Given address is not on the instruction boundary */
1478 if ((unsigned long)p->addr != ftrace_addr)
1479 return -EILSEQ;
1480 p->flags |= KPROBE_FLAG_FTRACE;
1481 #else /* !CONFIG_KPROBES_ON_FTRACE */
1482 return -EINVAL;
1483 #endif
1484 }
1485 return 0;
1486 }
1487
1488 static int check_kprobe_address_safe(struct kprobe *p,
1489 struct module **probed_mod)
1490 {
1491 int ret;
1492
1493 ret = arch_check_ftrace_location(p);
1494 if (ret)
1495 return ret;
1496 jump_label_lock();
1497 preempt_disable();
1498
1499 /* Ensure it is not in reserved area nor out of text */
1500 if (!kernel_text_address((unsigned long) p->addr) ||
1501 within_kprobe_blacklist((unsigned long) p->addr) ||
1502 jump_label_text_reserved(p->addr, p->addr)) {
1503 ret = -EINVAL;
1504 goto out;
1505 }
1506
1507 /* Check if are we probing a module */
1508 *probed_mod = __module_text_address((unsigned long) p->addr);
1509 if (*probed_mod) {
1510 /*
1511 * We must hold a refcount of the probed module while updating
1512 * its code to prohibit unexpected unloading.
1513 */
1514 if (unlikely(!try_module_get(*probed_mod))) {
1515 ret = -ENOENT;
1516 goto out;
1517 }
1518
1519 /*
1520 * If the module freed .init.text, we couldn't insert
1521 * kprobes in there.
1522 */
1523 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1524 (*probed_mod)->state != MODULE_STATE_COMING) {
1525 module_put(*probed_mod);
1526 *probed_mod = NULL;
1527 ret = -ENOENT;
1528 }
1529 }
1530 out:
1531 preempt_enable();
1532 jump_label_unlock();
1533
1534 return ret;
1535 }
1536
1537 int register_kprobe(struct kprobe *p)
1538 {
1539 int ret;
1540 struct kprobe *old_p;
1541 struct module *probed_mod;
1542 kprobe_opcode_t *addr;
1543
1544 /* Adjust probe address from symbol */
1545 addr = kprobe_addr(p);
1546 if (IS_ERR(addr))
1547 return PTR_ERR(addr);
1548 p->addr = addr;
1549
1550 ret = check_kprobe_rereg(p);
1551 if (ret)
1552 return ret;
1553
1554 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1555 p->flags &= KPROBE_FLAG_DISABLED;
1556 p->nmissed = 0;
1557 INIT_LIST_HEAD(&p->list);
1558
1559 ret = check_kprobe_address_safe(p, &probed_mod);
1560 if (ret)
1561 return ret;
1562
1563 mutex_lock(&kprobe_mutex);
1564
1565 old_p = get_kprobe(p->addr);
1566 if (old_p) {
1567 /* Since this may unoptimize old_p, locking text_mutex. */
1568 ret = register_aggr_kprobe(old_p, p);
1569 goto out;
1570 }
1571
1572 cpus_read_lock();
1573 /* Prevent text modification */
1574 mutex_lock(&text_mutex);
1575 ret = prepare_kprobe(p);
1576 mutex_unlock(&text_mutex);
1577 cpus_read_unlock();
1578 if (ret)
1579 goto out;
1580
1581 INIT_HLIST_NODE(&p->hlist);
1582 hlist_add_head_rcu(&p->hlist,
1583 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1584
1585 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1586 arm_kprobe(p);
1587
1588 /* Try to optimize kprobe */
1589 try_to_optimize_kprobe(p);
1590 out:
1591 mutex_unlock(&kprobe_mutex);
1592
1593 if (probed_mod)
1594 module_put(probed_mod);
1595
1596 return ret;
1597 }
1598 EXPORT_SYMBOL_GPL(register_kprobe);
1599
1600 /* Check if all probes on the aggrprobe are disabled */
1601 static int aggr_kprobe_disabled(struct kprobe *ap)
1602 {
1603 struct kprobe *kp;
1604
1605 list_for_each_entry_rcu(kp, &ap->list, list)
1606 if (!kprobe_disabled(kp))
1607 /*
1608 * There is an active probe on the list.
1609 * We can't disable this ap.
1610 */
1611 return 0;
1612
1613 return 1;
1614 }
1615
1616 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1617 static struct kprobe *__disable_kprobe(struct kprobe *p)
1618 {
1619 struct kprobe *orig_p;
1620
1621 /* Get an original kprobe for return */
1622 orig_p = __get_valid_kprobe(p);
1623 if (unlikely(orig_p == NULL))
1624 return NULL;
1625
1626 if (!kprobe_disabled(p)) {
1627 /* Disable probe if it is a child probe */
1628 if (p != orig_p)
1629 p->flags |= KPROBE_FLAG_DISABLED;
1630
1631 /* Try to disarm and disable this/parent probe */
1632 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1633 /*
1634 * If kprobes_all_disarmed is set, orig_p
1635 * should have already been disarmed, so
1636 * skip unneed disarming process.
1637 */
1638 if (!kprobes_all_disarmed)
1639 disarm_kprobe(orig_p, true);
1640 orig_p->flags |= KPROBE_FLAG_DISABLED;
1641 }
1642 }
1643
1644 return orig_p;
1645 }
1646
1647 /*
1648 * Unregister a kprobe without a scheduler synchronization.
1649 */
1650 static int __unregister_kprobe_top(struct kprobe *p)
1651 {
1652 struct kprobe *ap, *list_p;
1653
1654 /* Disable kprobe. This will disarm it if needed. */
1655 ap = __disable_kprobe(p);
1656 if (ap == NULL)
1657 return -EINVAL;
1658
1659 if (ap == p)
1660 /*
1661 * This probe is an independent(and non-optimized) kprobe
1662 * (not an aggrprobe). Remove from the hash list.
1663 */
1664 goto disarmed;
1665
1666 /* Following process expects this probe is an aggrprobe */
1667 WARN_ON(!kprobe_aggrprobe(ap));
1668
1669 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1670 /*
1671 * !disarmed could be happen if the probe is under delayed
1672 * unoptimizing.
1673 */
1674 goto disarmed;
1675 else {
1676 /* If disabling probe has special handlers, update aggrprobe */
1677 if (p->break_handler && !kprobe_gone(p))
1678 ap->break_handler = NULL;
1679 if (p->post_handler && !kprobe_gone(p)) {
1680 list_for_each_entry_rcu(list_p, &ap->list, list) {
1681 if ((list_p != p) && (list_p->post_handler))
1682 goto noclean;
1683 }
1684 ap->post_handler = NULL;
1685 }
1686 noclean:
1687 /*
1688 * Remove from the aggrprobe: this path will do nothing in
1689 * __unregister_kprobe_bottom().
1690 */
1691 list_del_rcu(&p->list);
1692 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1693 /*
1694 * Try to optimize this probe again, because post
1695 * handler may have been changed.
1696 */
1697 optimize_kprobe(ap);
1698 }
1699 return 0;
1700
1701 disarmed:
1702 BUG_ON(!kprobe_disarmed(ap));
1703 hlist_del_rcu(&ap->hlist);
1704 return 0;
1705 }
1706
1707 static void __unregister_kprobe_bottom(struct kprobe *p)
1708 {
1709 struct kprobe *ap;
1710
1711 if (list_empty(&p->list))
1712 /* This is an independent kprobe */
1713 arch_remove_kprobe(p);
1714 else if (list_is_singular(&p->list)) {
1715 /* This is the last child of an aggrprobe */
1716 ap = list_entry(p->list.next, struct kprobe, list);
1717 list_del(&p->list);
1718 free_aggr_kprobe(ap);
1719 }
1720 /* Otherwise, do nothing. */
1721 }
1722
1723 int register_kprobes(struct kprobe **kps, int num)
1724 {
1725 int i, ret = 0;
1726
1727 if (num <= 0)
1728 return -EINVAL;
1729 for (i = 0; i < num; i++) {
1730 ret = register_kprobe(kps[i]);
1731 if (ret < 0) {
1732 if (i > 0)
1733 unregister_kprobes(kps, i);
1734 break;
1735 }
1736 }
1737 return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(register_kprobes);
1740
1741 void unregister_kprobe(struct kprobe *p)
1742 {
1743 unregister_kprobes(&p, 1);
1744 }
1745 EXPORT_SYMBOL_GPL(unregister_kprobe);
1746
1747 void unregister_kprobes(struct kprobe **kps, int num)
1748 {
1749 int i;
1750
1751 if (num <= 0)
1752 return;
1753 mutex_lock(&kprobe_mutex);
1754 for (i = 0; i < num; i++)
1755 if (__unregister_kprobe_top(kps[i]) < 0)
1756 kps[i]->addr = NULL;
1757 mutex_unlock(&kprobe_mutex);
1758
1759 synchronize_sched();
1760 for (i = 0; i < num; i++)
1761 if (kps[i]->addr)
1762 __unregister_kprobe_bottom(kps[i]);
1763 }
1764 EXPORT_SYMBOL_GPL(unregister_kprobes);
1765
1766 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1767 unsigned long val, void *data)
1768 {
1769 return NOTIFY_DONE;
1770 }
1771 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1772
1773 static struct notifier_block kprobe_exceptions_nb = {
1774 .notifier_call = kprobe_exceptions_notify,
1775 .priority = 0x7fffffff /* we need to be notified first */
1776 };
1777
1778 unsigned long __weak arch_deref_entry_point(void *entry)
1779 {
1780 return (unsigned long)entry;
1781 }
1782
1783 #if 0
1784 int register_jprobes(struct jprobe **jps, int num)
1785 {
1786 int ret = 0, i;
1787
1788 if (num <= 0)
1789 return -EINVAL;
1790
1791 for (i = 0; i < num; i++) {
1792 ret = register_jprobe(jps[i]);
1793
1794 if (ret < 0) {
1795 if (i > 0)
1796 unregister_jprobes(jps, i);
1797 break;
1798 }
1799 }
1800
1801 return ret;
1802 }
1803 EXPORT_SYMBOL_GPL(register_jprobes);
1804
1805 int register_jprobe(struct jprobe *jp)
1806 {
1807 unsigned long addr, offset;
1808 struct kprobe *kp = &jp->kp;
1809
1810 /*
1811 * Verify probepoint as well as the jprobe handler are
1812 * valid function entry points.
1813 */
1814 addr = arch_deref_entry_point(jp->entry);
1815
1816 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1817 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1818 kp->pre_handler = setjmp_pre_handler;
1819 kp->break_handler = longjmp_break_handler;
1820 return register_kprobe(kp);
1821 }
1822
1823 return -EINVAL;
1824 }
1825 EXPORT_SYMBOL_GPL(register_jprobe);
1826
1827 void unregister_jprobe(struct jprobe *jp)
1828 {
1829 unregister_jprobes(&jp, 1);
1830 }
1831 EXPORT_SYMBOL_GPL(unregister_jprobe);
1832
1833 void unregister_jprobes(struct jprobe **jps, int num)
1834 {
1835 int i;
1836
1837 if (num <= 0)
1838 return;
1839 mutex_lock(&kprobe_mutex);
1840 for (i = 0; i < num; i++)
1841 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1842 jps[i]->kp.addr = NULL;
1843 mutex_unlock(&kprobe_mutex);
1844
1845 synchronize_sched();
1846 for (i = 0; i < num; i++) {
1847 if (jps[i]->kp.addr)
1848 __unregister_kprobe_bottom(&jps[i]->kp);
1849 }
1850 }
1851 EXPORT_SYMBOL_GPL(unregister_jprobes);
1852 #endif
1853
1854 #ifdef CONFIG_KRETPROBES
1855 /*
1856 * This kprobe pre_handler is registered with every kretprobe. When probe
1857 * hits it will set up the return probe.
1858 */
1859 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1860 {
1861 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1862 unsigned long hash, flags = 0;
1863 struct kretprobe_instance *ri;
1864
1865 /*
1866 * To avoid deadlocks, prohibit return probing in NMI contexts,
1867 * just skip the probe and increase the (inexact) 'nmissed'
1868 * statistical counter, so that the user is informed that
1869 * something happened:
1870 */
1871 if (unlikely(in_nmi())) {
1872 rp->nmissed++;
1873 return 0;
1874 }
1875
1876 /* TODO: consider to only swap the RA after the last pre_handler fired */
1877 hash = hash_ptr(current, KPROBE_HASH_BITS);
1878 raw_spin_lock_irqsave(&rp->lock, flags);
1879 if (!hlist_empty(&rp->free_instances)) {
1880 ri = hlist_entry(rp->free_instances.first,
1881 struct kretprobe_instance, hlist);
1882 hlist_del(&ri->hlist);
1883 raw_spin_unlock_irqrestore(&rp->lock, flags);
1884
1885 ri->rp = rp;
1886 ri->task = current;
1887
1888 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1889 raw_spin_lock_irqsave(&rp->lock, flags);
1890 hlist_add_head(&ri->hlist, &rp->free_instances);
1891 raw_spin_unlock_irqrestore(&rp->lock, flags);
1892 return 0;
1893 }
1894
1895 arch_prepare_kretprobe(ri, regs);
1896
1897 /* XXX(hch): why is there no hlist_move_head? */
1898 INIT_HLIST_NODE(&ri->hlist);
1899 kretprobe_table_lock(hash, &flags);
1900 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1901 kretprobe_table_unlock(hash, &flags);
1902 } else {
1903 rp->nmissed++;
1904 raw_spin_unlock_irqrestore(&rp->lock, flags);
1905 }
1906 return 0;
1907 }
1908 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1909
1910 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1911 {
1912 return !offset;
1913 }
1914
1915 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1916 {
1917 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1918
1919 if (IS_ERR(kp_addr))
1920 return false;
1921
1922 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1923 !arch_kprobe_on_func_entry(offset))
1924 return false;
1925
1926 return true;
1927 }
1928
1929 int register_kretprobe(struct kretprobe *rp)
1930 {
1931 int ret = 0;
1932 struct kretprobe_instance *inst;
1933 int i;
1934 void *addr;
1935
1936 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1937 return -EINVAL;
1938
1939 if (kretprobe_blacklist_size) {
1940 addr = kprobe_addr(&rp->kp);
1941 if (IS_ERR(addr))
1942 return PTR_ERR(addr);
1943
1944 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1945 if (kretprobe_blacklist[i].addr == addr)
1946 return -EINVAL;
1947 }
1948 }
1949
1950 rp->kp.pre_handler = pre_handler_kretprobe;
1951 rp->kp.post_handler = NULL;
1952 rp->kp.fault_handler = NULL;
1953 rp->kp.break_handler = NULL;
1954
1955 /* Pre-allocate memory for max kretprobe instances */
1956 if (rp->maxactive <= 0) {
1957 #ifdef CONFIG_PREEMPT
1958 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1959 #else
1960 rp->maxactive = num_possible_cpus();
1961 #endif
1962 }
1963 raw_spin_lock_init(&rp->lock);
1964 INIT_HLIST_HEAD(&rp->free_instances);
1965 for (i = 0; i < rp->maxactive; i++) {
1966 inst = kmalloc(sizeof(struct kretprobe_instance) +
1967 rp->data_size, GFP_KERNEL);
1968 if (inst == NULL) {
1969 free_rp_inst(rp);
1970 return -ENOMEM;
1971 }
1972 INIT_HLIST_NODE(&inst->hlist);
1973 hlist_add_head(&inst->hlist, &rp->free_instances);
1974 }
1975
1976 rp->nmissed = 0;
1977 /* Establish function entry probe point */
1978 ret = register_kprobe(&rp->kp);
1979 if (ret != 0)
1980 free_rp_inst(rp);
1981 return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(register_kretprobe);
1984
1985 int register_kretprobes(struct kretprobe **rps, int num)
1986 {
1987 int ret = 0, i;
1988
1989 if (num <= 0)
1990 return -EINVAL;
1991 for (i = 0; i < num; i++) {
1992 ret = register_kretprobe(rps[i]);
1993 if (ret < 0) {
1994 if (i > 0)
1995 unregister_kretprobes(rps, i);
1996 break;
1997 }
1998 }
1999 return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(register_kretprobes);
2002
2003 void unregister_kretprobe(struct kretprobe *rp)
2004 {
2005 unregister_kretprobes(&rp, 1);
2006 }
2007 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2008
2009 void unregister_kretprobes(struct kretprobe **rps, int num)
2010 {
2011 int i;
2012
2013 if (num <= 0)
2014 return;
2015 mutex_lock(&kprobe_mutex);
2016 for (i = 0; i < num; i++)
2017 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2018 rps[i]->kp.addr = NULL;
2019 mutex_unlock(&kprobe_mutex);
2020
2021 synchronize_sched();
2022 for (i = 0; i < num; i++) {
2023 if (rps[i]->kp.addr) {
2024 __unregister_kprobe_bottom(&rps[i]->kp);
2025 cleanup_rp_inst(rps[i]);
2026 }
2027 }
2028 }
2029 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2030
2031 #else /* CONFIG_KRETPROBES */
2032 int register_kretprobe(struct kretprobe *rp)
2033 {
2034 return -ENOSYS;
2035 }
2036 EXPORT_SYMBOL_GPL(register_kretprobe);
2037
2038 int register_kretprobes(struct kretprobe **rps, int num)
2039 {
2040 return -ENOSYS;
2041 }
2042 EXPORT_SYMBOL_GPL(register_kretprobes);
2043
2044 void unregister_kretprobe(struct kretprobe *rp)
2045 {
2046 }
2047 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2048
2049 void unregister_kretprobes(struct kretprobe **rps, int num)
2050 {
2051 }
2052 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2053
2054 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2055 {
2056 return 0;
2057 }
2058 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2059
2060 #endif /* CONFIG_KRETPROBES */
2061
2062 /* Set the kprobe gone and remove its instruction buffer. */
2063 static void kill_kprobe(struct kprobe *p)
2064 {
2065 struct kprobe *kp;
2066
2067 p->flags |= KPROBE_FLAG_GONE;
2068 if (kprobe_aggrprobe(p)) {
2069 /*
2070 * If this is an aggr_kprobe, we have to list all the
2071 * chained probes and mark them GONE.
2072 */
2073 list_for_each_entry_rcu(kp, &p->list, list)
2074 kp->flags |= KPROBE_FLAG_GONE;
2075 p->post_handler = NULL;
2076 p->break_handler = NULL;
2077 kill_optimized_kprobe(p);
2078 }
2079 /*
2080 * Here, we can remove insn_slot safely, because no thread calls
2081 * the original probed function (which will be freed soon) any more.
2082 */
2083 arch_remove_kprobe(p);
2084 }
2085
2086 /* Disable one kprobe */
2087 int disable_kprobe(struct kprobe *kp)
2088 {
2089 int ret = 0;
2090
2091 mutex_lock(&kprobe_mutex);
2092
2093 /* Disable this kprobe */
2094 if (__disable_kprobe(kp) == NULL)
2095 ret = -EINVAL;
2096
2097 mutex_unlock(&kprobe_mutex);
2098 return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(disable_kprobe);
2101
2102 /* Enable one kprobe */
2103 int enable_kprobe(struct kprobe *kp)
2104 {
2105 int ret = 0;
2106 struct kprobe *p;
2107
2108 mutex_lock(&kprobe_mutex);
2109
2110 /* Check whether specified probe is valid. */
2111 p = __get_valid_kprobe(kp);
2112 if (unlikely(p == NULL)) {
2113 ret = -EINVAL;
2114 goto out;
2115 }
2116
2117 if (kprobe_gone(kp)) {
2118 /* This kprobe has gone, we couldn't enable it. */
2119 ret = -EINVAL;
2120 goto out;
2121 }
2122
2123 if (p != kp)
2124 kp->flags &= ~KPROBE_FLAG_DISABLED;
2125
2126 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2127 p->flags &= ~KPROBE_FLAG_DISABLED;
2128 arm_kprobe(p);
2129 }
2130 out:
2131 mutex_unlock(&kprobe_mutex);
2132 return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(enable_kprobe);
2135
2136 /* Caller must NOT call this in usual path. This is only for critical case */
2137 void dump_kprobe(struct kprobe *kp)
2138 {
2139 pr_err("Dumping kprobe:\n");
2140 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2141 kp->symbol_name, kp->offset, kp->addr);
2142 }
2143 NOKPROBE_SYMBOL(dump_kprobe);
2144
2145 /*
2146 * Lookup and populate the kprobe_blacklist.
2147 *
2148 * Unlike the kretprobe blacklist, we'll need to determine
2149 * the range of addresses that belong to the said functions,
2150 * since a kprobe need not necessarily be at the beginning
2151 * of a function.
2152 */
2153 static int __init populate_kprobe_blacklist(unsigned long *start,
2154 unsigned long *end)
2155 {
2156 unsigned long *iter;
2157 struct kprobe_blacklist_entry *ent;
2158 unsigned long entry, offset = 0, size = 0;
2159
2160 for (iter = start; iter < end; iter++) {
2161 entry = arch_deref_entry_point((void *)*iter);
2162
2163 if (!kernel_text_address(entry) ||
2164 !kallsyms_lookup_size_offset(entry, &size, &offset))
2165 continue;
2166
2167 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2168 if (!ent)
2169 return -ENOMEM;
2170 ent->start_addr = entry;
2171 ent->end_addr = entry + size;
2172 INIT_LIST_HEAD(&ent->list);
2173 list_add_tail(&ent->list, &kprobe_blacklist);
2174 }
2175 return 0;
2176 }
2177
2178 /* Module notifier call back, checking kprobes on the module */
2179 static int kprobes_module_callback(struct notifier_block *nb,
2180 unsigned long val, void *data)
2181 {
2182 struct module *mod = data;
2183 struct hlist_head *head;
2184 struct kprobe *p;
2185 unsigned int i;
2186 int checkcore = (val == MODULE_STATE_GOING);
2187
2188 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2189 return NOTIFY_DONE;
2190
2191 /*
2192 * When MODULE_STATE_GOING was notified, both of module .text and
2193 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2194 * notified, only .init.text section would be freed. We need to
2195 * disable kprobes which have been inserted in the sections.
2196 */
2197 mutex_lock(&kprobe_mutex);
2198 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2199 head = &kprobe_table[i];
2200 hlist_for_each_entry_rcu(p, head, hlist)
2201 if (within_module_init((unsigned long)p->addr, mod) ||
2202 (checkcore &&
2203 within_module_core((unsigned long)p->addr, mod))) {
2204 /*
2205 * The vaddr this probe is installed will soon
2206 * be vfreed buy not synced to disk. Hence,
2207 * disarming the breakpoint isn't needed.
2208 *
2209 * Note, this will also move any optimized probes
2210 * that are pending to be removed from their
2211 * corresponding lists to the freeing_list and
2212 * will not be touched by the delayed
2213 * kprobe_optimizer work handler.
2214 */
2215 kill_kprobe(p);
2216 }
2217 }
2218 mutex_unlock(&kprobe_mutex);
2219 return NOTIFY_DONE;
2220 }
2221
2222 static struct notifier_block kprobe_module_nb = {
2223 .notifier_call = kprobes_module_callback,
2224 .priority = 0
2225 };
2226
2227 /* Markers of _kprobe_blacklist section */
2228 extern unsigned long __start_kprobe_blacklist[];
2229 extern unsigned long __stop_kprobe_blacklist[];
2230
2231 static int __init init_kprobes(void)
2232 {
2233 int i, err = 0;
2234
2235 /* FIXME allocate the probe table, currently defined statically */
2236 /* initialize all list heads */
2237 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2238 INIT_HLIST_HEAD(&kprobe_table[i]);
2239 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2240 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2241 }
2242
2243 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2244 __stop_kprobe_blacklist);
2245 if (err) {
2246 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2247 pr_err("Please take care of using kprobes.\n");
2248 }
2249
2250 if (kretprobe_blacklist_size) {
2251 /* lookup the function address from its name */
2252 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2253 kretprobe_blacklist[i].addr =
2254 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2255 if (!kretprobe_blacklist[i].addr)
2256 printk("kretprobe: lookup failed: %s\n",
2257 kretprobe_blacklist[i].name);
2258 }
2259 }
2260
2261 #if defined(CONFIG_OPTPROBES)
2262 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2263 /* Init kprobe_optinsn_slots */
2264 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2265 #endif
2266 /* By default, kprobes can be optimized */
2267 kprobes_allow_optimization = true;
2268 #endif
2269
2270 /* By default, kprobes are armed */
2271 kprobes_all_disarmed = false;
2272
2273 err = arch_init_kprobes();
2274 if (!err)
2275 err = register_die_notifier(&kprobe_exceptions_nb);
2276 if (!err)
2277 err = register_module_notifier(&kprobe_module_nb);
2278
2279 kprobes_initialized = (err == 0);
2280
2281 if (!err)
2282 init_test_probes();
2283 return err;
2284 }
2285
2286 #ifdef CONFIG_DEBUG_FS
2287 static void report_probe(struct seq_file *pi, struct kprobe *p,
2288 const char *sym, int offset, char *modname, struct kprobe *pp)
2289 {
2290 char *kprobe_type;
2291
2292 if (p->pre_handler == pre_handler_kretprobe)
2293 kprobe_type = "r";
2294 else if (p->pre_handler == setjmp_pre_handler)
2295 kprobe_type = "j";
2296 else
2297 kprobe_type = "k";
2298
2299 if (sym)
2300 seq_printf(pi, "%p %s %s+0x%x %s ",
2301 p->addr, kprobe_type, sym, offset,
2302 (modname ? modname : " "));
2303 else
2304 seq_printf(pi, "%p %s %p ",
2305 p->addr, kprobe_type, p->addr);
2306
2307 if (!pp)
2308 pp = p;
2309 seq_printf(pi, "%s%s%s%s\n",
2310 (kprobe_gone(p) ? "[GONE]" : ""),
2311 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2312 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2313 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2314 }
2315
2316 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2317 {
2318 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2319 }
2320
2321 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2322 {
2323 (*pos)++;
2324 if (*pos >= KPROBE_TABLE_SIZE)
2325 return NULL;
2326 return pos;
2327 }
2328
2329 static void kprobe_seq_stop(struct seq_file *f, void *v)
2330 {
2331 /* Nothing to do */
2332 }
2333
2334 static int show_kprobe_addr(struct seq_file *pi, void *v)
2335 {
2336 struct hlist_head *head;
2337 struct kprobe *p, *kp;
2338 const char *sym = NULL;
2339 unsigned int i = *(loff_t *) v;
2340 unsigned long offset = 0;
2341 char *modname, namebuf[KSYM_NAME_LEN];
2342
2343 head = &kprobe_table[i];
2344 preempt_disable();
2345 hlist_for_each_entry_rcu(p, head, hlist) {
2346 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2347 &offset, &modname, namebuf);
2348 if (kprobe_aggrprobe(p)) {
2349 list_for_each_entry_rcu(kp, &p->list, list)
2350 report_probe(pi, kp, sym, offset, modname, p);
2351 } else
2352 report_probe(pi, p, sym, offset, modname, NULL);
2353 }
2354 preempt_enable();
2355 return 0;
2356 }
2357
2358 static const struct seq_operations kprobes_seq_ops = {
2359 .start = kprobe_seq_start,
2360 .next = kprobe_seq_next,
2361 .stop = kprobe_seq_stop,
2362 .show = show_kprobe_addr
2363 };
2364
2365 static int kprobes_open(struct inode *inode, struct file *filp)
2366 {
2367 return seq_open(filp, &kprobes_seq_ops);
2368 }
2369
2370 static const struct file_operations debugfs_kprobes_operations = {
2371 .open = kprobes_open,
2372 .read = seq_read,
2373 .llseek = seq_lseek,
2374 .release = seq_release,
2375 };
2376
2377 /* kprobes/blacklist -- shows which functions can not be probed */
2378 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2379 {
2380 return seq_list_start(&kprobe_blacklist, *pos);
2381 }
2382
2383 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2384 {
2385 return seq_list_next(v, &kprobe_blacklist, pos);
2386 }
2387
2388 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2389 {
2390 struct kprobe_blacklist_entry *ent =
2391 list_entry(v, struct kprobe_blacklist_entry, list);
2392
2393 /*
2394 * If /proc/kallsyms is not showing kernel address, we won't
2395 * show them here either.
2396 */
2397 if (!kallsyms_show_value())
2398 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2399 (void *)ent->start_addr);
2400 else
2401 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2402 (void *)ent->end_addr, (void *)ent->start_addr);
2403 return 0;
2404 }
2405
2406 static const struct seq_operations kprobe_blacklist_seq_ops = {
2407 .start = kprobe_blacklist_seq_start,
2408 .next = kprobe_blacklist_seq_next,
2409 .stop = kprobe_seq_stop, /* Reuse void function */
2410 .show = kprobe_blacklist_seq_show,
2411 };
2412
2413 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2414 {
2415 return seq_open(filp, &kprobe_blacklist_seq_ops);
2416 }
2417
2418 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2419 .open = kprobe_blacklist_open,
2420 .read = seq_read,
2421 .llseek = seq_lseek,
2422 .release = seq_release,
2423 };
2424
2425 static void arm_all_kprobes(void)
2426 {
2427 struct hlist_head *head;
2428 struct kprobe *p;
2429 unsigned int i;
2430
2431 mutex_lock(&kprobe_mutex);
2432
2433 /* If kprobes are armed, just return */
2434 if (!kprobes_all_disarmed)
2435 goto already_enabled;
2436
2437 /*
2438 * optimize_kprobe() called by arm_kprobe() checks
2439 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2440 * arm_kprobe.
2441 */
2442 kprobes_all_disarmed = false;
2443 /* Arming kprobes doesn't optimize kprobe itself */
2444 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2445 head = &kprobe_table[i];
2446 hlist_for_each_entry_rcu(p, head, hlist)
2447 if (!kprobe_disabled(p))
2448 arm_kprobe(p);
2449 }
2450
2451 printk(KERN_INFO "Kprobes globally enabled\n");
2452
2453 already_enabled:
2454 mutex_unlock(&kprobe_mutex);
2455 return;
2456 }
2457
2458 static void disarm_all_kprobes(void)
2459 {
2460 struct hlist_head *head;
2461 struct kprobe *p;
2462 unsigned int i;
2463
2464 mutex_lock(&kprobe_mutex);
2465
2466 /* If kprobes are already disarmed, just return */
2467 if (kprobes_all_disarmed) {
2468 mutex_unlock(&kprobe_mutex);
2469 return;
2470 }
2471
2472 kprobes_all_disarmed = true;
2473 printk(KERN_INFO "Kprobes globally disabled\n");
2474
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476 head = &kprobe_table[i];
2477 hlist_for_each_entry_rcu(p, head, hlist) {
2478 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2479 disarm_kprobe(p, false);
2480 }
2481 }
2482 mutex_unlock(&kprobe_mutex);
2483
2484 /* Wait for disarming all kprobes by optimizer */
2485 wait_for_kprobe_optimizer();
2486 }
2487
2488 /*
2489 * XXX: The debugfs bool file interface doesn't allow for callbacks
2490 * when the bool state is switched. We can reuse that facility when
2491 * available
2492 */
2493 static ssize_t read_enabled_file_bool(struct file *file,
2494 char __user *user_buf, size_t count, loff_t *ppos)
2495 {
2496 char buf[3];
2497
2498 if (!kprobes_all_disarmed)
2499 buf[0] = '1';
2500 else
2501 buf[0] = '0';
2502 buf[1] = '\n';
2503 buf[2] = 0x00;
2504 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2505 }
2506
2507 static ssize_t write_enabled_file_bool(struct file *file,
2508 const char __user *user_buf, size_t count, loff_t *ppos)
2509 {
2510 char buf[32];
2511 size_t buf_size;
2512
2513 buf_size = min(count, (sizeof(buf)-1));
2514 if (copy_from_user(buf, user_buf, buf_size))
2515 return -EFAULT;
2516
2517 buf[buf_size] = '\0';
2518 switch (buf[0]) {
2519 case 'y':
2520 case 'Y':
2521 case '1':
2522 arm_all_kprobes();
2523 break;
2524 case 'n':
2525 case 'N':
2526 case '0':
2527 disarm_all_kprobes();
2528 break;
2529 default:
2530 return -EINVAL;
2531 }
2532
2533 return count;
2534 }
2535
2536 static const struct file_operations fops_kp = {
2537 .read = read_enabled_file_bool,
2538 .write = write_enabled_file_bool,
2539 .llseek = default_llseek,
2540 };
2541
2542 static int __init debugfs_kprobe_init(void)
2543 {
2544 struct dentry *dir, *file;
2545 unsigned int value = 1;
2546
2547 dir = debugfs_create_dir("kprobes", NULL);
2548 if (!dir)
2549 return -ENOMEM;
2550
2551 file = debugfs_create_file("list", 0400, dir, NULL,
2552 &debugfs_kprobes_operations);
2553 if (!file)
2554 goto error;
2555
2556 file = debugfs_create_file("enabled", 0600, dir,
2557 &value, &fops_kp);
2558 if (!file)
2559 goto error;
2560
2561 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2562 &debugfs_kprobe_blacklist_ops);
2563 if (!file)
2564 goto error;
2565
2566 return 0;
2567
2568 error:
2569 debugfs_remove(dir);
2570 return -ENOMEM;
2571 }
2572
2573 late_initcall(debugfs_kprobe_init);
2574 #endif /* CONFIG_DEBUG_FS */
2575
2576 module_init(init_kprobes);
2577
2578 /* defined in arch/.../kernel/kprobes.c */
2579 EXPORT_SYMBOL_GPL(jprobe_return);