]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kprobes.c
kprobes: Prohibit probing on .entry.text code
[mirror_ubuntu-artful-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {NULL} /* Terminator */
100 };
101
102 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
103 /*
104 * kprobe->ainsn.insn points to the copy of the instruction to be
105 * single-stepped. x86_64, POWER4 and above have no-exec support and
106 * stepping on the instruction on a vmalloced/kmalloced/data page
107 * is a recipe for disaster
108 */
109 struct kprobe_insn_page {
110 struct list_head list;
111 kprobe_opcode_t *insns; /* Page of instruction slots */
112 struct kprobe_insn_cache *cache;
113 int nused;
114 int ngarbage;
115 char slot_used[];
116 };
117
118 #define KPROBE_INSN_PAGE_SIZE(slots) \
119 (offsetof(struct kprobe_insn_page, slot_used) + \
120 (sizeof(char) * (slots)))
121
122 static int slots_per_page(struct kprobe_insn_cache *c)
123 {
124 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
125 }
126
127 enum kprobe_slot_state {
128 SLOT_CLEAN = 0,
129 SLOT_DIRTY = 1,
130 SLOT_USED = 2,
131 };
132
133 static void *alloc_insn_page(void)
134 {
135 return module_alloc(PAGE_SIZE);
136 }
137
138 static void free_insn_page(void *page)
139 {
140 module_free(NULL, page);
141 }
142
143 struct kprobe_insn_cache kprobe_insn_slots = {
144 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
145 .alloc = alloc_insn_page,
146 .free = free_insn_page,
147 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
148 .insn_size = MAX_INSN_SIZE,
149 .nr_garbage = 0,
150 };
151 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
152
153 /**
154 * __get_insn_slot() - Find a slot on an executable page for an instruction.
155 * We allocate an executable page if there's no room on existing ones.
156 */
157 kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
158 {
159 struct kprobe_insn_page *kip;
160 kprobe_opcode_t *slot = NULL;
161
162 mutex_lock(&c->mutex);
163 retry:
164 list_for_each_entry(kip, &c->pages, list) {
165 if (kip->nused < slots_per_page(c)) {
166 int i;
167 for (i = 0; i < slots_per_page(c); i++) {
168 if (kip->slot_used[i] == SLOT_CLEAN) {
169 kip->slot_used[i] = SLOT_USED;
170 kip->nused++;
171 slot = kip->insns + (i * c->insn_size);
172 goto out;
173 }
174 }
175 /* kip->nused is broken. Fix it. */
176 kip->nused = slots_per_page(c);
177 WARN_ON(1);
178 }
179 }
180
181 /* If there are any garbage slots, collect it and try again. */
182 if (c->nr_garbage && collect_garbage_slots(c) == 0)
183 goto retry;
184
185 /* All out of space. Need to allocate a new page. */
186 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
187 if (!kip)
188 goto out;
189
190 /*
191 * Use module_alloc so this page is within +/- 2GB of where the
192 * kernel image and loaded module images reside. This is required
193 * so x86_64 can correctly handle the %rip-relative fixups.
194 */
195 kip->insns = c->alloc();
196 if (!kip->insns) {
197 kfree(kip);
198 goto out;
199 }
200 INIT_LIST_HEAD(&kip->list);
201 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
202 kip->slot_used[0] = SLOT_USED;
203 kip->nused = 1;
204 kip->ngarbage = 0;
205 kip->cache = c;
206 list_add(&kip->list, &c->pages);
207 slot = kip->insns;
208 out:
209 mutex_unlock(&c->mutex);
210 return slot;
211 }
212
213 /* Return 1 if all garbages are collected, otherwise 0. */
214 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
215 {
216 kip->slot_used[idx] = SLOT_CLEAN;
217 kip->nused--;
218 if (kip->nused == 0) {
219 /*
220 * Page is no longer in use. Free it unless
221 * it's the last one. We keep the last one
222 * so as not to have to set it up again the
223 * next time somebody inserts a probe.
224 */
225 if (!list_is_singular(&kip->list)) {
226 list_del(&kip->list);
227 kip->cache->free(kip->insns);
228 kfree(kip);
229 }
230 return 1;
231 }
232 return 0;
233 }
234
235 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
236 {
237 struct kprobe_insn_page *kip, *next;
238
239 /* Ensure no-one is interrupted on the garbages */
240 synchronize_sched();
241
242 list_for_each_entry_safe(kip, next, &c->pages, list) {
243 int i;
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY &&
249 collect_one_slot(kip, i))
250 break;
251 }
252 }
253 c->nr_garbage = 0;
254 return 0;
255 }
256
257 void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
258 kprobe_opcode_t *slot, int dirty)
259 {
260 struct kprobe_insn_page *kip;
261
262 mutex_lock(&c->mutex);
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 goto out;
276 }
277 }
278 /* Could not free this slot. */
279 WARN_ON(1);
280 out:
281 mutex_unlock(&c->mutex);
282 }
283
284 #ifdef CONFIG_OPTPROBES
285 /* For optimized_kprobe buffer */
286 struct kprobe_insn_cache kprobe_optinsn_slots = {
287 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
288 .alloc = alloc_insn_page,
289 .free = free_insn_page,
290 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291 /* .insn_size is initialized later */
292 .nr_garbage = 0,
293 };
294 #endif
295 #endif
296
297 /* We have preemption disabled.. so it is safe to use __ versions */
298 static inline void set_kprobe_instance(struct kprobe *kp)
299 {
300 __this_cpu_write(kprobe_instance, kp);
301 }
302
303 static inline void reset_kprobe_instance(void)
304 {
305 __this_cpu_write(kprobe_instance, NULL);
306 }
307
308 /*
309 * This routine is called either:
310 * - under the kprobe_mutex - during kprobe_[un]register()
311 * OR
312 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
313 */
314 struct kprobe __kprobes *get_kprobe(void *addr)
315 {
316 struct hlist_head *head;
317 struct kprobe *p;
318
319 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
320 hlist_for_each_entry_rcu(p, head, hlist) {
321 if (p->addr == addr)
322 return p;
323 }
324
325 return NULL;
326 }
327
328 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
329
330 /* Return true if the kprobe is an aggregator */
331 static inline int kprobe_aggrprobe(struct kprobe *p)
332 {
333 return p->pre_handler == aggr_pre_handler;
334 }
335
336 /* Return true(!0) if the kprobe is unused */
337 static inline int kprobe_unused(struct kprobe *p)
338 {
339 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
340 list_empty(&p->list);
341 }
342
343 /*
344 * Keep all fields in the kprobe consistent
345 */
346 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
347 {
348 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
349 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
350 }
351
352 #ifdef CONFIG_OPTPROBES
353 /* NOTE: change this value only with kprobe_mutex held */
354 static bool kprobes_allow_optimization;
355
356 /*
357 * Call all pre_handler on the list, but ignores its return value.
358 * This must be called from arch-dep optimized caller.
359 */
360 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
361 {
362 struct kprobe *kp;
363
364 list_for_each_entry_rcu(kp, &p->list, list) {
365 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
366 set_kprobe_instance(kp);
367 kp->pre_handler(kp, regs);
368 }
369 reset_kprobe_instance();
370 }
371 }
372
373 /* Free optimized instructions and optimized_kprobe */
374 static __kprobes void free_aggr_kprobe(struct kprobe *p)
375 {
376 struct optimized_kprobe *op;
377
378 op = container_of(p, struct optimized_kprobe, kp);
379 arch_remove_optimized_kprobe(op);
380 arch_remove_kprobe(p);
381 kfree(op);
382 }
383
384 /* Return true(!0) if the kprobe is ready for optimization. */
385 static inline int kprobe_optready(struct kprobe *p)
386 {
387 struct optimized_kprobe *op;
388
389 if (kprobe_aggrprobe(p)) {
390 op = container_of(p, struct optimized_kprobe, kp);
391 return arch_prepared_optinsn(&op->optinsn);
392 }
393
394 return 0;
395 }
396
397 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
398 static inline int kprobe_disarmed(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
403 if (!kprobe_aggrprobe(p))
404 return kprobe_disabled(p);
405
406 op = container_of(p, struct optimized_kprobe, kp);
407
408 return kprobe_disabled(p) && list_empty(&op->list);
409 }
410
411 /* Return true(!0) if the probe is queued on (un)optimizing lists */
412 static int __kprobes kprobe_queued(struct kprobe *p)
413 {
414 struct optimized_kprobe *op;
415
416 if (kprobe_aggrprobe(p)) {
417 op = container_of(p, struct optimized_kprobe, kp);
418 if (!list_empty(&op->list))
419 return 1;
420 }
421 return 0;
422 }
423
424 /*
425 * Return an optimized kprobe whose optimizing code replaces
426 * instructions including addr (exclude breakpoint).
427 */
428 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
429 {
430 int i;
431 struct kprobe *p = NULL;
432 struct optimized_kprobe *op;
433
434 /* Don't check i == 0, since that is a breakpoint case. */
435 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
436 p = get_kprobe((void *)(addr - i));
437
438 if (p && kprobe_optready(p)) {
439 op = container_of(p, struct optimized_kprobe, kp);
440 if (arch_within_optimized_kprobe(op, addr))
441 return p;
442 }
443
444 return NULL;
445 }
446
447 /* Optimization staging list, protected by kprobe_mutex */
448 static LIST_HEAD(optimizing_list);
449 static LIST_HEAD(unoptimizing_list);
450 static LIST_HEAD(freeing_list);
451
452 static void kprobe_optimizer(struct work_struct *work);
453 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
454 #define OPTIMIZE_DELAY 5
455
456 /*
457 * Optimize (replace a breakpoint with a jump) kprobes listed on
458 * optimizing_list.
459 */
460 static __kprobes void do_optimize_kprobes(void)
461 {
462 /* Optimization never be done when disarmed */
463 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
464 list_empty(&optimizing_list))
465 return;
466
467 /*
468 * The optimization/unoptimization refers online_cpus via
469 * stop_machine() and cpu-hotplug modifies online_cpus.
470 * And same time, text_mutex will be held in cpu-hotplug and here.
471 * This combination can cause a deadlock (cpu-hotplug try to lock
472 * text_mutex but stop_machine can not be done because online_cpus
473 * has been changed)
474 * To avoid this deadlock, we need to call get_online_cpus()
475 * for preventing cpu-hotplug outside of text_mutex locking.
476 */
477 get_online_cpus();
478 mutex_lock(&text_mutex);
479 arch_optimize_kprobes(&optimizing_list);
480 mutex_unlock(&text_mutex);
481 put_online_cpus();
482 }
483
484 /*
485 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
486 * if need) kprobes listed on unoptimizing_list.
487 */
488 static __kprobes void do_unoptimize_kprobes(void)
489 {
490 struct optimized_kprobe *op, *tmp;
491
492 /* Unoptimization must be done anytime */
493 if (list_empty(&unoptimizing_list))
494 return;
495
496 /* Ditto to do_optimize_kprobes */
497 get_online_cpus();
498 mutex_lock(&text_mutex);
499 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
500 /* Loop free_list for disarming */
501 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
502 /* Disarm probes if marked disabled */
503 if (kprobe_disabled(&op->kp))
504 arch_disarm_kprobe(&op->kp);
505 if (kprobe_unused(&op->kp)) {
506 /*
507 * Remove unused probes from hash list. After waiting
508 * for synchronization, these probes are reclaimed.
509 * (reclaiming is done by do_free_cleaned_kprobes.)
510 */
511 hlist_del_rcu(&op->kp.hlist);
512 } else
513 list_del_init(&op->list);
514 }
515 mutex_unlock(&text_mutex);
516 put_online_cpus();
517 }
518
519 /* Reclaim all kprobes on the free_list */
520 static __kprobes void do_free_cleaned_kprobes(void)
521 {
522 struct optimized_kprobe *op, *tmp;
523
524 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
525 BUG_ON(!kprobe_unused(&op->kp));
526 list_del_init(&op->list);
527 free_aggr_kprobe(&op->kp);
528 }
529 }
530
531 /* Start optimizer after OPTIMIZE_DELAY passed */
532 static __kprobes void kick_kprobe_optimizer(void)
533 {
534 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
535 }
536
537 /* Kprobe jump optimizer */
538 static __kprobes void kprobe_optimizer(struct work_struct *work)
539 {
540 mutex_lock(&kprobe_mutex);
541 /* Lock modules while optimizing kprobes */
542 mutex_lock(&module_mutex);
543
544 /*
545 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
546 * kprobes before waiting for quiesence period.
547 */
548 do_unoptimize_kprobes();
549
550 /*
551 * Step 2: Wait for quiesence period to ensure all running interrupts
552 * are done. Because optprobe may modify multiple instructions
553 * there is a chance that Nth instruction is interrupted. In that
554 * case, running interrupt can return to 2nd-Nth byte of jump
555 * instruction. This wait is for avoiding it.
556 */
557 synchronize_sched();
558
559 /* Step 3: Optimize kprobes after quiesence period */
560 do_optimize_kprobes();
561
562 /* Step 4: Free cleaned kprobes after quiesence period */
563 do_free_cleaned_kprobes();
564
565 mutex_unlock(&module_mutex);
566 mutex_unlock(&kprobe_mutex);
567
568 /* Step 5: Kick optimizer again if needed */
569 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
570 kick_kprobe_optimizer();
571 }
572
573 /* Wait for completing optimization and unoptimization */
574 static __kprobes void wait_for_kprobe_optimizer(void)
575 {
576 mutex_lock(&kprobe_mutex);
577
578 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
579 mutex_unlock(&kprobe_mutex);
580
581 /* this will also make optimizing_work execute immmediately */
582 flush_delayed_work(&optimizing_work);
583 /* @optimizing_work might not have been queued yet, relax */
584 cpu_relax();
585
586 mutex_lock(&kprobe_mutex);
587 }
588
589 mutex_unlock(&kprobe_mutex);
590 }
591
592 /* Optimize kprobe if p is ready to be optimized */
593 static __kprobes void optimize_kprobe(struct kprobe *p)
594 {
595 struct optimized_kprobe *op;
596
597 /* Check if the kprobe is disabled or not ready for optimization. */
598 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
599 (kprobe_disabled(p) || kprobes_all_disarmed))
600 return;
601
602 /* Both of break_handler and post_handler are not supported. */
603 if (p->break_handler || p->post_handler)
604 return;
605
606 op = container_of(p, struct optimized_kprobe, kp);
607
608 /* Check there is no other kprobes at the optimized instructions */
609 if (arch_check_optimized_kprobe(op) < 0)
610 return;
611
612 /* Check if it is already optimized. */
613 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
614 return;
615 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
616
617 if (!list_empty(&op->list))
618 /* This is under unoptimizing. Just dequeue the probe */
619 list_del_init(&op->list);
620 else {
621 list_add(&op->list, &optimizing_list);
622 kick_kprobe_optimizer();
623 }
624 }
625
626 /* Short cut to direct unoptimizing */
627 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
628 {
629 get_online_cpus();
630 arch_unoptimize_kprobe(op);
631 put_online_cpus();
632 if (kprobe_disabled(&op->kp))
633 arch_disarm_kprobe(&op->kp);
634 }
635
636 /* Unoptimize a kprobe if p is optimized */
637 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
638 {
639 struct optimized_kprobe *op;
640
641 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
642 return; /* This is not an optprobe nor optimized */
643
644 op = container_of(p, struct optimized_kprobe, kp);
645 if (!kprobe_optimized(p)) {
646 /* Unoptimized or unoptimizing case */
647 if (force && !list_empty(&op->list)) {
648 /*
649 * Only if this is unoptimizing kprobe and forced,
650 * forcibly unoptimize it. (No need to unoptimize
651 * unoptimized kprobe again :)
652 */
653 list_del_init(&op->list);
654 force_unoptimize_kprobe(op);
655 }
656 return;
657 }
658
659 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
660 if (!list_empty(&op->list)) {
661 /* Dequeue from the optimization queue */
662 list_del_init(&op->list);
663 return;
664 }
665 /* Optimized kprobe case */
666 if (force)
667 /* Forcibly update the code: this is a special case */
668 force_unoptimize_kprobe(op);
669 else {
670 list_add(&op->list, &unoptimizing_list);
671 kick_kprobe_optimizer();
672 }
673 }
674
675 /* Cancel unoptimizing for reusing */
676 static void reuse_unused_kprobe(struct kprobe *ap)
677 {
678 struct optimized_kprobe *op;
679
680 BUG_ON(!kprobe_unused(ap));
681 /*
682 * Unused kprobe MUST be on the way of delayed unoptimizing (means
683 * there is still a relative jump) and disabled.
684 */
685 op = container_of(ap, struct optimized_kprobe, kp);
686 if (unlikely(list_empty(&op->list)))
687 printk(KERN_WARNING "Warning: found a stray unused "
688 "aggrprobe@%p\n", ap->addr);
689 /* Enable the probe again */
690 ap->flags &= ~KPROBE_FLAG_DISABLED;
691 /* Optimize it again (remove from op->list) */
692 BUG_ON(!kprobe_optready(ap));
693 optimize_kprobe(ap);
694 }
695
696 /* Remove optimized instructions */
697 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
698 {
699 struct optimized_kprobe *op;
700
701 op = container_of(p, struct optimized_kprobe, kp);
702 if (!list_empty(&op->list))
703 /* Dequeue from the (un)optimization queue */
704 list_del_init(&op->list);
705 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
706
707 if (kprobe_unused(p)) {
708 /* Enqueue if it is unused */
709 list_add(&op->list, &freeing_list);
710 /*
711 * Remove unused probes from the hash list. After waiting
712 * for synchronization, this probe is reclaimed.
713 * (reclaiming is done by do_free_cleaned_kprobes().)
714 */
715 hlist_del_rcu(&op->kp.hlist);
716 }
717
718 /* Don't touch the code, because it is already freed. */
719 arch_remove_optimized_kprobe(op);
720 }
721
722 /* Try to prepare optimized instructions */
723 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
724 {
725 struct optimized_kprobe *op;
726
727 op = container_of(p, struct optimized_kprobe, kp);
728 arch_prepare_optimized_kprobe(op);
729 }
730
731 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
732 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
733 {
734 struct optimized_kprobe *op;
735
736 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
737 if (!op)
738 return NULL;
739
740 INIT_LIST_HEAD(&op->list);
741 op->kp.addr = p->addr;
742 arch_prepare_optimized_kprobe(op);
743
744 return &op->kp;
745 }
746
747 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
748
749 /*
750 * Prepare an optimized_kprobe and optimize it
751 * NOTE: p must be a normal registered kprobe
752 */
753 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
754 {
755 struct kprobe *ap;
756 struct optimized_kprobe *op;
757
758 /* Impossible to optimize ftrace-based kprobe */
759 if (kprobe_ftrace(p))
760 return;
761
762 /* For preparing optimization, jump_label_text_reserved() is called */
763 jump_label_lock();
764 mutex_lock(&text_mutex);
765
766 ap = alloc_aggr_kprobe(p);
767 if (!ap)
768 goto out;
769
770 op = container_of(ap, struct optimized_kprobe, kp);
771 if (!arch_prepared_optinsn(&op->optinsn)) {
772 /* If failed to setup optimizing, fallback to kprobe */
773 arch_remove_optimized_kprobe(op);
774 kfree(op);
775 goto out;
776 }
777
778 init_aggr_kprobe(ap, p);
779 optimize_kprobe(ap); /* This just kicks optimizer thread */
780
781 out:
782 mutex_unlock(&text_mutex);
783 jump_label_unlock();
784 }
785
786 #ifdef CONFIG_SYSCTL
787 static void __kprobes optimize_all_kprobes(void)
788 {
789 struct hlist_head *head;
790 struct kprobe *p;
791 unsigned int i;
792
793 mutex_lock(&kprobe_mutex);
794 /* If optimization is already allowed, just return */
795 if (kprobes_allow_optimization)
796 goto out;
797
798 kprobes_allow_optimization = true;
799 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
800 head = &kprobe_table[i];
801 hlist_for_each_entry_rcu(p, head, hlist)
802 if (!kprobe_disabled(p))
803 optimize_kprobe(p);
804 }
805 printk(KERN_INFO "Kprobes globally optimized\n");
806 out:
807 mutex_unlock(&kprobe_mutex);
808 }
809
810 static void __kprobes unoptimize_all_kprobes(void)
811 {
812 struct hlist_head *head;
813 struct kprobe *p;
814 unsigned int i;
815
816 mutex_lock(&kprobe_mutex);
817 /* If optimization is already prohibited, just return */
818 if (!kprobes_allow_optimization) {
819 mutex_unlock(&kprobe_mutex);
820 return;
821 }
822
823 kprobes_allow_optimization = false;
824 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
825 head = &kprobe_table[i];
826 hlist_for_each_entry_rcu(p, head, hlist) {
827 if (!kprobe_disabled(p))
828 unoptimize_kprobe(p, false);
829 }
830 }
831 mutex_unlock(&kprobe_mutex);
832
833 /* Wait for unoptimizing completion */
834 wait_for_kprobe_optimizer();
835 printk(KERN_INFO "Kprobes globally unoptimized\n");
836 }
837
838 static DEFINE_MUTEX(kprobe_sysctl_mutex);
839 int sysctl_kprobes_optimization;
840 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
841 void __user *buffer, size_t *length,
842 loff_t *ppos)
843 {
844 int ret;
845
846 mutex_lock(&kprobe_sysctl_mutex);
847 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
848 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
849
850 if (sysctl_kprobes_optimization)
851 optimize_all_kprobes();
852 else
853 unoptimize_all_kprobes();
854 mutex_unlock(&kprobe_sysctl_mutex);
855
856 return ret;
857 }
858 #endif /* CONFIG_SYSCTL */
859
860 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
861 static void __kprobes __arm_kprobe(struct kprobe *p)
862 {
863 struct kprobe *_p;
864
865 /* Check collision with other optimized kprobes */
866 _p = get_optimized_kprobe((unsigned long)p->addr);
867 if (unlikely(_p))
868 /* Fallback to unoptimized kprobe */
869 unoptimize_kprobe(_p, true);
870
871 arch_arm_kprobe(p);
872 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
873 }
874
875 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
876 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
877 {
878 struct kprobe *_p;
879
880 unoptimize_kprobe(p, false); /* Try to unoptimize */
881
882 if (!kprobe_queued(p)) {
883 arch_disarm_kprobe(p);
884 /* If another kprobe was blocked, optimize it. */
885 _p = get_optimized_kprobe((unsigned long)p->addr);
886 if (unlikely(_p) && reopt)
887 optimize_kprobe(_p);
888 }
889 /* TODO: reoptimize others after unoptimized this probe */
890 }
891
892 #else /* !CONFIG_OPTPROBES */
893
894 #define optimize_kprobe(p) do {} while (0)
895 #define unoptimize_kprobe(p, f) do {} while (0)
896 #define kill_optimized_kprobe(p) do {} while (0)
897 #define prepare_optimized_kprobe(p) do {} while (0)
898 #define try_to_optimize_kprobe(p) do {} while (0)
899 #define __arm_kprobe(p) arch_arm_kprobe(p)
900 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
901 #define kprobe_disarmed(p) kprobe_disabled(p)
902 #define wait_for_kprobe_optimizer() do {} while (0)
903
904 /* There should be no unused kprobes can be reused without optimization */
905 static void reuse_unused_kprobe(struct kprobe *ap)
906 {
907 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
908 BUG_ON(kprobe_unused(ap));
909 }
910
911 static __kprobes void free_aggr_kprobe(struct kprobe *p)
912 {
913 arch_remove_kprobe(p);
914 kfree(p);
915 }
916
917 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
918 {
919 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
920 }
921 #endif /* CONFIG_OPTPROBES */
922
923 #ifdef CONFIG_KPROBES_ON_FTRACE
924 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
925 .func = kprobe_ftrace_handler,
926 .flags = FTRACE_OPS_FL_SAVE_REGS,
927 };
928 static int kprobe_ftrace_enabled;
929
930 /* Must ensure p->addr is really on ftrace */
931 static int __kprobes prepare_kprobe(struct kprobe *p)
932 {
933 if (!kprobe_ftrace(p))
934 return arch_prepare_kprobe(p);
935
936 return arch_prepare_kprobe_ftrace(p);
937 }
938
939 /* Caller must lock kprobe_mutex */
940 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
941 {
942 int ret;
943
944 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
945 (unsigned long)p->addr, 0, 0);
946 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
947 kprobe_ftrace_enabled++;
948 if (kprobe_ftrace_enabled == 1) {
949 ret = register_ftrace_function(&kprobe_ftrace_ops);
950 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
951 }
952 }
953
954 /* Caller must lock kprobe_mutex */
955 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
956 {
957 int ret;
958
959 kprobe_ftrace_enabled--;
960 if (kprobe_ftrace_enabled == 0) {
961 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
962 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
963 }
964 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
965 (unsigned long)p->addr, 1, 0);
966 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
967 }
968 #else /* !CONFIG_KPROBES_ON_FTRACE */
969 #define prepare_kprobe(p) arch_prepare_kprobe(p)
970 #define arm_kprobe_ftrace(p) do {} while (0)
971 #define disarm_kprobe_ftrace(p) do {} while (0)
972 #endif
973
974 /* Arm a kprobe with text_mutex */
975 static void __kprobes arm_kprobe(struct kprobe *kp)
976 {
977 if (unlikely(kprobe_ftrace(kp))) {
978 arm_kprobe_ftrace(kp);
979 return;
980 }
981 /*
982 * Here, since __arm_kprobe() doesn't use stop_machine(),
983 * this doesn't cause deadlock on text_mutex. So, we don't
984 * need get_online_cpus().
985 */
986 mutex_lock(&text_mutex);
987 __arm_kprobe(kp);
988 mutex_unlock(&text_mutex);
989 }
990
991 /* Disarm a kprobe with text_mutex */
992 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
993 {
994 if (unlikely(kprobe_ftrace(kp))) {
995 disarm_kprobe_ftrace(kp);
996 return;
997 }
998 /* Ditto */
999 mutex_lock(&text_mutex);
1000 __disarm_kprobe(kp, reopt);
1001 mutex_unlock(&text_mutex);
1002 }
1003
1004 /*
1005 * Aggregate handlers for multiple kprobes support - these handlers
1006 * take care of invoking the individual kprobe handlers on p->list
1007 */
1008 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1009 {
1010 struct kprobe *kp;
1011
1012 list_for_each_entry_rcu(kp, &p->list, list) {
1013 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1014 set_kprobe_instance(kp);
1015 if (kp->pre_handler(kp, regs))
1016 return 1;
1017 }
1018 reset_kprobe_instance();
1019 }
1020 return 0;
1021 }
1022
1023 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1024 unsigned long flags)
1025 {
1026 struct kprobe *kp;
1027
1028 list_for_each_entry_rcu(kp, &p->list, list) {
1029 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1030 set_kprobe_instance(kp);
1031 kp->post_handler(kp, regs, flags);
1032 reset_kprobe_instance();
1033 }
1034 }
1035 }
1036
1037 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1038 int trapnr)
1039 {
1040 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1041
1042 /*
1043 * if we faulted "during" the execution of a user specified
1044 * probe handler, invoke just that probe's fault handler
1045 */
1046 if (cur && cur->fault_handler) {
1047 if (cur->fault_handler(cur, regs, trapnr))
1048 return 1;
1049 }
1050 return 0;
1051 }
1052
1053 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1054 {
1055 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1056 int ret = 0;
1057
1058 if (cur && cur->break_handler) {
1059 if (cur->break_handler(cur, regs))
1060 ret = 1;
1061 }
1062 reset_kprobe_instance();
1063 return ret;
1064 }
1065
1066 /* Walks the list and increments nmissed count for multiprobe case */
1067 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1068 {
1069 struct kprobe *kp;
1070 if (!kprobe_aggrprobe(p)) {
1071 p->nmissed++;
1072 } else {
1073 list_for_each_entry_rcu(kp, &p->list, list)
1074 kp->nmissed++;
1075 }
1076 return;
1077 }
1078
1079 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1080 struct hlist_head *head)
1081 {
1082 struct kretprobe *rp = ri->rp;
1083
1084 /* remove rp inst off the rprobe_inst_table */
1085 hlist_del(&ri->hlist);
1086 INIT_HLIST_NODE(&ri->hlist);
1087 if (likely(rp)) {
1088 raw_spin_lock(&rp->lock);
1089 hlist_add_head(&ri->hlist, &rp->free_instances);
1090 raw_spin_unlock(&rp->lock);
1091 } else
1092 /* Unregistering */
1093 hlist_add_head(&ri->hlist, head);
1094 }
1095
1096 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1097 struct hlist_head **head, unsigned long *flags)
1098 __acquires(hlist_lock)
1099 {
1100 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1101 raw_spinlock_t *hlist_lock;
1102
1103 *head = &kretprobe_inst_table[hash];
1104 hlist_lock = kretprobe_table_lock_ptr(hash);
1105 raw_spin_lock_irqsave(hlist_lock, *flags);
1106 }
1107
1108 static void __kprobes kretprobe_table_lock(unsigned long hash,
1109 unsigned long *flags)
1110 __acquires(hlist_lock)
1111 {
1112 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1113 raw_spin_lock_irqsave(hlist_lock, *flags);
1114 }
1115
1116 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1117 unsigned long *flags)
1118 __releases(hlist_lock)
1119 {
1120 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1121 raw_spinlock_t *hlist_lock;
1122
1123 hlist_lock = kretprobe_table_lock_ptr(hash);
1124 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1125 }
1126
1127 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1128 unsigned long *flags)
1129 __releases(hlist_lock)
1130 {
1131 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1132 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1133 }
1134
1135 /*
1136 * This function is called from finish_task_switch when task tk becomes dead,
1137 * so that we can recycle any function-return probe instances associated
1138 * with this task. These left over instances represent probed functions
1139 * that have been called but will never return.
1140 */
1141 void __kprobes kprobe_flush_task(struct task_struct *tk)
1142 {
1143 struct kretprobe_instance *ri;
1144 struct hlist_head *head, empty_rp;
1145 struct hlist_node *tmp;
1146 unsigned long hash, flags = 0;
1147
1148 if (unlikely(!kprobes_initialized))
1149 /* Early boot. kretprobe_table_locks not yet initialized. */
1150 return;
1151
1152 INIT_HLIST_HEAD(&empty_rp);
1153 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1154 head = &kretprobe_inst_table[hash];
1155 kretprobe_table_lock(hash, &flags);
1156 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1157 if (ri->task == tk)
1158 recycle_rp_inst(ri, &empty_rp);
1159 }
1160 kretprobe_table_unlock(hash, &flags);
1161 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1162 hlist_del(&ri->hlist);
1163 kfree(ri);
1164 }
1165 }
1166
1167 static inline void free_rp_inst(struct kretprobe *rp)
1168 {
1169 struct kretprobe_instance *ri;
1170 struct hlist_node *next;
1171
1172 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1173 hlist_del(&ri->hlist);
1174 kfree(ri);
1175 }
1176 }
1177
1178 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1179 {
1180 unsigned long flags, hash;
1181 struct kretprobe_instance *ri;
1182 struct hlist_node *next;
1183 struct hlist_head *head;
1184
1185 /* No race here */
1186 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1187 kretprobe_table_lock(hash, &flags);
1188 head = &kretprobe_inst_table[hash];
1189 hlist_for_each_entry_safe(ri, next, head, hlist) {
1190 if (ri->rp == rp)
1191 ri->rp = NULL;
1192 }
1193 kretprobe_table_unlock(hash, &flags);
1194 }
1195 free_rp_inst(rp);
1196 }
1197
1198 /*
1199 * Add the new probe to ap->list. Fail if this is the
1200 * second jprobe at the address - two jprobes can't coexist
1201 */
1202 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1203 {
1204 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1205
1206 if (p->break_handler || p->post_handler)
1207 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1208
1209 if (p->break_handler) {
1210 if (ap->break_handler)
1211 return -EEXIST;
1212 list_add_tail_rcu(&p->list, &ap->list);
1213 ap->break_handler = aggr_break_handler;
1214 } else
1215 list_add_rcu(&p->list, &ap->list);
1216 if (p->post_handler && !ap->post_handler)
1217 ap->post_handler = aggr_post_handler;
1218
1219 return 0;
1220 }
1221
1222 /*
1223 * Fill in the required fields of the "manager kprobe". Replace the
1224 * earlier kprobe in the hlist with the manager kprobe
1225 */
1226 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1227 {
1228 /* Copy p's insn slot to ap */
1229 copy_kprobe(p, ap);
1230 flush_insn_slot(ap);
1231 ap->addr = p->addr;
1232 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1233 ap->pre_handler = aggr_pre_handler;
1234 ap->fault_handler = aggr_fault_handler;
1235 /* We don't care the kprobe which has gone. */
1236 if (p->post_handler && !kprobe_gone(p))
1237 ap->post_handler = aggr_post_handler;
1238 if (p->break_handler && !kprobe_gone(p))
1239 ap->break_handler = aggr_break_handler;
1240
1241 INIT_LIST_HEAD(&ap->list);
1242 INIT_HLIST_NODE(&ap->hlist);
1243
1244 list_add_rcu(&p->list, &ap->list);
1245 hlist_replace_rcu(&p->hlist, &ap->hlist);
1246 }
1247
1248 /*
1249 * This is the second or subsequent kprobe at the address - handle
1250 * the intricacies
1251 */
1252 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1253 struct kprobe *p)
1254 {
1255 int ret = 0;
1256 struct kprobe *ap = orig_p;
1257
1258 /* For preparing optimization, jump_label_text_reserved() is called */
1259 jump_label_lock();
1260 /*
1261 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1262 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1263 */
1264 get_online_cpus();
1265 mutex_lock(&text_mutex);
1266
1267 if (!kprobe_aggrprobe(orig_p)) {
1268 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1269 ap = alloc_aggr_kprobe(orig_p);
1270 if (!ap) {
1271 ret = -ENOMEM;
1272 goto out;
1273 }
1274 init_aggr_kprobe(ap, orig_p);
1275 } else if (kprobe_unused(ap))
1276 /* This probe is going to die. Rescue it */
1277 reuse_unused_kprobe(ap);
1278
1279 if (kprobe_gone(ap)) {
1280 /*
1281 * Attempting to insert new probe at the same location that
1282 * had a probe in the module vaddr area which already
1283 * freed. So, the instruction slot has already been
1284 * released. We need a new slot for the new probe.
1285 */
1286 ret = arch_prepare_kprobe(ap);
1287 if (ret)
1288 /*
1289 * Even if fail to allocate new slot, don't need to
1290 * free aggr_probe. It will be used next time, or
1291 * freed by unregister_kprobe.
1292 */
1293 goto out;
1294
1295 /* Prepare optimized instructions if possible. */
1296 prepare_optimized_kprobe(ap);
1297
1298 /*
1299 * Clear gone flag to prevent allocating new slot again, and
1300 * set disabled flag because it is not armed yet.
1301 */
1302 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1303 | KPROBE_FLAG_DISABLED;
1304 }
1305
1306 /* Copy ap's insn slot to p */
1307 copy_kprobe(ap, p);
1308 ret = add_new_kprobe(ap, p);
1309
1310 out:
1311 mutex_unlock(&text_mutex);
1312 put_online_cpus();
1313 jump_label_unlock();
1314
1315 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1316 ap->flags &= ~KPROBE_FLAG_DISABLED;
1317 if (!kprobes_all_disarmed)
1318 /* Arm the breakpoint again. */
1319 arm_kprobe(ap);
1320 }
1321 return ret;
1322 }
1323
1324 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1325 {
1326 /* The __kprobes marked functions and entry code must not be probed */
1327 return addr >= (unsigned long)__kprobes_text_start &&
1328 addr < (unsigned long)__kprobes_text_end;
1329 }
1330
1331 static int __kprobes in_kprobes_functions(unsigned long addr)
1332 {
1333 struct kprobe_blackpoint *kb;
1334
1335 if (arch_within_kprobe_blacklist(addr))
1336 return -EINVAL;
1337 /*
1338 * If there exists a kprobe_blacklist, verify and
1339 * fail any probe registration in the prohibited area
1340 */
1341 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1342 if (kb->start_addr) {
1343 if (addr >= kb->start_addr &&
1344 addr < (kb->start_addr + kb->range))
1345 return -EINVAL;
1346 }
1347 }
1348 return 0;
1349 }
1350
1351 /*
1352 * If we have a symbol_name argument, look it up and add the offset field
1353 * to it. This way, we can specify a relative address to a symbol.
1354 * This returns encoded errors if it fails to look up symbol or invalid
1355 * combination of parameters.
1356 */
1357 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1358 {
1359 kprobe_opcode_t *addr = p->addr;
1360
1361 if ((p->symbol_name && p->addr) ||
1362 (!p->symbol_name && !p->addr))
1363 goto invalid;
1364
1365 if (p->symbol_name) {
1366 kprobe_lookup_name(p->symbol_name, addr);
1367 if (!addr)
1368 return ERR_PTR(-ENOENT);
1369 }
1370
1371 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1372 if (addr)
1373 return addr;
1374
1375 invalid:
1376 return ERR_PTR(-EINVAL);
1377 }
1378
1379 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1380 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1381 {
1382 struct kprobe *ap, *list_p;
1383
1384 ap = get_kprobe(p->addr);
1385 if (unlikely(!ap))
1386 return NULL;
1387
1388 if (p != ap) {
1389 list_for_each_entry_rcu(list_p, &ap->list, list)
1390 if (list_p == p)
1391 /* kprobe p is a valid probe */
1392 goto valid;
1393 return NULL;
1394 }
1395 valid:
1396 return ap;
1397 }
1398
1399 /* Return error if the kprobe is being re-registered */
1400 static inline int check_kprobe_rereg(struct kprobe *p)
1401 {
1402 int ret = 0;
1403
1404 mutex_lock(&kprobe_mutex);
1405 if (__get_valid_kprobe(p))
1406 ret = -EINVAL;
1407 mutex_unlock(&kprobe_mutex);
1408
1409 return ret;
1410 }
1411
1412 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1413 struct module **probed_mod)
1414 {
1415 int ret = 0;
1416 unsigned long ftrace_addr;
1417
1418 /*
1419 * If the address is located on a ftrace nop, set the
1420 * breakpoint to the following instruction.
1421 */
1422 ftrace_addr = ftrace_location((unsigned long)p->addr);
1423 if (ftrace_addr) {
1424 #ifdef CONFIG_KPROBES_ON_FTRACE
1425 /* Given address is not on the instruction boundary */
1426 if ((unsigned long)p->addr != ftrace_addr)
1427 return -EILSEQ;
1428 p->flags |= KPROBE_FLAG_FTRACE;
1429 #else /* !CONFIG_KPROBES_ON_FTRACE */
1430 return -EINVAL;
1431 #endif
1432 }
1433
1434 jump_label_lock();
1435 preempt_disable();
1436
1437 /* Ensure it is not in reserved area nor out of text */
1438 if (!kernel_text_address((unsigned long) p->addr) ||
1439 in_kprobes_functions((unsigned long) p->addr) ||
1440 jump_label_text_reserved(p->addr, p->addr)) {
1441 ret = -EINVAL;
1442 goto out;
1443 }
1444
1445 /* Check if are we probing a module */
1446 *probed_mod = __module_text_address((unsigned long) p->addr);
1447 if (*probed_mod) {
1448 /*
1449 * We must hold a refcount of the probed module while updating
1450 * its code to prohibit unexpected unloading.
1451 */
1452 if (unlikely(!try_module_get(*probed_mod))) {
1453 ret = -ENOENT;
1454 goto out;
1455 }
1456
1457 /*
1458 * If the module freed .init.text, we couldn't insert
1459 * kprobes in there.
1460 */
1461 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1462 (*probed_mod)->state != MODULE_STATE_COMING) {
1463 module_put(*probed_mod);
1464 *probed_mod = NULL;
1465 ret = -ENOENT;
1466 }
1467 }
1468 out:
1469 preempt_enable();
1470 jump_label_unlock();
1471
1472 return ret;
1473 }
1474
1475 int __kprobes register_kprobe(struct kprobe *p)
1476 {
1477 int ret;
1478 struct kprobe *old_p;
1479 struct module *probed_mod;
1480 kprobe_opcode_t *addr;
1481
1482 /* Adjust probe address from symbol */
1483 addr = kprobe_addr(p);
1484 if (IS_ERR(addr))
1485 return PTR_ERR(addr);
1486 p->addr = addr;
1487
1488 ret = check_kprobe_rereg(p);
1489 if (ret)
1490 return ret;
1491
1492 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1493 p->flags &= KPROBE_FLAG_DISABLED;
1494 p->nmissed = 0;
1495 INIT_LIST_HEAD(&p->list);
1496
1497 ret = check_kprobe_address_safe(p, &probed_mod);
1498 if (ret)
1499 return ret;
1500
1501 mutex_lock(&kprobe_mutex);
1502
1503 old_p = get_kprobe(p->addr);
1504 if (old_p) {
1505 /* Since this may unoptimize old_p, locking text_mutex. */
1506 ret = register_aggr_kprobe(old_p, p);
1507 goto out;
1508 }
1509
1510 mutex_lock(&text_mutex); /* Avoiding text modification */
1511 ret = prepare_kprobe(p);
1512 mutex_unlock(&text_mutex);
1513 if (ret)
1514 goto out;
1515
1516 INIT_HLIST_NODE(&p->hlist);
1517 hlist_add_head_rcu(&p->hlist,
1518 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1519
1520 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1521 arm_kprobe(p);
1522
1523 /* Try to optimize kprobe */
1524 try_to_optimize_kprobe(p);
1525
1526 out:
1527 mutex_unlock(&kprobe_mutex);
1528
1529 if (probed_mod)
1530 module_put(probed_mod);
1531
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(register_kprobe);
1535
1536 /* Check if all probes on the aggrprobe are disabled */
1537 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1538 {
1539 struct kprobe *kp;
1540
1541 list_for_each_entry_rcu(kp, &ap->list, list)
1542 if (!kprobe_disabled(kp))
1543 /*
1544 * There is an active probe on the list.
1545 * We can't disable this ap.
1546 */
1547 return 0;
1548
1549 return 1;
1550 }
1551
1552 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1553 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1554 {
1555 struct kprobe *orig_p;
1556
1557 /* Get an original kprobe for return */
1558 orig_p = __get_valid_kprobe(p);
1559 if (unlikely(orig_p == NULL))
1560 return NULL;
1561
1562 if (!kprobe_disabled(p)) {
1563 /* Disable probe if it is a child probe */
1564 if (p != orig_p)
1565 p->flags |= KPROBE_FLAG_DISABLED;
1566
1567 /* Try to disarm and disable this/parent probe */
1568 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1569 disarm_kprobe(orig_p, true);
1570 orig_p->flags |= KPROBE_FLAG_DISABLED;
1571 }
1572 }
1573
1574 return orig_p;
1575 }
1576
1577 /*
1578 * Unregister a kprobe without a scheduler synchronization.
1579 */
1580 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1581 {
1582 struct kprobe *ap, *list_p;
1583
1584 /* Disable kprobe. This will disarm it if needed. */
1585 ap = __disable_kprobe(p);
1586 if (ap == NULL)
1587 return -EINVAL;
1588
1589 if (ap == p)
1590 /*
1591 * This probe is an independent(and non-optimized) kprobe
1592 * (not an aggrprobe). Remove from the hash list.
1593 */
1594 goto disarmed;
1595
1596 /* Following process expects this probe is an aggrprobe */
1597 WARN_ON(!kprobe_aggrprobe(ap));
1598
1599 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1600 /*
1601 * !disarmed could be happen if the probe is under delayed
1602 * unoptimizing.
1603 */
1604 goto disarmed;
1605 else {
1606 /* If disabling probe has special handlers, update aggrprobe */
1607 if (p->break_handler && !kprobe_gone(p))
1608 ap->break_handler = NULL;
1609 if (p->post_handler && !kprobe_gone(p)) {
1610 list_for_each_entry_rcu(list_p, &ap->list, list) {
1611 if ((list_p != p) && (list_p->post_handler))
1612 goto noclean;
1613 }
1614 ap->post_handler = NULL;
1615 }
1616 noclean:
1617 /*
1618 * Remove from the aggrprobe: this path will do nothing in
1619 * __unregister_kprobe_bottom().
1620 */
1621 list_del_rcu(&p->list);
1622 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1623 /*
1624 * Try to optimize this probe again, because post
1625 * handler may have been changed.
1626 */
1627 optimize_kprobe(ap);
1628 }
1629 return 0;
1630
1631 disarmed:
1632 BUG_ON(!kprobe_disarmed(ap));
1633 hlist_del_rcu(&ap->hlist);
1634 return 0;
1635 }
1636
1637 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1638 {
1639 struct kprobe *ap;
1640
1641 if (list_empty(&p->list))
1642 /* This is an independent kprobe */
1643 arch_remove_kprobe(p);
1644 else if (list_is_singular(&p->list)) {
1645 /* This is the last child of an aggrprobe */
1646 ap = list_entry(p->list.next, struct kprobe, list);
1647 list_del(&p->list);
1648 free_aggr_kprobe(ap);
1649 }
1650 /* Otherwise, do nothing. */
1651 }
1652
1653 int __kprobes register_kprobes(struct kprobe **kps, int num)
1654 {
1655 int i, ret = 0;
1656
1657 if (num <= 0)
1658 return -EINVAL;
1659 for (i = 0; i < num; i++) {
1660 ret = register_kprobe(kps[i]);
1661 if (ret < 0) {
1662 if (i > 0)
1663 unregister_kprobes(kps, i);
1664 break;
1665 }
1666 }
1667 return ret;
1668 }
1669 EXPORT_SYMBOL_GPL(register_kprobes);
1670
1671 void __kprobes unregister_kprobe(struct kprobe *p)
1672 {
1673 unregister_kprobes(&p, 1);
1674 }
1675 EXPORT_SYMBOL_GPL(unregister_kprobe);
1676
1677 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1678 {
1679 int i;
1680
1681 if (num <= 0)
1682 return;
1683 mutex_lock(&kprobe_mutex);
1684 for (i = 0; i < num; i++)
1685 if (__unregister_kprobe_top(kps[i]) < 0)
1686 kps[i]->addr = NULL;
1687 mutex_unlock(&kprobe_mutex);
1688
1689 synchronize_sched();
1690 for (i = 0; i < num; i++)
1691 if (kps[i]->addr)
1692 __unregister_kprobe_bottom(kps[i]);
1693 }
1694 EXPORT_SYMBOL_GPL(unregister_kprobes);
1695
1696 static struct notifier_block kprobe_exceptions_nb = {
1697 .notifier_call = kprobe_exceptions_notify,
1698 .priority = 0x7fffffff /* we need to be notified first */
1699 };
1700
1701 unsigned long __weak arch_deref_entry_point(void *entry)
1702 {
1703 return (unsigned long)entry;
1704 }
1705
1706 int __kprobes register_jprobes(struct jprobe **jps, int num)
1707 {
1708 struct jprobe *jp;
1709 int ret = 0, i;
1710
1711 if (num <= 0)
1712 return -EINVAL;
1713 for (i = 0; i < num; i++) {
1714 unsigned long addr, offset;
1715 jp = jps[i];
1716 addr = arch_deref_entry_point(jp->entry);
1717
1718 /* Verify probepoint is a function entry point */
1719 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1720 offset == 0) {
1721 jp->kp.pre_handler = setjmp_pre_handler;
1722 jp->kp.break_handler = longjmp_break_handler;
1723 ret = register_kprobe(&jp->kp);
1724 } else
1725 ret = -EINVAL;
1726
1727 if (ret < 0) {
1728 if (i > 0)
1729 unregister_jprobes(jps, i);
1730 break;
1731 }
1732 }
1733 return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(register_jprobes);
1736
1737 int __kprobes register_jprobe(struct jprobe *jp)
1738 {
1739 return register_jprobes(&jp, 1);
1740 }
1741 EXPORT_SYMBOL_GPL(register_jprobe);
1742
1743 void __kprobes unregister_jprobe(struct jprobe *jp)
1744 {
1745 unregister_jprobes(&jp, 1);
1746 }
1747 EXPORT_SYMBOL_GPL(unregister_jprobe);
1748
1749 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1750 {
1751 int i;
1752
1753 if (num <= 0)
1754 return;
1755 mutex_lock(&kprobe_mutex);
1756 for (i = 0; i < num; i++)
1757 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1758 jps[i]->kp.addr = NULL;
1759 mutex_unlock(&kprobe_mutex);
1760
1761 synchronize_sched();
1762 for (i = 0; i < num; i++) {
1763 if (jps[i]->kp.addr)
1764 __unregister_kprobe_bottom(&jps[i]->kp);
1765 }
1766 }
1767 EXPORT_SYMBOL_GPL(unregister_jprobes);
1768
1769 #ifdef CONFIG_KRETPROBES
1770 /*
1771 * This kprobe pre_handler is registered with every kretprobe. When probe
1772 * hits it will set up the return probe.
1773 */
1774 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1775 struct pt_regs *regs)
1776 {
1777 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1778 unsigned long hash, flags = 0;
1779 struct kretprobe_instance *ri;
1780
1781 /*TODO: consider to only swap the RA after the last pre_handler fired */
1782 hash = hash_ptr(current, KPROBE_HASH_BITS);
1783 raw_spin_lock_irqsave(&rp->lock, flags);
1784 if (!hlist_empty(&rp->free_instances)) {
1785 ri = hlist_entry(rp->free_instances.first,
1786 struct kretprobe_instance, hlist);
1787 hlist_del(&ri->hlist);
1788 raw_spin_unlock_irqrestore(&rp->lock, flags);
1789
1790 ri->rp = rp;
1791 ri->task = current;
1792
1793 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1794 raw_spin_lock_irqsave(&rp->lock, flags);
1795 hlist_add_head(&ri->hlist, &rp->free_instances);
1796 raw_spin_unlock_irqrestore(&rp->lock, flags);
1797 return 0;
1798 }
1799
1800 arch_prepare_kretprobe(ri, regs);
1801
1802 /* XXX(hch): why is there no hlist_move_head? */
1803 INIT_HLIST_NODE(&ri->hlist);
1804 kretprobe_table_lock(hash, &flags);
1805 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1806 kretprobe_table_unlock(hash, &flags);
1807 } else {
1808 rp->nmissed++;
1809 raw_spin_unlock_irqrestore(&rp->lock, flags);
1810 }
1811 return 0;
1812 }
1813
1814 int __kprobes register_kretprobe(struct kretprobe *rp)
1815 {
1816 int ret = 0;
1817 struct kretprobe_instance *inst;
1818 int i;
1819 void *addr;
1820
1821 if (kretprobe_blacklist_size) {
1822 addr = kprobe_addr(&rp->kp);
1823 if (IS_ERR(addr))
1824 return PTR_ERR(addr);
1825
1826 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1827 if (kretprobe_blacklist[i].addr == addr)
1828 return -EINVAL;
1829 }
1830 }
1831
1832 rp->kp.pre_handler = pre_handler_kretprobe;
1833 rp->kp.post_handler = NULL;
1834 rp->kp.fault_handler = NULL;
1835 rp->kp.break_handler = NULL;
1836
1837 /* Pre-allocate memory for max kretprobe instances */
1838 if (rp->maxactive <= 0) {
1839 #ifdef CONFIG_PREEMPT
1840 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1841 #else
1842 rp->maxactive = num_possible_cpus();
1843 #endif
1844 }
1845 raw_spin_lock_init(&rp->lock);
1846 INIT_HLIST_HEAD(&rp->free_instances);
1847 for (i = 0; i < rp->maxactive; i++) {
1848 inst = kmalloc(sizeof(struct kretprobe_instance) +
1849 rp->data_size, GFP_KERNEL);
1850 if (inst == NULL) {
1851 free_rp_inst(rp);
1852 return -ENOMEM;
1853 }
1854 INIT_HLIST_NODE(&inst->hlist);
1855 hlist_add_head(&inst->hlist, &rp->free_instances);
1856 }
1857
1858 rp->nmissed = 0;
1859 /* Establish function entry probe point */
1860 ret = register_kprobe(&rp->kp);
1861 if (ret != 0)
1862 free_rp_inst(rp);
1863 return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(register_kretprobe);
1866
1867 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1868 {
1869 int ret = 0, i;
1870
1871 if (num <= 0)
1872 return -EINVAL;
1873 for (i = 0; i < num; i++) {
1874 ret = register_kretprobe(rps[i]);
1875 if (ret < 0) {
1876 if (i > 0)
1877 unregister_kretprobes(rps, i);
1878 break;
1879 }
1880 }
1881 return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(register_kretprobes);
1884
1885 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1886 {
1887 unregister_kretprobes(&rp, 1);
1888 }
1889 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1890
1891 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1892 {
1893 int i;
1894
1895 if (num <= 0)
1896 return;
1897 mutex_lock(&kprobe_mutex);
1898 for (i = 0; i < num; i++)
1899 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1900 rps[i]->kp.addr = NULL;
1901 mutex_unlock(&kprobe_mutex);
1902
1903 synchronize_sched();
1904 for (i = 0; i < num; i++) {
1905 if (rps[i]->kp.addr) {
1906 __unregister_kprobe_bottom(&rps[i]->kp);
1907 cleanup_rp_inst(rps[i]);
1908 }
1909 }
1910 }
1911 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1912
1913 #else /* CONFIG_KRETPROBES */
1914 int __kprobes register_kretprobe(struct kretprobe *rp)
1915 {
1916 return -ENOSYS;
1917 }
1918 EXPORT_SYMBOL_GPL(register_kretprobe);
1919
1920 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1921 {
1922 return -ENOSYS;
1923 }
1924 EXPORT_SYMBOL_GPL(register_kretprobes);
1925
1926 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1927 {
1928 }
1929 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1930
1931 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1932 {
1933 }
1934 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1935
1936 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1937 struct pt_regs *regs)
1938 {
1939 return 0;
1940 }
1941
1942 #endif /* CONFIG_KRETPROBES */
1943
1944 /* Set the kprobe gone and remove its instruction buffer. */
1945 static void __kprobes kill_kprobe(struct kprobe *p)
1946 {
1947 struct kprobe *kp;
1948
1949 p->flags |= KPROBE_FLAG_GONE;
1950 if (kprobe_aggrprobe(p)) {
1951 /*
1952 * If this is an aggr_kprobe, we have to list all the
1953 * chained probes and mark them GONE.
1954 */
1955 list_for_each_entry_rcu(kp, &p->list, list)
1956 kp->flags |= KPROBE_FLAG_GONE;
1957 p->post_handler = NULL;
1958 p->break_handler = NULL;
1959 kill_optimized_kprobe(p);
1960 }
1961 /*
1962 * Here, we can remove insn_slot safely, because no thread calls
1963 * the original probed function (which will be freed soon) any more.
1964 */
1965 arch_remove_kprobe(p);
1966 }
1967
1968 /* Disable one kprobe */
1969 int __kprobes disable_kprobe(struct kprobe *kp)
1970 {
1971 int ret = 0;
1972
1973 mutex_lock(&kprobe_mutex);
1974
1975 /* Disable this kprobe */
1976 if (__disable_kprobe(kp) == NULL)
1977 ret = -EINVAL;
1978
1979 mutex_unlock(&kprobe_mutex);
1980 return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(disable_kprobe);
1983
1984 /* Enable one kprobe */
1985 int __kprobes enable_kprobe(struct kprobe *kp)
1986 {
1987 int ret = 0;
1988 struct kprobe *p;
1989
1990 mutex_lock(&kprobe_mutex);
1991
1992 /* Check whether specified probe is valid. */
1993 p = __get_valid_kprobe(kp);
1994 if (unlikely(p == NULL)) {
1995 ret = -EINVAL;
1996 goto out;
1997 }
1998
1999 if (kprobe_gone(kp)) {
2000 /* This kprobe has gone, we couldn't enable it. */
2001 ret = -EINVAL;
2002 goto out;
2003 }
2004
2005 if (p != kp)
2006 kp->flags &= ~KPROBE_FLAG_DISABLED;
2007
2008 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2009 p->flags &= ~KPROBE_FLAG_DISABLED;
2010 arm_kprobe(p);
2011 }
2012 out:
2013 mutex_unlock(&kprobe_mutex);
2014 return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(enable_kprobe);
2017
2018 void __kprobes dump_kprobe(struct kprobe *kp)
2019 {
2020 printk(KERN_WARNING "Dumping kprobe:\n");
2021 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2022 kp->symbol_name, kp->addr, kp->offset);
2023 }
2024
2025 /* Module notifier call back, checking kprobes on the module */
2026 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2027 unsigned long val, void *data)
2028 {
2029 struct module *mod = data;
2030 struct hlist_head *head;
2031 struct kprobe *p;
2032 unsigned int i;
2033 int checkcore = (val == MODULE_STATE_GOING);
2034
2035 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2036 return NOTIFY_DONE;
2037
2038 /*
2039 * When MODULE_STATE_GOING was notified, both of module .text and
2040 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2041 * notified, only .init.text section would be freed. We need to
2042 * disable kprobes which have been inserted in the sections.
2043 */
2044 mutex_lock(&kprobe_mutex);
2045 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2046 head = &kprobe_table[i];
2047 hlist_for_each_entry_rcu(p, head, hlist)
2048 if (within_module_init((unsigned long)p->addr, mod) ||
2049 (checkcore &&
2050 within_module_core((unsigned long)p->addr, mod))) {
2051 /*
2052 * The vaddr this probe is installed will soon
2053 * be vfreed buy not synced to disk. Hence,
2054 * disarming the breakpoint isn't needed.
2055 */
2056 kill_kprobe(p);
2057 }
2058 }
2059 mutex_unlock(&kprobe_mutex);
2060 return NOTIFY_DONE;
2061 }
2062
2063 static struct notifier_block kprobe_module_nb = {
2064 .notifier_call = kprobes_module_callback,
2065 .priority = 0
2066 };
2067
2068 static int __init init_kprobes(void)
2069 {
2070 int i, err = 0;
2071 unsigned long offset = 0, size = 0;
2072 char *modname, namebuf[KSYM_NAME_LEN];
2073 const char *symbol_name;
2074 void *addr;
2075 struct kprobe_blackpoint *kb;
2076
2077 /* FIXME allocate the probe table, currently defined statically */
2078 /* initialize all list heads */
2079 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2080 INIT_HLIST_HEAD(&kprobe_table[i]);
2081 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2082 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2083 }
2084
2085 /*
2086 * Lookup and populate the kprobe_blacklist.
2087 *
2088 * Unlike the kretprobe blacklist, we'll need to determine
2089 * the range of addresses that belong to the said functions,
2090 * since a kprobe need not necessarily be at the beginning
2091 * of a function.
2092 */
2093 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2094 kprobe_lookup_name(kb->name, addr);
2095 if (!addr)
2096 continue;
2097
2098 kb->start_addr = (unsigned long)addr;
2099 symbol_name = kallsyms_lookup(kb->start_addr,
2100 &size, &offset, &modname, namebuf);
2101 if (!symbol_name)
2102 kb->range = 0;
2103 else
2104 kb->range = size;
2105 }
2106
2107 if (kretprobe_blacklist_size) {
2108 /* lookup the function address from its name */
2109 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2110 kprobe_lookup_name(kretprobe_blacklist[i].name,
2111 kretprobe_blacklist[i].addr);
2112 if (!kretprobe_blacklist[i].addr)
2113 printk("kretprobe: lookup failed: %s\n",
2114 kretprobe_blacklist[i].name);
2115 }
2116 }
2117
2118 #if defined(CONFIG_OPTPROBES)
2119 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2120 /* Init kprobe_optinsn_slots */
2121 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2122 #endif
2123 /* By default, kprobes can be optimized */
2124 kprobes_allow_optimization = true;
2125 #endif
2126
2127 /* By default, kprobes are armed */
2128 kprobes_all_disarmed = false;
2129
2130 err = arch_init_kprobes();
2131 if (!err)
2132 err = register_die_notifier(&kprobe_exceptions_nb);
2133 if (!err)
2134 err = register_module_notifier(&kprobe_module_nb);
2135
2136 kprobes_initialized = (err == 0);
2137
2138 if (!err)
2139 init_test_probes();
2140 return err;
2141 }
2142
2143 #ifdef CONFIG_DEBUG_FS
2144 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2145 const char *sym, int offset, char *modname, struct kprobe *pp)
2146 {
2147 char *kprobe_type;
2148
2149 if (p->pre_handler == pre_handler_kretprobe)
2150 kprobe_type = "r";
2151 else if (p->pre_handler == setjmp_pre_handler)
2152 kprobe_type = "j";
2153 else
2154 kprobe_type = "k";
2155
2156 if (sym)
2157 seq_printf(pi, "%p %s %s+0x%x %s ",
2158 p->addr, kprobe_type, sym, offset,
2159 (modname ? modname : " "));
2160 else
2161 seq_printf(pi, "%p %s %p ",
2162 p->addr, kprobe_type, p->addr);
2163
2164 if (!pp)
2165 pp = p;
2166 seq_printf(pi, "%s%s%s%s\n",
2167 (kprobe_gone(p) ? "[GONE]" : ""),
2168 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2169 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2170 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2171 }
2172
2173 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2174 {
2175 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2176 }
2177
2178 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2179 {
2180 (*pos)++;
2181 if (*pos >= KPROBE_TABLE_SIZE)
2182 return NULL;
2183 return pos;
2184 }
2185
2186 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2187 {
2188 /* Nothing to do */
2189 }
2190
2191 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2192 {
2193 struct hlist_head *head;
2194 struct kprobe *p, *kp;
2195 const char *sym = NULL;
2196 unsigned int i = *(loff_t *) v;
2197 unsigned long offset = 0;
2198 char *modname, namebuf[KSYM_NAME_LEN];
2199
2200 head = &kprobe_table[i];
2201 preempt_disable();
2202 hlist_for_each_entry_rcu(p, head, hlist) {
2203 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2204 &offset, &modname, namebuf);
2205 if (kprobe_aggrprobe(p)) {
2206 list_for_each_entry_rcu(kp, &p->list, list)
2207 report_probe(pi, kp, sym, offset, modname, p);
2208 } else
2209 report_probe(pi, p, sym, offset, modname, NULL);
2210 }
2211 preempt_enable();
2212 return 0;
2213 }
2214
2215 static const struct seq_operations kprobes_seq_ops = {
2216 .start = kprobe_seq_start,
2217 .next = kprobe_seq_next,
2218 .stop = kprobe_seq_stop,
2219 .show = show_kprobe_addr
2220 };
2221
2222 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2223 {
2224 return seq_open(filp, &kprobes_seq_ops);
2225 }
2226
2227 static const struct file_operations debugfs_kprobes_operations = {
2228 .open = kprobes_open,
2229 .read = seq_read,
2230 .llseek = seq_lseek,
2231 .release = seq_release,
2232 };
2233
2234 static void __kprobes arm_all_kprobes(void)
2235 {
2236 struct hlist_head *head;
2237 struct kprobe *p;
2238 unsigned int i;
2239
2240 mutex_lock(&kprobe_mutex);
2241
2242 /* If kprobes are armed, just return */
2243 if (!kprobes_all_disarmed)
2244 goto already_enabled;
2245
2246 /* Arming kprobes doesn't optimize kprobe itself */
2247 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2248 head = &kprobe_table[i];
2249 hlist_for_each_entry_rcu(p, head, hlist)
2250 if (!kprobe_disabled(p))
2251 arm_kprobe(p);
2252 }
2253
2254 kprobes_all_disarmed = false;
2255 printk(KERN_INFO "Kprobes globally enabled\n");
2256
2257 already_enabled:
2258 mutex_unlock(&kprobe_mutex);
2259 return;
2260 }
2261
2262 static void __kprobes disarm_all_kprobes(void)
2263 {
2264 struct hlist_head *head;
2265 struct kprobe *p;
2266 unsigned int i;
2267
2268 mutex_lock(&kprobe_mutex);
2269
2270 /* If kprobes are already disarmed, just return */
2271 if (kprobes_all_disarmed) {
2272 mutex_unlock(&kprobe_mutex);
2273 return;
2274 }
2275
2276 kprobes_all_disarmed = true;
2277 printk(KERN_INFO "Kprobes globally disabled\n");
2278
2279 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2280 head = &kprobe_table[i];
2281 hlist_for_each_entry_rcu(p, head, hlist) {
2282 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2283 disarm_kprobe(p, false);
2284 }
2285 }
2286 mutex_unlock(&kprobe_mutex);
2287
2288 /* Wait for disarming all kprobes by optimizer */
2289 wait_for_kprobe_optimizer();
2290 }
2291
2292 /*
2293 * XXX: The debugfs bool file interface doesn't allow for callbacks
2294 * when the bool state is switched. We can reuse that facility when
2295 * available
2296 */
2297 static ssize_t read_enabled_file_bool(struct file *file,
2298 char __user *user_buf, size_t count, loff_t *ppos)
2299 {
2300 char buf[3];
2301
2302 if (!kprobes_all_disarmed)
2303 buf[0] = '1';
2304 else
2305 buf[0] = '0';
2306 buf[1] = '\n';
2307 buf[2] = 0x00;
2308 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2309 }
2310
2311 static ssize_t write_enabled_file_bool(struct file *file,
2312 const char __user *user_buf, size_t count, loff_t *ppos)
2313 {
2314 char buf[32];
2315 size_t buf_size;
2316
2317 buf_size = min(count, (sizeof(buf)-1));
2318 if (copy_from_user(buf, user_buf, buf_size))
2319 return -EFAULT;
2320
2321 buf[buf_size] = '\0';
2322 switch (buf[0]) {
2323 case 'y':
2324 case 'Y':
2325 case '1':
2326 arm_all_kprobes();
2327 break;
2328 case 'n':
2329 case 'N':
2330 case '0':
2331 disarm_all_kprobes();
2332 break;
2333 default:
2334 return -EINVAL;
2335 }
2336
2337 return count;
2338 }
2339
2340 static const struct file_operations fops_kp = {
2341 .read = read_enabled_file_bool,
2342 .write = write_enabled_file_bool,
2343 .llseek = default_llseek,
2344 };
2345
2346 static int __kprobes debugfs_kprobe_init(void)
2347 {
2348 struct dentry *dir, *file;
2349 unsigned int value = 1;
2350
2351 dir = debugfs_create_dir("kprobes", NULL);
2352 if (!dir)
2353 return -ENOMEM;
2354
2355 file = debugfs_create_file("list", 0444, dir, NULL,
2356 &debugfs_kprobes_operations);
2357 if (!file) {
2358 debugfs_remove(dir);
2359 return -ENOMEM;
2360 }
2361
2362 file = debugfs_create_file("enabled", 0600, dir,
2363 &value, &fops_kp);
2364 if (!file) {
2365 debugfs_remove(dir);
2366 return -ENOMEM;
2367 }
2368
2369 return 0;
2370 }
2371
2372 late_initcall(debugfs_kprobe_init);
2373 #endif /* CONFIG_DEBUG_FS */
2374
2375 module_init(init_kprobes);
2376
2377 /* defined in arch/.../kernel/kprobes.c */
2378 EXPORT_SYMBOL_GPL(jprobe_return);