]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kprobes.c
6ede02bb05ac406090301aceeadc63cf1e6425a7
[mirror_ubuntu-bionic-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 lockdep_assert_held(&text_mutex);
487 /*
488 * The optimization/unoptimization refers online_cpus via
489 * stop_machine() and cpu-hotplug modifies online_cpus.
490 * And same time, text_mutex will be held in cpu-hotplug and here.
491 * This combination can cause a deadlock (cpu-hotplug try to lock
492 * text_mutex but stop_machine can not be done because online_cpus
493 * has been changed)
494 * To avoid this deadlock, caller must have locked cpu hotplug
495 * for preventing cpu-hotplug outside of text_mutex locking.
496 */
497 lockdep_assert_cpus_held();
498
499 /* Optimization never be done when disarmed */
500 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501 list_empty(&optimizing_list))
502 return;
503
504 arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509 * if need) kprobes listed on unoptimizing_list.
510 */
511 static void do_unoptimize_kprobes(void)
512 {
513 struct optimized_kprobe *op, *tmp;
514
515 lockdep_assert_held(&text_mutex);
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524 /* Loop free_list for disarming */
525 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526 /* Disarm probes if marked disabled */
527 if (kprobe_disabled(&op->kp))
528 arch_disarm_kprobe(&op->kp);
529 if (kprobe_unused(&op->kp)) {
530 /*
531 * Remove unused probes from hash list. After waiting
532 * for synchronization, these probes are reclaimed.
533 * (reclaiming is done by do_free_cleaned_kprobes.)
534 */
535 hlist_del_rcu(&op->kp.hlist);
536 } else
537 list_del_init(&op->list);
538 }
539 }
540
541 /* Reclaim all kprobes on the free_list */
542 static void do_free_cleaned_kprobes(void)
543 {
544 struct optimized_kprobe *op, *tmp;
545
546 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
547 list_del_init(&op->list);
548 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
549 /*
550 * This must not happen, but if there is a kprobe
551 * still in use, keep it on kprobes hash list.
552 */
553 continue;
554 }
555 free_aggr_kprobe(&op->kp);
556 }
557 }
558
559 /* Start optimizer after OPTIMIZE_DELAY passed */
560 static void kick_kprobe_optimizer(void)
561 {
562 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
563 }
564
565 /* Kprobe jump optimizer */
566 static void kprobe_optimizer(struct work_struct *work)
567 {
568 mutex_lock(&kprobe_mutex);
569 cpus_read_lock();
570 mutex_lock(&text_mutex);
571 /* Lock modules while optimizing kprobes */
572 mutex_lock(&module_mutex);
573
574 /*
575 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
576 * kprobes before waiting for quiesence period.
577 */
578 do_unoptimize_kprobes();
579
580 /*
581 * Step 2: Wait for quiesence period to ensure all potentially
582 * preempted tasks to have normally scheduled. Because optprobe
583 * may modify multiple instructions, there is a chance that Nth
584 * instruction is preempted. In that case, such tasks can return
585 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
586 * Note that on non-preemptive kernel, this is transparently converted
587 * to synchronoze_sched() to wait for all interrupts to have completed.
588 */
589 synchronize_rcu_tasks();
590
591 /* Step 3: Optimize kprobes after quiesence period */
592 do_optimize_kprobes();
593
594 /* Step 4: Free cleaned kprobes after quiesence period */
595 do_free_cleaned_kprobes();
596
597 mutex_unlock(&module_mutex);
598 mutex_unlock(&text_mutex);
599 cpus_read_unlock();
600 mutex_unlock(&kprobe_mutex);
601
602 /* Step 5: Kick optimizer again if needed */
603 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
604 kick_kprobe_optimizer();
605 }
606
607 /* Wait for completing optimization and unoptimization */
608 void wait_for_kprobe_optimizer(void)
609 {
610 mutex_lock(&kprobe_mutex);
611
612 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
613 mutex_unlock(&kprobe_mutex);
614
615 /* this will also make optimizing_work execute immmediately */
616 flush_delayed_work(&optimizing_work);
617 /* @optimizing_work might not have been queued yet, relax */
618 cpu_relax();
619
620 mutex_lock(&kprobe_mutex);
621 }
622
623 mutex_unlock(&kprobe_mutex);
624 }
625
626 /* Optimize kprobe if p is ready to be optimized */
627 static void optimize_kprobe(struct kprobe *p)
628 {
629 struct optimized_kprobe *op;
630
631 /* Check if the kprobe is disabled or not ready for optimization. */
632 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
633 (kprobe_disabled(p) || kprobes_all_disarmed))
634 return;
635
636 /* Both of break_handler and post_handler are not supported. */
637 if (p->break_handler || p->post_handler)
638 return;
639
640 op = container_of(p, struct optimized_kprobe, kp);
641
642 /* Check there is no other kprobes at the optimized instructions */
643 if (arch_check_optimized_kprobe(op) < 0)
644 return;
645
646 /* Check if it is already optimized. */
647 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
648 return;
649 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
650
651 if (!list_empty(&op->list))
652 /* This is under unoptimizing. Just dequeue the probe */
653 list_del_init(&op->list);
654 else {
655 list_add(&op->list, &optimizing_list);
656 kick_kprobe_optimizer();
657 }
658 }
659
660 /* Short cut to direct unoptimizing */
661 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
662 {
663 lockdep_assert_cpus_held();
664 arch_unoptimize_kprobe(op);
665 if (kprobe_disabled(&op->kp))
666 arch_disarm_kprobe(&op->kp);
667 }
668
669 /* Unoptimize a kprobe if p is optimized */
670 static void unoptimize_kprobe(struct kprobe *p, bool force)
671 {
672 struct optimized_kprobe *op;
673
674 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
675 return; /* This is not an optprobe nor optimized */
676
677 op = container_of(p, struct optimized_kprobe, kp);
678 if (!kprobe_optimized(p)) {
679 /* Unoptimized or unoptimizing case */
680 if (force && !list_empty(&op->list)) {
681 /*
682 * Only if this is unoptimizing kprobe and forced,
683 * forcibly unoptimize it. (No need to unoptimize
684 * unoptimized kprobe again :)
685 */
686 list_del_init(&op->list);
687 force_unoptimize_kprobe(op);
688 }
689 return;
690 }
691
692 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
693 if (!list_empty(&op->list)) {
694 /* Dequeue from the optimization queue */
695 list_del_init(&op->list);
696 return;
697 }
698 /* Optimized kprobe case */
699 if (force)
700 /* Forcibly update the code: this is a special case */
701 force_unoptimize_kprobe(op);
702 else {
703 list_add(&op->list, &unoptimizing_list);
704 kick_kprobe_optimizer();
705 }
706 }
707
708 /* Cancel unoptimizing for reusing */
709 static int reuse_unused_kprobe(struct kprobe *ap)
710 {
711 struct optimized_kprobe *op;
712
713 BUG_ON(!kprobe_unused(ap));
714 /*
715 * Unused kprobe MUST be on the way of delayed unoptimizing (means
716 * there is still a relative jump) and disabled.
717 */
718 op = container_of(ap, struct optimized_kprobe, kp);
719 WARN_ON_ONCE(list_empty(&op->list));
720 /* Enable the probe again */
721 ap->flags &= ~KPROBE_FLAG_DISABLED;
722 /* Optimize it again (remove from op->list) */
723 if (!kprobe_optready(ap))
724 return -EINVAL;
725
726 optimize_kprobe(ap);
727 return 0;
728 }
729
730 /* Remove optimized instructions */
731 static void kill_optimized_kprobe(struct kprobe *p)
732 {
733 struct optimized_kprobe *op;
734
735 op = container_of(p, struct optimized_kprobe, kp);
736 if (!list_empty(&op->list))
737 /* Dequeue from the (un)optimization queue */
738 list_del_init(&op->list);
739 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740
741 if (kprobe_unused(p)) {
742 /* Enqueue if it is unused */
743 list_add(&op->list, &freeing_list);
744 /*
745 * Remove unused probes from the hash list. After waiting
746 * for synchronization, this probe is reclaimed.
747 * (reclaiming is done by do_free_cleaned_kprobes().)
748 */
749 hlist_del_rcu(&op->kp.hlist);
750 }
751
752 /* Don't touch the code, because it is already freed. */
753 arch_remove_optimized_kprobe(op);
754 }
755
756 static inline
757 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
758 {
759 if (!kprobe_ftrace(p))
760 arch_prepare_optimized_kprobe(op, p);
761 }
762
763 /* Try to prepare optimized instructions */
764 static void prepare_optimized_kprobe(struct kprobe *p)
765 {
766 struct optimized_kprobe *op;
767
768 op = container_of(p, struct optimized_kprobe, kp);
769 __prepare_optimized_kprobe(op, p);
770 }
771
772 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
773 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
774 {
775 struct optimized_kprobe *op;
776
777 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
778 if (!op)
779 return NULL;
780
781 INIT_LIST_HEAD(&op->list);
782 op->kp.addr = p->addr;
783 __prepare_optimized_kprobe(op, p);
784
785 return &op->kp;
786 }
787
788 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
789
790 /*
791 * Prepare an optimized_kprobe and optimize it
792 * NOTE: p must be a normal registered kprobe
793 */
794 static void try_to_optimize_kprobe(struct kprobe *p)
795 {
796 struct kprobe *ap;
797 struct optimized_kprobe *op;
798
799 /* Impossible to optimize ftrace-based kprobe */
800 if (kprobe_ftrace(p))
801 return;
802
803 /* For preparing optimization, jump_label_text_reserved() is called */
804 cpus_read_lock();
805 jump_label_lock();
806 mutex_lock(&text_mutex);
807
808 ap = alloc_aggr_kprobe(p);
809 if (!ap)
810 goto out;
811
812 op = container_of(ap, struct optimized_kprobe, kp);
813 if (!arch_prepared_optinsn(&op->optinsn)) {
814 /* If failed to setup optimizing, fallback to kprobe */
815 arch_remove_optimized_kprobe(op);
816 kfree(op);
817 goto out;
818 }
819
820 init_aggr_kprobe(ap, p);
821 optimize_kprobe(ap); /* This just kicks optimizer thread */
822
823 out:
824 mutex_unlock(&text_mutex);
825 jump_label_unlock();
826 cpus_read_unlock();
827 }
828
829 #ifdef CONFIG_SYSCTL
830 static void optimize_all_kprobes(void)
831 {
832 struct hlist_head *head;
833 struct kprobe *p;
834 unsigned int i;
835
836 mutex_lock(&kprobe_mutex);
837 /* If optimization is already allowed, just return */
838 if (kprobes_allow_optimization)
839 goto out;
840
841 cpus_read_lock();
842 kprobes_allow_optimization = true;
843 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
844 head = &kprobe_table[i];
845 hlist_for_each_entry_rcu(p, head, hlist)
846 if (!kprobe_disabled(p))
847 optimize_kprobe(p);
848 }
849 cpus_read_unlock();
850 printk(KERN_INFO "Kprobes globally optimized\n");
851 out:
852 mutex_unlock(&kprobe_mutex);
853 }
854
855 static void unoptimize_all_kprobes(void)
856 {
857 struct hlist_head *head;
858 struct kprobe *p;
859 unsigned int i;
860
861 mutex_lock(&kprobe_mutex);
862 /* If optimization is already prohibited, just return */
863 if (!kprobes_allow_optimization) {
864 mutex_unlock(&kprobe_mutex);
865 return;
866 }
867
868 cpus_read_lock();
869 kprobes_allow_optimization = false;
870 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
871 head = &kprobe_table[i];
872 hlist_for_each_entry_rcu(p, head, hlist) {
873 if (!kprobe_disabled(p))
874 unoptimize_kprobe(p, false);
875 }
876 }
877 cpus_read_unlock();
878 mutex_unlock(&kprobe_mutex);
879
880 /* Wait for unoptimizing completion */
881 wait_for_kprobe_optimizer();
882 printk(KERN_INFO "Kprobes globally unoptimized\n");
883 }
884
885 static DEFINE_MUTEX(kprobe_sysctl_mutex);
886 int sysctl_kprobes_optimization;
887 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
888 void __user *buffer, size_t *length,
889 loff_t *ppos)
890 {
891 int ret;
892
893 mutex_lock(&kprobe_sysctl_mutex);
894 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
895 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
896
897 if (sysctl_kprobes_optimization)
898 optimize_all_kprobes();
899 else
900 unoptimize_all_kprobes();
901 mutex_unlock(&kprobe_sysctl_mutex);
902
903 return ret;
904 }
905 #endif /* CONFIG_SYSCTL */
906
907 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
908 static void __arm_kprobe(struct kprobe *p)
909 {
910 struct kprobe *_p;
911
912 /* Check collision with other optimized kprobes */
913 _p = get_optimized_kprobe((unsigned long)p->addr);
914 if (unlikely(_p))
915 /* Fallback to unoptimized kprobe */
916 unoptimize_kprobe(_p, true);
917
918 arch_arm_kprobe(p);
919 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
920 }
921
922 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
923 static void __disarm_kprobe(struct kprobe *p, bool reopt)
924 {
925 struct kprobe *_p;
926
927 /* Try to unoptimize */
928 unoptimize_kprobe(p, kprobes_all_disarmed);
929
930 if (!kprobe_queued(p)) {
931 arch_disarm_kprobe(p);
932 /* If another kprobe was blocked, optimize it. */
933 _p = get_optimized_kprobe((unsigned long)p->addr);
934 if (unlikely(_p) && reopt)
935 optimize_kprobe(_p);
936 }
937 /* TODO: reoptimize others after unoptimized this probe */
938 }
939
940 #else /* !CONFIG_OPTPROBES */
941
942 #define optimize_kprobe(p) do {} while (0)
943 #define unoptimize_kprobe(p, f) do {} while (0)
944 #define kill_optimized_kprobe(p) do {} while (0)
945 #define prepare_optimized_kprobe(p) do {} while (0)
946 #define try_to_optimize_kprobe(p) do {} while (0)
947 #define __arm_kprobe(p) arch_arm_kprobe(p)
948 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
949 #define kprobe_disarmed(p) kprobe_disabled(p)
950 #define wait_for_kprobe_optimizer() do {} while (0)
951
952 static int reuse_unused_kprobe(struct kprobe *ap)
953 {
954 /*
955 * If the optimized kprobe is NOT supported, the aggr kprobe is
956 * released at the same time that the last aggregated kprobe is
957 * unregistered.
958 * Thus there should be no chance to reuse unused kprobe.
959 */
960 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
961 return -EINVAL;
962 }
963
964 static void free_aggr_kprobe(struct kprobe *p)
965 {
966 arch_remove_kprobe(p);
967 kfree(p);
968 }
969
970 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
971 {
972 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
973 }
974 #endif /* CONFIG_OPTPROBES */
975
976 #ifdef CONFIG_KPROBES_ON_FTRACE
977 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
978 .func = kprobe_ftrace_handler,
979 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
980 };
981 static int kprobe_ftrace_enabled;
982
983 /* Must ensure p->addr is really on ftrace */
984 static int prepare_kprobe(struct kprobe *p)
985 {
986 if (!kprobe_ftrace(p))
987 return arch_prepare_kprobe(p);
988
989 return arch_prepare_kprobe_ftrace(p);
990 }
991
992 /* Caller must lock kprobe_mutex */
993 static void arm_kprobe_ftrace(struct kprobe *p)
994 {
995 int ret;
996
997 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
998 (unsigned long)p->addr, 0, 0);
999 WARN(ret < 0, "Failed to arm kprobe-ftrace at %pS (%d)\n", p->addr, ret);
1000 kprobe_ftrace_enabled++;
1001 if (kprobe_ftrace_enabled == 1) {
1002 ret = register_ftrace_function(&kprobe_ftrace_ops);
1003 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1004 }
1005 }
1006
1007 /* Caller must lock kprobe_mutex */
1008 static void disarm_kprobe_ftrace(struct kprobe *p)
1009 {
1010 int ret;
1011
1012 kprobe_ftrace_enabled--;
1013 if (kprobe_ftrace_enabled == 0) {
1014 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1015 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1016 }
1017 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1018 (unsigned long)p->addr, 1, 0);
1019 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n", p->addr, ret);
1020 }
1021 #else /* !CONFIG_KPROBES_ON_FTRACE */
1022 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1023 #define arm_kprobe_ftrace(p) do {} while (0)
1024 #define disarm_kprobe_ftrace(p) do {} while (0)
1025 #endif
1026
1027 /* Arm a kprobe with text_mutex */
1028 static void arm_kprobe(struct kprobe *kp)
1029 {
1030 if (unlikely(kprobe_ftrace(kp))) {
1031 arm_kprobe_ftrace(kp);
1032 return;
1033 }
1034 cpus_read_lock();
1035 mutex_lock(&text_mutex);
1036 __arm_kprobe(kp);
1037 mutex_unlock(&text_mutex);
1038 cpus_read_unlock();
1039 }
1040
1041 /* Disarm a kprobe with text_mutex */
1042 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1043 {
1044 if (unlikely(kprobe_ftrace(kp))) {
1045 disarm_kprobe_ftrace(kp);
1046 return;
1047 }
1048
1049 cpus_read_lock();
1050 mutex_lock(&text_mutex);
1051 __disarm_kprobe(kp, reopt);
1052 mutex_unlock(&text_mutex);
1053 cpus_read_unlock();
1054 }
1055
1056 /*
1057 * Aggregate handlers for multiple kprobes support - these handlers
1058 * take care of invoking the individual kprobe handlers on p->list
1059 */
1060 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1061 {
1062 struct kprobe *kp;
1063
1064 list_for_each_entry_rcu(kp, &p->list, list) {
1065 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1066 set_kprobe_instance(kp);
1067 if (kp->pre_handler(kp, regs))
1068 return 1;
1069 }
1070 reset_kprobe_instance();
1071 }
1072 return 0;
1073 }
1074 NOKPROBE_SYMBOL(aggr_pre_handler);
1075
1076 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1077 unsigned long flags)
1078 {
1079 struct kprobe *kp;
1080
1081 list_for_each_entry_rcu(kp, &p->list, list) {
1082 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1083 set_kprobe_instance(kp);
1084 kp->post_handler(kp, regs, flags);
1085 reset_kprobe_instance();
1086 }
1087 }
1088 }
1089 NOKPROBE_SYMBOL(aggr_post_handler);
1090
1091 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1092 int trapnr)
1093 {
1094 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1095
1096 /*
1097 * if we faulted "during" the execution of a user specified
1098 * probe handler, invoke just that probe's fault handler
1099 */
1100 if (cur && cur->fault_handler) {
1101 if (cur->fault_handler(cur, regs, trapnr))
1102 return 1;
1103 }
1104 return 0;
1105 }
1106 NOKPROBE_SYMBOL(aggr_fault_handler);
1107
1108 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1109 {
1110 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1111 int ret = 0;
1112
1113 if (cur && cur->break_handler) {
1114 if (cur->break_handler(cur, regs))
1115 ret = 1;
1116 }
1117 reset_kprobe_instance();
1118 return ret;
1119 }
1120 NOKPROBE_SYMBOL(aggr_break_handler);
1121
1122 /* Walks the list and increments nmissed count for multiprobe case */
1123 void kprobes_inc_nmissed_count(struct kprobe *p)
1124 {
1125 struct kprobe *kp;
1126 if (!kprobe_aggrprobe(p)) {
1127 p->nmissed++;
1128 } else {
1129 list_for_each_entry_rcu(kp, &p->list, list)
1130 kp->nmissed++;
1131 }
1132 return;
1133 }
1134 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1135
1136 void recycle_rp_inst(struct kretprobe_instance *ri,
1137 struct hlist_head *head)
1138 {
1139 struct kretprobe *rp = ri->rp;
1140
1141 /* remove rp inst off the rprobe_inst_table */
1142 hlist_del(&ri->hlist);
1143 INIT_HLIST_NODE(&ri->hlist);
1144 if (likely(rp)) {
1145 raw_spin_lock(&rp->lock);
1146 hlist_add_head(&ri->hlist, &rp->free_instances);
1147 raw_spin_unlock(&rp->lock);
1148 } else
1149 /* Unregistering */
1150 hlist_add_head(&ri->hlist, head);
1151 }
1152 NOKPROBE_SYMBOL(recycle_rp_inst);
1153
1154 void kretprobe_hash_lock(struct task_struct *tsk,
1155 struct hlist_head **head, unsigned long *flags)
1156 __acquires(hlist_lock)
1157 {
1158 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1159 raw_spinlock_t *hlist_lock;
1160
1161 *head = &kretprobe_inst_table[hash];
1162 hlist_lock = kretprobe_table_lock_ptr(hash);
1163 raw_spin_lock_irqsave(hlist_lock, *flags);
1164 }
1165 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1166
1167 static void kretprobe_table_lock(unsigned long hash,
1168 unsigned long *flags)
1169 __acquires(hlist_lock)
1170 {
1171 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1172 raw_spin_lock_irqsave(hlist_lock, *flags);
1173 }
1174 NOKPROBE_SYMBOL(kretprobe_table_lock);
1175
1176 void kretprobe_hash_unlock(struct task_struct *tsk,
1177 unsigned long *flags)
1178 __releases(hlist_lock)
1179 {
1180 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1181 raw_spinlock_t *hlist_lock;
1182
1183 hlist_lock = kretprobe_table_lock_ptr(hash);
1184 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1185 }
1186 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1187
1188 static void kretprobe_table_unlock(unsigned long hash,
1189 unsigned long *flags)
1190 __releases(hlist_lock)
1191 {
1192 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1193 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1194 }
1195 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1196
1197 /*
1198 * This function is called from finish_task_switch when task tk becomes dead,
1199 * so that we can recycle any function-return probe instances associated
1200 * with this task. These left over instances represent probed functions
1201 * that have been called but will never return.
1202 */
1203 void kprobe_flush_task(struct task_struct *tk)
1204 {
1205 struct kretprobe_instance *ri;
1206 struct hlist_head *head, empty_rp;
1207 struct hlist_node *tmp;
1208 unsigned long hash, flags = 0;
1209
1210 if (unlikely(!kprobes_initialized))
1211 /* Early boot. kretprobe_table_locks not yet initialized. */
1212 return;
1213
1214 INIT_HLIST_HEAD(&empty_rp);
1215 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1216 head = &kretprobe_inst_table[hash];
1217 kretprobe_table_lock(hash, &flags);
1218 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1219 if (ri->task == tk)
1220 recycle_rp_inst(ri, &empty_rp);
1221 }
1222 kretprobe_table_unlock(hash, &flags);
1223 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1224 hlist_del(&ri->hlist);
1225 kfree(ri);
1226 }
1227 }
1228 NOKPROBE_SYMBOL(kprobe_flush_task);
1229
1230 static inline void free_rp_inst(struct kretprobe *rp)
1231 {
1232 struct kretprobe_instance *ri;
1233 struct hlist_node *next;
1234
1235 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1236 hlist_del(&ri->hlist);
1237 kfree(ri);
1238 }
1239 }
1240
1241 static void cleanup_rp_inst(struct kretprobe *rp)
1242 {
1243 unsigned long flags, hash;
1244 struct kretprobe_instance *ri;
1245 struct hlist_node *next;
1246 struct hlist_head *head;
1247
1248 /* No race here */
1249 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1250 kretprobe_table_lock(hash, &flags);
1251 head = &kretprobe_inst_table[hash];
1252 hlist_for_each_entry_safe(ri, next, head, hlist) {
1253 if (ri->rp == rp)
1254 ri->rp = NULL;
1255 }
1256 kretprobe_table_unlock(hash, &flags);
1257 }
1258 free_rp_inst(rp);
1259 }
1260 NOKPROBE_SYMBOL(cleanup_rp_inst);
1261
1262 /*
1263 * Add the new probe to ap->list. Fail if this is the
1264 * second jprobe at the address - two jprobes can't coexist
1265 */
1266 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1267 {
1268 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1269
1270 if (p->break_handler || p->post_handler)
1271 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1272
1273 if (p->break_handler) {
1274 if (ap->break_handler)
1275 return -EEXIST;
1276 list_add_tail_rcu(&p->list, &ap->list);
1277 ap->break_handler = aggr_break_handler;
1278 } else
1279 list_add_rcu(&p->list, &ap->list);
1280 if (p->post_handler && !ap->post_handler)
1281 ap->post_handler = aggr_post_handler;
1282
1283 return 0;
1284 }
1285
1286 /*
1287 * Fill in the required fields of the "manager kprobe". Replace the
1288 * earlier kprobe in the hlist with the manager kprobe
1289 */
1290 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1291 {
1292 /* Copy p's insn slot to ap */
1293 copy_kprobe(p, ap);
1294 flush_insn_slot(ap);
1295 ap->addr = p->addr;
1296 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1297 ap->pre_handler = aggr_pre_handler;
1298 ap->fault_handler = aggr_fault_handler;
1299 /* We don't care the kprobe which has gone. */
1300 if (p->post_handler && !kprobe_gone(p))
1301 ap->post_handler = aggr_post_handler;
1302 if (p->break_handler && !kprobe_gone(p))
1303 ap->break_handler = aggr_break_handler;
1304
1305 INIT_LIST_HEAD(&ap->list);
1306 INIT_HLIST_NODE(&ap->hlist);
1307
1308 list_add_rcu(&p->list, &ap->list);
1309 hlist_replace_rcu(&p->hlist, &ap->hlist);
1310 }
1311
1312 /*
1313 * This is the second or subsequent kprobe at the address - handle
1314 * the intricacies
1315 */
1316 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1317 {
1318 int ret = 0;
1319 struct kprobe *ap = orig_p;
1320
1321 cpus_read_lock();
1322
1323 /* For preparing optimization, jump_label_text_reserved() is called */
1324 jump_label_lock();
1325 mutex_lock(&text_mutex);
1326
1327 if (!kprobe_aggrprobe(orig_p)) {
1328 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1329 ap = alloc_aggr_kprobe(orig_p);
1330 if (!ap) {
1331 ret = -ENOMEM;
1332 goto out;
1333 }
1334 init_aggr_kprobe(ap, orig_p);
1335 } else if (kprobe_unused(ap)) {
1336 /* This probe is going to die. Rescue it */
1337 ret = reuse_unused_kprobe(ap);
1338 if (ret)
1339 goto out;
1340 }
1341
1342 if (kprobe_gone(ap)) {
1343 /*
1344 * Attempting to insert new probe at the same location that
1345 * had a probe in the module vaddr area which already
1346 * freed. So, the instruction slot has already been
1347 * released. We need a new slot for the new probe.
1348 */
1349 ret = arch_prepare_kprobe(ap);
1350 if (ret)
1351 /*
1352 * Even if fail to allocate new slot, don't need to
1353 * free aggr_probe. It will be used next time, or
1354 * freed by unregister_kprobe.
1355 */
1356 goto out;
1357
1358 /* Prepare optimized instructions if possible. */
1359 prepare_optimized_kprobe(ap);
1360
1361 /*
1362 * Clear gone flag to prevent allocating new slot again, and
1363 * set disabled flag because it is not armed yet.
1364 */
1365 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1366 | KPROBE_FLAG_DISABLED;
1367 }
1368
1369 /* Copy ap's insn slot to p */
1370 copy_kprobe(ap, p);
1371 ret = add_new_kprobe(ap, p);
1372
1373 out:
1374 mutex_unlock(&text_mutex);
1375 jump_label_unlock();
1376 cpus_read_unlock();
1377
1378 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1379 ap->flags &= ~KPROBE_FLAG_DISABLED;
1380 if (!kprobes_all_disarmed)
1381 /* Arm the breakpoint again. */
1382 arm_kprobe(ap);
1383 }
1384 return ret;
1385 }
1386
1387 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1388 {
1389 /* The __kprobes marked functions and entry code must not be probed */
1390 return addr >= (unsigned long)__kprobes_text_start &&
1391 addr < (unsigned long)__kprobes_text_end;
1392 }
1393
1394 bool within_kprobe_blacklist(unsigned long addr)
1395 {
1396 struct kprobe_blacklist_entry *ent;
1397
1398 if (arch_within_kprobe_blacklist(addr))
1399 return true;
1400 /*
1401 * If there exists a kprobe_blacklist, verify and
1402 * fail any probe registration in the prohibited area
1403 */
1404 list_for_each_entry(ent, &kprobe_blacklist, list) {
1405 if (addr >= ent->start_addr && addr < ent->end_addr)
1406 return true;
1407 }
1408
1409 return false;
1410 }
1411
1412 /*
1413 * If we have a symbol_name argument, look it up and add the offset field
1414 * to it. This way, we can specify a relative address to a symbol.
1415 * This returns encoded errors if it fails to look up symbol or invalid
1416 * combination of parameters.
1417 */
1418 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1419 const char *symbol_name, unsigned int offset)
1420 {
1421 if ((symbol_name && addr) || (!symbol_name && !addr))
1422 goto invalid;
1423
1424 if (symbol_name) {
1425 addr = kprobe_lookup_name(symbol_name, offset);
1426 if (!addr)
1427 return ERR_PTR(-ENOENT);
1428 }
1429
1430 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1431 if (addr)
1432 return addr;
1433
1434 invalid:
1435 return ERR_PTR(-EINVAL);
1436 }
1437
1438 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1439 {
1440 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1441 }
1442
1443 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1444 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1445 {
1446 struct kprobe *ap, *list_p;
1447
1448 ap = get_kprobe(p->addr);
1449 if (unlikely(!ap))
1450 return NULL;
1451
1452 if (p != ap) {
1453 list_for_each_entry_rcu(list_p, &ap->list, list)
1454 if (list_p == p)
1455 /* kprobe p is a valid probe */
1456 goto valid;
1457 return NULL;
1458 }
1459 valid:
1460 return ap;
1461 }
1462
1463 /* Return error if the kprobe is being re-registered */
1464 static inline int check_kprobe_rereg(struct kprobe *p)
1465 {
1466 int ret = 0;
1467
1468 mutex_lock(&kprobe_mutex);
1469 if (__get_valid_kprobe(p))
1470 ret = -EINVAL;
1471 mutex_unlock(&kprobe_mutex);
1472
1473 return ret;
1474 }
1475
1476 int __weak arch_check_ftrace_location(struct kprobe *p)
1477 {
1478 unsigned long ftrace_addr;
1479
1480 ftrace_addr = ftrace_location((unsigned long)p->addr);
1481 if (ftrace_addr) {
1482 #ifdef CONFIG_KPROBES_ON_FTRACE
1483 /* Given address is not on the instruction boundary */
1484 if ((unsigned long)p->addr != ftrace_addr)
1485 return -EILSEQ;
1486 p->flags |= KPROBE_FLAG_FTRACE;
1487 #else /* !CONFIG_KPROBES_ON_FTRACE */
1488 return -EINVAL;
1489 #endif
1490 }
1491 return 0;
1492 }
1493
1494 static int check_kprobe_address_safe(struct kprobe *p,
1495 struct module **probed_mod)
1496 {
1497 int ret;
1498
1499 ret = arch_check_ftrace_location(p);
1500 if (ret)
1501 return ret;
1502 jump_label_lock();
1503 preempt_disable();
1504
1505 /* Ensure it is not in reserved area nor out of text */
1506 if (!kernel_text_address((unsigned long) p->addr) ||
1507 within_kprobe_blacklist((unsigned long) p->addr) ||
1508 jump_label_text_reserved(p->addr, p->addr) ||
1509 find_bug((unsigned long)p->addr)) {
1510 ret = -EINVAL;
1511 goto out;
1512 }
1513
1514 /* Check if are we probing a module */
1515 *probed_mod = __module_text_address((unsigned long) p->addr);
1516 if (*probed_mod) {
1517 /*
1518 * We must hold a refcount of the probed module while updating
1519 * its code to prohibit unexpected unloading.
1520 */
1521 if (unlikely(!try_module_get(*probed_mod))) {
1522 ret = -ENOENT;
1523 goto out;
1524 }
1525
1526 /*
1527 * If the module freed .init.text, we couldn't insert
1528 * kprobes in there.
1529 */
1530 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1531 (*probed_mod)->state != MODULE_STATE_COMING) {
1532 module_put(*probed_mod);
1533 *probed_mod = NULL;
1534 ret = -ENOENT;
1535 }
1536 }
1537 out:
1538 preempt_enable();
1539 jump_label_unlock();
1540
1541 return ret;
1542 }
1543
1544 int register_kprobe(struct kprobe *p)
1545 {
1546 int ret;
1547 struct kprobe *old_p;
1548 struct module *probed_mod;
1549 kprobe_opcode_t *addr;
1550
1551 /* Adjust probe address from symbol */
1552 addr = kprobe_addr(p);
1553 if (IS_ERR(addr))
1554 return PTR_ERR(addr);
1555 p->addr = addr;
1556
1557 ret = check_kprobe_rereg(p);
1558 if (ret)
1559 return ret;
1560
1561 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1562 p->flags &= KPROBE_FLAG_DISABLED;
1563 p->nmissed = 0;
1564 INIT_LIST_HEAD(&p->list);
1565
1566 ret = check_kprobe_address_safe(p, &probed_mod);
1567 if (ret)
1568 return ret;
1569
1570 mutex_lock(&kprobe_mutex);
1571
1572 old_p = get_kprobe(p->addr);
1573 if (old_p) {
1574 /* Since this may unoptimize old_p, locking text_mutex. */
1575 ret = register_aggr_kprobe(old_p, p);
1576 goto out;
1577 }
1578
1579 cpus_read_lock();
1580 /* Prevent text modification */
1581 mutex_lock(&text_mutex);
1582 ret = prepare_kprobe(p);
1583 mutex_unlock(&text_mutex);
1584 cpus_read_unlock();
1585 if (ret)
1586 goto out;
1587
1588 INIT_HLIST_NODE(&p->hlist);
1589 hlist_add_head_rcu(&p->hlist,
1590 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1591
1592 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1593 arm_kprobe(p);
1594
1595 /* Try to optimize kprobe */
1596 try_to_optimize_kprobe(p);
1597 out:
1598 mutex_unlock(&kprobe_mutex);
1599
1600 if (probed_mod)
1601 module_put(probed_mod);
1602
1603 return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(register_kprobe);
1606
1607 /* Check if all probes on the aggrprobe are disabled */
1608 static int aggr_kprobe_disabled(struct kprobe *ap)
1609 {
1610 struct kprobe *kp;
1611
1612 list_for_each_entry_rcu(kp, &ap->list, list)
1613 if (!kprobe_disabled(kp))
1614 /*
1615 * There is an active probe on the list.
1616 * We can't disable this ap.
1617 */
1618 return 0;
1619
1620 return 1;
1621 }
1622
1623 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1624 static struct kprobe *__disable_kprobe(struct kprobe *p)
1625 {
1626 struct kprobe *orig_p;
1627
1628 /* Get an original kprobe for return */
1629 orig_p = __get_valid_kprobe(p);
1630 if (unlikely(orig_p == NULL))
1631 return NULL;
1632
1633 if (!kprobe_disabled(p)) {
1634 /* Disable probe if it is a child probe */
1635 if (p != orig_p)
1636 p->flags |= KPROBE_FLAG_DISABLED;
1637
1638 /* Try to disarm and disable this/parent probe */
1639 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1640 /*
1641 * If kprobes_all_disarmed is set, orig_p
1642 * should have already been disarmed, so
1643 * skip unneed disarming process.
1644 */
1645 if (!kprobes_all_disarmed)
1646 disarm_kprobe(orig_p, true);
1647 orig_p->flags |= KPROBE_FLAG_DISABLED;
1648 }
1649 }
1650
1651 return orig_p;
1652 }
1653
1654 /*
1655 * Unregister a kprobe without a scheduler synchronization.
1656 */
1657 static int __unregister_kprobe_top(struct kprobe *p)
1658 {
1659 struct kprobe *ap, *list_p;
1660
1661 /* Disable kprobe. This will disarm it if needed. */
1662 ap = __disable_kprobe(p);
1663 if (ap == NULL)
1664 return -EINVAL;
1665
1666 if (ap == p)
1667 /*
1668 * This probe is an independent(and non-optimized) kprobe
1669 * (not an aggrprobe). Remove from the hash list.
1670 */
1671 goto disarmed;
1672
1673 /* Following process expects this probe is an aggrprobe */
1674 WARN_ON(!kprobe_aggrprobe(ap));
1675
1676 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1677 /*
1678 * !disarmed could be happen if the probe is under delayed
1679 * unoptimizing.
1680 */
1681 goto disarmed;
1682 else {
1683 /* If disabling probe has special handlers, update aggrprobe */
1684 if (p->break_handler && !kprobe_gone(p))
1685 ap->break_handler = NULL;
1686 if (p->post_handler && !kprobe_gone(p)) {
1687 list_for_each_entry_rcu(list_p, &ap->list, list) {
1688 if ((list_p != p) && (list_p->post_handler))
1689 goto noclean;
1690 }
1691 ap->post_handler = NULL;
1692 }
1693 noclean:
1694 /*
1695 * Remove from the aggrprobe: this path will do nothing in
1696 * __unregister_kprobe_bottom().
1697 */
1698 list_del_rcu(&p->list);
1699 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1700 /*
1701 * Try to optimize this probe again, because post
1702 * handler may have been changed.
1703 */
1704 optimize_kprobe(ap);
1705 }
1706 return 0;
1707
1708 disarmed:
1709 BUG_ON(!kprobe_disarmed(ap));
1710 hlist_del_rcu(&ap->hlist);
1711 return 0;
1712 }
1713
1714 static void __unregister_kprobe_bottom(struct kprobe *p)
1715 {
1716 struct kprobe *ap;
1717
1718 if (list_empty(&p->list))
1719 /* This is an independent kprobe */
1720 arch_remove_kprobe(p);
1721 else if (list_is_singular(&p->list)) {
1722 /* This is the last child of an aggrprobe */
1723 ap = list_entry(p->list.next, struct kprobe, list);
1724 list_del(&p->list);
1725 free_aggr_kprobe(ap);
1726 }
1727 /* Otherwise, do nothing. */
1728 }
1729
1730 int register_kprobes(struct kprobe **kps, int num)
1731 {
1732 int i, ret = 0;
1733
1734 if (num <= 0)
1735 return -EINVAL;
1736 for (i = 0; i < num; i++) {
1737 ret = register_kprobe(kps[i]);
1738 if (ret < 0) {
1739 if (i > 0)
1740 unregister_kprobes(kps, i);
1741 break;
1742 }
1743 }
1744 return ret;
1745 }
1746 EXPORT_SYMBOL_GPL(register_kprobes);
1747
1748 void unregister_kprobe(struct kprobe *p)
1749 {
1750 unregister_kprobes(&p, 1);
1751 }
1752 EXPORT_SYMBOL_GPL(unregister_kprobe);
1753
1754 void unregister_kprobes(struct kprobe **kps, int num)
1755 {
1756 int i;
1757
1758 if (num <= 0)
1759 return;
1760 mutex_lock(&kprobe_mutex);
1761 for (i = 0; i < num; i++)
1762 if (__unregister_kprobe_top(kps[i]) < 0)
1763 kps[i]->addr = NULL;
1764 mutex_unlock(&kprobe_mutex);
1765
1766 synchronize_sched();
1767 for (i = 0; i < num; i++)
1768 if (kps[i]->addr)
1769 __unregister_kprobe_bottom(kps[i]);
1770 }
1771 EXPORT_SYMBOL_GPL(unregister_kprobes);
1772
1773 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1774 unsigned long val, void *data)
1775 {
1776 return NOTIFY_DONE;
1777 }
1778 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1779
1780 static struct notifier_block kprobe_exceptions_nb = {
1781 .notifier_call = kprobe_exceptions_notify,
1782 .priority = 0x7fffffff /* we need to be notified first */
1783 };
1784
1785 unsigned long __weak arch_deref_entry_point(void *entry)
1786 {
1787 return (unsigned long)entry;
1788 }
1789
1790 #if 0
1791 int register_jprobes(struct jprobe **jps, int num)
1792 {
1793 int ret = 0, i;
1794
1795 if (num <= 0)
1796 return -EINVAL;
1797
1798 for (i = 0; i < num; i++) {
1799 ret = register_jprobe(jps[i]);
1800
1801 if (ret < 0) {
1802 if (i > 0)
1803 unregister_jprobes(jps, i);
1804 break;
1805 }
1806 }
1807
1808 return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(register_jprobes);
1811
1812 int register_jprobe(struct jprobe *jp)
1813 {
1814 unsigned long addr, offset;
1815 struct kprobe *kp = &jp->kp;
1816
1817 /*
1818 * Verify probepoint as well as the jprobe handler are
1819 * valid function entry points.
1820 */
1821 addr = arch_deref_entry_point(jp->entry);
1822
1823 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1824 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1825 kp->pre_handler = setjmp_pre_handler;
1826 kp->break_handler = longjmp_break_handler;
1827 return register_kprobe(kp);
1828 }
1829
1830 return -EINVAL;
1831 }
1832 EXPORT_SYMBOL_GPL(register_jprobe);
1833
1834 void unregister_jprobe(struct jprobe *jp)
1835 {
1836 unregister_jprobes(&jp, 1);
1837 }
1838 EXPORT_SYMBOL_GPL(unregister_jprobe);
1839
1840 void unregister_jprobes(struct jprobe **jps, int num)
1841 {
1842 int i;
1843
1844 if (num <= 0)
1845 return;
1846 mutex_lock(&kprobe_mutex);
1847 for (i = 0; i < num; i++)
1848 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1849 jps[i]->kp.addr = NULL;
1850 mutex_unlock(&kprobe_mutex);
1851
1852 synchronize_sched();
1853 for (i = 0; i < num; i++) {
1854 if (jps[i]->kp.addr)
1855 __unregister_kprobe_bottom(&jps[i]->kp);
1856 }
1857 }
1858 EXPORT_SYMBOL_GPL(unregister_jprobes);
1859 #endif
1860
1861 #ifdef CONFIG_KRETPROBES
1862 /*
1863 * This kprobe pre_handler is registered with every kretprobe. When probe
1864 * hits it will set up the return probe.
1865 */
1866 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1867 {
1868 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1869 unsigned long hash, flags = 0;
1870 struct kretprobe_instance *ri;
1871
1872 /*
1873 * To avoid deadlocks, prohibit return probing in NMI contexts,
1874 * just skip the probe and increase the (inexact) 'nmissed'
1875 * statistical counter, so that the user is informed that
1876 * something happened:
1877 */
1878 if (unlikely(in_nmi())) {
1879 rp->nmissed++;
1880 return 0;
1881 }
1882
1883 /* TODO: consider to only swap the RA after the last pre_handler fired */
1884 hash = hash_ptr(current, KPROBE_HASH_BITS);
1885 raw_spin_lock_irqsave(&rp->lock, flags);
1886 if (!hlist_empty(&rp->free_instances)) {
1887 ri = hlist_entry(rp->free_instances.first,
1888 struct kretprobe_instance, hlist);
1889 hlist_del(&ri->hlist);
1890 raw_spin_unlock_irqrestore(&rp->lock, flags);
1891
1892 ri->rp = rp;
1893 ri->task = current;
1894
1895 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1896 raw_spin_lock_irqsave(&rp->lock, flags);
1897 hlist_add_head(&ri->hlist, &rp->free_instances);
1898 raw_spin_unlock_irqrestore(&rp->lock, flags);
1899 return 0;
1900 }
1901
1902 arch_prepare_kretprobe(ri, regs);
1903
1904 /* XXX(hch): why is there no hlist_move_head? */
1905 INIT_HLIST_NODE(&ri->hlist);
1906 kretprobe_table_lock(hash, &flags);
1907 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1908 kretprobe_table_unlock(hash, &flags);
1909 } else {
1910 rp->nmissed++;
1911 raw_spin_unlock_irqrestore(&rp->lock, flags);
1912 }
1913 return 0;
1914 }
1915 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1916
1917 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1918 {
1919 return !offset;
1920 }
1921
1922 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1923 {
1924 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1925
1926 if (IS_ERR(kp_addr))
1927 return false;
1928
1929 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1930 !arch_kprobe_on_func_entry(offset))
1931 return false;
1932
1933 return true;
1934 }
1935
1936 int register_kretprobe(struct kretprobe *rp)
1937 {
1938 int ret = 0;
1939 struct kretprobe_instance *inst;
1940 int i;
1941 void *addr;
1942
1943 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1944 return -EINVAL;
1945
1946 if (kretprobe_blacklist_size) {
1947 addr = kprobe_addr(&rp->kp);
1948 if (IS_ERR(addr))
1949 return PTR_ERR(addr);
1950
1951 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1952 if (kretprobe_blacklist[i].addr == addr)
1953 return -EINVAL;
1954 }
1955 }
1956
1957 rp->kp.pre_handler = pre_handler_kretprobe;
1958 rp->kp.post_handler = NULL;
1959 rp->kp.fault_handler = NULL;
1960 rp->kp.break_handler = NULL;
1961
1962 /* Pre-allocate memory for max kretprobe instances */
1963 if (rp->maxactive <= 0) {
1964 #ifdef CONFIG_PREEMPT
1965 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1966 #else
1967 rp->maxactive = num_possible_cpus();
1968 #endif
1969 }
1970 raw_spin_lock_init(&rp->lock);
1971 INIT_HLIST_HEAD(&rp->free_instances);
1972 for (i = 0; i < rp->maxactive; i++) {
1973 inst = kmalloc(sizeof(struct kretprobe_instance) +
1974 rp->data_size, GFP_KERNEL);
1975 if (inst == NULL) {
1976 free_rp_inst(rp);
1977 return -ENOMEM;
1978 }
1979 INIT_HLIST_NODE(&inst->hlist);
1980 hlist_add_head(&inst->hlist, &rp->free_instances);
1981 }
1982
1983 rp->nmissed = 0;
1984 /* Establish function entry probe point */
1985 ret = register_kprobe(&rp->kp);
1986 if (ret != 0)
1987 free_rp_inst(rp);
1988 return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(register_kretprobe);
1991
1992 int register_kretprobes(struct kretprobe **rps, int num)
1993 {
1994 int ret = 0, i;
1995
1996 if (num <= 0)
1997 return -EINVAL;
1998 for (i = 0; i < num; i++) {
1999 ret = register_kretprobe(rps[i]);
2000 if (ret < 0) {
2001 if (i > 0)
2002 unregister_kretprobes(rps, i);
2003 break;
2004 }
2005 }
2006 return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(register_kretprobes);
2009
2010 void unregister_kretprobe(struct kretprobe *rp)
2011 {
2012 unregister_kretprobes(&rp, 1);
2013 }
2014 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2015
2016 void unregister_kretprobes(struct kretprobe **rps, int num)
2017 {
2018 int i;
2019
2020 if (num <= 0)
2021 return;
2022 mutex_lock(&kprobe_mutex);
2023 for (i = 0; i < num; i++)
2024 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2025 rps[i]->kp.addr = NULL;
2026 mutex_unlock(&kprobe_mutex);
2027
2028 synchronize_sched();
2029 for (i = 0; i < num; i++) {
2030 if (rps[i]->kp.addr) {
2031 __unregister_kprobe_bottom(&rps[i]->kp);
2032 cleanup_rp_inst(rps[i]);
2033 }
2034 }
2035 }
2036 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2037
2038 #else /* CONFIG_KRETPROBES */
2039 int register_kretprobe(struct kretprobe *rp)
2040 {
2041 return -ENOSYS;
2042 }
2043 EXPORT_SYMBOL_GPL(register_kretprobe);
2044
2045 int register_kretprobes(struct kretprobe **rps, int num)
2046 {
2047 return -ENOSYS;
2048 }
2049 EXPORT_SYMBOL_GPL(register_kretprobes);
2050
2051 void unregister_kretprobe(struct kretprobe *rp)
2052 {
2053 }
2054 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2055
2056 void unregister_kretprobes(struct kretprobe **rps, int num)
2057 {
2058 }
2059 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2060
2061 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2062 {
2063 return 0;
2064 }
2065 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2066
2067 #endif /* CONFIG_KRETPROBES */
2068
2069 /* Set the kprobe gone and remove its instruction buffer. */
2070 static void kill_kprobe(struct kprobe *p)
2071 {
2072 struct kprobe *kp;
2073
2074 p->flags |= KPROBE_FLAG_GONE;
2075 if (kprobe_aggrprobe(p)) {
2076 /*
2077 * If this is an aggr_kprobe, we have to list all the
2078 * chained probes and mark them GONE.
2079 */
2080 list_for_each_entry_rcu(kp, &p->list, list)
2081 kp->flags |= KPROBE_FLAG_GONE;
2082 p->post_handler = NULL;
2083 p->break_handler = NULL;
2084 kill_optimized_kprobe(p);
2085 }
2086 /*
2087 * Here, we can remove insn_slot safely, because no thread calls
2088 * the original probed function (which will be freed soon) any more.
2089 */
2090 arch_remove_kprobe(p);
2091 }
2092
2093 /* Disable one kprobe */
2094 int disable_kprobe(struct kprobe *kp)
2095 {
2096 int ret = 0;
2097
2098 mutex_lock(&kprobe_mutex);
2099
2100 /* Disable this kprobe */
2101 if (__disable_kprobe(kp) == NULL)
2102 ret = -EINVAL;
2103
2104 mutex_unlock(&kprobe_mutex);
2105 return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(disable_kprobe);
2108
2109 /* Enable one kprobe */
2110 int enable_kprobe(struct kprobe *kp)
2111 {
2112 int ret = 0;
2113 struct kprobe *p;
2114
2115 mutex_lock(&kprobe_mutex);
2116
2117 /* Check whether specified probe is valid. */
2118 p = __get_valid_kprobe(kp);
2119 if (unlikely(p == NULL)) {
2120 ret = -EINVAL;
2121 goto out;
2122 }
2123
2124 if (kprobe_gone(kp)) {
2125 /* This kprobe has gone, we couldn't enable it. */
2126 ret = -EINVAL;
2127 goto out;
2128 }
2129
2130 if (p != kp)
2131 kp->flags &= ~KPROBE_FLAG_DISABLED;
2132
2133 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2134 p->flags &= ~KPROBE_FLAG_DISABLED;
2135 arm_kprobe(p);
2136 }
2137 out:
2138 mutex_unlock(&kprobe_mutex);
2139 return ret;
2140 }
2141 EXPORT_SYMBOL_GPL(enable_kprobe);
2142
2143 /* Caller must NOT call this in usual path. This is only for critical case */
2144 void dump_kprobe(struct kprobe *kp)
2145 {
2146 pr_err("Dumping kprobe:\n");
2147 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2148 kp->symbol_name, kp->offset, kp->addr);
2149 }
2150 NOKPROBE_SYMBOL(dump_kprobe);
2151
2152 /*
2153 * Lookup and populate the kprobe_blacklist.
2154 *
2155 * Unlike the kretprobe blacklist, we'll need to determine
2156 * the range of addresses that belong to the said functions,
2157 * since a kprobe need not necessarily be at the beginning
2158 * of a function.
2159 */
2160 static int __init populate_kprobe_blacklist(unsigned long *start,
2161 unsigned long *end)
2162 {
2163 unsigned long *iter;
2164 struct kprobe_blacklist_entry *ent;
2165 unsigned long entry, offset = 0, size = 0;
2166
2167 for (iter = start; iter < end; iter++) {
2168 entry = arch_deref_entry_point((void *)*iter);
2169
2170 if (!kernel_text_address(entry) ||
2171 !kallsyms_lookup_size_offset(entry, &size, &offset))
2172 continue;
2173
2174 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2175 if (!ent)
2176 return -ENOMEM;
2177 ent->start_addr = entry;
2178 ent->end_addr = entry + size;
2179 INIT_LIST_HEAD(&ent->list);
2180 list_add_tail(&ent->list, &kprobe_blacklist);
2181 }
2182 return 0;
2183 }
2184
2185 /* Module notifier call back, checking kprobes on the module */
2186 static int kprobes_module_callback(struct notifier_block *nb,
2187 unsigned long val, void *data)
2188 {
2189 struct module *mod = data;
2190 struct hlist_head *head;
2191 struct kprobe *p;
2192 unsigned int i;
2193 int checkcore = (val == MODULE_STATE_GOING);
2194
2195 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2196 return NOTIFY_DONE;
2197
2198 /*
2199 * When MODULE_STATE_GOING was notified, both of module .text and
2200 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2201 * notified, only .init.text section would be freed. We need to
2202 * disable kprobes which have been inserted in the sections.
2203 */
2204 mutex_lock(&kprobe_mutex);
2205 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2206 head = &kprobe_table[i];
2207 hlist_for_each_entry_rcu(p, head, hlist)
2208 if (within_module_init((unsigned long)p->addr, mod) ||
2209 (checkcore &&
2210 within_module_core((unsigned long)p->addr, mod))) {
2211 /*
2212 * The vaddr this probe is installed will soon
2213 * be vfreed buy not synced to disk. Hence,
2214 * disarming the breakpoint isn't needed.
2215 *
2216 * Note, this will also move any optimized probes
2217 * that are pending to be removed from their
2218 * corresponding lists to the freeing_list and
2219 * will not be touched by the delayed
2220 * kprobe_optimizer work handler.
2221 */
2222 kill_kprobe(p);
2223 }
2224 }
2225 mutex_unlock(&kprobe_mutex);
2226 return NOTIFY_DONE;
2227 }
2228
2229 static struct notifier_block kprobe_module_nb = {
2230 .notifier_call = kprobes_module_callback,
2231 .priority = 0
2232 };
2233
2234 /* Markers of _kprobe_blacklist section */
2235 extern unsigned long __start_kprobe_blacklist[];
2236 extern unsigned long __stop_kprobe_blacklist[];
2237
2238 static int __init init_kprobes(void)
2239 {
2240 int i, err = 0;
2241
2242 /* FIXME allocate the probe table, currently defined statically */
2243 /* initialize all list heads */
2244 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245 INIT_HLIST_HEAD(&kprobe_table[i]);
2246 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2247 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2248 }
2249
2250 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2251 __stop_kprobe_blacklist);
2252 if (err) {
2253 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2254 pr_err("Please take care of using kprobes.\n");
2255 }
2256
2257 if (kretprobe_blacklist_size) {
2258 /* lookup the function address from its name */
2259 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2260 kretprobe_blacklist[i].addr =
2261 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2262 if (!kretprobe_blacklist[i].addr)
2263 printk("kretprobe: lookup failed: %s\n",
2264 kretprobe_blacklist[i].name);
2265 }
2266 }
2267
2268 #if defined(CONFIG_OPTPROBES)
2269 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2270 /* Init kprobe_optinsn_slots */
2271 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2272 #endif
2273 /* By default, kprobes can be optimized */
2274 kprobes_allow_optimization = true;
2275 #endif
2276
2277 /* By default, kprobes are armed */
2278 kprobes_all_disarmed = false;
2279
2280 err = arch_init_kprobes();
2281 if (!err)
2282 err = register_die_notifier(&kprobe_exceptions_nb);
2283 if (!err)
2284 err = register_module_notifier(&kprobe_module_nb);
2285
2286 kprobes_initialized = (err == 0);
2287
2288 if (!err)
2289 init_test_probes();
2290 return err;
2291 }
2292
2293 #ifdef CONFIG_DEBUG_FS
2294 static void report_probe(struct seq_file *pi, struct kprobe *p,
2295 const char *sym, int offset, char *modname, struct kprobe *pp)
2296 {
2297 char *kprobe_type;
2298
2299 if (p->pre_handler == pre_handler_kretprobe)
2300 kprobe_type = "r";
2301 else if (p->pre_handler == setjmp_pre_handler)
2302 kprobe_type = "j";
2303 else
2304 kprobe_type = "k";
2305
2306 if (sym)
2307 seq_printf(pi, "%p %s %s+0x%x %s ",
2308 p->addr, kprobe_type, sym, offset,
2309 (modname ? modname : " "));
2310 else
2311 seq_printf(pi, "%p %s %p ",
2312 p->addr, kprobe_type, p->addr);
2313
2314 if (!pp)
2315 pp = p;
2316 seq_printf(pi, "%s%s%s%s\n",
2317 (kprobe_gone(p) ? "[GONE]" : ""),
2318 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2319 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2320 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2321 }
2322
2323 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2324 {
2325 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2326 }
2327
2328 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2329 {
2330 (*pos)++;
2331 if (*pos >= KPROBE_TABLE_SIZE)
2332 return NULL;
2333 return pos;
2334 }
2335
2336 static void kprobe_seq_stop(struct seq_file *f, void *v)
2337 {
2338 /* Nothing to do */
2339 }
2340
2341 static int show_kprobe_addr(struct seq_file *pi, void *v)
2342 {
2343 struct hlist_head *head;
2344 struct kprobe *p, *kp;
2345 const char *sym = NULL;
2346 unsigned int i = *(loff_t *) v;
2347 unsigned long offset = 0;
2348 char *modname, namebuf[KSYM_NAME_LEN];
2349
2350 head = &kprobe_table[i];
2351 preempt_disable();
2352 hlist_for_each_entry_rcu(p, head, hlist) {
2353 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2354 &offset, &modname, namebuf);
2355 if (kprobe_aggrprobe(p)) {
2356 list_for_each_entry_rcu(kp, &p->list, list)
2357 report_probe(pi, kp, sym, offset, modname, p);
2358 } else
2359 report_probe(pi, p, sym, offset, modname, NULL);
2360 }
2361 preempt_enable();
2362 return 0;
2363 }
2364
2365 static const struct seq_operations kprobes_seq_ops = {
2366 .start = kprobe_seq_start,
2367 .next = kprobe_seq_next,
2368 .stop = kprobe_seq_stop,
2369 .show = show_kprobe_addr
2370 };
2371
2372 static int kprobes_open(struct inode *inode, struct file *filp)
2373 {
2374 return seq_open(filp, &kprobes_seq_ops);
2375 }
2376
2377 static const struct file_operations debugfs_kprobes_operations = {
2378 .open = kprobes_open,
2379 .read = seq_read,
2380 .llseek = seq_lseek,
2381 .release = seq_release,
2382 };
2383
2384 /* kprobes/blacklist -- shows which functions can not be probed */
2385 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2386 {
2387 return seq_list_start(&kprobe_blacklist, *pos);
2388 }
2389
2390 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2391 {
2392 return seq_list_next(v, &kprobe_blacklist, pos);
2393 }
2394
2395 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2396 {
2397 struct kprobe_blacklist_entry *ent =
2398 list_entry(v, struct kprobe_blacklist_entry, list);
2399
2400 /*
2401 * If /proc/kallsyms is not showing kernel address, we won't
2402 * show them here either.
2403 */
2404 if (!kallsyms_show_value())
2405 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2406 (void *)ent->start_addr);
2407 else
2408 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2409 (void *)ent->end_addr, (void *)ent->start_addr);
2410 return 0;
2411 }
2412
2413 static const struct seq_operations kprobe_blacklist_seq_ops = {
2414 .start = kprobe_blacklist_seq_start,
2415 .next = kprobe_blacklist_seq_next,
2416 .stop = kprobe_seq_stop, /* Reuse void function */
2417 .show = kprobe_blacklist_seq_show,
2418 };
2419
2420 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2421 {
2422 return seq_open(filp, &kprobe_blacklist_seq_ops);
2423 }
2424
2425 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2426 .open = kprobe_blacklist_open,
2427 .read = seq_read,
2428 .llseek = seq_lseek,
2429 .release = seq_release,
2430 };
2431
2432 static void arm_all_kprobes(void)
2433 {
2434 struct hlist_head *head;
2435 struct kprobe *p;
2436 unsigned int i;
2437
2438 mutex_lock(&kprobe_mutex);
2439
2440 /* If kprobes are armed, just return */
2441 if (!kprobes_all_disarmed)
2442 goto already_enabled;
2443
2444 /*
2445 * optimize_kprobe() called by arm_kprobe() checks
2446 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2447 * arm_kprobe.
2448 */
2449 kprobes_all_disarmed = false;
2450 /* Arming kprobes doesn't optimize kprobe itself */
2451 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2452 head = &kprobe_table[i];
2453 hlist_for_each_entry_rcu(p, head, hlist)
2454 if (!kprobe_disabled(p))
2455 arm_kprobe(p);
2456 }
2457
2458 printk(KERN_INFO "Kprobes globally enabled\n");
2459
2460 already_enabled:
2461 mutex_unlock(&kprobe_mutex);
2462 return;
2463 }
2464
2465 static void disarm_all_kprobes(void)
2466 {
2467 struct hlist_head *head;
2468 struct kprobe *p;
2469 unsigned int i;
2470
2471 mutex_lock(&kprobe_mutex);
2472
2473 /* If kprobes are already disarmed, just return */
2474 if (kprobes_all_disarmed) {
2475 mutex_unlock(&kprobe_mutex);
2476 return;
2477 }
2478
2479 kprobes_all_disarmed = true;
2480 printk(KERN_INFO "Kprobes globally disabled\n");
2481
2482 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2483 head = &kprobe_table[i];
2484 hlist_for_each_entry_rcu(p, head, hlist) {
2485 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2486 disarm_kprobe(p, false);
2487 }
2488 }
2489 mutex_unlock(&kprobe_mutex);
2490
2491 /* Wait for disarming all kprobes by optimizer */
2492 wait_for_kprobe_optimizer();
2493 }
2494
2495 /*
2496 * XXX: The debugfs bool file interface doesn't allow for callbacks
2497 * when the bool state is switched. We can reuse that facility when
2498 * available
2499 */
2500 static ssize_t read_enabled_file_bool(struct file *file,
2501 char __user *user_buf, size_t count, loff_t *ppos)
2502 {
2503 char buf[3];
2504
2505 if (!kprobes_all_disarmed)
2506 buf[0] = '1';
2507 else
2508 buf[0] = '0';
2509 buf[1] = '\n';
2510 buf[2] = 0x00;
2511 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2512 }
2513
2514 static ssize_t write_enabled_file_bool(struct file *file,
2515 const char __user *user_buf, size_t count, loff_t *ppos)
2516 {
2517 char buf[32];
2518 size_t buf_size;
2519
2520 buf_size = min(count, (sizeof(buf)-1));
2521 if (copy_from_user(buf, user_buf, buf_size))
2522 return -EFAULT;
2523
2524 buf[buf_size] = '\0';
2525 switch (buf[0]) {
2526 case 'y':
2527 case 'Y':
2528 case '1':
2529 arm_all_kprobes();
2530 break;
2531 case 'n':
2532 case 'N':
2533 case '0':
2534 disarm_all_kprobes();
2535 break;
2536 default:
2537 return -EINVAL;
2538 }
2539
2540 return count;
2541 }
2542
2543 static const struct file_operations fops_kp = {
2544 .read = read_enabled_file_bool,
2545 .write = write_enabled_file_bool,
2546 .llseek = default_llseek,
2547 };
2548
2549 static int __init debugfs_kprobe_init(void)
2550 {
2551 struct dentry *dir, *file;
2552 unsigned int value = 1;
2553
2554 dir = debugfs_create_dir("kprobes", NULL);
2555 if (!dir)
2556 return -ENOMEM;
2557
2558 file = debugfs_create_file("list", 0400, dir, NULL,
2559 &debugfs_kprobes_operations);
2560 if (!file)
2561 goto error;
2562
2563 file = debugfs_create_file("enabled", 0600, dir,
2564 &value, &fops_kp);
2565 if (!file)
2566 goto error;
2567
2568 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2569 &debugfs_kprobe_blacklist_ops);
2570 if (!file)
2571 goto error;
2572
2573 return 0;
2574
2575 error:
2576 debugfs_remove(dir);
2577 return -ENOMEM;
2578 }
2579
2580 late_initcall(debugfs_kprobe_init);
2581 #endif /* CONFIG_DEBUG_FS */
2582
2583 module_init(init_kprobes);
2584
2585 /* defined in arch/.../kernel/kprobes.c */
2586 EXPORT_SYMBOL_GPL(jprobe_return);