]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kprobes.c
UBUNTU: [Config] CONFIG_QCOM_PM8XXX_XOADC=m
[mirror_ubuntu-artful-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72 raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76 unsigned int __unused)
77 {
78 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83 return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91 * kprobe->ainsn.insn points to the copy of the instruction to be
92 * single-stepped. x86_64, POWER4 and above have no-exec support and
93 * stepping on the instruction on a vmalloced/kmalloced/data page
94 * is a recipe for disaster
95 */
96 struct kprobe_insn_page {
97 struct list_head list;
98 kprobe_opcode_t *insns; /* Page of instruction slots */
99 struct kprobe_insn_cache *cache;
100 int nused;
101 int ngarbage;
102 char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots) \
106 (offsetof(struct kprobe_insn_page, slot_used) + \
107 (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115 SLOT_CLEAN = 0,
116 SLOT_DIRTY = 1,
117 SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122 return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127 module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132 .alloc = alloc_insn_page,
133 .free = free_insn_page,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156 for (i = 0; i < slots_per_page(c); i++) {
157 if (kip->slot_used[i] == SLOT_CLEAN) {
158 kip->slot_used[i] = SLOT_USED;
159 kip->nused++;
160 slot = kip->insns + (i * c->insn_size);
161 rcu_read_unlock();
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170 rcu_read_unlock();
171
172 /* If there are any garbage slots, collect it and try again. */
173 if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 goto retry;
175
176 /* All out of space. Need to allocate a new page. */
177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 if (!kip)
179 goto out;
180
181 /*
182 * Use module_alloc so this page is within +/- 2GB of where the
183 * kernel image and loaded module images reside. This is required
184 * so x86_64 can correctly handle the %rip-relative fixups.
185 */
186 kip->insns = c->alloc();
187 if (!kip->insns) {
188 kfree(kip);
189 goto out;
190 }
191 INIT_LIST_HEAD(&kip->list);
192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 kip->slot_used[0] = SLOT_USED;
194 kip->nused = 1;
195 kip->ngarbage = 0;
196 kip->cache = c;
197 list_add_rcu(&kip->list, &c->pages);
198 slot = kip->insns;
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 list_del_rcu(&kip->list);
218 synchronize_rcu();
219 kip->cache->free(kip->insns);
220 kfree(kip);
221 }
222 return 1;
223 }
224 return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 struct kprobe_insn_page *kip, *next;
230
231 /* Ensure no-one is interrupted on the garbages */
232 synchronize_sched();
233
234 list_for_each_entry_safe(kip, next, &c->pages, list) {
235 int i;
236 if (kip->ngarbage == 0)
237 continue;
238 kip->ngarbage = 0; /* we will collect all garbages */
239 for (i = 0; i < slots_per_page(c); i++) {
240 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 break;
242 }
243 }
244 c->nr_garbage = 0;
245 return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 kprobe_opcode_t *slot, int dirty)
250 {
251 struct kprobe_insn_page *kip;
252 long idx;
253
254 mutex_lock(&c->mutex);
255 rcu_read_lock();
256 list_for_each_entry_rcu(kip, &c->pages, list) {
257 idx = ((long)slot - (long)kip->insns) /
258 (c->insn_size * sizeof(kprobe_opcode_t));
259 if (idx >= 0 && idx < slots_per_page(c))
260 goto out;
261 }
262 /* Could not find this slot. */
263 WARN_ON(1);
264 kip = NULL;
265 out:
266 rcu_read_unlock();
267 /* Mark and sweep: this may sleep */
268 if (kip) {
269 /* Check double free */
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else {
277 collect_one_slot(kip, idx);
278 }
279 }
280 mutex_unlock(&c->mutex);
281 }
282
283 /*
284 * Check given address is on the page of kprobe instruction slots.
285 * This will be used for checking whether the address on a stack
286 * is on a text area or not.
287 */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 struct kprobe_insn_page *kip;
291 bool ret = false;
292
293 rcu_read_lock();
294 list_for_each_entry_rcu(kip, &c->pages, list) {
295 if (addr >= (unsigned long)kip->insns &&
296 addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 ret = true;
298 break;
299 }
300 }
301 rcu_read_unlock();
302
303 return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310 .alloc = alloc_insn_page,
311 .free = free_insn_page,
312 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313 /* .insn_size is initialized later */
314 .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322 __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327 __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331 * This routine is called either:
332 * - under the kprobe_mutex - during kprobe_[un]register()
333 * OR
334 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
335 */
336 struct kprobe *get_kprobe(void *addr)
337 {
338 struct hlist_head *head;
339 struct kprobe *p;
340
341 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342 hlist_for_each_entry_rcu(p, head, hlist) {
343 if (p->addr == addr)
344 return p;
345 }
346
347 return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356 return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363 list_empty(&p->list);
364 }
365
366 /*
367 * Keep all fields in the kprobe consistent
368 */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380 * Call all pre_handler on the list, but ignores its return value.
381 * This must be called from arch-dep optimized caller.
382 */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 struct kprobe *kp;
386
387 list_for_each_entry_rcu(kp, &p->list, list) {
388 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389 set_kprobe_instance(kp);
390 kp->pre_handler(kp, regs);
391 }
392 reset_kprobe_instance();
393 }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400 struct optimized_kprobe *op;
401
402 op = container_of(p, struct optimized_kprobe, kp);
403 arch_remove_optimized_kprobe(op);
404 arch_remove_kprobe(p);
405 kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411 struct optimized_kprobe *op;
412
413 if (kprobe_aggrprobe(p)) {
414 op = container_of(p, struct optimized_kprobe, kp);
415 return arch_prepared_optinsn(&op->optinsn);
416 }
417
418 return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424 struct optimized_kprobe *op;
425
426 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427 if (!kprobe_aggrprobe(p))
428 return kprobe_disabled(p);
429
430 op = container_of(p, struct optimized_kprobe, kp);
431
432 return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438 struct optimized_kprobe *op;
439
440 if (kprobe_aggrprobe(p)) {
441 op = container_of(p, struct optimized_kprobe, kp);
442 if (!list_empty(&op->list))
443 return 1;
444 }
445 return 0;
446 }
447
448 /*
449 * Return an optimized kprobe whose optimizing code replaces
450 * instructions including addr (exclude breakpoint).
451 */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454 int i;
455 struct kprobe *p = NULL;
456 struct optimized_kprobe *op;
457
458 /* Don't check i == 0, since that is a breakpoint case. */
459 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460 p = get_kprobe((void *)(addr - i));
461
462 if (p && kprobe_optready(p)) {
463 op = container_of(p, struct optimized_kprobe, kp);
464 if (arch_within_optimized_kprobe(op, addr))
465 return p;
466 }
467
468 return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481 * Optimize (replace a breakpoint with a jump) kprobes listed on
482 * optimizing_list.
483 */
484 static void do_optimize_kprobes(void)
485 {
486 /*
487 * The optimization/unoptimization refers online_cpus via
488 * stop_machine() and cpu-hotplug modifies online_cpus.
489 * And same time, text_mutex will be held in cpu-hotplug and here.
490 * This combination can cause a deadlock (cpu-hotplug try to lock
491 * text_mutex but stop_machine can not be done because online_cpus
492 * has been changed)
493 * To avoid this deadlock, caller must have locked cpu hotplug
494 * for preventing cpu-hotplug outside of text_mutex locking.
495 */
496 lockdep_assert_cpus_held();
497
498 /* Optimization never be done when disarmed */
499 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500 list_empty(&optimizing_list))
501 return;
502
503 mutex_lock(&text_mutex);
504 arch_optimize_kprobes(&optimizing_list);
505 mutex_unlock(&text_mutex);
506 }
507
508 /*
509 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510 * if need) kprobes listed on unoptimizing_list.
511 */
512 static void do_unoptimize_kprobes(void)
513 {
514 struct optimized_kprobe *op, *tmp;
515
516 /* See comment in do_optimize_kprobes() */
517 lockdep_assert_cpus_held();
518
519 /* Unoptimization must be done anytime */
520 if (list_empty(&unoptimizing_list))
521 return;
522
523 mutex_lock(&text_mutex);
524 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525 /* Loop free_list for disarming */
526 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527 /* Disarm probes if marked disabled */
528 if (kprobe_disabled(&op->kp))
529 arch_disarm_kprobe(&op->kp);
530 if (kprobe_unused(&op->kp)) {
531 /*
532 * Remove unused probes from hash list. After waiting
533 * for synchronization, these probes are reclaimed.
534 * (reclaiming is done by do_free_cleaned_kprobes.)
535 */
536 hlist_del_rcu(&op->kp.hlist);
537 } else
538 list_del_init(&op->list);
539 }
540 mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546 struct optimized_kprobe *op, *tmp;
547
548 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549 BUG_ON(!kprobe_unused(&op->kp));
550 list_del_init(&op->list);
551 free_aggr_kprobe(&op->kp);
552 }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564 mutex_lock(&kprobe_mutex);
565 cpus_read_lock();
566 /* Lock modules while optimizing kprobes */
567 mutex_lock(&module_mutex);
568
569 /*
570 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571 * kprobes before waiting for quiesence period.
572 */
573 do_unoptimize_kprobes();
574
575 /*
576 * Step 2: Wait for quiesence period to ensure all running interrupts
577 * are done. Because optprobe may modify multiple instructions
578 * there is a chance that Nth instruction is interrupted. In that
579 * case, running interrupt can return to 2nd-Nth byte of jump
580 * instruction. This wait is for avoiding it.
581 */
582 synchronize_sched();
583
584 /* Step 3: Optimize kprobes after quiesence period */
585 do_optimize_kprobes();
586
587 /* Step 4: Free cleaned kprobes after quiesence period */
588 do_free_cleaned_kprobes();
589
590 mutex_unlock(&module_mutex);
591 cpus_read_unlock();
592 mutex_unlock(&kprobe_mutex);
593
594 /* Step 5: Kick optimizer again if needed */
595 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
596 kick_kprobe_optimizer();
597 }
598
599 /* Wait for completing optimization and unoptimization */
600 void wait_for_kprobe_optimizer(void)
601 {
602 mutex_lock(&kprobe_mutex);
603
604 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
605 mutex_unlock(&kprobe_mutex);
606
607 /* this will also make optimizing_work execute immmediately */
608 flush_delayed_work(&optimizing_work);
609 /* @optimizing_work might not have been queued yet, relax */
610 cpu_relax();
611
612 mutex_lock(&kprobe_mutex);
613 }
614
615 mutex_unlock(&kprobe_mutex);
616 }
617
618 /* Optimize kprobe if p is ready to be optimized */
619 static void optimize_kprobe(struct kprobe *p)
620 {
621 struct optimized_kprobe *op;
622
623 /* Check if the kprobe is disabled or not ready for optimization. */
624 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
625 (kprobe_disabled(p) || kprobes_all_disarmed))
626 return;
627
628 /* Both of break_handler and post_handler are not supported. */
629 if (p->break_handler || p->post_handler)
630 return;
631
632 op = container_of(p, struct optimized_kprobe, kp);
633
634 /* Check there is no other kprobes at the optimized instructions */
635 if (arch_check_optimized_kprobe(op) < 0)
636 return;
637
638 /* Check if it is already optimized. */
639 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
640 return;
641 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
642
643 if (!list_empty(&op->list))
644 /* This is under unoptimizing. Just dequeue the probe */
645 list_del_init(&op->list);
646 else {
647 list_add(&op->list, &optimizing_list);
648 kick_kprobe_optimizer();
649 }
650 }
651
652 /* Short cut to direct unoptimizing */
653 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
654 {
655 lockdep_assert_cpus_held();
656 arch_unoptimize_kprobe(op);
657 if (kprobe_disabled(&op->kp))
658 arch_disarm_kprobe(&op->kp);
659 }
660
661 /* Unoptimize a kprobe if p is optimized */
662 static void unoptimize_kprobe(struct kprobe *p, bool force)
663 {
664 struct optimized_kprobe *op;
665
666 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
667 return; /* This is not an optprobe nor optimized */
668
669 op = container_of(p, struct optimized_kprobe, kp);
670 if (!kprobe_optimized(p)) {
671 /* Unoptimized or unoptimizing case */
672 if (force && !list_empty(&op->list)) {
673 /*
674 * Only if this is unoptimizing kprobe and forced,
675 * forcibly unoptimize it. (No need to unoptimize
676 * unoptimized kprobe again :)
677 */
678 list_del_init(&op->list);
679 force_unoptimize_kprobe(op);
680 }
681 return;
682 }
683
684 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685 if (!list_empty(&op->list)) {
686 /* Dequeue from the optimization queue */
687 list_del_init(&op->list);
688 return;
689 }
690 /* Optimized kprobe case */
691 if (force)
692 /* Forcibly update the code: this is a special case */
693 force_unoptimize_kprobe(op);
694 else {
695 list_add(&op->list, &unoptimizing_list);
696 kick_kprobe_optimizer();
697 }
698 }
699
700 /* Cancel unoptimizing for reusing */
701 static void reuse_unused_kprobe(struct kprobe *ap)
702 {
703 struct optimized_kprobe *op;
704
705 BUG_ON(!kprobe_unused(ap));
706 /*
707 * Unused kprobe MUST be on the way of delayed unoptimizing (means
708 * there is still a relative jump) and disabled.
709 */
710 op = container_of(ap, struct optimized_kprobe, kp);
711 if (unlikely(list_empty(&op->list)))
712 printk(KERN_WARNING "Warning: found a stray unused "
713 "aggrprobe@%p\n", ap->addr);
714 /* Enable the probe again */
715 ap->flags &= ~KPROBE_FLAG_DISABLED;
716 /* Optimize it again (remove from op->list) */
717 BUG_ON(!kprobe_optready(ap));
718 optimize_kprobe(ap);
719 }
720
721 /* Remove optimized instructions */
722 static void kill_optimized_kprobe(struct kprobe *p)
723 {
724 struct optimized_kprobe *op;
725
726 op = container_of(p, struct optimized_kprobe, kp);
727 if (!list_empty(&op->list))
728 /* Dequeue from the (un)optimization queue */
729 list_del_init(&op->list);
730 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
731
732 if (kprobe_unused(p)) {
733 /* Enqueue if it is unused */
734 list_add(&op->list, &freeing_list);
735 /*
736 * Remove unused probes from the hash list. After waiting
737 * for synchronization, this probe is reclaimed.
738 * (reclaiming is done by do_free_cleaned_kprobes().)
739 */
740 hlist_del_rcu(&op->kp.hlist);
741 }
742
743 /* Don't touch the code, because it is already freed. */
744 arch_remove_optimized_kprobe(op);
745 }
746
747 static inline
748 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
749 {
750 if (!kprobe_ftrace(p))
751 arch_prepare_optimized_kprobe(op, p);
752 }
753
754 /* Try to prepare optimized instructions */
755 static void prepare_optimized_kprobe(struct kprobe *p)
756 {
757 struct optimized_kprobe *op;
758
759 op = container_of(p, struct optimized_kprobe, kp);
760 __prepare_optimized_kprobe(op, p);
761 }
762
763 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
764 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
765 {
766 struct optimized_kprobe *op;
767
768 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
769 if (!op)
770 return NULL;
771
772 INIT_LIST_HEAD(&op->list);
773 op->kp.addr = p->addr;
774 __prepare_optimized_kprobe(op, p);
775
776 return &op->kp;
777 }
778
779 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
780
781 /*
782 * Prepare an optimized_kprobe and optimize it
783 * NOTE: p must be a normal registered kprobe
784 */
785 static void try_to_optimize_kprobe(struct kprobe *p)
786 {
787 struct kprobe *ap;
788 struct optimized_kprobe *op;
789
790 /* Impossible to optimize ftrace-based kprobe */
791 if (kprobe_ftrace(p))
792 return;
793
794 /* For preparing optimization, jump_label_text_reserved() is called */
795 cpus_read_lock();
796 jump_label_lock();
797 mutex_lock(&text_mutex);
798
799 ap = alloc_aggr_kprobe(p);
800 if (!ap)
801 goto out;
802
803 op = container_of(ap, struct optimized_kprobe, kp);
804 if (!arch_prepared_optinsn(&op->optinsn)) {
805 /* If failed to setup optimizing, fallback to kprobe */
806 arch_remove_optimized_kprobe(op);
807 kfree(op);
808 goto out;
809 }
810
811 init_aggr_kprobe(ap, p);
812 optimize_kprobe(ap); /* This just kicks optimizer thread */
813
814 out:
815 mutex_unlock(&text_mutex);
816 jump_label_unlock();
817 cpus_read_unlock();
818 }
819
820 #ifdef CONFIG_SYSCTL
821 static void optimize_all_kprobes(void)
822 {
823 struct hlist_head *head;
824 struct kprobe *p;
825 unsigned int i;
826
827 mutex_lock(&kprobe_mutex);
828 /* If optimization is already allowed, just return */
829 if (kprobes_allow_optimization)
830 goto out;
831
832 cpus_read_lock();
833 kprobes_allow_optimization = true;
834 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
835 head = &kprobe_table[i];
836 hlist_for_each_entry_rcu(p, head, hlist)
837 if (!kprobe_disabled(p))
838 optimize_kprobe(p);
839 }
840 cpus_read_unlock();
841 printk(KERN_INFO "Kprobes globally optimized\n");
842 out:
843 mutex_unlock(&kprobe_mutex);
844 }
845
846 static void unoptimize_all_kprobes(void)
847 {
848 struct hlist_head *head;
849 struct kprobe *p;
850 unsigned int i;
851
852 mutex_lock(&kprobe_mutex);
853 /* If optimization is already prohibited, just return */
854 if (!kprobes_allow_optimization) {
855 mutex_unlock(&kprobe_mutex);
856 return;
857 }
858
859 cpus_read_lock();
860 kprobes_allow_optimization = false;
861 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
862 head = &kprobe_table[i];
863 hlist_for_each_entry_rcu(p, head, hlist) {
864 if (!kprobe_disabled(p))
865 unoptimize_kprobe(p, false);
866 }
867 }
868 cpus_read_unlock();
869 mutex_unlock(&kprobe_mutex);
870
871 /* Wait for unoptimizing completion */
872 wait_for_kprobe_optimizer();
873 printk(KERN_INFO "Kprobes globally unoptimized\n");
874 }
875
876 static DEFINE_MUTEX(kprobe_sysctl_mutex);
877 int sysctl_kprobes_optimization;
878 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
879 void __user *buffer, size_t *length,
880 loff_t *ppos)
881 {
882 int ret;
883
884 mutex_lock(&kprobe_sysctl_mutex);
885 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
886 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
887
888 if (sysctl_kprobes_optimization)
889 optimize_all_kprobes();
890 else
891 unoptimize_all_kprobes();
892 mutex_unlock(&kprobe_sysctl_mutex);
893
894 return ret;
895 }
896 #endif /* CONFIG_SYSCTL */
897
898 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
899 static void __arm_kprobe(struct kprobe *p)
900 {
901 struct kprobe *_p;
902
903 /* Check collision with other optimized kprobes */
904 _p = get_optimized_kprobe((unsigned long)p->addr);
905 if (unlikely(_p))
906 /* Fallback to unoptimized kprobe */
907 unoptimize_kprobe(_p, true);
908
909 arch_arm_kprobe(p);
910 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
911 }
912
913 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
914 static void __disarm_kprobe(struct kprobe *p, bool reopt)
915 {
916 struct kprobe *_p;
917
918 /* Try to unoptimize */
919 unoptimize_kprobe(p, kprobes_all_disarmed);
920
921 if (!kprobe_queued(p)) {
922 arch_disarm_kprobe(p);
923 /* If another kprobe was blocked, optimize it. */
924 _p = get_optimized_kprobe((unsigned long)p->addr);
925 if (unlikely(_p) && reopt)
926 optimize_kprobe(_p);
927 }
928 /* TODO: reoptimize others after unoptimized this probe */
929 }
930
931 #else /* !CONFIG_OPTPROBES */
932
933 #define optimize_kprobe(p) do {} while (0)
934 #define unoptimize_kprobe(p, f) do {} while (0)
935 #define kill_optimized_kprobe(p) do {} while (0)
936 #define prepare_optimized_kprobe(p) do {} while (0)
937 #define try_to_optimize_kprobe(p) do {} while (0)
938 #define __arm_kprobe(p) arch_arm_kprobe(p)
939 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
940 #define kprobe_disarmed(p) kprobe_disabled(p)
941 #define wait_for_kprobe_optimizer() do {} while (0)
942
943 /* There should be no unused kprobes can be reused without optimization */
944 static void reuse_unused_kprobe(struct kprobe *ap)
945 {
946 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947 BUG_ON(kprobe_unused(ap));
948 }
949
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952 arch_remove_kprobe(p);
953 kfree(p);
954 }
955
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964 .func = kprobe_ftrace_handler,
965 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972 if (!kprobe_ftrace(p))
973 return arch_prepare_kprobe(p);
974
975 return arch_prepare_kprobe_ftrace(p);
976 }
977
978 /* Caller must lock kprobe_mutex */
979 static void arm_kprobe_ftrace(struct kprobe *p)
980 {
981 int ret;
982
983 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984 (unsigned long)p->addr, 0, 0);
985 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
986 kprobe_ftrace_enabled++;
987 if (kprobe_ftrace_enabled == 1) {
988 ret = register_ftrace_function(&kprobe_ftrace_ops);
989 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
990 }
991 }
992
993 /* Caller must lock kprobe_mutex */
994 static void disarm_kprobe_ftrace(struct kprobe *p)
995 {
996 int ret;
997
998 kprobe_ftrace_enabled--;
999 if (kprobe_ftrace_enabled == 0) {
1000 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1001 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1002 }
1003 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1004 (unsigned long)p->addr, 1, 0);
1005 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1006 }
1007 #else /* !CONFIG_KPROBES_ON_FTRACE */
1008 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1009 #define arm_kprobe_ftrace(p) do {} while (0)
1010 #define disarm_kprobe_ftrace(p) do {} while (0)
1011 #endif
1012
1013 /* Arm a kprobe with text_mutex */
1014 static void arm_kprobe(struct kprobe *kp)
1015 {
1016 if (unlikely(kprobe_ftrace(kp))) {
1017 arm_kprobe_ftrace(kp);
1018 return;
1019 }
1020 cpus_read_lock();
1021 mutex_lock(&text_mutex);
1022 __arm_kprobe(kp);
1023 mutex_unlock(&text_mutex);
1024 cpus_read_unlock();
1025 }
1026
1027 /* Disarm a kprobe with text_mutex */
1028 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1029 {
1030 if (unlikely(kprobe_ftrace(kp))) {
1031 disarm_kprobe_ftrace(kp);
1032 return;
1033 }
1034
1035 cpus_read_lock();
1036 mutex_lock(&text_mutex);
1037 __disarm_kprobe(kp, reopt);
1038 mutex_unlock(&text_mutex);
1039 cpus_read_unlock();
1040 }
1041
1042 /*
1043 * Aggregate handlers for multiple kprobes support - these handlers
1044 * take care of invoking the individual kprobe handlers on p->list
1045 */
1046 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047 {
1048 struct kprobe *kp;
1049
1050 list_for_each_entry_rcu(kp, &p->list, list) {
1051 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1052 set_kprobe_instance(kp);
1053 if (kp->pre_handler(kp, regs))
1054 return 1;
1055 }
1056 reset_kprobe_instance();
1057 }
1058 return 0;
1059 }
1060 NOKPROBE_SYMBOL(aggr_pre_handler);
1061
1062 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1063 unsigned long flags)
1064 {
1065 struct kprobe *kp;
1066
1067 list_for_each_entry_rcu(kp, &p->list, list) {
1068 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1069 set_kprobe_instance(kp);
1070 kp->post_handler(kp, regs, flags);
1071 reset_kprobe_instance();
1072 }
1073 }
1074 }
1075 NOKPROBE_SYMBOL(aggr_post_handler);
1076
1077 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1078 int trapnr)
1079 {
1080 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1081
1082 /*
1083 * if we faulted "during" the execution of a user specified
1084 * probe handler, invoke just that probe's fault handler
1085 */
1086 if (cur && cur->fault_handler) {
1087 if (cur->fault_handler(cur, regs, trapnr))
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 NOKPROBE_SYMBOL(aggr_fault_handler);
1093
1094 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1095 {
1096 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1097 int ret = 0;
1098
1099 if (cur && cur->break_handler) {
1100 if (cur->break_handler(cur, regs))
1101 ret = 1;
1102 }
1103 reset_kprobe_instance();
1104 return ret;
1105 }
1106 NOKPROBE_SYMBOL(aggr_break_handler);
1107
1108 /* Walks the list and increments nmissed count for multiprobe case */
1109 void kprobes_inc_nmissed_count(struct kprobe *p)
1110 {
1111 struct kprobe *kp;
1112 if (!kprobe_aggrprobe(p)) {
1113 p->nmissed++;
1114 } else {
1115 list_for_each_entry_rcu(kp, &p->list, list)
1116 kp->nmissed++;
1117 }
1118 return;
1119 }
1120 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1121
1122 void recycle_rp_inst(struct kretprobe_instance *ri,
1123 struct hlist_head *head)
1124 {
1125 struct kretprobe *rp = ri->rp;
1126
1127 /* remove rp inst off the rprobe_inst_table */
1128 hlist_del(&ri->hlist);
1129 INIT_HLIST_NODE(&ri->hlist);
1130 if (likely(rp)) {
1131 raw_spin_lock(&rp->lock);
1132 hlist_add_head(&ri->hlist, &rp->free_instances);
1133 raw_spin_unlock(&rp->lock);
1134 } else
1135 /* Unregistering */
1136 hlist_add_head(&ri->hlist, head);
1137 }
1138 NOKPROBE_SYMBOL(recycle_rp_inst);
1139
1140 void kretprobe_hash_lock(struct task_struct *tsk,
1141 struct hlist_head **head, unsigned long *flags)
1142 __acquires(hlist_lock)
1143 {
1144 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1145 raw_spinlock_t *hlist_lock;
1146
1147 *head = &kretprobe_inst_table[hash];
1148 hlist_lock = kretprobe_table_lock_ptr(hash);
1149 raw_spin_lock_irqsave(hlist_lock, *flags);
1150 }
1151 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1152
1153 static void kretprobe_table_lock(unsigned long hash,
1154 unsigned long *flags)
1155 __acquires(hlist_lock)
1156 {
1157 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1158 raw_spin_lock_irqsave(hlist_lock, *flags);
1159 }
1160 NOKPROBE_SYMBOL(kretprobe_table_lock);
1161
1162 void kretprobe_hash_unlock(struct task_struct *tsk,
1163 unsigned long *flags)
1164 __releases(hlist_lock)
1165 {
1166 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1167 raw_spinlock_t *hlist_lock;
1168
1169 hlist_lock = kretprobe_table_lock_ptr(hash);
1170 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1171 }
1172 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1173
1174 static void kretprobe_table_unlock(unsigned long hash,
1175 unsigned long *flags)
1176 __releases(hlist_lock)
1177 {
1178 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1179 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1180 }
1181 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1182
1183 /*
1184 * This function is called from finish_task_switch when task tk becomes dead,
1185 * so that we can recycle any function-return probe instances associated
1186 * with this task. These left over instances represent probed functions
1187 * that have been called but will never return.
1188 */
1189 void kprobe_flush_task(struct task_struct *tk)
1190 {
1191 struct kretprobe_instance *ri;
1192 struct hlist_head *head, empty_rp;
1193 struct hlist_node *tmp;
1194 unsigned long hash, flags = 0;
1195
1196 if (unlikely(!kprobes_initialized))
1197 /* Early boot. kretprobe_table_locks not yet initialized. */
1198 return;
1199
1200 INIT_HLIST_HEAD(&empty_rp);
1201 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1202 head = &kretprobe_inst_table[hash];
1203 kretprobe_table_lock(hash, &flags);
1204 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1205 if (ri->task == tk)
1206 recycle_rp_inst(ri, &empty_rp);
1207 }
1208 kretprobe_table_unlock(hash, &flags);
1209 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1210 hlist_del(&ri->hlist);
1211 kfree(ri);
1212 }
1213 }
1214 NOKPROBE_SYMBOL(kprobe_flush_task);
1215
1216 static inline void free_rp_inst(struct kretprobe *rp)
1217 {
1218 struct kretprobe_instance *ri;
1219 struct hlist_node *next;
1220
1221 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1222 hlist_del(&ri->hlist);
1223 kfree(ri);
1224 }
1225 }
1226
1227 static void cleanup_rp_inst(struct kretprobe *rp)
1228 {
1229 unsigned long flags, hash;
1230 struct kretprobe_instance *ri;
1231 struct hlist_node *next;
1232 struct hlist_head *head;
1233
1234 /* No race here */
1235 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1236 kretprobe_table_lock(hash, &flags);
1237 head = &kretprobe_inst_table[hash];
1238 hlist_for_each_entry_safe(ri, next, head, hlist) {
1239 if (ri->rp == rp)
1240 ri->rp = NULL;
1241 }
1242 kretprobe_table_unlock(hash, &flags);
1243 }
1244 free_rp_inst(rp);
1245 }
1246 NOKPROBE_SYMBOL(cleanup_rp_inst);
1247
1248 /*
1249 * Add the new probe to ap->list. Fail if this is the
1250 * second jprobe at the address - two jprobes can't coexist
1251 */
1252 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1253 {
1254 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1255
1256 if (p->break_handler || p->post_handler)
1257 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1258
1259 if (p->break_handler) {
1260 if (ap->break_handler)
1261 return -EEXIST;
1262 list_add_tail_rcu(&p->list, &ap->list);
1263 ap->break_handler = aggr_break_handler;
1264 } else
1265 list_add_rcu(&p->list, &ap->list);
1266 if (p->post_handler && !ap->post_handler)
1267 ap->post_handler = aggr_post_handler;
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * Fill in the required fields of the "manager kprobe". Replace the
1274 * earlier kprobe in the hlist with the manager kprobe
1275 */
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277 {
1278 /* Copy p's insn slot to ap */
1279 copy_kprobe(p, ap);
1280 flush_insn_slot(ap);
1281 ap->addr = p->addr;
1282 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283 ap->pre_handler = aggr_pre_handler;
1284 ap->fault_handler = aggr_fault_handler;
1285 /* We don't care the kprobe which has gone. */
1286 if (p->post_handler && !kprobe_gone(p))
1287 ap->post_handler = aggr_post_handler;
1288 if (p->break_handler && !kprobe_gone(p))
1289 ap->break_handler = aggr_break_handler;
1290
1291 INIT_LIST_HEAD(&ap->list);
1292 INIT_HLIST_NODE(&ap->hlist);
1293
1294 list_add_rcu(&p->list, &ap->list);
1295 hlist_replace_rcu(&p->hlist, &ap->hlist);
1296 }
1297
1298 /*
1299 * This is the second or subsequent kprobe at the address - handle
1300 * the intricacies
1301 */
1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1303 {
1304 int ret = 0;
1305 struct kprobe *ap = orig_p;
1306
1307 cpus_read_lock();
1308
1309 /* For preparing optimization, jump_label_text_reserved() is called */
1310 jump_label_lock();
1311 mutex_lock(&text_mutex);
1312
1313 if (!kprobe_aggrprobe(orig_p)) {
1314 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1315 ap = alloc_aggr_kprobe(orig_p);
1316 if (!ap) {
1317 ret = -ENOMEM;
1318 goto out;
1319 }
1320 init_aggr_kprobe(ap, orig_p);
1321 } else if (kprobe_unused(ap))
1322 /* This probe is going to die. Rescue it */
1323 reuse_unused_kprobe(ap);
1324
1325 if (kprobe_gone(ap)) {
1326 /*
1327 * Attempting to insert new probe at the same location that
1328 * had a probe in the module vaddr area which already
1329 * freed. So, the instruction slot has already been
1330 * released. We need a new slot for the new probe.
1331 */
1332 ret = arch_prepare_kprobe(ap);
1333 if (ret)
1334 /*
1335 * Even if fail to allocate new slot, don't need to
1336 * free aggr_probe. It will be used next time, or
1337 * freed by unregister_kprobe.
1338 */
1339 goto out;
1340
1341 /* Prepare optimized instructions if possible. */
1342 prepare_optimized_kprobe(ap);
1343
1344 /*
1345 * Clear gone flag to prevent allocating new slot again, and
1346 * set disabled flag because it is not armed yet.
1347 */
1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 | KPROBE_FLAG_DISABLED;
1350 }
1351
1352 /* Copy ap's insn slot to p */
1353 copy_kprobe(ap, p);
1354 ret = add_new_kprobe(ap, p);
1355
1356 out:
1357 mutex_unlock(&text_mutex);
1358 jump_label_unlock();
1359 cpus_read_unlock();
1360
1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 if (!kprobes_all_disarmed)
1364 /* Arm the breakpoint again. */
1365 arm_kprobe(ap);
1366 }
1367 return ret;
1368 }
1369
1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371 {
1372 /* The __kprobes marked functions and entry code must not be probed */
1373 return addr >= (unsigned long)__kprobes_text_start &&
1374 addr < (unsigned long)__kprobes_text_end;
1375 }
1376
1377 bool within_kprobe_blacklist(unsigned long addr)
1378 {
1379 struct kprobe_blacklist_entry *ent;
1380
1381 if (arch_within_kprobe_blacklist(addr))
1382 return true;
1383 /*
1384 * If there exists a kprobe_blacklist, verify and
1385 * fail any probe registration in the prohibited area
1386 */
1387 list_for_each_entry(ent, &kprobe_blacklist, list) {
1388 if (addr >= ent->start_addr && addr < ent->end_addr)
1389 return true;
1390 }
1391
1392 return false;
1393 }
1394
1395 /*
1396 * If we have a symbol_name argument, look it up and add the offset field
1397 * to it. This way, we can specify a relative address to a symbol.
1398 * This returns encoded errors if it fails to look up symbol or invalid
1399 * combination of parameters.
1400 */
1401 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1402 const char *symbol_name, unsigned int offset)
1403 {
1404 if ((symbol_name && addr) || (!symbol_name && !addr))
1405 goto invalid;
1406
1407 if (symbol_name) {
1408 addr = kprobe_lookup_name(symbol_name, offset);
1409 if (!addr)
1410 return ERR_PTR(-ENOENT);
1411 }
1412
1413 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1414 if (addr)
1415 return addr;
1416
1417 invalid:
1418 return ERR_PTR(-EINVAL);
1419 }
1420
1421 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1422 {
1423 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1424 }
1425
1426 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1427 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1428 {
1429 struct kprobe *ap, *list_p;
1430
1431 ap = get_kprobe(p->addr);
1432 if (unlikely(!ap))
1433 return NULL;
1434
1435 if (p != ap) {
1436 list_for_each_entry_rcu(list_p, &ap->list, list)
1437 if (list_p == p)
1438 /* kprobe p is a valid probe */
1439 goto valid;
1440 return NULL;
1441 }
1442 valid:
1443 return ap;
1444 }
1445
1446 /* Return error if the kprobe is being re-registered */
1447 static inline int check_kprobe_rereg(struct kprobe *p)
1448 {
1449 int ret = 0;
1450
1451 mutex_lock(&kprobe_mutex);
1452 if (__get_valid_kprobe(p))
1453 ret = -EINVAL;
1454 mutex_unlock(&kprobe_mutex);
1455
1456 return ret;
1457 }
1458
1459 int __weak arch_check_ftrace_location(struct kprobe *p)
1460 {
1461 unsigned long ftrace_addr;
1462
1463 ftrace_addr = ftrace_location((unsigned long)p->addr);
1464 if (ftrace_addr) {
1465 #ifdef CONFIG_KPROBES_ON_FTRACE
1466 /* Given address is not on the instruction boundary */
1467 if ((unsigned long)p->addr != ftrace_addr)
1468 return -EILSEQ;
1469 p->flags |= KPROBE_FLAG_FTRACE;
1470 #else /* !CONFIG_KPROBES_ON_FTRACE */
1471 return -EINVAL;
1472 #endif
1473 }
1474 return 0;
1475 }
1476
1477 static int check_kprobe_address_safe(struct kprobe *p,
1478 struct module **probed_mod)
1479 {
1480 int ret;
1481
1482 ret = arch_check_ftrace_location(p);
1483 if (ret)
1484 return ret;
1485 jump_label_lock();
1486 preempt_disable();
1487
1488 /* Ensure it is not in reserved area nor out of text */
1489 if (!kernel_text_address((unsigned long) p->addr) ||
1490 within_kprobe_blacklist((unsigned long) p->addr) ||
1491 jump_label_text_reserved(p->addr, p->addr)) {
1492 ret = -EINVAL;
1493 goto out;
1494 }
1495
1496 /* Check if are we probing a module */
1497 *probed_mod = __module_text_address((unsigned long) p->addr);
1498 if (*probed_mod) {
1499 /*
1500 * We must hold a refcount of the probed module while updating
1501 * its code to prohibit unexpected unloading.
1502 */
1503 if (unlikely(!try_module_get(*probed_mod))) {
1504 ret = -ENOENT;
1505 goto out;
1506 }
1507
1508 /*
1509 * If the module freed .init.text, we couldn't insert
1510 * kprobes in there.
1511 */
1512 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1513 (*probed_mod)->state != MODULE_STATE_COMING) {
1514 module_put(*probed_mod);
1515 *probed_mod = NULL;
1516 ret = -ENOENT;
1517 }
1518 }
1519 out:
1520 preempt_enable();
1521 jump_label_unlock();
1522
1523 return ret;
1524 }
1525
1526 int register_kprobe(struct kprobe *p)
1527 {
1528 int ret;
1529 struct kprobe *old_p;
1530 struct module *probed_mod;
1531 kprobe_opcode_t *addr;
1532
1533 /* Adjust probe address from symbol */
1534 addr = kprobe_addr(p);
1535 if (IS_ERR(addr))
1536 return PTR_ERR(addr);
1537 p->addr = addr;
1538
1539 ret = check_kprobe_rereg(p);
1540 if (ret)
1541 return ret;
1542
1543 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1544 p->flags &= KPROBE_FLAG_DISABLED;
1545 p->nmissed = 0;
1546 INIT_LIST_HEAD(&p->list);
1547
1548 ret = check_kprobe_address_safe(p, &probed_mod);
1549 if (ret)
1550 return ret;
1551
1552 mutex_lock(&kprobe_mutex);
1553
1554 old_p = get_kprobe(p->addr);
1555 if (old_p) {
1556 /* Since this may unoptimize old_p, locking text_mutex. */
1557 ret = register_aggr_kprobe(old_p, p);
1558 goto out;
1559 }
1560
1561 cpus_read_lock();
1562 /* Prevent text modification */
1563 mutex_lock(&text_mutex);
1564 ret = prepare_kprobe(p);
1565 mutex_unlock(&text_mutex);
1566 cpus_read_unlock();
1567 if (ret)
1568 goto out;
1569
1570 INIT_HLIST_NODE(&p->hlist);
1571 hlist_add_head_rcu(&p->hlist,
1572 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1573
1574 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1575 arm_kprobe(p);
1576
1577 /* Try to optimize kprobe */
1578 try_to_optimize_kprobe(p);
1579 out:
1580 mutex_unlock(&kprobe_mutex);
1581
1582 if (probed_mod)
1583 module_put(probed_mod);
1584
1585 return ret;
1586 }
1587 EXPORT_SYMBOL_GPL(register_kprobe);
1588
1589 /* Check if all probes on the aggrprobe are disabled */
1590 static int aggr_kprobe_disabled(struct kprobe *ap)
1591 {
1592 struct kprobe *kp;
1593
1594 list_for_each_entry_rcu(kp, &ap->list, list)
1595 if (!kprobe_disabled(kp))
1596 /*
1597 * There is an active probe on the list.
1598 * We can't disable this ap.
1599 */
1600 return 0;
1601
1602 return 1;
1603 }
1604
1605 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1606 static struct kprobe *__disable_kprobe(struct kprobe *p)
1607 {
1608 struct kprobe *orig_p;
1609
1610 /* Get an original kprobe for return */
1611 orig_p = __get_valid_kprobe(p);
1612 if (unlikely(orig_p == NULL))
1613 return NULL;
1614
1615 if (!kprobe_disabled(p)) {
1616 /* Disable probe if it is a child probe */
1617 if (p != orig_p)
1618 p->flags |= KPROBE_FLAG_DISABLED;
1619
1620 /* Try to disarm and disable this/parent probe */
1621 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1622 /*
1623 * If kprobes_all_disarmed is set, orig_p
1624 * should have already been disarmed, so
1625 * skip unneed disarming process.
1626 */
1627 if (!kprobes_all_disarmed)
1628 disarm_kprobe(orig_p, true);
1629 orig_p->flags |= KPROBE_FLAG_DISABLED;
1630 }
1631 }
1632
1633 return orig_p;
1634 }
1635
1636 /*
1637 * Unregister a kprobe without a scheduler synchronization.
1638 */
1639 static int __unregister_kprobe_top(struct kprobe *p)
1640 {
1641 struct kprobe *ap, *list_p;
1642
1643 /* Disable kprobe. This will disarm it if needed. */
1644 ap = __disable_kprobe(p);
1645 if (ap == NULL)
1646 return -EINVAL;
1647
1648 if (ap == p)
1649 /*
1650 * This probe is an independent(and non-optimized) kprobe
1651 * (not an aggrprobe). Remove from the hash list.
1652 */
1653 goto disarmed;
1654
1655 /* Following process expects this probe is an aggrprobe */
1656 WARN_ON(!kprobe_aggrprobe(ap));
1657
1658 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1659 /*
1660 * !disarmed could be happen if the probe is under delayed
1661 * unoptimizing.
1662 */
1663 goto disarmed;
1664 else {
1665 /* If disabling probe has special handlers, update aggrprobe */
1666 if (p->break_handler && !kprobe_gone(p))
1667 ap->break_handler = NULL;
1668 if (p->post_handler && !kprobe_gone(p)) {
1669 list_for_each_entry_rcu(list_p, &ap->list, list) {
1670 if ((list_p != p) && (list_p->post_handler))
1671 goto noclean;
1672 }
1673 ap->post_handler = NULL;
1674 }
1675 noclean:
1676 /*
1677 * Remove from the aggrprobe: this path will do nothing in
1678 * __unregister_kprobe_bottom().
1679 */
1680 list_del_rcu(&p->list);
1681 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1682 /*
1683 * Try to optimize this probe again, because post
1684 * handler may have been changed.
1685 */
1686 optimize_kprobe(ap);
1687 }
1688 return 0;
1689
1690 disarmed:
1691 BUG_ON(!kprobe_disarmed(ap));
1692 hlist_del_rcu(&ap->hlist);
1693 return 0;
1694 }
1695
1696 static void __unregister_kprobe_bottom(struct kprobe *p)
1697 {
1698 struct kprobe *ap;
1699
1700 if (list_empty(&p->list))
1701 /* This is an independent kprobe */
1702 arch_remove_kprobe(p);
1703 else if (list_is_singular(&p->list)) {
1704 /* This is the last child of an aggrprobe */
1705 ap = list_entry(p->list.next, struct kprobe, list);
1706 list_del(&p->list);
1707 free_aggr_kprobe(ap);
1708 }
1709 /* Otherwise, do nothing. */
1710 }
1711
1712 int register_kprobes(struct kprobe **kps, int num)
1713 {
1714 int i, ret = 0;
1715
1716 if (num <= 0)
1717 return -EINVAL;
1718 for (i = 0; i < num; i++) {
1719 ret = register_kprobe(kps[i]);
1720 if (ret < 0) {
1721 if (i > 0)
1722 unregister_kprobes(kps, i);
1723 break;
1724 }
1725 }
1726 return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(register_kprobes);
1729
1730 void unregister_kprobe(struct kprobe *p)
1731 {
1732 unregister_kprobes(&p, 1);
1733 }
1734 EXPORT_SYMBOL_GPL(unregister_kprobe);
1735
1736 void unregister_kprobes(struct kprobe **kps, int num)
1737 {
1738 int i;
1739
1740 if (num <= 0)
1741 return;
1742 mutex_lock(&kprobe_mutex);
1743 for (i = 0; i < num; i++)
1744 if (__unregister_kprobe_top(kps[i]) < 0)
1745 kps[i]->addr = NULL;
1746 mutex_unlock(&kprobe_mutex);
1747
1748 synchronize_sched();
1749 for (i = 0; i < num; i++)
1750 if (kps[i]->addr)
1751 __unregister_kprobe_bottom(kps[i]);
1752 }
1753 EXPORT_SYMBOL_GPL(unregister_kprobes);
1754
1755 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1756 unsigned long val, void *data)
1757 {
1758 return NOTIFY_DONE;
1759 }
1760 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1761
1762 static struct notifier_block kprobe_exceptions_nb = {
1763 .notifier_call = kprobe_exceptions_notify,
1764 .priority = 0x7fffffff /* we need to be notified first */
1765 };
1766
1767 unsigned long __weak arch_deref_entry_point(void *entry)
1768 {
1769 return (unsigned long)entry;
1770 }
1771
1772 int register_jprobes(struct jprobe **jps, int num)
1773 {
1774 int ret = 0, i;
1775
1776 if (num <= 0)
1777 return -EINVAL;
1778
1779 for (i = 0; i < num; i++) {
1780 ret = register_jprobe(jps[i]);
1781
1782 if (ret < 0) {
1783 if (i > 0)
1784 unregister_jprobes(jps, i);
1785 break;
1786 }
1787 }
1788
1789 return ret;
1790 }
1791 EXPORT_SYMBOL_GPL(register_jprobes);
1792
1793 int register_jprobe(struct jprobe *jp)
1794 {
1795 unsigned long addr, offset;
1796 struct kprobe *kp = &jp->kp;
1797
1798 /*
1799 * Verify probepoint as well as the jprobe handler are
1800 * valid function entry points.
1801 */
1802 addr = arch_deref_entry_point(jp->entry);
1803
1804 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1805 kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1806 kp->pre_handler = setjmp_pre_handler;
1807 kp->break_handler = longjmp_break_handler;
1808 return register_kprobe(kp);
1809 }
1810
1811 return -EINVAL;
1812 }
1813 EXPORT_SYMBOL_GPL(register_jprobe);
1814
1815 void unregister_jprobe(struct jprobe *jp)
1816 {
1817 unregister_jprobes(&jp, 1);
1818 }
1819 EXPORT_SYMBOL_GPL(unregister_jprobe);
1820
1821 void unregister_jprobes(struct jprobe **jps, int num)
1822 {
1823 int i;
1824
1825 if (num <= 0)
1826 return;
1827 mutex_lock(&kprobe_mutex);
1828 for (i = 0; i < num; i++)
1829 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1830 jps[i]->kp.addr = NULL;
1831 mutex_unlock(&kprobe_mutex);
1832
1833 synchronize_sched();
1834 for (i = 0; i < num; i++) {
1835 if (jps[i]->kp.addr)
1836 __unregister_kprobe_bottom(&jps[i]->kp);
1837 }
1838 }
1839 EXPORT_SYMBOL_GPL(unregister_jprobes);
1840
1841 #ifdef CONFIG_KRETPROBES
1842 /*
1843 * This kprobe pre_handler is registered with every kretprobe. When probe
1844 * hits it will set up the return probe.
1845 */
1846 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1847 {
1848 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1849 unsigned long hash, flags = 0;
1850 struct kretprobe_instance *ri;
1851
1852 /*
1853 * To avoid deadlocks, prohibit return probing in NMI contexts,
1854 * just skip the probe and increase the (inexact) 'nmissed'
1855 * statistical counter, so that the user is informed that
1856 * something happened:
1857 */
1858 if (unlikely(in_nmi())) {
1859 rp->nmissed++;
1860 return 0;
1861 }
1862
1863 /* TODO: consider to only swap the RA after the last pre_handler fired */
1864 hash = hash_ptr(current, KPROBE_HASH_BITS);
1865 raw_spin_lock_irqsave(&rp->lock, flags);
1866 if (!hlist_empty(&rp->free_instances)) {
1867 ri = hlist_entry(rp->free_instances.first,
1868 struct kretprobe_instance, hlist);
1869 hlist_del(&ri->hlist);
1870 raw_spin_unlock_irqrestore(&rp->lock, flags);
1871
1872 ri->rp = rp;
1873 ri->task = current;
1874
1875 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1876 raw_spin_lock_irqsave(&rp->lock, flags);
1877 hlist_add_head(&ri->hlist, &rp->free_instances);
1878 raw_spin_unlock_irqrestore(&rp->lock, flags);
1879 return 0;
1880 }
1881
1882 arch_prepare_kretprobe(ri, regs);
1883
1884 /* XXX(hch): why is there no hlist_move_head? */
1885 INIT_HLIST_NODE(&ri->hlist);
1886 kretprobe_table_lock(hash, &flags);
1887 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1888 kretprobe_table_unlock(hash, &flags);
1889 } else {
1890 rp->nmissed++;
1891 raw_spin_unlock_irqrestore(&rp->lock, flags);
1892 }
1893 return 0;
1894 }
1895 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1896
1897 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1898 {
1899 return !offset;
1900 }
1901
1902 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1903 {
1904 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1905
1906 if (IS_ERR(kp_addr))
1907 return false;
1908
1909 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1910 !arch_kprobe_on_func_entry(offset))
1911 return false;
1912
1913 return true;
1914 }
1915
1916 int register_kretprobe(struct kretprobe *rp)
1917 {
1918 int ret = 0;
1919 struct kretprobe_instance *inst;
1920 int i;
1921 void *addr;
1922
1923 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1924 return -EINVAL;
1925
1926 if (kretprobe_blacklist_size) {
1927 addr = kprobe_addr(&rp->kp);
1928 if (IS_ERR(addr))
1929 return PTR_ERR(addr);
1930
1931 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1932 if (kretprobe_blacklist[i].addr == addr)
1933 return -EINVAL;
1934 }
1935 }
1936
1937 rp->kp.pre_handler = pre_handler_kretprobe;
1938 rp->kp.post_handler = NULL;
1939 rp->kp.fault_handler = NULL;
1940 rp->kp.break_handler = NULL;
1941
1942 /* Pre-allocate memory for max kretprobe instances */
1943 if (rp->maxactive <= 0) {
1944 #ifdef CONFIG_PREEMPT
1945 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1946 #else
1947 rp->maxactive = num_possible_cpus();
1948 #endif
1949 }
1950 raw_spin_lock_init(&rp->lock);
1951 INIT_HLIST_HEAD(&rp->free_instances);
1952 for (i = 0; i < rp->maxactive; i++) {
1953 inst = kmalloc(sizeof(struct kretprobe_instance) +
1954 rp->data_size, GFP_KERNEL);
1955 if (inst == NULL) {
1956 free_rp_inst(rp);
1957 return -ENOMEM;
1958 }
1959 INIT_HLIST_NODE(&inst->hlist);
1960 hlist_add_head(&inst->hlist, &rp->free_instances);
1961 }
1962
1963 rp->nmissed = 0;
1964 /* Establish function entry probe point */
1965 ret = register_kprobe(&rp->kp);
1966 if (ret != 0)
1967 free_rp_inst(rp);
1968 return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(register_kretprobe);
1971
1972 int register_kretprobes(struct kretprobe **rps, int num)
1973 {
1974 int ret = 0, i;
1975
1976 if (num <= 0)
1977 return -EINVAL;
1978 for (i = 0; i < num; i++) {
1979 ret = register_kretprobe(rps[i]);
1980 if (ret < 0) {
1981 if (i > 0)
1982 unregister_kretprobes(rps, i);
1983 break;
1984 }
1985 }
1986 return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(register_kretprobes);
1989
1990 void unregister_kretprobe(struct kretprobe *rp)
1991 {
1992 unregister_kretprobes(&rp, 1);
1993 }
1994 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1995
1996 void unregister_kretprobes(struct kretprobe **rps, int num)
1997 {
1998 int i;
1999
2000 if (num <= 0)
2001 return;
2002 mutex_lock(&kprobe_mutex);
2003 for (i = 0; i < num; i++)
2004 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2005 rps[i]->kp.addr = NULL;
2006 mutex_unlock(&kprobe_mutex);
2007
2008 synchronize_sched();
2009 for (i = 0; i < num; i++) {
2010 if (rps[i]->kp.addr) {
2011 __unregister_kprobe_bottom(&rps[i]->kp);
2012 cleanup_rp_inst(rps[i]);
2013 }
2014 }
2015 }
2016 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2017
2018 #else /* CONFIG_KRETPROBES */
2019 int register_kretprobe(struct kretprobe *rp)
2020 {
2021 return -ENOSYS;
2022 }
2023 EXPORT_SYMBOL_GPL(register_kretprobe);
2024
2025 int register_kretprobes(struct kretprobe **rps, int num)
2026 {
2027 return -ENOSYS;
2028 }
2029 EXPORT_SYMBOL_GPL(register_kretprobes);
2030
2031 void unregister_kretprobe(struct kretprobe *rp)
2032 {
2033 }
2034 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2035
2036 void unregister_kretprobes(struct kretprobe **rps, int num)
2037 {
2038 }
2039 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2040
2041 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2042 {
2043 return 0;
2044 }
2045 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2046
2047 #endif /* CONFIG_KRETPROBES */
2048
2049 /* Set the kprobe gone and remove its instruction buffer. */
2050 static void kill_kprobe(struct kprobe *p)
2051 {
2052 struct kprobe *kp;
2053
2054 p->flags |= KPROBE_FLAG_GONE;
2055 if (kprobe_aggrprobe(p)) {
2056 /*
2057 * If this is an aggr_kprobe, we have to list all the
2058 * chained probes and mark them GONE.
2059 */
2060 list_for_each_entry_rcu(kp, &p->list, list)
2061 kp->flags |= KPROBE_FLAG_GONE;
2062 p->post_handler = NULL;
2063 p->break_handler = NULL;
2064 kill_optimized_kprobe(p);
2065 }
2066 /*
2067 * Here, we can remove insn_slot safely, because no thread calls
2068 * the original probed function (which will be freed soon) any more.
2069 */
2070 arch_remove_kprobe(p);
2071 }
2072
2073 /* Disable one kprobe */
2074 int disable_kprobe(struct kprobe *kp)
2075 {
2076 int ret = 0;
2077
2078 mutex_lock(&kprobe_mutex);
2079
2080 /* Disable this kprobe */
2081 if (__disable_kprobe(kp) == NULL)
2082 ret = -EINVAL;
2083
2084 mutex_unlock(&kprobe_mutex);
2085 return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(disable_kprobe);
2088
2089 /* Enable one kprobe */
2090 int enable_kprobe(struct kprobe *kp)
2091 {
2092 int ret = 0;
2093 struct kprobe *p;
2094
2095 mutex_lock(&kprobe_mutex);
2096
2097 /* Check whether specified probe is valid. */
2098 p = __get_valid_kprobe(kp);
2099 if (unlikely(p == NULL)) {
2100 ret = -EINVAL;
2101 goto out;
2102 }
2103
2104 if (kprobe_gone(kp)) {
2105 /* This kprobe has gone, we couldn't enable it. */
2106 ret = -EINVAL;
2107 goto out;
2108 }
2109
2110 if (p != kp)
2111 kp->flags &= ~KPROBE_FLAG_DISABLED;
2112
2113 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2114 p->flags &= ~KPROBE_FLAG_DISABLED;
2115 arm_kprobe(p);
2116 }
2117 out:
2118 mutex_unlock(&kprobe_mutex);
2119 return ret;
2120 }
2121 EXPORT_SYMBOL_GPL(enable_kprobe);
2122
2123 void dump_kprobe(struct kprobe *kp)
2124 {
2125 printk(KERN_WARNING "Dumping kprobe:\n");
2126 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2127 kp->symbol_name, kp->addr, kp->offset);
2128 }
2129 NOKPROBE_SYMBOL(dump_kprobe);
2130
2131 /*
2132 * Lookup and populate the kprobe_blacklist.
2133 *
2134 * Unlike the kretprobe blacklist, we'll need to determine
2135 * the range of addresses that belong to the said functions,
2136 * since a kprobe need not necessarily be at the beginning
2137 * of a function.
2138 */
2139 static int __init populate_kprobe_blacklist(unsigned long *start,
2140 unsigned long *end)
2141 {
2142 unsigned long *iter;
2143 struct kprobe_blacklist_entry *ent;
2144 unsigned long entry, offset = 0, size = 0;
2145
2146 for (iter = start; iter < end; iter++) {
2147 entry = arch_deref_entry_point((void *)*iter);
2148
2149 if (!kernel_text_address(entry) ||
2150 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2151 pr_err("Failed to find blacklist at %p\n",
2152 (void *)entry);
2153 continue;
2154 }
2155
2156 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2157 if (!ent)
2158 return -ENOMEM;
2159 ent->start_addr = entry;
2160 ent->end_addr = entry + size;
2161 INIT_LIST_HEAD(&ent->list);
2162 list_add_tail(&ent->list, &kprobe_blacklist);
2163 }
2164 return 0;
2165 }
2166
2167 /* Module notifier call back, checking kprobes on the module */
2168 static int kprobes_module_callback(struct notifier_block *nb,
2169 unsigned long val, void *data)
2170 {
2171 struct module *mod = data;
2172 struct hlist_head *head;
2173 struct kprobe *p;
2174 unsigned int i;
2175 int checkcore = (val == MODULE_STATE_GOING);
2176
2177 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2178 return NOTIFY_DONE;
2179
2180 /*
2181 * When MODULE_STATE_GOING was notified, both of module .text and
2182 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2183 * notified, only .init.text section would be freed. We need to
2184 * disable kprobes which have been inserted in the sections.
2185 */
2186 mutex_lock(&kprobe_mutex);
2187 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2188 head = &kprobe_table[i];
2189 hlist_for_each_entry_rcu(p, head, hlist)
2190 if (within_module_init((unsigned long)p->addr, mod) ||
2191 (checkcore &&
2192 within_module_core((unsigned long)p->addr, mod))) {
2193 /*
2194 * The vaddr this probe is installed will soon
2195 * be vfreed buy not synced to disk. Hence,
2196 * disarming the breakpoint isn't needed.
2197 *
2198 * Note, this will also move any optimized probes
2199 * that are pending to be removed from their
2200 * corresponding lists to the freeing_list and
2201 * will not be touched by the delayed
2202 * kprobe_optimizer work handler.
2203 */
2204 kill_kprobe(p);
2205 }
2206 }
2207 mutex_unlock(&kprobe_mutex);
2208 return NOTIFY_DONE;
2209 }
2210
2211 static struct notifier_block kprobe_module_nb = {
2212 .notifier_call = kprobes_module_callback,
2213 .priority = 0
2214 };
2215
2216 /* Markers of _kprobe_blacklist section */
2217 extern unsigned long __start_kprobe_blacklist[];
2218 extern unsigned long __stop_kprobe_blacklist[];
2219
2220 static int __init init_kprobes(void)
2221 {
2222 int i, err = 0;
2223
2224 /* FIXME allocate the probe table, currently defined statically */
2225 /* initialize all list heads */
2226 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2227 INIT_HLIST_HEAD(&kprobe_table[i]);
2228 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2229 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2230 }
2231
2232 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2233 __stop_kprobe_blacklist);
2234 if (err) {
2235 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2236 pr_err("Please take care of using kprobes.\n");
2237 }
2238
2239 if (kretprobe_blacklist_size) {
2240 /* lookup the function address from its name */
2241 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2242 kretprobe_blacklist[i].addr =
2243 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2244 if (!kretprobe_blacklist[i].addr)
2245 printk("kretprobe: lookup failed: %s\n",
2246 kretprobe_blacklist[i].name);
2247 }
2248 }
2249
2250 #if defined(CONFIG_OPTPROBES)
2251 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2252 /* Init kprobe_optinsn_slots */
2253 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2254 #endif
2255 /* By default, kprobes can be optimized */
2256 kprobes_allow_optimization = true;
2257 #endif
2258
2259 /* By default, kprobes are armed */
2260 kprobes_all_disarmed = false;
2261
2262 err = arch_init_kprobes();
2263 if (!err)
2264 err = register_die_notifier(&kprobe_exceptions_nb);
2265 if (!err)
2266 err = register_module_notifier(&kprobe_module_nb);
2267
2268 kprobes_initialized = (err == 0);
2269
2270 if (!err)
2271 init_test_probes();
2272 return err;
2273 }
2274
2275 #ifdef CONFIG_DEBUG_FS
2276 static void report_probe(struct seq_file *pi, struct kprobe *p,
2277 const char *sym, int offset, char *modname, struct kprobe *pp)
2278 {
2279 char *kprobe_type;
2280
2281 if (p->pre_handler == pre_handler_kretprobe)
2282 kprobe_type = "r";
2283 else if (p->pre_handler == setjmp_pre_handler)
2284 kprobe_type = "j";
2285 else
2286 kprobe_type = "k";
2287
2288 if (sym)
2289 seq_printf(pi, "%p %s %s+0x%x %s ",
2290 p->addr, kprobe_type, sym, offset,
2291 (modname ? modname : " "));
2292 else
2293 seq_printf(pi, "%p %s %p ",
2294 p->addr, kprobe_type, p->addr);
2295
2296 if (!pp)
2297 pp = p;
2298 seq_printf(pi, "%s%s%s%s\n",
2299 (kprobe_gone(p) ? "[GONE]" : ""),
2300 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2301 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2302 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2303 }
2304
2305 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2306 {
2307 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2308 }
2309
2310 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2311 {
2312 (*pos)++;
2313 if (*pos >= KPROBE_TABLE_SIZE)
2314 return NULL;
2315 return pos;
2316 }
2317
2318 static void kprobe_seq_stop(struct seq_file *f, void *v)
2319 {
2320 /* Nothing to do */
2321 }
2322
2323 static int show_kprobe_addr(struct seq_file *pi, void *v)
2324 {
2325 struct hlist_head *head;
2326 struct kprobe *p, *kp;
2327 const char *sym = NULL;
2328 unsigned int i = *(loff_t *) v;
2329 unsigned long offset = 0;
2330 char *modname, namebuf[KSYM_NAME_LEN];
2331
2332 head = &kprobe_table[i];
2333 preempt_disable();
2334 hlist_for_each_entry_rcu(p, head, hlist) {
2335 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2336 &offset, &modname, namebuf);
2337 if (kprobe_aggrprobe(p)) {
2338 list_for_each_entry_rcu(kp, &p->list, list)
2339 report_probe(pi, kp, sym, offset, modname, p);
2340 } else
2341 report_probe(pi, p, sym, offset, modname, NULL);
2342 }
2343 preempt_enable();
2344 return 0;
2345 }
2346
2347 static const struct seq_operations kprobes_seq_ops = {
2348 .start = kprobe_seq_start,
2349 .next = kprobe_seq_next,
2350 .stop = kprobe_seq_stop,
2351 .show = show_kprobe_addr
2352 };
2353
2354 static int kprobes_open(struct inode *inode, struct file *filp)
2355 {
2356 return seq_open(filp, &kprobes_seq_ops);
2357 }
2358
2359 static const struct file_operations debugfs_kprobes_operations = {
2360 .open = kprobes_open,
2361 .read = seq_read,
2362 .llseek = seq_lseek,
2363 .release = seq_release,
2364 };
2365
2366 /* kprobes/blacklist -- shows which functions can not be probed */
2367 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2368 {
2369 return seq_list_start(&kprobe_blacklist, *pos);
2370 }
2371
2372 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2373 {
2374 return seq_list_next(v, &kprobe_blacklist, pos);
2375 }
2376
2377 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2378 {
2379 struct kprobe_blacklist_entry *ent =
2380 list_entry(v, struct kprobe_blacklist_entry, list);
2381
2382 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2383 (void *)ent->end_addr, (void *)ent->start_addr);
2384 return 0;
2385 }
2386
2387 static const struct seq_operations kprobe_blacklist_seq_ops = {
2388 .start = kprobe_blacklist_seq_start,
2389 .next = kprobe_blacklist_seq_next,
2390 .stop = kprobe_seq_stop, /* Reuse void function */
2391 .show = kprobe_blacklist_seq_show,
2392 };
2393
2394 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2395 {
2396 return seq_open(filp, &kprobe_blacklist_seq_ops);
2397 }
2398
2399 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2400 .open = kprobe_blacklist_open,
2401 .read = seq_read,
2402 .llseek = seq_lseek,
2403 .release = seq_release,
2404 };
2405
2406 static void arm_all_kprobes(void)
2407 {
2408 struct hlist_head *head;
2409 struct kprobe *p;
2410 unsigned int i;
2411
2412 mutex_lock(&kprobe_mutex);
2413
2414 /* If kprobes are armed, just return */
2415 if (!kprobes_all_disarmed)
2416 goto already_enabled;
2417
2418 /*
2419 * optimize_kprobe() called by arm_kprobe() checks
2420 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2421 * arm_kprobe.
2422 */
2423 kprobes_all_disarmed = false;
2424 /* Arming kprobes doesn't optimize kprobe itself */
2425 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2426 head = &kprobe_table[i];
2427 hlist_for_each_entry_rcu(p, head, hlist)
2428 if (!kprobe_disabled(p))
2429 arm_kprobe(p);
2430 }
2431
2432 printk(KERN_INFO "Kprobes globally enabled\n");
2433
2434 already_enabled:
2435 mutex_unlock(&kprobe_mutex);
2436 return;
2437 }
2438
2439 static void disarm_all_kprobes(void)
2440 {
2441 struct hlist_head *head;
2442 struct kprobe *p;
2443 unsigned int i;
2444
2445 mutex_lock(&kprobe_mutex);
2446
2447 /* If kprobes are already disarmed, just return */
2448 if (kprobes_all_disarmed) {
2449 mutex_unlock(&kprobe_mutex);
2450 return;
2451 }
2452
2453 kprobes_all_disarmed = true;
2454 printk(KERN_INFO "Kprobes globally disabled\n");
2455
2456 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2457 head = &kprobe_table[i];
2458 hlist_for_each_entry_rcu(p, head, hlist) {
2459 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2460 disarm_kprobe(p, false);
2461 }
2462 }
2463 mutex_unlock(&kprobe_mutex);
2464
2465 /* Wait for disarming all kprobes by optimizer */
2466 wait_for_kprobe_optimizer();
2467 }
2468
2469 /*
2470 * XXX: The debugfs bool file interface doesn't allow for callbacks
2471 * when the bool state is switched. We can reuse that facility when
2472 * available
2473 */
2474 static ssize_t read_enabled_file_bool(struct file *file,
2475 char __user *user_buf, size_t count, loff_t *ppos)
2476 {
2477 char buf[3];
2478
2479 if (!kprobes_all_disarmed)
2480 buf[0] = '1';
2481 else
2482 buf[0] = '0';
2483 buf[1] = '\n';
2484 buf[2] = 0x00;
2485 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2486 }
2487
2488 static ssize_t write_enabled_file_bool(struct file *file,
2489 const char __user *user_buf, size_t count, loff_t *ppos)
2490 {
2491 char buf[32];
2492 size_t buf_size;
2493
2494 buf_size = min(count, (sizeof(buf)-1));
2495 if (copy_from_user(buf, user_buf, buf_size))
2496 return -EFAULT;
2497
2498 buf[buf_size] = '\0';
2499 switch (buf[0]) {
2500 case 'y':
2501 case 'Y':
2502 case '1':
2503 arm_all_kprobes();
2504 break;
2505 case 'n':
2506 case 'N':
2507 case '0':
2508 disarm_all_kprobes();
2509 break;
2510 default:
2511 return -EINVAL;
2512 }
2513
2514 return count;
2515 }
2516
2517 static const struct file_operations fops_kp = {
2518 .read = read_enabled_file_bool,
2519 .write = write_enabled_file_bool,
2520 .llseek = default_llseek,
2521 };
2522
2523 static int __init debugfs_kprobe_init(void)
2524 {
2525 struct dentry *dir, *file;
2526 unsigned int value = 1;
2527
2528 dir = debugfs_create_dir("kprobes", NULL);
2529 if (!dir)
2530 return -ENOMEM;
2531
2532 file = debugfs_create_file("list", 0444, dir, NULL,
2533 &debugfs_kprobes_operations);
2534 if (!file)
2535 goto error;
2536
2537 file = debugfs_create_file("enabled", 0600, dir,
2538 &value, &fops_kp);
2539 if (!file)
2540 goto error;
2541
2542 file = debugfs_create_file("blacklist", 0444, dir, NULL,
2543 &debugfs_kprobe_blacklist_ops);
2544 if (!file)
2545 goto error;
2546
2547 return 0;
2548
2549 error:
2550 debugfs_remove(dir);
2551 return -ENOMEM;
2552 }
2553
2554 late_initcall(debugfs_kprobe_init);
2555 #endif /* CONFIG_DEBUG_FS */
2556
2557 module_init(init_kprobes);
2558
2559 /* defined in arch/.../kernel/kprobes.c */
2560 EXPORT_SYMBOL_GPL(jprobe_return);