]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kprobes.c
pktcdvd: removing device does not remove its sysfs dir
[mirror_ubuntu-bionic-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
47
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
52
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55
56
57 /*
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
60 */
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
65
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
72
73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
78
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80 {
81 return &(kretprobe_table_locks[hash].lock);
82 }
83
84 /*
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
88 *
89 * For such cases, we now have a blacklist
90 */
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 {"preempt_schedule",},
93 {"native_get_debugreg",},
94 {"irq_entries_start",},
95 {"common_interrupt",},
96 {NULL} /* Terminator */
97 };
98
99 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
100 /*
101 * kprobe->ainsn.insn points to the copy of the instruction to be
102 * single-stepped. x86_64, POWER4 and above have no-exec support and
103 * stepping on the instruction on a vmalloced/kmalloced/data page
104 * is a recipe for disaster
105 */
106 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
107
108 struct kprobe_insn_page {
109 struct list_head list;
110 kprobe_opcode_t *insns; /* Page of instruction slots */
111 char slot_used[INSNS_PER_PAGE];
112 int nused;
113 int ngarbage;
114 };
115
116 enum kprobe_slot_state {
117 SLOT_CLEAN = 0,
118 SLOT_DIRTY = 1,
119 SLOT_USED = 2,
120 };
121
122 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
123 static LIST_HEAD(kprobe_insn_pages);
124 static int kprobe_garbage_slots;
125 static int collect_garbage_slots(void);
126
127 static int __kprobes check_safety(void)
128 {
129 int ret = 0;
130 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
131 ret = freeze_processes();
132 if (ret == 0) {
133 struct task_struct *p, *q;
134 do_each_thread(p, q) {
135 if (p != current && p->state == TASK_RUNNING &&
136 p->pid != 0) {
137 printk("Check failed: %s is running\n",p->comm);
138 ret = -1;
139 goto loop_end;
140 }
141 } while_each_thread(p, q);
142 }
143 loop_end:
144 thaw_processes();
145 #else
146 synchronize_sched();
147 #endif
148 return ret;
149 }
150
151 /**
152 * __get_insn_slot() - Find a slot on an executable page for an instruction.
153 * We allocate an executable page if there's no room on existing ones.
154 */
155 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
156 {
157 struct kprobe_insn_page *kip;
158
159 retry:
160 list_for_each_entry(kip, &kprobe_insn_pages, list) {
161 if (kip->nused < INSNS_PER_PAGE) {
162 int i;
163 for (i = 0; i < INSNS_PER_PAGE; i++) {
164 if (kip->slot_used[i] == SLOT_CLEAN) {
165 kip->slot_used[i] = SLOT_USED;
166 kip->nused++;
167 return kip->insns + (i * MAX_INSN_SIZE);
168 }
169 }
170 /* Surprise! No unused slots. Fix kip->nused. */
171 kip->nused = INSNS_PER_PAGE;
172 }
173 }
174
175 /* If there are any garbage slots, collect it and try again. */
176 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
177 goto retry;
178 }
179 /* All out of space. Need to allocate a new page. Use slot 0. */
180 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
181 if (!kip)
182 return NULL;
183
184 /*
185 * Use module_alloc so this page is within +/- 2GB of where the
186 * kernel image and loaded module images reside. This is required
187 * so x86_64 can correctly handle the %rip-relative fixups.
188 */
189 kip->insns = module_alloc(PAGE_SIZE);
190 if (!kip->insns) {
191 kfree(kip);
192 return NULL;
193 }
194 INIT_LIST_HEAD(&kip->list);
195 list_add(&kip->list, &kprobe_insn_pages);
196 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
197 kip->slot_used[0] = SLOT_USED;
198 kip->nused = 1;
199 kip->ngarbage = 0;
200 return kip->insns;
201 }
202
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 kprobe_opcode_t *ret;
206 mutex_lock(&kprobe_insn_mutex);
207 ret = __get_insn_slot();
208 mutex_unlock(&kprobe_insn_mutex);
209 return ret;
210 }
211
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215 kip->slot_used[idx] = SLOT_CLEAN;
216 kip->nused--;
217 if (kip->nused == 0) {
218 /*
219 * Page is no longer in use. Free it unless
220 * it's the last one. We keep the last one
221 * so as not to have to set it up again the
222 * next time somebody inserts a probe.
223 */
224 if (!list_is_singular(&kprobe_insn_pages)) {
225 list_del(&kip->list);
226 module_free(NULL, kip->insns);
227 kfree(kip);
228 }
229 return 1;
230 }
231 return 0;
232 }
233
234 static int __kprobes collect_garbage_slots(void)
235 {
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is preepmted on the garbages */
239 if (check_safety())
240 return -EAGAIN;
241
242 list_for_each_entry_safe(kip, next, &kprobe_insn_pages, list) {
243 int i;
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < INSNS_PER_PAGE; i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY &&
249 collect_one_slot(kip, i))
250 break;
251 }
252 }
253 kprobe_garbage_slots = 0;
254 return 0;
255 }
256
257 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
258 {
259 struct kprobe_insn_page *kip;
260
261 mutex_lock(&kprobe_insn_mutex);
262 list_for_each_entry(kip, &kprobe_insn_pages, list) {
263 if (kip->insns <= slot &&
264 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
265 int i = (slot - kip->insns) / MAX_INSN_SIZE;
266 if (dirty) {
267 kip->slot_used[i] = SLOT_DIRTY;
268 kip->ngarbage++;
269 } else
270 collect_one_slot(kip, i);
271 break;
272 }
273 }
274
275 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
276 collect_garbage_slots();
277
278 mutex_unlock(&kprobe_insn_mutex);
279 }
280 #endif
281
282 /* We have preemption disabled.. so it is safe to use __ versions */
283 static inline void set_kprobe_instance(struct kprobe *kp)
284 {
285 __get_cpu_var(kprobe_instance) = kp;
286 }
287
288 static inline void reset_kprobe_instance(void)
289 {
290 __get_cpu_var(kprobe_instance) = NULL;
291 }
292
293 /*
294 * This routine is called either:
295 * - under the kprobe_mutex - during kprobe_[un]register()
296 * OR
297 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
298 */
299 struct kprobe __kprobes *get_kprobe(void *addr)
300 {
301 struct hlist_head *head;
302 struct hlist_node *node;
303 struct kprobe *p;
304
305 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
306 hlist_for_each_entry_rcu(p, node, head, hlist) {
307 if (p->addr == addr)
308 return p;
309 }
310 return NULL;
311 }
312
313 /* Arm a kprobe with text_mutex */
314 static void __kprobes arm_kprobe(struct kprobe *kp)
315 {
316 mutex_lock(&text_mutex);
317 arch_arm_kprobe(kp);
318 mutex_unlock(&text_mutex);
319 }
320
321 /* Disarm a kprobe with text_mutex */
322 static void __kprobes disarm_kprobe(struct kprobe *kp)
323 {
324 mutex_lock(&text_mutex);
325 arch_disarm_kprobe(kp);
326 mutex_unlock(&text_mutex);
327 }
328
329 /*
330 * Aggregate handlers for multiple kprobes support - these handlers
331 * take care of invoking the individual kprobe handlers on p->list
332 */
333 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
334 {
335 struct kprobe *kp;
336
337 list_for_each_entry_rcu(kp, &p->list, list) {
338 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
339 set_kprobe_instance(kp);
340 if (kp->pre_handler(kp, regs))
341 return 1;
342 }
343 reset_kprobe_instance();
344 }
345 return 0;
346 }
347
348 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
349 unsigned long flags)
350 {
351 struct kprobe *kp;
352
353 list_for_each_entry_rcu(kp, &p->list, list) {
354 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
355 set_kprobe_instance(kp);
356 kp->post_handler(kp, regs, flags);
357 reset_kprobe_instance();
358 }
359 }
360 }
361
362 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
363 int trapnr)
364 {
365 struct kprobe *cur = __get_cpu_var(kprobe_instance);
366
367 /*
368 * if we faulted "during" the execution of a user specified
369 * probe handler, invoke just that probe's fault handler
370 */
371 if (cur && cur->fault_handler) {
372 if (cur->fault_handler(cur, regs, trapnr))
373 return 1;
374 }
375 return 0;
376 }
377
378 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
379 {
380 struct kprobe *cur = __get_cpu_var(kprobe_instance);
381 int ret = 0;
382
383 if (cur && cur->break_handler) {
384 if (cur->break_handler(cur, regs))
385 ret = 1;
386 }
387 reset_kprobe_instance();
388 return ret;
389 }
390
391 /* Walks the list and increments nmissed count for multiprobe case */
392 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
393 {
394 struct kprobe *kp;
395 if (p->pre_handler != aggr_pre_handler) {
396 p->nmissed++;
397 } else {
398 list_for_each_entry_rcu(kp, &p->list, list)
399 kp->nmissed++;
400 }
401 return;
402 }
403
404 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
405 struct hlist_head *head)
406 {
407 struct kretprobe *rp = ri->rp;
408
409 /* remove rp inst off the rprobe_inst_table */
410 hlist_del(&ri->hlist);
411 INIT_HLIST_NODE(&ri->hlist);
412 if (likely(rp)) {
413 spin_lock(&rp->lock);
414 hlist_add_head(&ri->hlist, &rp->free_instances);
415 spin_unlock(&rp->lock);
416 } else
417 /* Unregistering */
418 hlist_add_head(&ri->hlist, head);
419 }
420
421 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
422 struct hlist_head **head, unsigned long *flags)
423 {
424 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
425 spinlock_t *hlist_lock;
426
427 *head = &kretprobe_inst_table[hash];
428 hlist_lock = kretprobe_table_lock_ptr(hash);
429 spin_lock_irqsave(hlist_lock, *flags);
430 }
431
432 static void __kprobes kretprobe_table_lock(unsigned long hash,
433 unsigned long *flags)
434 {
435 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
436 spin_lock_irqsave(hlist_lock, *flags);
437 }
438
439 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
440 unsigned long *flags)
441 {
442 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
443 spinlock_t *hlist_lock;
444
445 hlist_lock = kretprobe_table_lock_ptr(hash);
446 spin_unlock_irqrestore(hlist_lock, *flags);
447 }
448
449 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
450 {
451 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
452 spin_unlock_irqrestore(hlist_lock, *flags);
453 }
454
455 /*
456 * This function is called from finish_task_switch when task tk becomes dead,
457 * so that we can recycle any function-return probe instances associated
458 * with this task. These left over instances represent probed functions
459 * that have been called but will never return.
460 */
461 void __kprobes kprobe_flush_task(struct task_struct *tk)
462 {
463 struct kretprobe_instance *ri;
464 struct hlist_head *head, empty_rp;
465 struct hlist_node *node, *tmp;
466 unsigned long hash, flags = 0;
467
468 if (unlikely(!kprobes_initialized))
469 /* Early boot. kretprobe_table_locks not yet initialized. */
470 return;
471
472 hash = hash_ptr(tk, KPROBE_HASH_BITS);
473 head = &kretprobe_inst_table[hash];
474 kretprobe_table_lock(hash, &flags);
475 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
476 if (ri->task == tk)
477 recycle_rp_inst(ri, &empty_rp);
478 }
479 kretprobe_table_unlock(hash, &flags);
480 INIT_HLIST_HEAD(&empty_rp);
481 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
482 hlist_del(&ri->hlist);
483 kfree(ri);
484 }
485 }
486
487 static inline void free_rp_inst(struct kretprobe *rp)
488 {
489 struct kretprobe_instance *ri;
490 struct hlist_node *pos, *next;
491
492 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
493 hlist_del(&ri->hlist);
494 kfree(ri);
495 }
496 }
497
498 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
499 {
500 unsigned long flags, hash;
501 struct kretprobe_instance *ri;
502 struct hlist_node *pos, *next;
503 struct hlist_head *head;
504
505 /* No race here */
506 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
507 kretprobe_table_lock(hash, &flags);
508 head = &kretprobe_inst_table[hash];
509 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
510 if (ri->rp == rp)
511 ri->rp = NULL;
512 }
513 kretprobe_table_unlock(hash, &flags);
514 }
515 free_rp_inst(rp);
516 }
517
518 /*
519 * Keep all fields in the kprobe consistent
520 */
521 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
522 {
523 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
524 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
525 }
526
527 /*
528 * Add the new probe to ap->list. Fail if this is the
529 * second jprobe at the address - two jprobes can't coexist
530 */
531 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
532 {
533 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
534 if (p->break_handler) {
535 if (ap->break_handler)
536 return -EEXIST;
537 list_add_tail_rcu(&p->list, &ap->list);
538 ap->break_handler = aggr_break_handler;
539 } else
540 list_add_rcu(&p->list, &ap->list);
541 if (p->post_handler && !ap->post_handler)
542 ap->post_handler = aggr_post_handler;
543
544 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
545 ap->flags &= ~KPROBE_FLAG_DISABLED;
546 if (!kprobes_all_disarmed)
547 /* Arm the breakpoint again. */
548 arm_kprobe(ap);
549 }
550 return 0;
551 }
552
553 /*
554 * Fill in the required fields of the "manager kprobe". Replace the
555 * earlier kprobe in the hlist with the manager kprobe
556 */
557 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
558 {
559 copy_kprobe(p, ap);
560 flush_insn_slot(ap);
561 ap->addr = p->addr;
562 ap->flags = p->flags;
563 ap->pre_handler = aggr_pre_handler;
564 ap->fault_handler = aggr_fault_handler;
565 /* We don't care the kprobe which has gone. */
566 if (p->post_handler && !kprobe_gone(p))
567 ap->post_handler = aggr_post_handler;
568 if (p->break_handler && !kprobe_gone(p))
569 ap->break_handler = aggr_break_handler;
570
571 INIT_LIST_HEAD(&ap->list);
572 list_add_rcu(&p->list, &ap->list);
573
574 hlist_replace_rcu(&p->hlist, &ap->hlist);
575 }
576
577 /*
578 * This is the second or subsequent kprobe at the address - handle
579 * the intricacies
580 */
581 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
582 struct kprobe *p)
583 {
584 int ret = 0;
585 struct kprobe *ap = old_p;
586
587 if (old_p->pre_handler != aggr_pre_handler) {
588 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
589 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
590 if (!ap)
591 return -ENOMEM;
592 add_aggr_kprobe(ap, old_p);
593 }
594
595 if (kprobe_gone(ap)) {
596 /*
597 * Attempting to insert new probe at the same location that
598 * had a probe in the module vaddr area which already
599 * freed. So, the instruction slot has already been
600 * released. We need a new slot for the new probe.
601 */
602 ret = arch_prepare_kprobe(ap);
603 if (ret)
604 /*
605 * Even if fail to allocate new slot, don't need to
606 * free aggr_probe. It will be used next time, or
607 * freed by unregister_kprobe.
608 */
609 return ret;
610
611 /*
612 * Clear gone flag to prevent allocating new slot again, and
613 * set disabled flag because it is not armed yet.
614 */
615 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
616 | KPROBE_FLAG_DISABLED;
617 }
618
619 copy_kprobe(ap, p);
620 return add_new_kprobe(ap, p);
621 }
622
623 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
624 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
625 {
626 struct kprobe *kp;
627
628 list_for_each_entry_rcu(kp, &p->list, list) {
629 if (!kprobe_disabled(kp))
630 /*
631 * There is an active probe on the list.
632 * We can't disable aggr_kprobe.
633 */
634 return 0;
635 }
636 p->flags |= KPROBE_FLAG_DISABLED;
637 return 1;
638 }
639
640 static int __kprobes in_kprobes_functions(unsigned long addr)
641 {
642 struct kprobe_blackpoint *kb;
643
644 if (addr >= (unsigned long)__kprobes_text_start &&
645 addr < (unsigned long)__kprobes_text_end)
646 return -EINVAL;
647 /*
648 * If there exists a kprobe_blacklist, verify and
649 * fail any probe registration in the prohibited area
650 */
651 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
652 if (kb->start_addr) {
653 if (addr >= kb->start_addr &&
654 addr < (kb->start_addr + kb->range))
655 return -EINVAL;
656 }
657 }
658 return 0;
659 }
660
661 /*
662 * If we have a symbol_name argument, look it up and add the offset field
663 * to it. This way, we can specify a relative address to a symbol.
664 */
665 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
666 {
667 kprobe_opcode_t *addr = p->addr;
668 if (p->symbol_name) {
669 if (addr)
670 return NULL;
671 kprobe_lookup_name(p->symbol_name, addr);
672 }
673
674 if (!addr)
675 return NULL;
676 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
677 }
678
679 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
680 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
681 {
682 struct kprobe *old_p, *list_p;
683
684 old_p = get_kprobe(p->addr);
685 if (unlikely(!old_p))
686 return NULL;
687
688 if (p != old_p) {
689 list_for_each_entry_rcu(list_p, &old_p->list, list)
690 if (list_p == p)
691 /* kprobe p is a valid probe */
692 goto valid;
693 return NULL;
694 }
695 valid:
696 return old_p;
697 }
698
699 /* Return error if the kprobe is being re-registered */
700 static inline int check_kprobe_rereg(struct kprobe *p)
701 {
702 int ret = 0;
703 struct kprobe *old_p;
704
705 mutex_lock(&kprobe_mutex);
706 old_p = __get_valid_kprobe(p);
707 if (old_p)
708 ret = -EINVAL;
709 mutex_unlock(&kprobe_mutex);
710 return ret;
711 }
712
713 int __kprobes register_kprobe(struct kprobe *p)
714 {
715 int ret = 0;
716 struct kprobe *old_p;
717 struct module *probed_mod;
718 kprobe_opcode_t *addr;
719
720 addr = kprobe_addr(p);
721 if (!addr)
722 return -EINVAL;
723 p->addr = addr;
724
725 ret = check_kprobe_rereg(p);
726 if (ret)
727 return ret;
728
729 preempt_disable();
730 if (!kernel_text_address((unsigned long) p->addr) ||
731 in_kprobes_functions((unsigned long) p->addr)) {
732 preempt_enable();
733 return -EINVAL;
734 }
735
736 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
737 p->flags &= KPROBE_FLAG_DISABLED;
738
739 /*
740 * Check if are we probing a module.
741 */
742 probed_mod = __module_text_address((unsigned long) p->addr);
743 if (probed_mod) {
744 /*
745 * We must hold a refcount of the probed module while updating
746 * its code to prohibit unexpected unloading.
747 */
748 if (unlikely(!try_module_get(probed_mod))) {
749 preempt_enable();
750 return -EINVAL;
751 }
752 /*
753 * If the module freed .init.text, we couldn't insert
754 * kprobes in there.
755 */
756 if (within_module_init((unsigned long)p->addr, probed_mod) &&
757 probed_mod->state != MODULE_STATE_COMING) {
758 module_put(probed_mod);
759 preempt_enable();
760 return -EINVAL;
761 }
762 }
763 preempt_enable();
764
765 p->nmissed = 0;
766 INIT_LIST_HEAD(&p->list);
767 mutex_lock(&kprobe_mutex);
768 old_p = get_kprobe(p->addr);
769 if (old_p) {
770 ret = register_aggr_kprobe(old_p, p);
771 goto out;
772 }
773
774 mutex_lock(&text_mutex);
775 ret = arch_prepare_kprobe(p);
776 if (ret)
777 goto out_unlock_text;
778
779 INIT_HLIST_NODE(&p->hlist);
780 hlist_add_head_rcu(&p->hlist,
781 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
782
783 if (!kprobes_all_disarmed && !kprobe_disabled(p))
784 arch_arm_kprobe(p);
785
786 out_unlock_text:
787 mutex_unlock(&text_mutex);
788 out:
789 mutex_unlock(&kprobe_mutex);
790
791 if (probed_mod)
792 module_put(probed_mod);
793
794 return ret;
795 }
796 EXPORT_SYMBOL_GPL(register_kprobe);
797
798 /*
799 * Unregister a kprobe without a scheduler synchronization.
800 */
801 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
802 {
803 struct kprobe *old_p, *list_p;
804
805 old_p = __get_valid_kprobe(p);
806 if (old_p == NULL)
807 return -EINVAL;
808
809 if (old_p == p ||
810 (old_p->pre_handler == aggr_pre_handler &&
811 list_is_singular(&old_p->list))) {
812 /*
813 * Only probe on the hash list. Disarm only if kprobes are
814 * enabled and not gone - otherwise, the breakpoint would
815 * already have been removed. We save on flushing icache.
816 */
817 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
818 disarm_kprobe(p);
819 hlist_del_rcu(&old_p->hlist);
820 } else {
821 if (p->break_handler && !kprobe_gone(p))
822 old_p->break_handler = NULL;
823 if (p->post_handler && !kprobe_gone(p)) {
824 list_for_each_entry_rcu(list_p, &old_p->list, list) {
825 if ((list_p != p) && (list_p->post_handler))
826 goto noclean;
827 }
828 old_p->post_handler = NULL;
829 }
830 noclean:
831 list_del_rcu(&p->list);
832 if (!kprobe_disabled(old_p)) {
833 try_to_disable_aggr_kprobe(old_p);
834 if (!kprobes_all_disarmed && kprobe_disabled(old_p))
835 disarm_kprobe(old_p);
836 }
837 }
838 return 0;
839 }
840
841 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
842 {
843 struct kprobe *old_p;
844
845 if (list_empty(&p->list))
846 arch_remove_kprobe(p);
847 else if (list_is_singular(&p->list)) {
848 /* "p" is the last child of an aggr_kprobe */
849 old_p = list_entry(p->list.next, struct kprobe, list);
850 list_del(&p->list);
851 arch_remove_kprobe(old_p);
852 kfree(old_p);
853 }
854 }
855
856 int __kprobes register_kprobes(struct kprobe **kps, int num)
857 {
858 int i, ret = 0;
859
860 if (num <= 0)
861 return -EINVAL;
862 for (i = 0; i < num; i++) {
863 ret = register_kprobe(kps[i]);
864 if (ret < 0) {
865 if (i > 0)
866 unregister_kprobes(kps, i);
867 break;
868 }
869 }
870 return ret;
871 }
872 EXPORT_SYMBOL_GPL(register_kprobes);
873
874 void __kprobes unregister_kprobe(struct kprobe *p)
875 {
876 unregister_kprobes(&p, 1);
877 }
878 EXPORT_SYMBOL_GPL(unregister_kprobe);
879
880 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
881 {
882 int i;
883
884 if (num <= 0)
885 return;
886 mutex_lock(&kprobe_mutex);
887 for (i = 0; i < num; i++)
888 if (__unregister_kprobe_top(kps[i]) < 0)
889 kps[i]->addr = NULL;
890 mutex_unlock(&kprobe_mutex);
891
892 synchronize_sched();
893 for (i = 0; i < num; i++)
894 if (kps[i]->addr)
895 __unregister_kprobe_bottom(kps[i]);
896 }
897 EXPORT_SYMBOL_GPL(unregister_kprobes);
898
899 static struct notifier_block kprobe_exceptions_nb = {
900 .notifier_call = kprobe_exceptions_notify,
901 .priority = 0x7fffffff /* we need to be notified first */
902 };
903
904 unsigned long __weak arch_deref_entry_point(void *entry)
905 {
906 return (unsigned long)entry;
907 }
908
909 int __kprobes register_jprobes(struct jprobe **jps, int num)
910 {
911 struct jprobe *jp;
912 int ret = 0, i;
913
914 if (num <= 0)
915 return -EINVAL;
916 for (i = 0; i < num; i++) {
917 unsigned long addr;
918 jp = jps[i];
919 addr = arch_deref_entry_point(jp->entry);
920
921 if (!kernel_text_address(addr))
922 ret = -EINVAL;
923 else {
924 /* Todo: Verify probepoint is a function entry point */
925 jp->kp.pre_handler = setjmp_pre_handler;
926 jp->kp.break_handler = longjmp_break_handler;
927 ret = register_kprobe(&jp->kp);
928 }
929 if (ret < 0) {
930 if (i > 0)
931 unregister_jprobes(jps, i);
932 break;
933 }
934 }
935 return ret;
936 }
937 EXPORT_SYMBOL_GPL(register_jprobes);
938
939 int __kprobes register_jprobe(struct jprobe *jp)
940 {
941 return register_jprobes(&jp, 1);
942 }
943 EXPORT_SYMBOL_GPL(register_jprobe);
944
945 void __kprobes unregister_jprobe(struct jprobe *jp)
946 {
947 unregister_jprobes(&jp, 1);
948 }
949 EXPORT_SYMBOL_GPL(unregister_jprobe);
950
951 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
952 {
953 int i;
954
955 if (num <= 0)
956 return;
957 mutex_lock(&kprobe_mutex);
958 for (i = 0; i < num; i++)
959 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
960 jps[i]->kp.addr = NULL;
961 mutex_unlock(&kprobe_mutex);
962
963 synchronize_sched();
964 for (i = 0; i < num; i++) {
965 if (jps[i]->kp.addr)
966 __unregister_kprobe_bottom(&jps[i]->kp);
967 }
968 }
969 EXPORT_SYMBOL_GPL(unregister_jprobes);
970
971 #ifdef CONFIG_KRETPROBES
972 /*
973 * This kprobe pre_handler is registered with every kretprobe. When probe
974 * hits it will set up the return probe.
975 */
976 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
977 struct pt_regs *regs)
978 {
979 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
980 unsigned long hash, flags = 0;
981 struct kretprobe_instance *ri;
982
983 /*TODO: consider to only swap the RA after the last pre_handler fired */
984 hash = hash_ptr(current, KPROBE_HASH_BITS);
985 spin_lock_irqsave(&rp->lock, flags);
986 if (!hlist_empty(&rp->free_instances)) {
987 ri = hlist_entry(rp->free_instances.first,
988 struct kretprobe_instance, hlist);
989 hlist_del(&ri->hlist);
990 spin_unlock_irqrestore(&rp->lock, flags);
991
992 ri->rp = rp;
993 ri->task = current;
994
995 if (rp->entry_handler && rp->entry_handler(ri, regs))
996 return 0;
997
998 arch_prepare_kretprobe(ri, regs);
999
1000 /* XXX(hch): why is there no hlist_move_head? */
1001 INIT_HLIST_NODE(&ri->hlist);
1002 kretprobe_table_lock(hash, &flags);
1003 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1004 kretprobe_table_unlock(hash, &flags);
1005 } else {
1006 rp->nmissed++;
1007 spin_unlock_irqrestore(&rp->lock, flags);
1008 }
1009 return 0;
1010 }
1011
1012 int __kprobes register_kretprobe(struct kretprobe *rp)
1013 {
1014 int ret = 0;
1015 struct kretprobe_instance *inst;
1016 int i;
1017 void *addr;
1018
1019 if (kretprobe_blacklist_size) {
1020 addr = kprobe_addr(&rp->kp);
1021 if (!addr)
1022 return -EINVAL;
1023
1024 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1025 if (kretprobe_blacklist[i].addr == addr)
1026 return -EINVAL;
1027 }
1028 }
1029
1030 rp->kp.pre_handler = pre_handler_kretprobe;
1031 rp->kp.post_handler = NULL;
1032 rp->kp.fault_handler = NULL;
1033 rp->kp.break_handler = NULL;
1034
1035 /* Pre-allocate memory for max kretprobe instances */
1036 if (rp->maxactive <= 0) {
1037 #ifdef CONFIG_PREEMPT
1038 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1039 #else
1040 rp->maxactive = num_possible_cpus();
1041 #endif
1042 }
1043 spin_lock_init(&rp->lock);
1044 INIT_HLIST_HEAD(&rp->free_instances);
1045 for (i = 0; i < rp->maxactive; i++) {
1046 inst = kmalloc(sizeof(struct kretprobe_instance) +
1047 rp->data_size, GFP_KERNEL);
1048 if (inst == NULL) {
1049 free_rp_inst(rp);
1050 return -ENOMEM;
1051 }
1052 INIT_HLIST_NODE(&inst->hlist);
1053 hlist_add_head(&inst->hlist, &rp->free_instances);
1054 }
1055
1056 rp->nmissed = 0;
1057 /* Establish function entry probe point */
1058 ret = register_kprobe(&rp->kp);
1059 if (ret != 0)
1060 free_rp_inst(rp);
1061 return ret;
1062 }
1063 EXPORT_SYMBOL_GPL(register_kretprobe);
1064
1065 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1066 {
1067 int ret = 0, i;
1068
1069 if (num <= 0)
1070 return -EINVAL;
1071 for (i = 0; i < num; i++) {
1072 ret = register_kretprobe(rps[i]);
1073 if (ret < 0) {
1074 if (i > 0)
1075 unregister_kretprobes(rps, i);
1076 break;
1077 }
1078 }
1079 return ret;
1080 }
1081 EXPORT_SYMBOL_GPL(register_kretprobes);
1082
1083 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1084 {
1085 unregister_kretprobes(&rp, 1);
1086 }
1087 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1088
1089 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1090 {
1091 int i;
1092
1093 if (num <= 0)
1094 return;
1095 mutex_lock(&kprobe_mutex);
1096 for (i = 0; i < num; i++)
1097 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1098 rps[i]->kp.addr = NULL;
1099 mutex_unlock(&kprobe_mutex);
1100
1101 synchronize_sched();
1102 for (i = 0; i < num; i++) {
1103 if (rps[i]->kp.addr) {
1104 __unregister_kprobe_bottom(&rps[i]->kp);
1105 cleanup_rp_inst(rps[i]);
1106 }
1107 }
1108 }
1109 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1110
1111 #else /* CONFIG_KRETPROBES */
1112 int __kprobes register_kretprobe(struct kretprobe *rp)
1113 {
1114 return -ENOSYS;
1115 }
1116 EXPORT_SYMBOL_GPL(register_kretprobe);
1117
1118 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1119 {
1120 return -ENOSYS;
1121 }
1122 EXPORT_SYMBOL_GPL(register_kretprobes);
1123
1124 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1125 {
1126 }
1127 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1128
1129 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1130 {
1131 }
1132 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1133
1134 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1135 struct pt_regs *regs)
1136 {
1137 return 0;
1138 }
1139
1140 #endif /* CONFIG_KRETPROBES */
1141
1142 /* Set the kprobe gone and remove its instruction buffer. */
1143 static void __kprobes kill_kprobe(struct kprobe *p)
1144 {
1145 struct kprobe *kp;
1146
1147 p->flags |= KPROBE_FLAG_GONE;
1148 if (p->pre_handler == aggr_pre_handler) {
1149 /*
1150 * If this is an aggr_kprobe, we have to list all the
1151 * chained probes and mark them GONE.
1152 */
1153 list_for_each_entry_rcu(kp, &p->list, list)
1154 kp->flags |= KPROBE_FLAG_GONE;
1155 p->post_handler = NULL;
1156 p->break_handler = NULL;
1157 }
1158 /*
1159 * Here, we can remove insn_slot safely, because no thread calls
1160 * the original probed function (which will be freed soon) any more.
1161 */
1162 arch_remove_kprobe(p);
1163 }
1164
1165 void __kprobes dump_kprobe(struct kprobe *kp)
1166 {
1167 printk(KERN_WARNING "Dumping kprobe:\n");
1168 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1169 kp->symbol_name, kp->addr, kp->offset);
1170 }
1171
1172 /* Module notifier call back, checking kprobes on the module */
1173 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1174 unsigned long val, void *data)
1175 {
1176 struct module *mod = data;
1177 struct hlist_head *head;
1178 struct hlist_node *node;
1179 struct kprobe *p;
1180 unsigned int i;
1181 int checkcore = (val == MODULE_STATE_GOING);
1182
1183 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1184 return NOTIFY_DONE;
1185
1186 /*
1187 * When MODULE_STATE_GOING was notified, both of module .text and
1188 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1189 * notified, only .init.text section would be freed. We need to
1190 * disable kprobes which have been inserted in the sections.
1191 */
1192 mutex_lock(&kprobe_mutex);
1193 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1194 head = &kprobe_table[i];
1195 hlist_for_each_entry_rcu(p, node, head, hlist)
1196 if (within_module_init((unsigned long)p->addr, mod) ||
1197 (checkcore &&
1198 within_module_core((unsigned long)p->addr, mod))) {
1199 /*
1200 * The vaddr this probe is installed will soon
1201 * be vfreed buy not synced to disk. Hence,
1202 * disarming the breakpoint isn't needed.
1203 */
1204 kill_kprobe(p);
1205 }
1206 }
1207 mutex_unlock(&kprobe_mutex);
1208 return NOTIFY_DONE;
1209 }
1210
1211 static struct notifier_block kprobe_module_nb = {
1212 .notifier_call = kprobes_module_callback,
1213 .priority = 0
1214 };
1215
1216 static int __init init_kprobes(void)
1217 {
1218 int i, err = 0;
1219 unsigned long offset = 0, size = 0;
1220 char *modname, namebuf[128];
1221 const char *symbol_name;
1222 void *addr;
1223 struct kprobe_blackpoint *kb;
1224
1225 /* FIXME allocate the probe table, currently defined statically */
1226 /* initialize all list heads */
1227 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1228 INIT_HLIST_HEAD(&kprobe_table[i]);
1229 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1230 spin_lock_init(&(kretprobe_table_locks[i].lock));
1231 }
1232
1233 /*
1234 * Lookup and populate the kprobe_blacklist.
1235 *
1236 * Unlike the kretprobe blacklist, we'll need to determine
1237 * the range of addresses that belong to the said functions,
1238 * since a kprobe need not necessarily be at the beginning
1239 * of a function.
1240 */
1241 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1242 kprobe_lookup_name(kb->name, addr);
1243 if (!addr)
1244 continue;
1245
1246 kb->start_addr = (unsigned long)addr;
1247 symbol_name = kallsyms_lookup(kb->start_addr,
1248 &size, &offset, &modname, namebuf);
1249 if (!symbol_name)
1250 kb->range = 0;
1251 else
1252 kb->range = size;
1253 }
1254
1255 if (kretprobe_blacklist_size) {
1256 /* lookup the function address from its name */
1257 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1258 kprobe_lookup_name(kretprobe_blacklist[i].name,
1259 kretprobe_blacklist[i].addr);
1260 if (!kretprobe_blacklist[i].addr)
1261 printk("kretprobe: lookup failed: %s\n",
1262 kretprobe_blacklist[i].name);
1263 }
1264 }
1265
1266 /* By default, kprobes are armed */
1267 kprobes_all_disarmed = false;
1268
1269 err = arch_init_kprobes();
1270 if (!err)
1271 err = register_die_notifier(&kprobe_exceptions_nb);
1272 if (!err)
1273 err = register_module_notifier(&kprobe_module_nb);
1274
1275 kprobes_initialized = (err == 0);
1276
1277 if (!err)
1278 init_test_probes();
1279 return err;
1280 }
1281
1282 #ifdef CONFIG_DEBUG_FS
1283 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1284 const char *sym, int offset,char *modname)
1285 {
1286 char *kprobe_type;
1287
1288 if (p->pre_handler == pre_handler_kretprobe)
1289 kprobe_type = "r";
1290 else if (p->pre_handler == setjmp_pre_handler)
1291 kprobe_type = "j";
1292 else
1293 kprobe_type = "k";
1294 if (sym)
1295 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n",
1296 p->addr, kprobe_type, sym, offset,
1297 (modname ? modname : " "),
1298 (kprobe_gone(p) ? "[GONE]" : ""),
1299 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1300 "[DISABLED]" : ""));
1301 else
1302 seq_printf(pi, "%p %s %p %s%s\n",
1303 p->addr, kprobe_type, p->addr,
1304 (kprobe_gone(p) ? "[GONE]" : ""),
1305 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1306 "[DISABLED]" : ""));
1307 }
1308
1309 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1310 {
1311 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1312 }
1313
1314 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1315 {
1316 (*pos)++;
1317 if (*pos >= KPROBE_TABLE_SIZE)
1318 return NULL;
1319 return pos;
1320 }
1321
1322 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1323 {
1324 /* Nothing to do */
1325 }
1326
1327 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1328 {
1329 struct hlist_head *head;
1330 struct hlist_node *node;
1331 struct kprobe *p, *kp;
1332 const char *sym = NULL;
1333 unsigned int i = *(loff_t *) v;
1334 unsigned long offset = 0;
1335 char *modname, namebuf[128];
1336
1337 head = &kprobe_table[i];
1338 preempt_disable();
1339 hlist_for_each_entry_rcu(p, node, head, hlist) {
1340 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1341 &offset, &modname, namebuf);
1342 if (p->pre_handler == aggr_pre_handler) {
1343 list_for_each_entry_rcu(kp, &p->list, list)
1344 report_probe(pi, kp, sym, offset, modname);
1345 } else
1346 report_probe(pi, p, sym, offset, modname);
1347 }
1348 preempt_enable();
1349 return 0;
1350 }
1351
1352 static const struct seq_operations kprobes_seq_ops = {
1353 .start = kprobe_seq_start,
1354 .next = kprobe_seq_next,
1355 .stop = kprobe_seq_stop,
1356 .show = show_kprobe_addr
1357 };
1358
1359 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1360 {
1361 return seq_open(filp, &kprobes_seq_ops);
1362 }
1363
1364 static const struct file_operations debugfs_kprobes_operations = {
1365 .open = kprobes_open,
1366 .read = seq_read,
1367 .llseek = seq_lseek,
1368 .release = seq_release,
1369 };
1370
1371 /* Disable one kprobe */
1372 int __kprobes disable_kprobe(struct kprobe *kp)
1373 {
1374 int ret = 0;
1375 struct kprobe *p;
1376
1377 mutex_lock(&kprobe_mutex);
1378
1379 /* Check whether specified probe is valid. */
1380 p = __get_valid_kprobe(kp);
1381 if (unlikely(p == NULL)) {
1382 ret = -EINVAL;
1383 goto out;
1384 }
1385
1386 /* If the probe is already disabled (or gone), just return */
1387 if (kprobe_disabled(kp))
1388 goto out;
1389
1390 kp->flags |= KPROBE_FLAG_DISABLED;
1391 if (p != kp)
1392 /* When kp != p, p is always enabled. */
1393 try_to_disable_aggr_kprobe(p);
1394
1395 if (!kprobes_all_disarmed && kprobe_disabled(p))
1396 disarm_kprobe(p);
1397 out:
1398 mutex_unlock(&kprobe_mutex);
1399 return ret;
1400 }
1401 EXPORT_SYMBOL_GPL(disable_kprobe);
1402
1403 /* Enable one kprobe */
1404 int __kprobes enable_kprobe(struct kprobe *kp)
1405 {
1406 int ret = 0;
1407 struct kprobe *p;
1408
1409 mutex_lock(&kprobe_mutex);
1410
1411 /* Check whether specified probe is valid. */
1412 p = __get_valid_kprobe(kp);
1413 if (unlikely(p == NULL)) {
1414 ret = -EINVAL;
1415 goto out;
1416 }
1417
1418 if (kprobe_gone(kp)) {
1419 /* This kprobe has gone, we couldn't enable it. */
1420 ret = -EINVAL;
1421 goto out;
1422 }
1423
1424 if (!kprobes_all_disarmed && kprobe_disabled(p))
1425 arm_kprobe(p);
1426
1427 p->flags &= ~KPROBE_FLAG_DISABLED;
1428 if (p != kp)
1429 kp->flags &= ~KPROBE_FLAG_DISABLED;
1430 out:
1431 mutex_unlock(&kprobe_mutex);
1432 return ret;
1433 }
1434 EXPORT_SYMBOL_GPL(enable_kprobe);
1435
1436 static void __kprobes arm_all_kprobes(void)
1437 {
1438 struct hlist_head *head;
1439 struct hlist_node *node;
1440 struct kprobe *p;
1441 unsigned int i;
1442
1443 mutex_lock(&kprobe_mutex);
1444
1445 /* If kprobes are armed, just return */
1446 if (!kprobes_all_disarmed)
1447 goto already_enabled;
1448
1449 mutex_lock(&text_mutex);
1450 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1451 head = &kprobe_table[i];
1452 hlist_for_each_entry_rcu(p, node, head, hlist)
1453 if (!kprobe_disabled(p))
1454 arch_arm_kprobe(p);
1455 }
1456 mutex_unlock(&text_mutex);
1457
1458 kprobes_all_disarmed = false;
1459 printk(KERN_INFO "Kprobes globally enabled\n");
1460
1461 already_enabled:
1462 mutex_unlock(&kprobe_mutex);
1463 return;
1464 }
1465
1466 static void __kprobes disarm_all_kprobes(void)
1467 {
1468 struct hlist_head *head;
1469 struct hlist_node *node;
1470 struct kprobe *p;
1471 unsigned int i;
1472
1473 mutex_lock(&kprobe_mutex);
1474
1475 /* If kprobes are already disarmed, just return */
1476 if (kprobes_all_disarmed)
1477 goto already_disabled;
1478
1479 kprobes_all_disarmed = true;
1480 printk(KERN_INFO "Kprobes globally disabled\n");
1481 mutex_lock(&text_mutex);
1482 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1483 head = &kprobe_table[i];
1484 hlist_for_each_entry_rcu(p, node, head, hlist) {
1485 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1486 arch_disarm_kprobe(p);
1487 }
1488 }
1489
1490 mutex_unlock(&text_mutex);
1491 mutex_unlock(&kprobe_mutex);
1492 /* Allow all currently running kprobes to complete */
1493 synchronize_sched();
1494 return;
1495
1496 already_disabled:
1497 mutex_unlock(&kprobe_mutex);
1498 return;
1499 }
1500
1501 /*
1502 * XXX: The debugfs bool file interface doesn't allow for callbacks
1503 * when the bool state is switched. We can reuse that facility when
1504 * available
1505 */
1506 static ssize_t read_enabled_file_bool(struct file *file,
1507 char __user *user_buf, size_t count, loff_t *ppos)
1508 {
1509 char buf[3];
1510
1511 if (!kprobes_all_disarmed)
1512 buf[0] = '1';
1513 else
1514 buf[0] = '0';
1515 buf[1] = '\n';
1516 buf[2] = 0x00;
1517 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1518 }
1519
1520 static ssize_t write_enabled_file_bool(struct file *file,
1521 const char __user *user_buf, size_t count, loff_t *ppos)
1522 {
1523 char buf[32];
1524 int buf_size;
1525
1526 buf_size = min(count, (sizeof(buf)-1));
1527 if (copy_from_user(buf, user_buf, buf_size))
1528 return -EFAULT;
1529
1530 switch (buf[0]) {
1531 case 'y':
1532 case 'Y':
1533 case '1':
1534 arm_all_kprobes();
1535 break;
1536 case 'n':
1537 case 'N':
1538 case '0':
1539 disarm_all_kprobes();
1540 break;
1541 }
1542
1543 return count;
1544 }
1545
1546 static const struct file_operations fops_kp = {
1547 .read = read_enabled_file_bool,
1548 .write = write_enabled_file_bool,
1549 };
1550
1551 static int __kprobes debugfs_kprobe_init(void)
1552 {
1553 struct dentry *dir, *file;
1554 unsigned int value = 1;
1555
1556 dir = debugfs_create_dir("kprobes", NULL);
1557 if (!dir)
1558 return -ENOMEM;
1559
1560 file = debugfs_create_file("list", 0444, dir, NULL,
1561 &debugfs_kprobes_operations);
1562 if (!file) {
1563 debugfs_remove(dir);
1564 return -ENOMEM;
1565 }
1566
1567 file = debugfs_create_file("enabled", 0600, dir,
1568 &value, &fops_kp);
1569 if (!file) {
1570 debugfs_remove(dir);
1571 return -ENOMEM;
1572 }
1573
1574 return 0;
1575 }
1576
1577 late_initcall(debugfs_kprobe_init);
1578 #endif /* CONFIG_DEBUG_FS */
1579
1580 module_init(init_kprobes);
1581
1582 /* defined in arch/.../kernel/kprobes.c */
1583 EXPORT_SYMBOL_GPL(jprobe_return);