]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kprobes.c
powerpc/pseries: Update dynamic cache nodes for suspend/resume operation
[mirror_ubuntu-bionic-kernel.git] / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /*
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
93 *
94 * For such cases, we now have a blacklist
95 */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
103 };
104
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
111 */
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 struct kprobe_insn_cache *cache;
116 int nused;
117 int ngarbage;
118 char slot_used[];
119 };
120
121 #define KPROBE_INSN_PAGE_SIZE(slots) \
122 (offsetof(struct kprobe_insn_page, slot_used) + \
123 (sizeof(char) * (slots)))
124
125 static int slots_per_page(struct kprobe_insn_cache *c)
126 {
127 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
128 }
129
130 enum kprobe_slot_state {
131 SLOT_CLEAN = 0,
132 SLOT_DIRTY = 1,
133 SLOT_USED = 2,
134 };
135
136 static void *alloc_insn_page(void)
137 {
138 return module_alloc(PAGE_SIZE);
139 }
140
141 static void free_insn_page(void *page)
142 {
143 module_free(NULL, page);
144 }
145
146 struct kprobe_insn_cache kprobe_insn_slots = {
147 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
148 .alloc = alloc_insn_page,
149 .free = free_insn_page,
150 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
151 .insn_size = MAX_INSN_SIZE,
152 .nr_garbage = 0,
153 };
154 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
155
156 /**
157 * __get_insn_slot() - Find a slot on an executable page for an instruction.
158 * We allocate an executable page if there's no room on existing ones.
159 */
160 kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
161 {
162 struct kprobe_insn_page *kip;
163 kprobe_opcode_t *slot = NULL;
164
165 mutex_lock(&c->mutex);
166 retry:
167 list_for_each_entry(kip, &c->pages, list) {
168 if (kip->nused < slots_per_page(c)) {
169 int i;
170 for (i = 0; i < slots_per_page(c); i++) {
171 if (kip->slot_used[i] == SLOT_CLEAN) {
172 kip->slot_used[i] = SLOT_USED;
173 kip->nused++;
174 slot = kip->insns + (i * c->insn_size);
175 goto out;
176 }
177 }
178 /* kip->nused is broken. Fix it. */
179 kip->nused = slots_per_page(c);
180 WARN_ON(1);
181 }
182 }
183
184 /* If there are any garbage slots, collect it and try again. */
185 if (c->nr_garbage && collect_garbage_slots(c) == 0)
186 goto retry;
187
188 /* All out of space. Need to allocate a new page. */
189 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
190 if (!kip)
191 goto out;
192
193 /*
194 * Use module_alloc so this page is within +/- 2GB of where the
195 * kernel image and loaded module images reside. This is required
196 * so x86_64 can correctly handle the %rip-relative fixups.
197 */
198 kip->insns = c->alloc();
199 if (!kip->insns) {
200 kfree(kip);
201 goto out;
202 }
203 INIT_LIST_HEAD(&kip->list);
204 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
205 kip->slot_used[0] = SLOT_USED;
206 kip->nused = 1;
207 kip->ngarbage = 0;
208 kip->cache = c;
209 list_add(&kip->list, &c->pages);
210 slot = kip->insns;
211 out:
212 mutex_unlock(&c->mutex);
213 return slot;
214 }
215
216 /* Return 1 if all garbages are collected, otherwise 0. */
217 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
218 {
219 kip->slot_used[idx] = SLOT_CLEAN;
220 kip->nused--;
221 if (kip->nused == 0) {
222 /*
223 * Page is no longer in use. Free it unless
224 * it's the last one. We keep the last one
225 * so as not to have to set it up again the
226 * next time somebody inserts a probe.
227 */
228 if (!list_is_singular(&kip->list)) {
229 list_del(&kip->list);
230 kip->cache->free(kip->insns);
231 kfree(kip);
232 }
233 return 1;
234 }
235 return 0;
236 }
237
238 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
239 {
240 struct kprobe_insn_page *kip, *next;
241
242 /* Ensure no-one is interrupted on the garbages */
243 synchronize_sched();
244
245 list_for_each_entry_safe(kip, next, &c->pages, list) {
246 int i;
247 if (kip->ngarbage == 0)
248 continue;
249 kip->ngarbage = 0; /* we will collect all garbages */
250 for (i = 0; i < slots_per_page(c); i++) {
251 if (kip->slot_used[i] == SLOT_DIRTY &&
252 collect_one_slot(kip, i))
253 break;
254 }
255 }
256 c->nr_garbage = 0;
257 return 0;
258 }
259
260 void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
261 kprobe_opcode_t *slot, int dirty)
262 {
263 struct kprobe_insn_page *kip;
264
265 mutex_lock(&c->mutex);
266 list_for_each_entry(kip, &c->pages, list) {
267 long idx = ((long)slot - (long)kip->insns) /
268 (c->insn_size * sizeof(kprobe_opcode_t));
269 if (idx >= 0 && idx < slots_per_page(c)) {
270 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 if (dirty) {
272 kip->slot_used[idx] = SLOT_DIRTY;
273 kip->ngarbage++;
274 if (++c->nr_garbage > slots_per_page(c))
275 collect_garbage_slots(c);
276 } else
277 collect_one_slot(kip, idx);
278 goto out;
279 }
280 }
281 /* Could not free this slot. */
282 WARN_ON(1);
283 out:
284 mutex_unlock(&c->mutex);
285 }
286
287 #ifdef CONFIG_OPTPROBES
288 /* For optimized_kprobe buffer */
289 struct kprobe_insn_cache kprobe_optinsn_slots = {
290 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
291 .alloc = alloc_insn_page,
292 .free = free_insn_page,
293 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
294 /* .insn_size is initialized later */
295 .nr_garbage = 0,
296 };
297 #endif
298 #endif
299
300 /* We have preemption disabled.. so it is safe to use __ versions */
301 static inline void set_kprobe_instance(struct kprobe *kp)
302 {
303 __this_cpu_write(kprobe_instance, kp);
304 }
305
306 static inline void reset_kprobe_instance(void)
307 {
308 __this_cpu_write(kprobe_instance, NULL);
309 }
310
311 /*
312 * This routine is called either:
313 * - under the kprobe_mutex - during kprobe_[un]register()
314 * OR
315 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
316 */
317 struct kprobe __kprobes *get_kprobe(void *addr)
318 {
319 struct hlist_head *head;
320 struct kprobe *p;
321
322 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
323 hlist_for_each_entry_rcu(p, head, hlist) {
324 if (p->addr == addr)
325 return p;
326 }
327
328 return NULL;
329 }
330
331 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
332
333 /* Return true if the kprobe is an aggregator */
334 static inline int kprobe_aggrprobe(struct kprobe *p)
335 {
336 return p->pre_handler == aggr_pre_handler;
337 }
338
339 /* Return true(!0) if the kprobe is unused */
340 static inline int kprobe_unused(struct kprobe *p)
341 {
342 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
343 list_empty(&p->list);
344 }
345
346 /*
347 * Keep all fields in the kprobe consistent
348 */
349 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
350 {
351 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
352 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
353 }
354
355 #ifdef CONFIG_OPTPROBES
356 /* NOTE: change this value only with kprobe_mutex held */
357 static bool kprobes_allow_optimization;
358
359 /*
360 * Call all pre_handler on the list, but ignores its return value.
361 * This must be called from arch-dep optimized caller.
362 */
363 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
364 {
365 struct kprobe *kp;
366
367 list_for_each_entry_rcu(kp, &p->list, list) {
368 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
369 set_kprobe_instance(kp);
370 kp->pre_handler(kp, regs);
371 }
372 reset_kprobe_instance();
373 }
374 }
375
376 /* Free optimized instructions and optimized_kprobe */
377 static __kprobes void free_aggr_kprobe(struct kprobe *p)
378 {
379 struct optimized_kprobe *op;
380
381 op = container_of(p, struct optimized_kprobe, kp);
382 arch_remove_optimized_kprobe(op);
383 arch_remove_kprobe(p);
384 kfree(op);
385 }
386
387 /* Return true(!0) if the kprobe is ready for optimization. */
388 static inline int kprobe_optready(struct kprobe *p)
389 {
390 struct optimized_kprobe *op;
391
392 if (kprobe_aggrprobe(p)) {
393 op = container_of(p, struct optimized_kprobe, kp);
394 return arch_prepared_optinsn(&op->optinsn);
395 }
396
397 return 0;
398 }
399
400 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
401 static inline int kprobe_disarmed(struct kprobe *p)
402 {
403 struct optimized_kprobe *op;
404
405 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
406 if (!kprobe_aggrprobe(p))
407 return kprobe_disabled(p);
408
409 op = container_of(p, struct optimized_kprobe, kp);
410
411 return kprobe_disabled(p) && list_empty(&op->list);
412 }
413
414 /* Return true(!0) if the probe is queued on (un)optimizing lists */
415 static int __kprobes kprobe_queued(struct kprobe *p)
416 {
417 struct optimized_kprobe *op;
418
419 if (kprobe_aggrprobe(p)) {
420 op = container_of(p, struct optimized_kprobe, kp);
421 if (!list_empty(&op->list))
422 return 1;
423 }
424 return 0;
425 }
426
427 /*
428 * Return an optimized kprobe whose optimizing code replaces
429 * instructions including addr (exclude breakpoint).
430 */
431 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
432 {
433 int i;
434 struct kprobe *p = NULL;
435 struct optimized_kprobe *op;
436
437 /* Don't check i == 0, since that is a breakpoint case. */
438 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
439 p = get_kprobe((void *)(addr - i));
440
441 if (p && kprobe_optready(p)) {
442 op = container_of(p, struct optimized_kprobe, kp);
443 if (arch_within_optimized_kprobe(op, addr))
444 return p;
445 }
446
447 return NULL;
448 }
449
450 /* Optimization staging list, protected by kprobe_mutex */
451 static LIST_HEAD(optimizing_list);
452 static LIST_HEAD(unoptimizing_list);
453 static LIST_HEAD(freeing_list);
454
455 static void kprobe_optimizer(struct work_struct *work);
456 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
457 #define OPTIMIZE_DELAY 5
458
459 /*
460 * Optimize (replace a breakpoint with a jump) kprobes listed on
461 * optimizing_list.
462 */
463 static __kprobes void do_optimize_kprobes(void)
464 {
465 /* Optimization never be done when disarmed */
466 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
467 list_empty(&optimizing_list))
468 return;
469
470 /*
471 * The optimization/unoptimization refers online_cpus via
472 * stop_machine() and cpu-hotplug modifies online_cpus.
473 * And same time, text_mutex will be held in cpu-hotplug and here.
474 * This combination can cause a deadlock (cpu-hotplug try to lock
475 * text_mutex but stop_machine can not be done because online_cpus
476 * has been changed)
477 * To avoid this deadlock, we need to call get_online_cpus()
478 * for preventing cpu-hotplug outside of text_mutex locking.
479 */
480 get_online_cpus();
481 mutex_lock(&text_mutex);
482 arch_optimize_kprobes(&optimizing_list);
483 mutex_unlock(&text_mutex);
484 put_online_cpus();
485 }
486
487 /*
488 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
489 * if need) kprobes listed on unoptimizing_list.
490 */
491 static __kprobes void do_unoptimize_kprobes(void)
492 {
493 struct optimized_kprobe *op, *tmp;
494
495 /* Unoptimization must be done anytime */
496 if (list_empty(&unoptimizing_list))
497 return;
498
499 /* Ditto to do_optimize_kprobes */
500 get_online_cpus();
501 mutex_lock(&text_mutex);
502 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
503 /* Loop free_list for disarming */
504 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
505 /* Disarm probes if marked disabled */
506 if (kprobe_disabled(&op->kp))
507 arch_disarm_kprobe(&op->kp);
508 if (kprobe_unused(&op->kp)) {
509 /*
510 * Remove unused probes from hash list. After waiting
511 * for synchronization, these probes are reclaimed.
512 * (reclaiming is done by do_free_cleaned_kprobes.)
513 */
514 hlist_del_rcu(&op->kp.hlist);
515 } else
516 list_del_init(&op->list);
517 }
518 mutex_unlock(&text_mutex);
519 put_online_cpus();
520 }
521
522 /* Reclaim all kprobes on the free_list */
523 static __kprobes void do_free_cleaned_kprobes(void)
524 {
525 struct optimized_kprobe *op, *tmp;
526
527 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
528 BUG_ON(!kprobe_unused(&op->kp));
529 list_del_init(&op->list);
530 free_aggr_kprobe(&op->kp);
531 }
532 }
533
534 /* Start optimizer after OPTIMIZE_DELAY passed */
535 static __kprobes void kick_kprobe_optimizer(void)
536 {
537 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
538 }
539
540 /* Kprobe jump optimizer */
541 static __kprobes void kprobe_optimizer(struct work_struct *work)
542 {
543 mutex_lock(&kprobe_mutex);
544 /* Lock modules while optimizing kprobes */
545 mutex_lock(&module_mutex);
546
547 /*
548 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
549 * kprobes before waiting for quiesence period.
550 */
551 do_unoptimize_kprobes();
552
553 /*
554 * Step 2: Wait for quiesence period to ensure all running interrupts
555 * are done. Because optprobe may modify multiple instructions
556 * there is a chance that Nth instruction is interrupted. In that
557 * case, running interrupt can return to 2nd-Nth byte of jump
558 * instruction. This wait is for avoiding it.
559 */
560 synchronize_sched();
561
562 /* Step 3: Optimize kprobes after quiesence period */
563 do_optimize_kprobes();
564
565 /* Step 4: Free cleaned kprobes after quiesence period */
566 do_free_cleaned_kprobes();
567
568 mutex_unlock(&module_mutex);
569 mutex_unlock(&kprobe_mutex);
570
571 /* Step 5: Kick optimizer again if needed */
572 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
573 kick_kprobe_optimizer();
574 }
575
576 /* Wait for completing optimization and unoptimization */
577 static __kprobes void wait_for_kprobe_optimizer(void)
578 {
579 mutex_lock(&kprobe_mutex);
580
581 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
582 mutex_unlock(&kprobe_mutex);
583
584 /* this will also make optimizing_work execute immmediately */
585 flush_delayed_work(&optimizing_work);
586 /* @optimizing_work might not have been queued yet, relax */
587 cpu_relax();
588
589 mutex_lock(&kprobe_mutex);
590 }
591
592 mutex_unlock(&kprobe_mutex);
593 }
594
595 /* Optimize kprobe if p is ready to be optimized */
596 static __kprobes void optimize_kprobe(struct kprobe *p)
597 {
598 struct optimized_kprobe *op;
599
600 /* Check if the kprobe is disabled or not ready for optimization. */
601 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
602 (kprobe_disabled(p) || kprobes_all_disarmed))
603 return;
604
605 /* Both of break_handler and post_handler are not supported. */
606 if (p->break_handler || p->post_handler)
607 return;
608
609 op = container_of(p, struct optimized_kprobe, kp);
610
611 /* Check there is no other kprobes at the optimized instructions */
612 if (arch_check_optimized_kprobe(op) < 0)
613 return;
614
615 /* Check if it is already optimized. */
616 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
617 return;
618 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
619
620 if (!list_empty(&op->list))
621 /* This is under unoptimizing. Just dequeue the probe */
622 list_del_init(&op->list);
623 else {
624 list_add(&op->list, &optimizing_list);
625 kick_kprobe_optimizer();
626 }
627 }
628
629 /* Short cut to direct unoptimizing */
630 static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
631 {
632 get_online_cpus();
633 arch_unoptimize_kprobe(op);
634 put_online_cpus();
635 if (kprobe_disabled(&op->kp))
636 arch_disarm_kprobe(&op->kp);
637 }
638
639 /* Unoptimize a kprobe if p is optimized */
640 static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
641 {
642 struct optimized_kprobe *op;
643
644 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
645 return; /* This is not an optprobe nor optimized */
646
647 op = container_of(p, struct optimized_kprobe, kp);
648 if (!kprobe_optimized(p)) {
649 /* Unoptimized or unoptimizing case */
650 if (force && !list_empty(&op->list)) {
651 /*
652 * Only if this is unoptimizing kprobe and forced,
653 * forcibly unoptimize it. (No need to unoptimize
654 * unoptimized kprobe again :)
655 */
656 list_del_init(&op->list);
657 force_unoptimize_kprobe(op);
658 }
659 return;
660 }
661
662 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
663 if (!list_empty(&op->list)) {
664 /* Dequeue from the optimization queue */
665 list_del_init(&op->list);
666 return;
667 }
668 /* Optimized kprobe case */
669 if (force)
670 /* Forcibly update the code: this is a special case */
671 force_unoptimize_kprobe(op);
672 else {
673 list_add(&op->list, &unoptimizing_list);
674 kick_kprobe_optimizer();
675 }
676 }
677
678 /* Cancel unoptimizing for reusing */
679 static void reuse_unused_kprobe(struct kprobe *ap)
680 {
681 struct optimized_kprobe *op;
682
683 BUG_ON(!kprobe_unused(ap));
684 /*
685 * Unused kprobe MUST be on the way of delayed unoptimizing (means
686 * there is still a relative jump) and disabled.
687 */
688 op = container_of(ap, struct optimized_kprobe, kp);
689 if (unlikely(list_empty(&op->list)))
690 printk(KERN_WARNING "Warning: found a stray unused "
691 "aggrprobe@%p\n", ap->addr);
692 /* Enable the probe again */
693 ap->flags &= ~KPROBE_FLAG_DISABLED;
694 /* Optimize it again (remove from op->list) */
695 BUG_ON(!kprobe_optready(ap));
696 optimize_kprobe(ap);
697 }
698
699 /* Remove optimized instructions */
700 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
701 {
702 struct optimized_kprobe *op;
703
704 op = container_of(p, struct optimized_kprobe, kp);
705 if (!list_empty(&op->list))
706 /* Dequeue from the (un)optimization queue */
707 list_del_init(&op->list);
708 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
709
710 if (kprobe_unused(p)) {
711 /* Enqueue if it is unused */
712 list_add(&op->list, &freeing_list);
713 /*
714 * Remove unused probes from the hash list. After waiting
715 * for synchronization, this probe is reclaimed.
716 * (reclaiming is done by do_free_cleaned_kprobes().)
717 */
718 hlist_del_rcu(&op->kp.hlist);
719 }
720
721 /* Don't touch the code, because it is already freed. */
722 arch_remove_optimized_kprobe(op);
723 }
724
725 /* Try to prepare optimized instructions */
726 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
727 {
728 struct optimized_kprobe *op;
729
730 op = container_of(p, struct optimized_kprobe, kp);
731 arch_prepare_optimized_kprobe(op);
732 }
733
734 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
735 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
736 {
737 struct optimized_kprobe *op;
738
739 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
740 if (!op)
741 return NULL;
742
743 INIT_LIST_HEAD(&op->list);
744 op->kp.addr = p->addr;
745 arch_prepare_optimized_kprobe(op);
746
747 return &op->kp;
748 }
749
750 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
751
752 /*
753 * Prepare an optimized_kprobe and optimize it
754 * NOTE: p must be a normal registered kprobe
755 */
756 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
757 {
758 struct kprobe *ap;
759 struct optimized_kprobe *op;
760
761 /* Impossible to optimize ftrace-based kprobe */
762 if (kprobe_ftrace(p))
763 return;
764
765 /* For preparing optimization, jump_label_text_reserved() is called */
766 jump_label_lock();
767 mutex_lock(&text_mutex);
768
769 ap = alloc_aggr_kprobe(p);
770 if (!ap)
771 goto out;
772
773 op = container_of(ap, struct optimized_kprobe, kp);
774 if (!arch_prepared_optinsn(&op->optinsn)) {
775 /* If failed to setup optimizing, fallback to kprobe */
776 arch_remove_optimized_kprobe(op);
777 kfree(op);
778 goto out;
779 }
780
781 init_aggr_kprobe(ap, p);
782 optimize_kprobe(ap); /* This just kicks optimizer thread */
783
784 out:
785 mutex_unlock(&text_mutex);
786 jump_label_unlock();
787 }
788
789 #ifdef CONFIG_SYSCTL
790 static void __kprobes optimize_all_kprobes(void)
791 {
792 struct hlist_head *head;
793 struct kprobe *p;
794 unsigned int i;
795
796 mutex_lock(&kprobe_mutex);
797 /* If optimization is already allowed, just return */
798 if (kprobes_allow_optimization)
799 goto out;
800
801 kprobes_allow_optimization = true;
802 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
803 head = &kprobe_table[i];
804 hlist_for_each_entry_rcu(p, head, hlist)
805 if (!kprobe_disabled(p))
806 optimize_kprobe(p);
807 }
808 printk(KERN_INFO "Kprobes globally optimized\n");
809 out:
810 mutex_unlock(&kprobe_mutex);
811 }
812
813 static void __kprobes unoptimize_all_kprobes(void)
814 {
815 struct hlist_head *head;
816 struct kprobe *p;
817 unsigned int i;
818
819 mutex_lock(&kprobe_mutex);
820 /* If optimization is already prohibited, just return */
821 if (!kprobes_allow_optimization) {
822 mutex_unlock(&kprobe_mutex);
823 return;
824 }
825
826 kprobes_allow_optimization = false;
827 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
828 head = &kprobe_table[i];
829 hlist_for_each_entry_rcu(p, head, hlist) {
830 if (!kprobe_disabled(p))
831 unoptimize_kprobe(p, false);
832 }
833 }
834 mutex_unlock(&kprobe_mutex);
835
836 /* Wait for unoptimizing completion */
837 wait_for_kprobe_optimizer();
838 printk(KERN_INFO "Kprobes globally unoptimized\n");
839 }
840
841 static DEFINE_MUTEX(kprobe_sysctl_mutex);
842 int sysctl_kprobes_optimization;
843 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
844 void __user *buffer, size_t *length,
845 loff_t *ppos)
846 {
847 int ret;
848
849 mutex_lock(&kprobe_sysctl_mutex);
850 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
851 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
852
853 if (sysctl_kprobes_optimization)
854 optimize_all_kprobes();
855 else
856 unoptimize_all_kprobes();
857 mutex_unlock(&kprobe_sysctl_mutex);
858
859 return ret;
860 }
861 #endif /* CONFIG_SYSCTL */
862
863 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
864 static void __kprobes __arm_kprobe(struct kprobe *p)
865 {
866 struct kprobe *_p;
867
868 /* Check collision with other optimized kprobes */
869 _p = get_optimized_kprobe((unsigned long)p->addr);
870 if (unlikely(_p))
871 /* Fallback to unoptimized kprobe */
872 unoptimize_kprobe(_p, true);
873
874 arch_arm_kprobe(p);
875 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
876 }
877
878 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
879 static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
880 {
881 struct kprobe *_p;
882
883 unoptimize_kprobe(p, false); /* Try to unoptimize */
884
885 if (!kprobe_queued(p)) {
886 arch_disarm_kprobe(p);
887 /* If another kprobe was blocked, optimize it. */
888 _p = get_optimized_kprobe((unsigned long)p->addr);
889 if (unlikely(_p) && reopt)
890 optimize_kprobe(_p);
891 }
892 /* TODO: reoptimize others after unoptimized this probe */
893 }
894
895 #else /* !CONFIG_OPTPROBES */
896
897 #define optimize_kprobe(p) do {} while (0)
898 #define unoptimize_kprobe(p, f) do {} while (0)
899 #define kill_optimized_kprobe(p) do {} while (0)
900 #define prepare_optimized_kprobe(p) do {} while (0)
901 #define try_to_optimize_kprobe(p) do {} while (0)
902 #define __arm_kprobe(p) arch_arm_kprobe(p)
903 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
904 #define kprobe_disarmed(p) kprobe_disabled(p)
905 #define wait_for_kprobe_optimizer() do {} while (0)
906
907 /* There should be no unused kprobes can be reused without optimization */
908 static void reuse_unused_kprobe(struct kprobe *ap)
909 {
910 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
911 BUG_ON(kprobe_unused(ap));
912 }
913
914 static __kprobes void free_aggr_kprobe(struct kprobe *p)
915 {
916 arch_remove_kprobe(p);
917 kfree(p);
918 }
919
920 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
921 {
922 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
923 }
924 #endif /* CONFIG_OPTPROBES */
925
926 #ifdef CONFIG_KPROBES_ON_FTRACE
927 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
928 .func = kprobe_ftrace_handler,
929 .flags = FTRACE_OPS_FL_SAVE_REGS,
930 };
931 static int kprobe_ftrace_enabled;
932
933 /* Must ensure p->addr is really on ftrace */
934 static int __kprobes prepare_kprobe(struct kprobe *p)
935 {
936 if (!kprobe_ftrace(p))
937 return arch_prepare_kprobe(p);
938
939 return arch_prepare_kprobe_ftrace(p);
940 }
941
942 /* Caller must lock kprobe_mutex */
943 static void __kprobes arm_kprobe_ftrace(struct kprobe *p)
944 {
945 int ret;
946
947 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
948 (unsigned long)p->addr, 0, 0);
949 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
950 kprobe_ftrace_enabled++;
951 if (kprobe_ftrace_enabled == 1) {
952 ret = register_ftrace_function(&kprobe_ftrace_ops);
953 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
954 }
955 }
956
957 /* Caller must lock kprobe_mutex */
958 static void __kprobes disarm_kprobe_ftrace(struct kprobe *p)
959 {
960 int ret;
961
962 kprobe_ftrace_enabled--;
963 if (kprobe_ftrace_enabled == 0) {
964 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
965 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
966 }
967 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
968 (unsigned long)p->addr, 1, 0);
969 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
970 }
971 #else /* !CONFIG_KPROBES_ON_FTRACE */
972 #define prepare_kprobe(p) arch_prepare_kprobe(p)
973 #define arm_kprobe_ftrace(p) do {} while (0)
974 #define disarm_kprobe_ftrace(p) do {} while (0)
975 #endif
976
977 /* Arm a kprobe with text_mutex */
978 static void __kprobes arm_kprobe(struct kprobe *kp)
979 {
980 if (unlikely(kprobe_ftrace(kp))) {
981 arm_kprobe_ftrace(kp);
982 return;
983 }
984 /*
985 * Here, since __arm_kprobe() doesn't use stop_machine(),
986 * this doesn't cause deadlock on text_mutex. So, we don't
987 * need get_online_cpus().
988 */
989 mutex_lock(&text_mutex);
990 __arm_kprobe(kp);
991 mutex_unlock(&text_mutex);
992 }
993
994 /* Disarm a kprobe with text_mutex */
995 static void __kprobes disarm_kprobe(struct kprobe *kp, bool reopt)
996 {
997 if (unlikely(kprobe_ftrace(kp))) {
998 disarm_kprobe_ftrace(kp);
999 return;
1000 }
1001 /* Ditto */
1002 mutex_lock(&text_mutex);
1003 __disarm_kprobe(kp, reopt);
1004 mutex_unlock(&text_mutex);
1005 }
1006
1007 /*
1008 * Aggregate handlers for multiple kprobes support - these handlers
1009 * take care of invoking the individual kprobe handlers on p->list
1010 */
1011 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1012 {
1013 struct kprobe *kp;
1014
1015 list_for_each_entry_rcu(kp, &p->list, list) {
1016 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1017 set_kprobe_instance(kp);
1018 if (kp->pre_handler(kp, regs))
1019 return 1;
1020 }
1021 reset_kprobe_instance();
1022 }
1023 return 0;
1024 }
1025
1026 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1027 unsigned long flags)
1028 {
1029 struct kprobe *kp;
1030
1031 list_for_each_entry_rcu(kp, &p->list, list) {
1032 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1033 set_kprobe_instance(kp);
1034 kp->post_handler(kp, regs, flags);
1035 reset_kprobe_instance();
1036 }
1037 }
1038 }
1039
1040 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041 int trapnr)
1042 {
1043 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044
1045 /*
1046 * if we faulted "during" the execution of a user specified
1047 * probe handler, invoke just that probe's fault handler
1048 */
1049 if (cur && cur->fault_handler) {
1050 if (cur->fault_handler(cur, regs, trapnr))
1051 return 1;
1052 }
1053 return 0;
1054 }
1055
1056 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1057 {
1058 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1059 int ret = 0;
1060
1061 if (cur && cur->break_handler) {
1062 if (cur->break_handler(cur, regs))
1063 ret = 1;
1064 }
1065 reset_kprobe_instance();
1066 return ret;
1067 }
1068
1069 /* Walks the list and increments nmissed count for multiprobe case */
1070 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
1071 {
1072 struct kprobe *kp;
1073 if (!kprobe_aggrprobe(p)) {
1074 p->nmissed++;
1075 } else {
1076 list_for_each_entry_rcu(kp, &p->list, list)
1077 kp->nmissed++;
1078 }
1079 return;
1080 }
1081
1082 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1083 struct hlist_head *head)
1084 {
1085 struct kretprobe *rp = ri->rp;
1086
1087 /* remove rp inst off the rprobe_inst_table */
1088 hlist_del(&ri->hlist);
1089 INIT_HLIST_NODE(&ri->hlist);
1090 if (likely(rp)) {
1091 raw_spin_lock(&rp->lock);
1092 hlist_add_head(&ri->hlist, &rp->free_instances);
1093 raw_spin_unlock(&rp->lock);
1094 } else
1095 /* Unregistering */
1096 hlist_add_head(&ri->hlist, head);
1097 }
1098
1099 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1100 struct hlist_head **head, unsigned long *flags)
1101 __acquires(hlist_lock)
1102 {
1103 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1104 raw_spinlock_t *hlist_lock;
1105
1106 *head = &kretprobe_inst_table[hash];
1107 hlist_lock = kretprobe_table_lock_ptr(hash);
1108 raw_spin_lock_irqsave(hlist_lock, *flags);
1109 }
1110
1111 static void __kprobes kretprobe_table_lock(unsigned long hash,
1112 unsigned long *flags)
1113 __acquires(hlist_lock)
1114 {
1115 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1116 raw_spin_lock_irqsave(hlist_lock, *flags);
1117 }
1118
1119 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1120 unsigned long *flags)
1121 __releases(hlist_lock)
1122 {
1123 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1124 raw_spinlock_t *hlist_lock;
1125
1126 hlist_lock = kretprobe_table_lock_ptr(hash);
1127 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1128 }
1129
1130 static void __kprobes kretprobe_table_unlock(unsigned long hash,
1131 unsigned long *flags)
1132 __releases(hlist_lock)
1133 {
1134 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1135 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1136 }
1137
1138 /*
1139 * This function is called from finish_task_switch when task tk becomes dead,
1140 * so that we can recycle any function-return probe instances associated
1141 * with this task. These left over instances represent probed functions
1142 * that have been called but will never return.
1143 */
1144 void __kprobes kprobe_flush_task(struct task_struct *tk)
1145 {
1146 struct kretprobe_instance *ri;
1147 struct hlist_head *head, empty_rp;
1148 struct hlist_node *tmp;
1149 unsigned long hash, flags = 0;
1150
1151 if (unlikely(!kprobes_initialized))
1152 /* Early boot. kretprobe_table_locks not yet initialized. */
1153 return;
1154
1155 INIT_HLIST_HEAD(&empty_rp);
1156 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1157 head = &kretprobe_inst_table[hash];
1158 kretprobe_table_lock(hash, &flags);
1159 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1160 if (ri->task == tk)
1161 recycle_rp_inst(ri, &empty_rp);
1162 }
1163 kretprobe_table_unlock(hash, &flags);
1164 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1165 hlist_del(&ri->hlist);
1166 kfree(ri);
1167 }
1168 }
1169
1170 static inline void free_rp_inst(struct kretprobe *rp)
1171 {
1172 struct kretprobe_instance *ri;
1173 struct hlist_node *next;
1174
1175 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1176 hlist_del(&ri->hlist);
1177 kfree(ri);
1178 }
1179 }
1180
1181 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1182 {
1183 unsigned long flags, hash;
1184 struct kretprobe_instance *ri;
1185 struct hlist_node *next;
1186 struct hlist_head *head;
1187
1188 /* No race here */
1189 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1190 kretprobe_table_lock(hash, &flags);
1191 head = &kretprobe_inst_table[hash];
1192 hlist_for_each_entry_safe(ri, next, head, hlist) {
1193 if (ri->rp == rp)
1194 ri->rp = NULL;
1195 }
1196 kretprobe_table_unlock(hash, &flags);
1197 }
1198 free_rp_inst(rp);
1199 }
1200
1201 /*
1202 * Add the new probe to ap->list. Fail if this is the
1203 * second jprobe at the address - two jprobes can't coexist
1204 */
1205 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1206 {
1207 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1208
1209 if (p->break_handler || p->post_handler)
1210 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1211
1212 if (p->break_handler) {
1213 if (ap->break_handler)
1214 return -EEXIST;
1215 list_add_tail_rcu(&p->list, &ap->list);
1216 ap->break_handler = aggr_break_handler;
1217 } else
1218 list_add_rcu(&p->list, &ap->list);
1219 if (p->post_handler && !ap->post_handler)
1220 ap->post_handler = aggr_post_handler;
1221
1222 return 0;
1223 }
1224
1225 /*
1226 * Fill in the required fields of the "manager kprobe". Replace the
1227 * earlier kprobe in the hlist with the manager kprobe
1228 */
1229 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1230 {
1231 /* Copy p's insn slot to ap */
1232 copy_kprobe(p, ap);
1233 flush_insn_slot(ap);
1234 ap->addr = p->addr;
1235 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1236 ap->pre_handler = aggr_pre_handler;
1237 ap->fault_handler = aggr_fault_handler;
1238 /* We don't care the kprobe which has gone. */
1239 if (p->post_handler && !kprobe_gone(p))
1240 ap->post_handler = aggr_post_handler;
1241 if (p->break_handler && !kprobe_gone(p))
1242 ap->break_handler = aggr_break_handler;
1243
1244 INIT_LIST_HEAD(&ap->list);
1245 INIT_HLIST_NODE(&ap->hlist);
1246
1247 list_add_rcu(&p->list, &ap->list);
1248 hlist_replace_rcu(&p->hlist, &ap->hlist);
1249 }
1250
1251 /*
1252 * This is the second or subsequent kprobe at the address - handle
1253 * the intricacies
1254 */
1255 static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1256 struct kprobe *p)
1257 {
1258 int ret = 0;
1259 struct kprobe *ap = orig_p;
1260
1261 /* For preparing optimization, jump_label_text_reserved() is called */
1262 jump_label_lock();
1263 /*
1264 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1265 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1266 */
1267 get_online_cpus();
1268 mutex_lock(&text_mutex);
1269
1270 if (!kprobe_aggrprobe(orig_p)) {
1271 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1272 ap = alloc_aggr_kprobe(orig_p);
1273 if (!ap) {
1274 ret = -ENOMEM;
1275 goto out;
1276 }
1277 init_aggr_kprobe(ap, orig_p);
1278 } else if (kprobe_unused(ap))
1279 /* This probe is going to die. Rescue it */
1280 reuse_unused_kprobe(ap);
1281
1282 if (kprobe_gone(ap)) {
1283 /*
1284 * Attempting to insert new probe at the same location that
1285 * had a probe in the module vaddr area which already
1286 * freed. So, the instruction slot has already been
1287 * released. We need a new slot for the new probe.
1288 */
1289 ret = arch_prepare_kprobe(ap);
1290 if (ret)
1291 /*
1292 * Even if fail to allocate new slot, don't need to
1293 * free aggr_probe. It will be used next time, or
1294 * freed by unregister_kprobe.
1295 */
1296 goto out;
1297
1298 /* Prepare optimized instructions if possible. */
1299 prepare_optimized_kprobe(ap);
1300
1301 /*
1302 * Clear gone flag to prevent allocating new slot again, and
1303 * set disabled flag because it is not armed yet.
1304 */
1305 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1306 | KPROBE_FLAG_DISABLED;
1307 }
1308
1309 /* Copy ap's insn slot to p */
1310 copy_kprobe(ap, p);
1311 ret = add_new_kprobe(ap, p);
1312
1313 out:
1314 mutex_unlock(&text_mutex);
1315 put_online_cpus();
1316 jump_label_unlock();
1317
1318 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1319 ap->flags &= ~KPROBE_FLAG_DISABLED;
1320 if (!kprobes_all_disarmed)
1321 /* Arm the breakpoint again. */
1322 arm_kprobe(ap);
1323 }
1324 return ret;
1325 }
1326
1327 static int __kprobes in_kprobes_functions(unsigned long addr)
1328 {
1329 struct kprobe_blackpoint *kb;
1330
1331 if (addr >= (unsigned long)__kprobes_text_start &&
1332 addr < (unsigned long)__kprobes_text_end)
1333 return -EINVAL;
1334 /*
1335 * If there exists a kprobe_blacklist, verify and
1336 * fail any probe registration in the prohibited area
1337 */
1338 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1339 if (kb->start_addr) {
1340 if (addr >= kb->start_addr &&
1341 addr < (kb->start_addr + kb->range))
1342 return -EINVAL;
1343 }
1344 }
1345 return 0;
1346 }
1347
1348 /*
1349 * If we have a symbol_name argument, look it up and add the offset field
1350 * to it. This way, we can specify a relative address to a symbol.
1351 * This returns encoded errors if it fails to look up symbol or invalid
1352 * combination of parameters.
1353 */
1354 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1355 {
1356 kprobe_opcode_t *addr = p->addr;
1357
1358 if ((p->symbol_name && p->addr) ||
1359 (!p->symbol_name && !p->addr))
1360 goto invalid;
1361
1362 if (p->symbol_name) {
1363 kprobe_lookup_name(p->symbol_name, addr);
1364 if (!addr)
1365 return ERR_PTR(-ENOENT);
1366 }
1367
1368 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1369 if (addr)
1370 return addr;
1371
1372 invalid:
1373 return ERR_PTR(-EINVAL);
1374 }
1375
1376 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1377 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1378 {
1379 struct kprobe *ap, *list_p;
1380
1381 ap = get_kprobe(p->addr);
1382 if (unlikely(!ap))
1383 return NULL;
1384
1385 if (p != ap) {
1386 list_for_each_entry_rcu(list_p, &ap->list, list)
1387 if (list_p == p)
1388 /* kprobe p is a valid probe */
1389 goto valid;
1390 return NULL;
1391 }
1392 valid:
1393 return ap;
1394 }
1395
1396 /* Return error if the kprobe is being re-registered */
1397 static inline int check_kprobe_rereg(struct kprobe *p)
1398 {
1399 int ret = 0;
1400
1401 mutex_lock(&kprobe_mutex);
1402 if (__get_valid_kprobe(p))
1403 ret = -EINVAL;
1404 mutex_unlock(&kprobe_mutex);
1405
1406 return ret;
1407 }
1408
1409 static __kprobes int check_kprobe_address_safe(struct kprobe *p,
1410 struct module **probed_mod)
1411 {
1412 int ret = 0;
1413 unsigned long ftrace_addr;
1414
1415 /*
1416 * If the address is located on a ftrace nop, set the
1417 * breakpoint to the following instruction.
1418 */
1419 ftrace_addr = ftrace_location((unsigned long)p->addr);
1420 if (ftrace_addr) {
1421 #ifdef CONFIG_KPROBES_ON_FTRACE
1422 /* Given address is not on the instruction boundary */
1423 if ((unsigned long)p->addr != ftrace_addr)
1424 return -EILSEQ;
1425 p->flags |= KPROBE_FLAG_FTRACE;
1426 #else /* !CONFIG_KPROBES_ON_FTRACE */
1427 return -EINVAL;
1428 #endif
1429 }
1430
1431 jump_label_lock();
1432 preempt_disable();
1433
1434 /* Ensure it is not in reserved area nor out of text */
1435 if (!kernel_text_address((unsigned long) p->addr) ||
1436 in_kprobes_functions((unsigned long) p->addr) ||
1437 jump_label_text_reserved(p->addr, p->addr)) {
1438 ret = -EINVAL;
1439 goto out;
1440 }
1441
1442 /* Check if are we probing a module */
1443 *probed_mod = __module_text_address((unsigned long) p->addr);
1444 if (*probed_mod) {
1445 /*
1446 * We must hold a refcount of the probed module while updating
1447 * its code to prohibit unexpected unloading.
1448 */
1449 if (unlikely(!try_module_get(*probed_mod))) {
1450 ret = -ENOENT;
1451 goto out;
1452 }
1453
1454 /*
1455 * If the module freed .init.text, we couldn't insert
1456 * kprobes in there.
1457 */
1458 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1459 (*probed_mod)->state != MODULE_STATE_COMING) {
1460 module_put(*probed_mod);
1461 *probed_mod = NULL;
1462 ret = -ENOENT;
1463 }
1464 }
1465 out:
1466 preempt_enable();
1467 jump_label_unlock();
1468
1469 return ret;
1470 }
1471
1472 int __kprobes register_kprobe(struct kprobe *p)
1473 {
1474 int ret;
1475 struct kprobe *old_p;
1476 struct module *probed_mod;
1477 kprobe_opcode_t *addr;
1478
1479 /* Adjust probe address from symbol */
1480 addr = kprobe_addr(p);
1481 if (IS_ERR(addr))
1482 return PTR_ERR(addr);
1483 p->addr = addr;
1484
1485 ret = check_kprobe_rereg(p);
1486 if (ret)
1487 return ret;
1488
1489 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1490 p->flags &= KPROBE_FLAG_DISABLED;
1491 p->nmissed = 0;
1492 INIT_LIST_HEAD(&p->list);
1493
1494 ret = check_kprobe_address_safe(p, &probed_mod);
1495 if (ret)
1496 return ret;
1497
1498 mutex_lock(&kprobe_mutex);
1499
1500 old_p = get_kprobe(p->addr);
1501 if (old_p) {
1502 /* Since this may unoptimize old_p, locking text_mutex. */
1503 ret = register_aggr_kprobe(old_p, p);
1504 goto out;
1505 }
1506
1507 mutex_lock(&text_mutex); /* Avoiding text modification */
1508 ret = prepare_kprobe(p);
1509 mutex_unlock(&text_mutex);
1510 if (ret)
1511 goto out;
1512
1513 INIT_HLIST_NODE(&p->hlist);
1514 hlist_add_head_rcu(&p->hlist,
1515 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1516
1517 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1518 arm_kprobe(p);
1519
1520 /* Try to optimize kprobe */
1521 try_to_optimize_kprobe(p);
1522
1523 out:
1524 mutex_unlock(&kprobe_mutex);
1525
1526 if (probed_mod)
1527 module_put(probed_mod);
1528
1529 return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(register_kprobe);
1532
1533 /* Check if all probes on the aggrprobe are disabled */
1534 static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1535 {
1536 struct kprobe *kp;
1537
1538 list_for_each_entry_rcu(kp, &ap->list, list)
1539 if (!kprobe_disabled(kp))
1540 /*
1541 * There is an active probe on the list.
1542 * We can't disable this ap.
1543 */
1544 return 0;
1545
1546 return 1;
1547 }
1548
1549 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1550 static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1551 {
1552 struct kprobe *orig_p;
1553
1554 /* Get an original kprobe for return */
1555 orig_p = __get_valid_kprobe(p);
1556 if (unlikely(orig_p == NULL))
1557 return NULL;
1558
1559 if (!kprobe_disabled(p)) {
1560 /* Disable probe if it is a child probe */
1561 if (p != orig_p)
1562 p->flags |= KPROBE_FLAG_DISABLED;
1563
1564 /* Try to disarm and disable this/parent probe */
1565 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1566 disarm_kprobe(orig_p, true);
1567 orig_p->flags |= KPROBE_FLAG_DISABLED;
1568 }
1569 }
1570
1571 return orig_p;
1572 }
1573
1574 /*
1575 * Unregister a kprobe without a scheduler synchronization.
1576 */
1577 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1578 {
1579 struct kprobe *ap, *list_p;
1580
1581 /* Disable kprobe. This will disarm it if needed. */
1582 ap = __disable_kprobe(p);
1583 if (ap == NULL)
1584 return -EINVAL;
1585
1586 if (ap == p)
1587 /*
1588 * This probe is an independent(and non-optimized) kprobe
1589 * (not an aggrprobe). Remove from the hash list.
1590 */
1591 goto disarmed;
1592
1593 /* Following process expects this probe is an aggrprobe */
1594 WARN_ON(!kprobe_aggrprobe(ap));
1595
1596 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1597 /*
1598 * !disarmed could be happen if the probe is under delayed
1599 * unoptimizing.
1600 */
1601 goto disarmed;
1602 else {
1603 /* If disabling probe has special handlers, update aggrprobe */
1604 if (p->break_handler && !kprobe_gone(p))
1605 ap->break_handler = NULL;
1606 if (p->post_handler && !kprobe_gone(p)) {
1607 list_for_each_entry_rcu(list_p, &ap->list, list) {
1608 if ((list_p != p) && (list_p->post_handler))
1609 goto noclean;
1610 }
1611 ap->post_handler = NULL;
1612 }
1613 noclean:
1614 /*
1615 * Remove from the aggrprobe: this path will do nothing in
1616 * __unregister_kprobe_bottom().
1617 */
1618 list_del_rcu(&p->list);
1619 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1620 /*
1621 * Try to optimize this probe again, because post
1622 * handler may have been changed.
1623 */
1624 optimize_kprobe(ap);
1625 }
1626 return 0;
1627
1628 disarmed:
1629 BUG_ON(!kprobe_disarmed(ap));
1630 hlist_del_rcu(&ap->hlist);
1631 return 0;
1632 }
1633
1634 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1635 {
1636 struct kprobe *ap;
1637
1638 if (list_empty(&p->list))
1639 /* This is an independent kprobe */
1640 arch_remove_kprobe(p);
1641 else if (list_is_singular(&p->list)) {
1642 /* This is the last child of an aggrprobe */
1643 ap = list_entry(p->list.next, struct kprobe, list);
1644 list_del(&p->list);
1645 free_aggr_kprobe(ap);
1646 }
1647 /* Otherwise, do nothing. */
1648 }
1649
1650 int __kprobes register_kprobes(struct kprobe **kps, int num)
1651 {
1652 int i, ret = 0;
1653
1654 if (num <= 0)
1655 return -EINVAL;
1656 for (i = 0; i < num; i++) {
1657 ret = register_kprobe(kps[i]);
1658 if (ret < 0) {
1659 if (i > 0)
1660 unregister_kprobes(kps, i);
1661 break;
1662 }
1663 }
1664 return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(register_kprobes);
1667
1668 void __kprobes unregister_kprobe(struct kprobe *p)
1669 {
1670 unregister_kprobes(&p, 1);
1671 }
1672 EXPORT_SYMBOL_GPL(unregister_kprobe);
1673
1674 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1675 {
1676 int i;
1677
1678 if (num <= 0)
1679 return;
1680 mutex_lock(&kprobe_mutex);
1681 for (i = 0; i < num; i++)
1682 if (__unregister_kprobe_top(kps[i]) < 0)
1683 kps[i]->addr = NULL;
1684 mutex_unlock(&kprobe_mutex);
1685
1686 synchronize_sched();
1687 for (i = 0; i < num; i++)
1688 if (kps[i]->addr)
1689 __unregister_kprobe_bottom(kps[i]);
1690 }
1691 EXPORT_SYMBOL_GPL(unregister_kprobes);
1692
1693 static struct notifier_block kprobe_exceptions_nb = {
1694 .notifier_call = kprobe_exceptions_notify,
1695 .priority = 0x7fffffff /* we need to be notified first */
1696 };
1697
1698 unsigned long __weak arch_deref_entry_point(void *entry)
1699 {
1700 return (unsigned long)entry;
1701 }
1702
1703 int __kprobes register_jprobes(struct jprobe **jps, int num)
1704 {
1705 struct jprobe *jp;
1706 int ret = 0, i;
1707
1708 if (num <= 0)
1709 return -EINVAL;
1710 for (i = 0; i < num; i++) {
1711 unsigned long addr, offset;
1712 jp = jps[i];
1713 addr = arch_deref_entry_point(jp->entry);
1714
1715 /* Verify probepoint is a function entry point */
1716 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1717 offset == 0) {
1718 jp->kp.pre_handler = setjmp_pre_handler;
1719 jp->kp.break_handler = longjmp_break_handler;
1720 ret = register_kprobe(&jp->kp);
1721 } else
1722 ret = -EINVAL;
1723
1724 if (ret < 0) {
1725 if (i > 0)
1726 unregister_jprobes(jps, i);
1727 break;
1728 }
1729 }
1730 return ret;
1731 }
1732 EXPORT_SYMBOL_GPL(register_jprobes);
1733
1734 int __kprobes register_jprobe(struct jprobe *jp)
1735 {
1736 return register_jprobes(&jp, 1);
1737 }
1738 EXPORT_SYMBOL_GPL(register_jprobe);
1739
1740 void __kprobes unregister_jprobe(struct jprobe *jp)
1741 {
1742 unregister_jprobes(&jp, 1);
1743 }
1744 EXPORT_SYMBOL_GPL(unregister_jprobe);
1745
1746 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1747 {
1748 int i;
1749
1750 if (num <= 0)
1751 return;
1752 mutex_lock(&kprobe_mutex);
1753 for (i = 0; i < num; i++)
1754 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1755 jps[i]->kp.addr = NULL;
1756 mutex_unlock(&kprobe_mutex);
1757
1758 synchronize_sched();
1759 for (i = 0; i < num; i++) {
1760 if (jps[i]->kp.addr)
1761 __unregister_kprobe_bottom(&jps[i]->kp);
1762 }
1763 }
1764 EXPORT_SYMBOL_GPL(unregister_jprobes);
1765
1766 #ifdef CONFIG_KRETPROBES
1767 /*
1768 * This kprobe pre_handler is registered with every kretprobe. When probe
1769 * hits it will set up the return probe.
1770 */
1771 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1772 struct pt_regs *regs)
1773 {
1774 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1775 unsigned long hash, flags = 0;
1776 struct kretprobe_instance *ri;
1777
1778 /*TODO: consider to only swap the RA after the last pre_handler fired */
1779 hash = hash_ptr(current, KPROBE_HASH_BITS);
1780 raw_spin_lock_irqsave(&rp->lock, flags);
1781 if (!hlist_empty(&rp->free_instances)) {
1782 ri = hlist_entry(rp->free_instances.first,
1783 struct kretprobe_instance, hlist);
1784 hlist_del(&ri->hlist);
1785 raw_spin_unlock_irqrestore(&rp->lock, flags);
1786
1787 ri->rp = rp;
1788 ri->task = current;
1789
1790 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1791 raw_spin_lock_irqsave(&rp->lock, flags);
1792 hlist_add_head(&ri->hlist, &rp->free_instances);
1793 raw_spin_unlock_irqrestore(&rp->lock, flags);
1794 return 0;
1795 }
1796
1797 arch_prepare_kretprobe(ri, regs);
1798
1799 /* XXX(hch): why is there no hlist_move_head? */
1800 INIT_HLIST_NODE(&ri->hlist);
1801 kretprobe_table_lock(hash, &flags);
1802 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1803 kretprobe_table_unlock(hash, &flags);
1804 } else {
1805 rp->nmissed++;
1806 raw_spin_unlock_irqrestore(&rp->lock, flags);
1807 }
1808 return 0;
1809 }
1810
1811 int __kprobes register_kretprobe(struct kretprobe *rp)
1812 {
1813 int ret = 0;
1814 struct kretprobe_instance *inst;
1815 int i;
1816 void *addr;
1817
1818 if (kretprobe_blacklist_size) {
1819 addr = kprobe_addr(&rp->kp);
1820 if (IS_ERR(addr))
1821 return PTR_ERR(addr);
1822
1823 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1824 if (kretprobe_blacklist[i].addr == addr)
1825 return -EINVAL;
1826 }
1827 }
1828
1829 rp->kp.pre_handler = pre_handler_kretprobe;
1830 rp->kp.post_handler = NULL;
1831 rp->kp.fault_handler = NULL;
1832 rp->kp.break_handler = NULL;
1833
1834 /* Pre-allocate memory for max kretprobe instances */
1835 if (rp->maxactive <= 0) {
1836 #ifdef CONFIG_PREEMPT
1837 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1838 #else
1839 rp->maxactive = num_possible_cpus();
1840 #endif
1841 }
1842 raw_spin_lock_init(&rp->lock);
1843 INIT_HLIST_HEAD(&rp->free_instances);
1844 for (i = 0; i < rp->maxactive; i++) {
1845 inst = kmalloc(sizeof(struct kretprobe_instance) +
1846 rp->data_size, GFP_KERNEL);
1847 if (inst == NULL) {
1848 free_rp_inst(rp);
1849 return -ENOMEM;
1850 }
1851 INIT_HLIST_NODE(&inst->hlist);
1852 hlist_add_head(&inst->hlist, &rp->free_instances);
1853 }
1854
1855 rp->nmissed = 0;
1856 /* Establish function entry probe point */
1857 ret = register_kprobe(&rp->kp);
1858 if (ret != 0)
1859 free_rp_inst(rp);
1860 return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(register_kretprobe);
1863
1864 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1865 {
1866 int ret = 0, i;
1867
1868 if (num <= 0)
1869 return -EINVAL;
1870 for (i = 0; i < num; i++) {
1871 ret = register_kretprobe(rps[i]);
1872 if (ret < 0) {
1873 if (i > 0)
1874 unregister_kretprobes(rps, i);
1875 break;
1876 }
1877 }
1878 return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(register_kretprobes);
1881
1882 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1883 {
1884 unregister_kretprobes(&rp, 1);
1885 }
1886 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1887
1888 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1889 {
1890 int i;
1891
1892 if (num <= 0)
1893 return;
1894 mutex_lock(&kprobe_mutex);
1895 for (i = 0; i < num; i++)
1896 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1897 rps[i]->kp.addr = NULL;
1898 mutex_unlock(&kprobe_mutex);
1899
1900 synchronize_sched();
1901 for (i = 0; i < num; i++) {
1902 if (rps[i]->kp.addr) {
1903 __unregister_kprobe_bottom(&rps[i]->kp);
1904 cleanup_rp_inst(rps[i]);
1905 }
1906 }
1907 }
1908 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1909
1910 #else /* CONFIG_KRETPROBES */
1911 int __kprobes register_kretprobe(struct kretprobe *rp)
1912 {
1913 return -ENOSYS;
1914 }
1915 EXPORT_SYMBOL_GPL(register_kretprobe);
1916
1917 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1918 {
1919 return -ENOSYS;
1920 }
1921 EXPORT_SYMBOL_GPL(register_kretprobes);
1922
1923 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1924 {
1925 }
1926 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1927
1928 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1929 {
1930 }
1931 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1932
1933 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1934 struct pt_regs *regs)
1935 {
1936 return 0;
1937 }
1938
1939 #endif /* CONFIG_KRETPROBES */
1940
1941 /* Set the kprobe gone and remove its instruction buffer. */
1942 static void __kprobes kill_kprobe(struct kprobe *p)
1943 {
1944 struct kprobe *kp;
1945
1946 p->flags |= KPROBE_FLAG_GONE;
1947 if (kprobe_aggrprobe(p)) {
1948 /*
1949 * If this is an aggr_kprobe, we have to list all the
1950 * chained probes and mark them GONE.
1951 */
1952 list_for_each_entry_rcu(kp, &p->list, list)
1953 kp->flags |= KPROBE_FLAG_GONE;
1954 p->post_handler = NULL;
1955 p->break_handler = NULL;
1956 kill_optimized_kprobe(p);
1957 }
1958 /*
1959 * Here, we can remove insn_slot safely, because no thread calls
1960 * the original probed function (which will be freed soon) any more.
1961 */
1962 arch_remove_kprobe(p);
1963 }
1964
1965 /* Disable one kprobe */
1966 int __kprobes disable_kprobe(struct kprobe *kp)
1967 {
1968 int ret = 0;
1969
1970 mutex_lock(&kprobe_mutex);
1971
1972 /* Disable this kprobe */
1973 if (__disable_kprobe(kp) == NULL)
1974 ret = -EINVAL;
1975
1976 mutex_unlock(&kprobe_mutex);
1977 return ret;
1978 }
1979 EXPORT_SYMBOL_GPL(disable_kprobe);
1980
1981 /* Enable one kprobe */
1982 int __kprobes enable_kprobe(struct kprobe *kp)
1983 {
1984 int ret = 0;
1985 struct kprobe *p;
1986
1987 mutex_lock(&kprobe_mutex);
1988
1989 /* Check whether specified probe is valid. */
1990 p = __get_valid_kprobe(kp);
1991 if (unlikely(p == NULL)) {
1992 ret = -EINVAL;
1993 goto out;
1994 }
1995
1996 if (kprobe_gone(kp)) {
1997 /* This kprobe has gone, we couldn't enable it. */
1998 ret = -EINVAL;
1999 goto out;
2000 }
2001
2002 if (p != kp)
2003 kp->flags &= ~KPROBE_FLAG_DISABLED;
2004
2005 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2006 p->flags &= ~KPROBE_FLAG_DISABLED;
2007 arm_kprobe(p);
2008 }
2009 out:
2010 mutex_unlock(&kprobe_mutex);
2011 return ret;
2012 }
2013 EXPORT_SYMBOL_GPL(enable_kprobe);
2014
2015 void __kprobes dump_kprobe(struct kprobe *kp)
2016 {
2017 printk(KERN_WARNING "Dumping kprobe:\n");
2018 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2019 kp->symbol_name, kp->addr, kp->offset);
2020 }
2021
2022 /* Module notifier call back, checking kprobes on the module */
2023 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
2024 unsigned long val, void *data)
2025 {
2026 struct module *mod = data;
2027 struct hlist_head *head;
2028 struct kprobe *p;
2029 unsigned int i;
2030 int checkcore = (val == MODULE_STATE_GOING);
2031
2032 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2033 return NOTIFY_DONE;
2034
2035 /*
2036 * When MODULE_STATE_GOING was notified, both of module .text and
2037 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2038 * notified, only .init.text section would be freed. We need to
2039 * disable kprobes which have been inserted in the sections.
2040 */
2041 mutex_lock(&kprobe_mutex);
2042 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2043 head = &kprobe_table[i];
2044 hlist_for_each_entry_rcu(p, head, hlist)
2045 if (within_module_init((unsigned long)p->addr, mod) ||
2046 (checkcore &&
2047 within_module_core((unsigned long)p->addr, mod))) {
2048 /*
2049 * The vaddr this probe is installed will soon
2050 * be vfreed buy not synced to disk. Hence,
2051 * disarming the breakpoint isn't needed.
2052 */
2053 kill_kprobe(p);
2054 }
2055 }
2056 mutex_unlock(&kprobe_mutex);
2057 return NOTIFY_DONE;
2058 }
2059
2060 static struct notifier_block kprobe_module_nb = {
2061 .notifier_call = kprobes_module_callback,
2062 .priority = 0
2063 };
2064
2065 static int __init init_kprobes(void)
2066 {
2067 int i, err = 0;
2068 unsigned long offset = 0, size = 0;
2069 char *modname, namebuf[KSYM_NAME_LEN];
2070 const char *symbol_name;
2071 void *addr;
2072 struct kprobe_blackpoint *kb;
2073
2074 /* FIXME allocate the probe table, currently defined statically */
2075 /* initialize all list heads */
2076 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2077 INIT_HLIST_HEAD(&kprobe_table[i]);
2078 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2079 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2080 }
2081
2082 /*
2083 * Lookup and populate the kprobe_blacklist.
2084 *
2085 * Unlike the kretprobe blacklist, we'll need to determine
2086 * the range of addresses that belong to the said functions,
2087 * since a kprobe need not necessarily be at the beginning
2088 * of a function.
2089 */
2090 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
2091 kprobe_lookup_name(kb->name, addr);
2092 if (!addr)
2093 continue;
2094
2095 kb->start_addr = (unsigned long)addr;
2096 symbol_name = kallsyms_lookup(kb->start_addr,
2097 &size, &offset, &modname, namebuf);
2098 if (!symbol_name)
2099 kb->range = 0;
2100 else
2101 kb->range = size;
2102 }
2103
2104 if (kretprobe_blacklist_size) {
2105 /* lookup the function address from its name */
2106 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2107 kprobe_lookup_name(kretprobe_blacklist[i].name,
2108 kretprobe_blacklist[i].addr);
2109 if (!kretprobe_blacklist[i].addr)
2110 printk("kretprobe: lookup failed: %s\n",
2111 kretprobe_blacklist[i].name);
2112 }
2113 }
2114
2115 #if defined(CONFIG_OPTPROBES)
2116 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2117 /* Init kprobe_optinsn_slots */
2118 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2119 #endif
2120 /* By default, kprobes can be optimized */
2121 kprobes_allow_optimization = true;
2122 #endif
2123
2124 /* By default, kprobes are armed */
2125 kprobes_all_disarmed = false;
2126
2127 err = arch_init_kprobes();
2128 if (!err)
2129 err = register_die_notifier(&kprobe_exceptions_nb);
2130 if (!err)
2131 err = register_module_notifier(&kprobe_module_nb);
2132
2133 kprobes_initialized = (err == 0);
2134
2135 if (!err)
2136 init_test_probes();
2137 return err;
2138 }
2139
2140 #ifdef CONFIG_DEBUG_FS
2141 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2142 const char *sym, int offset, char *modname, struct kprobe *pp)
2143 {
2144 char *kprobe_type;
2145
2146 if (p->pre_handler == pre_handler_kretprobe)
2147 kprobe_type = "r";
2148 else if (p->pre_handler == setjmp_pre_handler)
2149 kprobe_type = "j";
2150 else
2151 kprobe_type = "k";
2152
2153 if (sym)
2154 seq_printf(pi, "%p %s %s+0x%x %s ",
2155 p->addr, kprobe_type, sym, offset,
2156 (modname ? modname : " "));
2157 else
2158 seq_printf(pi, "%p %s %p ",
2159 p->addr, kprobe_type, p->addr);
2160
2161 if (!pp)
2162 pp = p;
2163 seq_printf(pi, "%s%s%s%s\n",
2164 (kprobe_gone(p) ? "[GONE]" : ""),
2165 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2166 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2167 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2168 }
2169
2170 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2171 {
2172 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2173 }
2174
2175 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2176 {
2177 (*pos)++;
2178 if (*pos >= KPROBE_TABLE_SIZE)
2179 return NULL;
2180 return pos;
2181 }
2182
2183 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2184 {
2185 /* Nothing to do */
2186 }
2187
2188 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2189 {
2190 struct hlist_head *head;
2191 struct kprobe *p, *kp;
2192 const char *sym = NULL;
2193 unsigned int i = *(loff_t *) v;
2194 unsigned long offset = 0;
2195 char *modname, namebuf[KSYM_NAME_LEN];
2196
2197 head = &kprobe_table[i];
2198 preempt_disable();
2199 hlist_for_each_entry_rcu(p, head, hlist) {
2200 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2201 &offset, &modname, namebuf);
2202 if (kprobe_aggrprobe(p)) {
2203 list_for_each_entry_rcu(kp, &p->list, list)
2204 report_probe(pi, kp, sym, offset, modname, p);
2205 } else
2206 report_probe(pi, p, sym, offset, modname, NULL);
2207 }
2208 preempt_enable();
2209 return 0;
2210 }
2211
2212 static const struct seq_operations kprobes_seq_ops = {
2213 .start = kprobe_seq_start,
2214 .next = kprobe_seq_next,
2215 .stop = kprobe_seq_stop,
2216 .show = show_kprobe_addr
2217 };
2218
2219 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
2220 {
2221 return seq_open(filp, &kprobes_seq_ops);
2222 }
2223
2224 static const struct file_operations debugfs_kprobes_operations = {
2225 .open = kprobes_open,
2226 .read = seq_read,
2227 .llseek = seq_lseek,
2228 .release = seq_release,
2229 };
2230
2231 static void __kprobes arm_all_kprobes(void)
2232 {
2233 struct hlist_head *head;
2234 struct kprobe *p;
2235 unsigned int i;
2236
2237 mutex_lock(&kprobe_mutex);
2238
2239 /* If kprobes are armed, just return */
2240 if (!kprobes_all_disarmed)
2241 goto already_enabled;
2242
2243 /* Arming kprobes doesn't optimize kprobe itself */
2244 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2245 head = &kprobe_table[i];
2246 hlist_for_each_entry_rcu(p, head, hlist)
2247 if (!kprobe_disabled(p))
2248 arm_kprobe(p);
2249 }
2250
2251 kprobes_all_disarmed = false;
2252 printk(KERN_INFO "Kprobes globally enabled\n");
2253
2254 already_enabled:
2255 mutex_unlock(&kprobe_mutex);
2256 return;
2257 }
2258
2259 static void __kprobes disarm_all_kprobes(void)
2260 {
2261 struct hlist_head *head;
2262 struct kprobe *p;
2263 unsigned int i;
2264
2265 mutex_lock(&kprobe_mutex);
2266
2267 /* If kprobes are already disarmed, just return */
2268 if (kprobes_all_disarmed) {
2269 mutex_unlock(&kprobe_mutex);
2270 return;
2271 }
2272
2273 kprobes_all_disarmed = true;
2274 printk(KERN_INFO "Kprobes globally disabled\n");
2275
2276 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2277 head = &kprobe_table[i];
2278 hlist_for_each_entry_rcu(p, head, hlist) {
2279 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2280 disarm_kprobe(p, false);
2281 }
2282 }
2283 mutex_unlock(&kprobe_mutex);
2284
2285 /* Wait for disarming all kprobes by optimizer */
2286 wait_for_kprobe_optimizer();
2287 }
2288
2289 /*
2290 * XXX: The debugfs bool file interface doesn't allow for callbacks
2291 * when the bool state is switched. We can reuse that facility when
2292 * available
2293 */
2294 static ssize_t read_enabled_file_bool(struct file *file,
2295 char __user *user_buf, size_t count, loff_t *ppos)
2296 {
2297 char buf[3];
2298
2299 if (!kprobes_all_disarmed)
2300 buf[0] = '1';
2301 else
2302 buf[0] = '0';
2303 buf[1] = '\n';
2304 buf[2] = 0x00;
2305 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2306 }
2307
2308 static ssize_t write_enabled_file_bool(struct file *file,
2309 const char __user *user_buf, size_t count, loff_t *ppos)
2310 {
2311 char buf[32];
2312 size_t buf_size;
2313
2314 buf_size = min(count, (sizeof(buf)-1));
2315 if (copy_from_user(buf, user_buf, buf_size))
2316 return -EFAULT;
2317
2318 buf[buf_size] = '\0';
2319 switch (buf[0]) {
2320 case 'y':
2321 case 'Y':
2322 case '1':
2323 arm_all_kprobes();
2324 break;
2325 case 'n':
2326 case 'N':
2327 case '0':
2328 disarm_all_kprobes();
2329 break;
2330 default:
2331 return -EINVAL;
2332 }
2333
2334 return count;
2335 }
2336
2337 static const struct file_operations fops_kp = {
2338 .read = read_enabled_file_bool,
2339 .write = write_enabled_file_bool,
2340 .llseek = default_llseek,
2341 };
2342
2343 static int __kprobes debugfs_kprobe_init(void)
2344 {
2345 struct dentry *dir, *file;
2346 unsigned int value = 1;
2347
2348 dir = debugfs_create_dir("kprobes", NULL);
2349 if (!dir)
2350 return -ENOMEM;
2351
2352 file = debugfs_create_file("list", 0444, dir, NULL,
2353 &debugfs_kprobes_operations);
2354 if (!file) {
2355 debugfs_remove(dir);
2356 return -ENOMEM;
2357 }
2358
2359 file = debugfs_create_file("enabled", 0600, dir,
2360 &value, &fops_kp);
2361 if (!file) {
2362 debugfs_remove(dir);
2363 return -ENOMEM;
2364 }
2365
2366 return 0;
2367 }
2368
2369 late_initcall(debugfs_kprobe_init);
2370 #endif /* CONFIG_DEBUG_FS */
2371
2372 module_init(init_kprobes);
2373
2374 /* defined in arch/.../kernel/kprobes.c */
2375 EXPORT_SYMBOL_GPL(jprobe_return);