]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/kprobes.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-kernels.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
72 {
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89 struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115 /*
116 * Use module_alloc() so this page is within +/- 2GB of where the
117 * kernel image and loaded module images reside. This is required
118 * for most of the architectures.
119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 */
121 return module_alloc(PAGE_SIZE);
122 }
123
124 static void free_insn_page(void *page)
125 {
126 module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 .alloc = alloc_insn_page,
132 .free = free_insn_page,
133 .sym = KPROBE_INSN_PAGE_SYM,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 rcu_read_unlock();
163 goto out;
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171 rcu_read_unlock();
172
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 goto retry;
176
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 if (!kip)
180 goto out;
181
182 kip->insns = c->alloc();
183 if (!kip->insns) {
184 kfree(kip);
185 goto out;
186 }
187 INIT_LIST_HEAD(&kip->list);
188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 kip->slot_used[0] = SLOT_USED;
190 kip->nused = 1;
191 kip->ngarbage = 0;
192 kip->cache = c;
193 list_add_rcu(&kip->list, &c->pages);
194 slot = kip->insns;
195
196 /* Record the perf ksymbol register event after adding the page */
197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 PAGE_SIZE, false, c->sym);
199 out:
200 mutex_unlock(&c->mutex);
201 return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 /*
218 * Record perf ksymbol unregister event before removing
219 * the page.
220 */
221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 (unsigned long)kip->insns, PAGE_SIZE, true,
223 kip->cache->sym);
224 list_del_rcu(&kip->list);
225 synchronize_rcu();
226 kip->cache->free(kip->insns);
227 kfree(kip);
228 }
229 return true;
230 }
231 return false;
232 }
233
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_rcu();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254 }
255
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258 {
259 struct kprobe_insn_page *kip;
260 long idx;
261
262 mutex_lock(&c->mutex);
263 rcu_read_lock();
264 list_for_each_entry_rcu(kip, &c->pages, list) {
265 idx = ((long)slot - (long)kip->insns) /
266 (c->insn_size * sizeof(kprobe_opcode_t));
267 if (idx >= 0 && idx < slots_per_page(c))
268 goto out;
269 }
270 /* Could not find this slot. */
271 WARN_ON(1);
272 kip = NULL;
273 out:
274 rcu_read_unlock();
275 /* Mark and sweep: this may sleep */
276 if (kip) {
277 /* Check double free */
278 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 if (dirty) {
280 kip->slot_used[idx] = SLOT_DIRTY;
281 kip->ngarbage++;
282 if (++c->nr_garbage > slots_per_page(c))
283 collect_garbage_slots(c);
284 } else {
285 collect_one_slot(kip, idx);
286 }
287 }
288 mutex_unlock(&c->mutex);
289 }
290
291 /*
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
295 */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298 struct kprobe_insn_page *kip;
299 bool ret = false;
300
301 rcu_read_lock();
302 list_for_each_entry_rcu(kip, &c->pages, list) {
303 if (addr >= (unsigned long)kip->insns &&
304 addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 ret = true;
306 break;
307 }
308 }
309 rcu_read_unlock();
310
311 return ret;
312 }
313
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 unsigned long *value, char *type, char *sym)
316 {
317 struct kprobe_insn_page *kip;
318 int ret = -ERANGE;
319
320 rcu_read_lock();
321 list_for_each_entry_rcu(kip, &c->pages, list) {
322 if ((*symnum)--)
323 continue;
324 strscpy(sym, c->sym, KSYM_NAME_LEN);
325 *type = 't';
326 *value = (unsigned long)kip->insns;
327 ret = 0;
328 break;
329 }
330 rcu_read_unlock();
331
332 return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338 return alloc_insn_page();
339 }
340
341 void __weak free_optinsn_page(void *page)
342 {
343 free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 .alloc = alloc_optinsn_page,
350 .free = free_optinsn_page,
351 .sym = KPROBE_OPTINSN_PAGE_SYM,
352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 /* .insn_size is initialized later */
354 .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362 __this_cpu_write(kprobe_instance, kp);
363 }
364
365 static inline void reset_kprobe_instance(void)
366 {
367 __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371 * This routine is called either:
372 * - under the 'kprobe_mutex' - during kprobe_[un]register().
373 * OR
374 * - with preemption disabled - from architecture specific code.
375 */
376 struct kprobe *get_kprobe(void *addr)
377 {
378 struct hlist_head *head;
379 struct kprobe *p;
380
381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 hlist_for_each_entry_rcu(p, head, hlist,
383 lockdep_is_held(&kprobe_mutex)) {
384 if (p->addr == addr)
385 return p;
386 }
387
388 return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397 return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
421 */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 struct kprobe *kp;
425
426 list_for_each_entry_rcu(kp, &p->list, list) {
427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 set_kprobe_instance(kp);
429 kp->pre_handler(kp, regs);
430 }
431 reset_kprobe_instance();
432 }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439 struct optimized_kprobe *op;
440
441 op = container_of(p, struct optimized_kprobe, kp);
442 arch_remove_optimized_kprobe(op);
443 arch_remove_kprobe(p);
444 kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450 struct optimized_kprobe *op;
451
452 if (kprobe_aggrprobe(p)) {
453 op = container_of(p, struct optimized_kprobe, kp);
454 return arch_prepared_optinsn(&op->optinsn);
455 }
456
457 return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 static inline bool kprobe_disarmed(struct kprobe *p)
462 {
463 struct optimized_kprobe *op;
464
465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 if (!kprobe_aggrprobe(p))
467 return kprobe_disabled(p);
468
469 op = container_of(p, struct optimized_kprobe, kp);
470
471 return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477 struct optimized_kprobe *op;
478
479 if (kprobe_aggrprobe(p)) {
480 op = container_of(p, struct optimized_kprobe, kp);
481 if (!list_empty(&op->list))
482 return true;
483 }
484 return false;
485 }
486
487 /*
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
490 */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493 int i;
494 struct kprobe *p = NULL;
495 struct optimized_kprobe *op;
496
497 /* Don't check i == 0, since that is a breakpoint case. */
498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 p = get_kprobe(addr - i);
500
501 if (p && kprobe_optready(p)) {
502 op = container_of(p, struct optimized_kprobe, kp);
503 if (arch_within_optimized_kprobe(op, addr))
504 return p;
505 }
506
507 return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
521 * 'optimizing_list'.
522 */
523 static void do_optimize_kprobes(void)
524 {
525 lockdep_assert_held(&text_mutex);
526 /*
527 * The optimization/unoptimization refers 'online_cpus' via
528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 * 'text_mutex' but stop_machine() can not be done because
532 * the 'online_cpus' has been changed)
533 * To avoid this deadlock, caller must have locked cpu-hotplug
534 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 */
536 lockdep_assert_cpus_held();
537
538 /* Optimization never be done when disarmed */
539 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 list_empty(&optimizing_list))
541 return;
542
543 arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
549 */
550 static void do_unoptimize_kprobes(void)
551 {
552 struct optimized_kprobe *op, *tmp;
553
554 lockdep_assert_held(&text_mutex);
555 /* See comment in do_optimize_kprobes() */
556 lockdep_assert_cpus_held();
557
558 /* Unoptimization must be done anytime */
559 if (list_empty(&unoptimizing_list))
560 return;
561
562 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563 /* Loop on 'freeing_list' for disarming */
564 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565 /* Switching from detour code to origin */
566 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567 /* Disarm probes if marked disabled */
568 if (kprobe_disabled(&op->kp))
569 arch_disarm_kprobe(&op->kp);
570 if (kprobe_unused(&op->kp)) {
571 /*
572 * Remove unused probes from hash list. After waiting
573 * for synchronization, these probes are reclaimed.
574 * (reclaiming is done by do_free_cleaned_kprobes().)
575 */
576 hlist_del_rcu(&op->kp.hlist);
577 } else
578 list_del_init(&op->list);
579 }
580 }
581
582 /* Reclaim all kprobes on the 'freeing_list' */
583 static void do_free_cleaned_kprobes(void)
584 {
585 struct optimized_kprobe *op, *tmp;
586
587 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588 list_del_init(&op->list);
589 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590 /*
591 * This must not happen, but if there is a kprobe
592 * still in use, keep it on kprobes hash list.
593 */
594 continue;
595 }
596 free_aggr_kprobe(&op->kp);
597 }
598 }
599
600 /* Start optimizer after OPTIMIZE_DELAY passed */
601 static void kick_kprobe_optimizer(void)
602 {
603 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604 }
605
606 /* Kprobe jump optimizer */
607 static void kprobe_optimizer(struct work_struct *work)
608 {
609 mutex_lock(&kprobe_mutex);
610 cpus_read_lock();
611 mutex_lock(&text_mutex);
612
613 /*
614 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615 * kprobes before waiting for quiesence period.
616 */
617 do_unoptimize_kprobes();
618
619 /*
620 * Step 2: Wait for quiesence period to ensure all potentially
621 * preempted tasks to have normally scheduled. Because optprobe
622 * may modify multiple instructions, there is a chance that Nth
623 * instruction is preempted. In that case, such tasks can return
624 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625 * Note that on non-preemptive kernel, this is transparently converted
626 * to synchronoze_sched() to wait for all interrupts to have completed.
627 */
628 synchronize_rcu_tasks();
629
630 /* Step 3: Optimize kprobes after quiesence period */
631 do_optimize_kprobes();
632
633 /* Step 4: Free cleaned kprobes after quiesence period */
634 do_free_cleaned_kprobes();
635
636 mutex_unlock(&text_mutex);
637 cpus_read_unlock();
638
639 /* Step 5: Kick optimizer again if needed */
640 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641 kick_kprobe_optimizer();
642
643 mutex_unlock(&kprobe_mutex);
644 }
645
646 /* Wait for completing optimization and unoptimization */
647 void wait_for_kprobe_optimizer(void)
648 {
649 mutex_lock(&kprobe_mutex);
650
651 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652 mutex_unlock(&kprobe_mutex);
653
654 /* This will also make 'optimizing_work' execute immmediately */
655 flush_delayed_work(&optimizing_work);
656 /* 'optimizing_work' might not have been queued yet, relax */
657 cpu_relax();
658
659 mutex_lock(&kprobe_mutex);
660 }
661
662 mutex_unlock(&kprobe_mutex);
663 }
664
665 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
666 {
667 struct optimized_kprobe *_op;
668
669 list_for_each_entry(_op, &unoptimizing_list, list) {
670 if (op == _op)
671 return true;
672 }
673
674 return false;
675 }
676
677 /* Optimize kprobe if p is ready to be optimized */
678 static void optimize_kprobe(struct kprobe *p)
679 {
680 struct optimized_kprobe *op;
681
682 /* Check if the kprobe is disabled or not ready for optimization. */
683 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684 (kprobe_disabled(p) || kprobes_all_disarmed))
685 return;
686
687 /* kprobes with 'post_handler' can not be optimized */
688 if (p->post_handler)
689 return;
690
691 op = container_of(p, struct optimized_kprobe, kp);
692
693 /* Check there is no other kprobes at the optimized instructions */
694 if (arch_check_optimized_kprobe(op) < 0)
695 return;
696
697 /* Check if it is already optimized. */
698 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699 if (optprobe_queued_unopt(op)) {
700 /* This is under unoptimizing. Just dequeue the probe */
701 list_del_init(&op->list);
702 }
703 return;
704 }
705 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
706
707 /*
708 * On the 'unoptimizing_list' and 'optimizing_list',
709 * 'op' must have OPTIMIZED flag
710 */
711 if (WARN_ON_ONCE(!list_empty(&op->list)))
712 return;
713
714 list_add(&op->list, &optimizing_list);
715 kick_kprobe_optimizer();
716 }
717
718 /* Short cut to direct unoptimizing */
719 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
720 {
721 lockdep_assert_cpus_held();
722 arch_unoptimize_kprobe(op);
723 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724 }
725
726 /* Unoptimize a kprobe if p is optimized */
727 static void unoptimize_kprobe(struct kprobe *p, bool force)
728 {
729 struct optimized_kprobe *op;
730
731 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732 return; /* This is not an optprobe nor optimized */
733
734 op = container_of(p, struct optimized_kprobe, kp);
735 if (!kprobe_optimized(p))
736 return;
737
738 if (!list_empty(&op->list)) {
739 if (optprobe_queued_unopt(op)) {
740 /* Queued in unoptimizing queue */
741 if (force) {
742 /*
743 * Forcibly unoptimize the kprobe here, and queue it
744 * in the freeing list for release afterwards.
745 */
746 force_unoptimize_kprobe(op);
747 list_move(&op->list, &freeing_list);
748 }
749 } else {
750 /* Dequeue from the optimizing queue */
751 list_del_init(&op->list);
752 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753 }
754 return;
755 }
756
757 /* Optimized kprobe case */
758 if (force) {
759 /* Forcibly update the code: this is a special case */
760 force_unoptimize_kprobe(op);
761 } else {
762 list_add(&op->list, &unoptimizing_list);
763 kick_kprobe_optimizer();
764 }
765 }
766
767 /* Cancel unoptimizing for reusing */
768 static int reuse_unused_kprobe(struct kprobe *ap)
769 {
770 struct optimized_kprobe *op;
771
772 /*
773 * Unused kprobe MUST be on the way of delayed unoptimizing (means
774 * there is still a relative jump) and disabled.
775 */
776 op = container_of(ap, struct optimized_kprobe, kp);
777 WARN_ON_ONCE(list_empty(&op->list));
778 /* Enable the probe again */
779 ap->flags &= ~KPROBE_FLAG_DISABLED;
780 /* Optimize it again. (remove from 'op->list') */
781 if (!kprobe_optready(ap))
782 return -EINVAL;
783
784 optimize_kprobe(ap);
785 return 0;
786 }
787
788 /* Remove optimized instructions */
789 static void kill_optimized_kprobe(struct kprobe *p)
790 {
791 struct optimized_kprobe *op;
792
793 op = container_of(p, struct optimized_kprobe, kp);
794 if (!list_empty(&op->list))
795 /* Dequeue from the (un)optimization queue */
796 list_del_init(&op->list);
797 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
798
799 if (kprobe_unused(p)) {
800 /* Enqueue if it is unused */
801 list_add(&op->list, &freeing_list);
802 /*
803 * Remove unused probes from the hash list. After waiting
804 * for synchronization, this probe is reclaimed.
805 * (reclaiming is done by do_free_cleaned_kprobes().)
806 */
807 hlist_del_rcu(&op->kp.hlist);
808 }
809
810 /* Don't touch the code, because it is already freed. */
811 arch_remove_optimized_kprobe(op);
812 }
813
814 static inline
815 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
816 {
817 if (!kprobe_ftrace(p))
818 arch_prepare_optimized_kprobe(op, p);
819 }
820
821 /* Try to prepare optimized instructions */
822 static void prepare_optimized_kprobe(struct kprobe *p)
823 {
824 struct optimized_kprobe *op;
825
826 op = container_of(p, struct optimized_kprobe, kp);
827 __prepare_optimized_kprobe(op, p);
828 }
829
830 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
832 {
833 struct optimized_kprobe *op;
834
835 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
836 if (!op)
837 return NULL;
838
839 INIT_LIST_HEAD(&op->list);
840 op->kp.addr = p->addr;
841 __prepare_optimized_kprobe(op, p);
842
843 return &op->kp;
844 }
845
846 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
847
848 /*
849 * Prepare an optimized_kprobe and optimize it.
850 * NOTE: 'p' must be a normal registered kprobe.
851 */
852 static void try_to_optimize_kprobe(struct kprobe *p)
853 {
854 struct kprobe *ap;
855 struct optimized_kprobe *op;
856
857 /* Impossible to optimize ftrace-based kprobe. */
858 if (kprobe_ftrace(p))
859 return;
860
861 /* For preparing optimization, jump_label_text_reserved() is called. */
862 cpus_read_lock();
863 jump_label_lock();
864 mutex_lock(&text_mutex);
865
866 ap = alloc_aggr_kprobe(p);
867 if (!ap)
868 goto out;
869
870 op = container_of(ap, struct optimized_kprobe, kp);
871 if (!arch_prepared_optinsn(&op->optinsn)) {
872 /* If failed to setup optimizing, fallback to kprobe. */
873 arch_remove_optimized_kprobe(op);
874 kfree(op);
875 goto out;
876 }
877
878 init_aggr_kprobe(ap, p);
879 optimize_kprobe(ap); /* This just kicks optimizer thread. */
880
881 out:
882 mutex_unlock(&text_mutex);
883 jump_label_unlock();
884 cpus_read_unlock();
885 }
886
887 static void optimize_all_kprobes(void)
888 {
889 struct hlist_head *head;
890 struct kprobe *p;
891 unsigned int i;
892
893 mutex_lock(&kprobe_mutex);
894 /* If optimization is already allowed, just return. */
895 if (kprobes_allow_optimization)
896 goto out;
897
898 cpus_read_lock();
899 kprobes_allow_optimization = true;
900 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901 head = &kprobe_table[i];
902 hlist_for_each_entry(p, head, hlist)
903 if (!kprobe_disabled(p))
904 optimize_kprobe(p);
905 }
906 cpus_read_unlock();
907 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
908 out:
909 mutex_unlock(&kprobe_mutex);
910 }
911
912 #ifdef CONFIG_SYSCTL
913 static void unoptimize_all_kprobes(void)
914 {
915 struct hlist_head *head;
916 struct kprobe *p;
917 unsigned int i;
918
919 mutex_lock(&kprobe_mutex);
920 /* If optimization is already prohibited, just return. */
921 if (!kprobes_allow_optimization) {
922 mutex_unlock(&kprobe_mutex);
923 return;
924 }
925
926 cpus_read_lock();
927 kprobes_allow_optimization = false;
928 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929 head = &kprobe_table[i];
930 hlist_for_each_entry(p, head, hlist) {
931 if (!kprobe_disabled(p))
932 unoptimize_kprobe(p, false);
933 }
934 }
935 cpus_read_unlock();
936 mutex_unlock(&kprobe_mutex);
937
938 /* Wait for unoptimizing completion. */
939 wait_for_kprobe_optimizer();
940 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
941 }
942
943 static DEFINE_MUTEX(kprobe_sysctl_mutex);
944 static int sysctl_kprobes_optimization;
945 static int proc_kprobes_optimization_handler(struct ctl_table *table,
946 int write, void *buffer,
947 size_t *length, loff_t *ppos)
948 {
949 int ret;
950
951 mutex_lock(&kprobe_sysctl_mutex);
952 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
954
955 if (sysctl_kprobes_optimization)
956 optimize_all_kprobes();
957 else
958 unoptimize_all_kprobes();
959 mutex_unlock(&kprobe_sysctl_mutex);
960
961 return ret;
962 }
963
964 static struct ctl_table kprobe_sysctls[] = {
965 {
966 .procname = "kprobes-optimization",
967 .data = &sysctl_kprobes_optimization,
968 .maxlen = sizeof(int),
969 .mode = 0644,
970 .proc_handler = proc_kprobes_optimization_handler,
971 .extra1 = SYSCTL_ZERO,
972 .extra2 = SYSCTL_ONE,
973 },
974 {}
975 };
976
977 static void __init kprobe_sysctls_init(void)
978 {
979 register_sysctl_init("debug", kprobe_sysctls);
980 }
981 #endif /* CONFIG_SYSCTL */
982
983 /* Put a breakpoint for a probe. */
984 static void __arm_kprobe(struct kprobe *p)
985 {
986 struct kprobe *_p;
987
988 lockdep_assert_held(&text_mutex);
989
990 /* Find the overlapping optimized kprobes. */
991 _p = get_optimized_kprobe(p->addr);
992 if (unlikely(_p))
993 /* Fallback to unoptimized kprobe */
994 unoptimize_kprobe(_p, true);
995
996 arch_arm_kprobe(p);
997 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
998 }
999
1000 /* Remove the breakpoint of a probe. */
1001 static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002 {
1003 struct kprobe *_p;
1004
1005 lockdep_assert_held(&text_mutex);
1006
1007 /* Try to unoptimize */
1008 unoptimize_kprobe(p, kprobes_all_disarmed);
1009
1010 if (!kprobe_queued(p)) {
1011 arch_disarm_kprobe(p);
1012 /* If another kprobe was blocked, re-optimize it. */
1013 _p = get_optimized_kprobe(p->addr);
1014 if (unlikely(_p) && reopt)
1015 optimize_kprobe(_p);
1016 }
1017 /*
1018 * TODO: Since unoptimization and real disarming will be done by
1019 * the worker thread, we can not check whether another probe are
1020 * unoptimized because of this probe here. It should be re-optimized
1021 * by the worker thread.
1022 */
1023 }
1024
1025 #else /* !CONFIG_OPTPROBES */
1026
1027 #define optimize_kprobe(p) do {} while (0)
1028 #define unoptimize_kprobe(p, f) do {} while (0)
1029 #define kill_optimized_kprobe(p) do {} while (0)
1030 #define prepare_optimized_kprobe(p) do {} while (0)
1031 #define try_to_optimize_kprobe(p) do {} while (0)
1032 #define __arm_kprobe(p) arch_arm_kprobe(p)
1033 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1034 #define kprobe_disarmed(p) kprobe_disabled(p)
1035 #define wait_for_kprobe_optimizer() do {} while (0)
1036
1037 static int reuse_unused_kprobe(struct kprobe *ap)
1038 {
1039 /*
1040 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041 * released at the same time that the last aggregated kprobe is
1042 * unregistered.
1043 * Thus there should be no chance to reuse unused kprobe.
1044 */
1045 WARN_ON_ONCE(1);
1046 return -EINVAL;
1047 }
1048
1049 static void free_aggr_kprobe(struct kprobe *p)
1050 {
1051 arch_remove_kprobe(p);
1052 kfree(p);
1053 }
1054
1055 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056 {
1057 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058 }
1059 #endif /* CONFIG_OPTPROBES */
1060
1061 #ifdef CONFIG_KPROBES_ON_FTRACE
1062 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063 .func = kprobe_ftrace_handler,
1064 .flags = FTRACE_OPS_FL_SAVE_REGS,
1065 };
1066
1067 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068 .func = kprobe_ftrace_handler,
1069 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070 };
1071
1072 static int kprobe_ipmodify_enabled;
1073 static int kprobe_ftrace_enabled;
1074
1075 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076 int *cnt)
1077 {
1078 int ret = 0;
1079
1080 lockdep_assert_held(&kprobe_mutex);
1081
1082 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084 return ret;
1085
1086 if (*cnt == 0) {
1087 ret = register_ftrace_function(ops);
1088 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089 goto err_ftrace;
1090 }
1091
1092 (*cnt)++;
1093 return ret;
1094
1095 err_ftrace:
1096 /*
1097 * At this point, sinec ops is not registered, we should be sefe from
1098 * registering empty filter.
1099 */
1100 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 return ret;
1102 }
1103
1104 static int arm_kprobe_ftrace(struct kprobe *p)
1105 {
1106 bool ipmodify = (p->post_handler != NULL);
1107
1108 return __arm_kprobe_ftrace(p,
1109 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111 }
1112
1113 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114 int *cnt)
1115 {
1116 int ret = 0;
1117
1118 lockdep_assert_held(&kprobe_mutex);
1119
1120 if (*cnt == 1) {
1121 ret = unregister_ftrace_function(ops);
1122 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123 return ret;
1124 }
1125
1126 (*cnt)--;
1127
1128 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130 p->addr, ret);
1131 return ret;
1132 }
1133
1134 static int disarm_kprobe_ftrace(struct kprobe *p)
1135 {
1136 bool ipmodify = (p->post_handler != NULL);
1137
1138 return __disarm_kprobe_ftrace(p,
1139 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141 }
1142 #else /* !CONFIG_KPROBES_ON_FTRACE */
1143 static inline int arm_kprobe_ftrace(struct kprobe *p)
1144 {
1145 return -ENODEV;
1146 }
1147
1148 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149 {
1150 return -ENODEV;
1151 }
1152 #endif
1153
1154 static int prepare_kprobe(struct kprobe *p)
1155 {
1156 /* Must ensure p->addr is really on ftrace */
1157 if (kprobe_ftrace(p))
1158 return arch_prepare_kprobe_ftrace(p);
1159
1160 return arch_prepare_kprobe(p);
1161 }
1162
1163 static int arm_kprobe(struct kprobe *kp)
1164 {
1165 if (unlikely(kprobe_ftrace(kp)))
1166 return arm_kprobe_ftrace(kp);
1167
1168 cpus_read_lock();
1169 mutex_lock(&text_mutex);
1170 __arm_kprobe(kp);
1171 mutex_unlock(&text_mutex);
1172 cpus_read_unlock();
1173
1174 return 0;
1175 }
1176
1177 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178 {
1179 if (unlikely(kprobe_ftrace(kp)))
1180 return disarm_kprobe_ftrace(kp);
1181
1182 cpus_read_lock();
1183 mutex_lock(&text_mutex);
1184 __disarm_kprobe(kp, reopt);
1185 mutex_unlock(&text_mutex);
1186 cpus_read_unlock();
1187
1188 return 0;
1189 }
1190
1191 /*
1192 * Aggregate handlers for multiple kprobes support - these handlers
1193 * take care of invoking the individual kprobe handlers on p->list
1194 */
1195 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196 {
1197 struct kprobe *kp;
1198
1199 list_for_each_entry_rcu(kp, &p->list, list) {
1200 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201 set_kprobe_instance(kp);
1202 if (kp->pre_handler(kp, regs))
1203 return 1;
1204 }
1205 reset_kprobe_instance();
1206 }
1207 return 0;
1208 }
1209 NOKPROBE_SYMBOL(aggr_pre_handler);
1210
1211 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212 unsigned long flags)
1213 {
1214 struct kprobe *kp;
1215
1216 list_for_each_entry_rcu(kp, &p->list, list) {
1217 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218 set_kprobe_instance(kp);
1219 kp->post_handler(kp, regs, flags);
1220 reset_kprobe_instance();
1221 }
1222 }
1223 }
1224 NOKPROBE_SYMBOL(aggr_post_handler);
1225
1226 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227 void kprobes_inc_nmissed_count(struct kprobe *p)
1228 {
1229 struct kprobe *kp;
1230
1231 if (!kprobe_aggrprobe(p)) {
1232 p->nmissed++;
1233 } else {
1234 list_for_each_entry_rcu(kp, &p->list, list)
1235 kp->nmissed++;
1236 }
1237 }
1238 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239
1240 static struct kprobe kprobe_busy = {
1241 .addr = (void *) get_kprobe,
1242 };
1243
1244 void kprobe_busy_begin(void)
1245 {
1246 struct kprobe_ctlblk *kcb;
1247
1248 preempt_disable();
1249 __this_cpu_write(current_kprobe, &kprobe_busy);
1250 kcb = get_kprobe_ctlblk();
1251 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252 }
1253
1254 void kprobe_busy_end(void)
1255 {
1256 __this_cpu_write(current_kprobe, NULL);
1257 preempt_enable();
1258 }
1259
1260 /* Add the new probe to 'ap->list'. */
1261 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262 {
1263 if (p->post_handler)
1264 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1265
1266 list_add_rcu(&p->list, &ap->list);
1267 if (p->post_handler && !ap->post_handler)
1268 ap->post_handler = aggr_post_handler;
1269
1270 return 0;
1271 }
1272
1273 /*
1274 * Fill in the required fields of the aggregator kprobe. Replace the
1275 * earlier kprobe in the hlist with the aggregator kprobe.
1276 */
1277 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278 {
1279 /* Copy the insn slot of 'p' to 'ap'. */
1280 copy_kprobe(p, ap);
1281 flush_insn_slot(ap);
1282 ap->addr = p->addr;
1283 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284 ap->pre_handler = aggr_pre_handler;
1285 /* We don't care the kprobe which has gone. */
1286 if (p->post_handler && !kprobe_gone(p))
1287 ap->post_handler = aggr_post_handler;
1288
1289 INIT_LIST_HEAD(&ap->list);
1290 INIT_HLIST_NODE(&ap->hlist);
1291
1292 list_add_rcu(&p->list, &ap->list);
1293 hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295
1296 /*
1297 * This registers the second or subsequent kprobe at the same address.
1298 */
1299 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1300 {
1301 int ret = 0;
1302 struct kprobe *ap = orig_p;
1303
1304 cpus_read_lock();
1305
1306 /* For preparing optimization, jump_label_text_reserved() is called */
1307 jump_label_lock();
1308 mutex_lock(&text_mutex);
1309
1310 if (!kprobe_aggrprobe(orig_p)) {
1311 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312 ap = alloc_aggr_kprobe(orig_p);
1313 if (!ap) {
1314 ret = -ENOMEM;
1315 goto out;
1316 }
1317 init_aggr_kprobe(ap, orig_p);
1318 } else if (kprobe_unused(ap)) {
1319 /* This probe is going to die. Rescue it */
1320 ret = reuse_unused_kprobe(ap);
1321 if (ret)
1322 goto out;
1323 }
1324
1325 if (kprobe_gone(ap)) {
1326 /*
1327 * Attempting to insert new probe at the same location that
1328 * had a probe in the module vaddr area which already
1329 * freed. So, the instruction slot has already been
1330 * released. We need a new slot for the new probe.
1331 */
1332 ret = arch_prepare_kprobe(ap);
1333 if (ret)
1334 /*
1335 * Even if fail to allocate new slot, don't need to
1336 * free the 'ap'. It will be used next time, or
1337 * freed by unregister_kprobe().
1338 */
1339 goto out;
1340
1341 /* Prepare optimized instructions if possible. */
1342 prepare_optimized_kprobe(ap);
1343
1344 /*
1345 * Clear gone flag to prevent allocating new slot again, and
1346 * set disabled flag because it is not armed yet.
1347 */
1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 | KPROBE_FLAG_DISABLED;
1350 }
1351
1352 /* Copy the insn slot of 'p' to 'ap'. */
1353 copy_kprobe(ap, p);
1354 ret = add_new_kprobe(ap, p);
1355
1356 out:
1357 mutex_unlock(&text_mutex);
1358 jump_label_unlock();
1359 cpus_read_unlock();
1360
1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 if (!kprobes_all_disarmed) {
1364 /* Arm the breakpoint again. */
1365 ret = arm_kprobe(ap);
1366 if (ret) {
1367 ap->flags |= KPROBE_FLAG_DISABLED;
1368 list_del_rcu(&p->list);
1369 synchronize_rcu();
1370 }
1371 }
1372 }
1373 return ret;
1374 }
1375
1376 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377 {
1378 /* The '__kprobes' functions and entry code must not be probed. */
1379 return addr >= (unsigned long)__kprobes_text_start &&
1380 addr < (unsigned long)__kprobes_text_end;
1381 }
1382
1383 static bool __within_kprobe_blacklist(unsigned long addr)
1384 {
1385 struct kprobe_blacklist_entry *ent;
1386
1387 if (arch_within_kprobe_blacklist(addr))
1388 return true;
1389 /*
1390 * If 'kprobe_blacklist' is defined, check the address and
1391 * reject any probe registration in the prohibited area.
1392 */
1393 list_for_each_entry(ent, &kprobe_blacklist, list) {
1394 if (addr >= ent->start_addr && addr < ent->end_addr)
1395 return true;
1396 }
1397 return false;
1398 }
1399
1400 bool within_kprobe_blacklist(unsigned long addr)
1401 {
1402 char symname[KSYM_NAME_LEN], *p;
1403
1404 if (__within_kprobe_blacklist(addr))
1405 return true;
1406
1407 /* Check if the address is on a suffixed-symbol */
1408 if (!lookup_symbol_name(addr, symname)) {
1409 p = strchr(symname, '.');
1410 if (!p)
1411 return false;
1412 *p = '\0';
1413 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414 if (addr)
1415 return __within_kprobe_blacklist(addr);
1416 }
1417 return false;
1418 }
1419
1420 /*
1421 * arch_adjust_kprobe_addr - adjust the address
1422 * @addr: symbol base address
1423 * @offset: offset within the symbol
1424 * @on_func_entry: was this @addr+@offset on the function entry
1425 *
1426 * Typically returns @addr + @offset, except for special cases where the
1427 * function might be prefixed by a CFI landing pad, in that case any offset
1428 * inside the landing pad is mapped to the first 'real' instruction of the
1429 * symbol.
1430 *
1431 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432 * instruction at +0.
1433 */
1434 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435 unsigned long offset,
1436 bool *on_func_entry)
1437 {
1438 *on_func_entry = !offset;
1439 return (kprobe_opcode_t *)(addr + offset);
1440 }
1441
1442 /*
1443 * If 'symbol_name' is specified, look it up and add the 'offset'
1444 * to it. This way, we can specify a relative address to a symbol.
1445 * This returns encoded errors if it fails to look up symbol or invalid
1446 * combination of parameters.
1447 */
1448 static kprobe_opcode_t *
1449 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450 unsigned long offset, bool *on_func_entry)
1451 {
1452 if ((symbol_name && addr) || (!symbol_name && !addr))
1453 goto invalid;
1454
1455 if (symbol_name) {
1456 /*
1457 * Input: @sym + @offset
1458 * Output: @addr + @offset
1459 *
1460 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461 * argument into it's output!
1462 */
1463 addr = kprobe_lookup_name(symbol_name, offset);
1464 if (!addr)
1465 return ERR_PTR(-ENOENT);
1466 }
1467
1468 /*
1469 * So here we have @addr + @offset, displace it into a new
1470 * @addr' + @offset' where @addr' is the symbol start address.
1471 */
1472 addr = (void *)addr + offset;
1473 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474 return ERR_PTR(-ENOENT);
1475 addr = (void *)addr - offset;
1476
1477 /*
1478 * Then ask the architecture to re-combine them, taking care of
1479 * magical function entry details while telling us if this was indeed
1480 * at the start of the function.
1481 */
1482 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483 if (addr)
1484 return addr;
1485
1486 invalid:
1487 return ERR_PTR(-EINVAL);
1488 }
1489
1490 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491 {
1492 bool on_func_entry;
1493 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494 }
1495
1496 /*
1497 * Check the 'p' is valid and return the aggregator kprobe
1498 * at the same address.
1499 */
1500 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501 {
1502 struct kprobe *ap, *list_p;
1503
1504 lockdep_assert_held(&kprobe_mutex);
1505
1506 ap = get_kprobe(p->addr);
1507 if (unlikely(!ap))
1508 return NULL;
1509
1510 if (p != ap) {
1511 list_for_each_entry(list_p, &ap->list, list)
1512 if (list_p == p)
1513 /* kprobe p is a valid probe */
1514 goto valid;
1515 return NULL;
1516 }
1517 valid:
1518 return ap;
1519 }
1520
1521 /*
1522 * Warn and return error if the kprobe is being re-registered since
1523 * there must be a software bug.
1524 */
1525 static inline int warn_kprobe_rereg(struct kprobe *p)
1526 {
1527 int ret = 0;
1528
1529 mutex_lock(&kprobe_mutex);
1530 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531 ret = -EINVAL;
1532 mutex_unlock(&kprobe_mutex);
1533
1534 return ret;
1535 }
1536
1537 static int check_ftrace_location(struct kprobe *p)
1538 {
1539 unsigned long addr = (unsigned long)p->addr;
1540
1541 if (ftrace_location(addr) == addr) {
1542 #ifdef CONFIG_KPROBES_ON_FTRACE
1543 p->flags |= KPROBE_FLAG_FTRACE;
1544 #else /* !CONFIG_KPROBES_ON_FTRACE */
1545 return -EINVAL;
1546 #endif
1547 }
1548 return 0;
1549 }
1550
1551 static int check_kprobe_address_safe(struct kprobe *p,
1552 struct module **probed_mod)
1553 {
1554 int ret;
1555
1556 ret = check_ftrace_location(p);
1557 if (ret)
1558 return ret;
1559 jump_label_lock();
1560 preempt_disable();
1561
1562 /* Ensure it is not in reserved area nor out of text */
1563 if (!(core_kernel_text((unsigned long) p->addr) ||
1564 is_module_text_address((unsigned long) p->addr)) ||
1565 in_gate_area_no_mm((unsigned long) p->addr) ||
1566 within_kprobe_blacklist((unsigned long) p->addr) ||
1567 jump_label_text_reserved(p->addr, p->addr) ||
1568 static_call_text_reserved(p->addr, p->addr) ||
1569 find_bug((unsigned long)p->addr)) {
1570 ret = -EINVAL;
1571 goto out;
1572 }
1573
1574 /* Check if 'p' is probing a module. */
1575 *probed_mod = __module_text_address((unsigned long) p->addr);
1576 if (*probed_mod) {
1577 /*
1578 * We must hold a refcount of the probed module while updating
1579 * its code to prohibit unexpected unloading.
1580 */
1581 if (unlikely(!try_module_get(*probed_mod))) {
1582 ret = -ENOENT;
1583 goto out;
1584 }
1585
1586 /*
1587 * If the module freed '.init.text', we couldn't insert
1588 * kprobes in there.
1589 */
1590 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591 (*probed_mod)->state != MODULE_STATE_COMING) {
1592 module_put(*probed_mod);
1593 *probed_mod = NULL;
1594 ret = -ENOENT;
1595 }
1596 }
1597 out:
1598 preempt_enable();
1599 jump_label_unlock();
1600
1601 return ret;
1602 }
1603
1604 int register_kprobe(struct kprobe *p)
1605 {
1606 int ret;
1607 struct kprobe *old_p;
1608 struct module *probed_mod;
1609 kprobe_opcode_t *addr;
1610 bool on_func_entry;
1611
1612 /* Adjust probe address from symbol */
1613 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614 if (IS_ERR(addr))
1615 return PTR_ERR(addr);
1616 p->addr = addr;
1617
1618 ret = warn_kprobe_rereg(p);
1619 if (ret)
1620 return ret;
1621
1622 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623 p->flags &= KPROBE_FLAG_DISABLED;
1624 p->nmissed = 0;
1625 INIT_LIST_HEAD(&p->list);
1626
1627 ret = check_kprobe_address_safe(p, &probed_mod);
1628 if (ret)
1629 return ret;
1630
1631 mutex_lock(&kprobe_mutex);
1632
1633 if (on_func_entry)
1634 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635
1636 old_p = get_kprobe(p->addr);
1637 if (old_p) {
1638 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639 ret = register_aggr_kprobe(old_p, p);
1640 goto out;
1641 }
1642
1643 cpus_read_lock();
1644 /* Prevent text modification */
1645 mutex_lock(&text_mutex);
1646 ret = prepare_kprobe(p);
1647 mutex_unlock(&text_mutex);
1648 cpus_read_unlock();
1649 if (ret)
1650 goto out;
1651
1652 INIT_HLIST_NODE(&p->hlist);
1653 hlist_add_head_rcu(&p->hlist,
1654 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655
1656 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657 ret = arm_kprobe(p);
1658 if (ret) {
1659 hlist_del_rcu(&p->hlist);
1660 synchronize_rcu();
1661 goto out;
1662 }
1663 }
1664
1665 /* Try to optimize kprobe */
1666 try_to_optimize_kprobe(p);
1667 out:
1668 mutex_unlock(&kprobe_mutex);
1669
1670 if (probed_mod)
1671 module_put(probed_mod);
1672
1673 return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(register_kprobe);
1676
1677 /* Check if all probes on the 'ap' are disabled. */
1678 static bool aggr_kprobe_disabled(struct kprobe *ap)
1679 {
1680 struct kprobe *kp;
1681
1682 lockdep_assert_held(&kprobe_mutex);
1683
1684 list_for_each_entry(kp, &ap->list, list)
1685 if (!kprobe_disabled(kp))
1686 /*
1687 * Since there is an active probe on the list,
1688 * we can't disable this 'ap'.
1689 */
1690 return false;
1691
1692 return true;
1693 }
1694
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1696 {
1697 struct kprobe *orig_p;
1698 int ret;
1699
1700 lockdep_assert_held(&kprobe_mutex);
1701
1702 /* Get an original kprobe for return */
1703 orig_p = __get_valid_kprobe(p);
1704 if (unlikely(orig_p == NULL))
1705 return ERR_PTR(-EINVAL);
1706
1707 if (!kprobe_disabled(p)) {
1708 /* Disable probe if it is a child probe */
1709 if (p != orig_p)
1710 p->flags |= KPROBE_FLAG_DISABLED;
1711
1712 /* Try to disarm and disable this/parent probe */
1713 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714 /*
1715 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1716 * is false, 'orig_p' might not have been armed yet.
1717 * Note arm_all_kprobes() __tries__ to arm all kprobes
1718 * on the best effort basis.
1719 */
1720 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721 ret = disarm_kprobe(orig_p, true);
1722 if (ret) {
1723 p->flags &= ~KPROBE_FLAG_DISABLED;
1724 return ERR_PTR(ret);
1725 }
1726 }
1727 orig_p->flags |= KPROBE_FLAG_DISABLED;
1728 }
1729 }
1730
1731 return orig_p;
1732 }
1733
1734 /*
1735 * Unregister a kprobe without a scheduler synchronization.
1736 */
1737 static int __unregister_kprobe_top(struct kprobe *p)
1738 {
1739 struct kprobe *ap, *list_p;
1740
1741 /* Disable kprobe. This will disarm it if needed. */
1742 ap = __disable_kprobe(p);
1743 if (IS_ERR(ap))
1744 return PTR_ERR(ap);
1745
1746 if (ap == p)
1747 /*
1748 * This probe is an independent(and non-optimized) kprobe
1749 * (not an aggrprobe). Remove from the hash list.
1750 */
1751 goto disarmed;
1752
1753 /* Following process expects this probe is an aggrprobe */
1754 WARN_ON(!kprobe_aggrprobe(ap));
1755
1756 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757 /*
1758 * !disarmed could be happen if the probe is under delayed
1759 * unoptimizing.
1760 */
1761 goto disarmed;
1762 else {
1763 /* If disabling probe has special handlers, update aggrprobe */
1764 if (p->post_handler && !kprobe_gone(p)) {
1765 list_for_each_entry(list_p, &ap->list, list) {
1766 if ((list_p != p) && (list_p->post_handler))
1767 goto noclean;
1768 }
1769 ap->post_handler = NULL;
1770 }
1771 noclean:
1772 /*
1773 * Remove from the aggrprobe: this path will do nothing in
1774 * __unregister_kprobe_bottom().
1775 */
1776 list_del_rcu(&p->list);
1777 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1778 /*
1779 * Try to optimize this probe again, because post
1780 * handler may have been changed.
1781 */
1782 optimize_kprobe(ap);
1783 }
1784 return 0;
1785
1786 disarmed:
1787 hlist_del_rcu(&ap->hlist);
1788 return 0;
1789 }
1790
1791 static void __unregister_kprobe_bottom(struct kprobe *p)
1792 {
1793 struct kprobe *ap;
1794
1795 if (list_empty(&p->list))
1796 /* This is an independent kprobe */
1797 arch_remove_kprobe(p);
1798 else if (list_is_singular(&p->list)) {
1799 /* This is the last child of an aggrprobe */
1800 ap = list_entry(p->list.next, struct kprobe, list);
1801 list_del(&p->list);
1802 free_aggr_kprobe(ap);
1803 }
1804 /* Otherwise, do nothing. */
1805 }
1806
1807 int register_kprobes(struct kprobe **kps, int num)
1808 {
1809 int i, ret = 0;
1810
1811 if (num <= 0)
1812 return -EINVAL;
1813 for (i = 0; i < num; i++) {
1814 ret = register_kprobe(kps[i]);
1815 if (ret < 0) {
1816 if (i > 0)
1817 unregister_kprobes(kps, i);
1818 break;
1819 }
1820 }
1821 return ret;
1822 }
1823 EXPORT_SYMBOL_GPL(register_kprobes);
1824
1825 void unregister_kprobe(struct kprobe *p)
1826 {
1827 unregister_kprobes(&p, 1);
1828 }
1829 EXPORT_SYMBOL_GPL(unregister_kprobe);
1830
1831 void unregister_kprobes(struct kprobe **kps, int num)
1832 {
1833 int i;
1834
1835 if (num <= 0)
1836 return;
1837 mutex_lock(&kprobe_mutex);
1838 for (i = 0; i < num; i++)
1839 if (__unregister_kprobe_top(kps[i]) < 0)
1840 kps[i]->addr = NULL;
1841 mutex_unlock(&kprobe_mutex);
1842
1843 synchronize_rcu();
1844 for (i = 0; i < num; i++)
1845 if (kps[i]->addr)
1846 __unregister_kprobe_bottom(kps[i]);
1847 }
1848 EXPORT_SYMBOL_GPL(unregister_kprobes);
1849
1850 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1851 unsigned long val, void *data)
1852 {
1853 return NOTIFY_DONE;
1854 }
1855 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1856
1857 static struct notifier_block kprobe_exceptions_nb = {
1858 .notifier_call = kprobe_exceptions_notify,
1859 .priority = 0x7fffffff /* we need to be notified first */
1860 };
1861
1862 #ifdef CONFIG_KRETPROBES
1863
1864 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1865 static void free_rp_inst_rcu(struct rcu_head *head)
1866 {
1867 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1868
1869 if (refcount_dec_and_test(&ri->rph->ref))
1870 kfree(ri->rph);
1871 kfree(ri);
1872 }
1873 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1874
1875 static void recycle_rp_inst(struct kretprobe_instance *ri)
1876 {
1877 struct kretprobe *rp = get_kretprobe(ri);
1878
1879 if (likely(rp))
1880 freelist_add(&ri->freelist, &rp->freelist);
1881 else
1882 call_rcu(&ri->rcu, free_rp_inst_rcu);
1883 }
1884 NOKPROBE_SYMBOL(recycle_rp_inst);
1885
1886 /*
1887 * This function is called from delayed_put_task_struct() when a task is
1888 * dead and cleaned up to recycle any kretprobe instances associated with
1889 * this task. These left over instances represent probed functions that
1890 * have been called but will never return.
1891 */
1892 void kprobe_flush_task(struct task_struct *tk)
1893 {
1894 struct kretprobe_instance *ri;
1895 struct llist_node *node;
1896
1897 /* Early boot, not yet initialized. */
1898 if (unlikely(!kprobes_initialized))
1899 return;
1900
1901 kprobe_busy_begin();
1902
1903 node = __llist_del_all(&tk->kretprobe_instances);
1904 while (node) {
1905 ri = container_of(node, struct kretprobe_instance, llist);
1906 node = node->next;
1907
1908 recycle_rp_inst(ri);
1909 }
1910
1911 kprobe_busy_end();
1912 }
1913 NOKPROBE_SYMBOL(kprobe_flush_task);
1914
1915 static inline void free_rp_inst(struct kretprobe *rp)
1916 {
1917 struct kretprobe_instance *ri;
1918 struct freelist_node *node;
1919 int count = 0;
1920
1921 node = rp->freelist.head;
1922 while (node) {
1923 ri = container_of(node, struct kretprobe_instance, freelist);
1924 node = node->next;
1925
1926 kfree(ri);
1927 count++;
1928 }
1929
1930 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1931 kfree(rp->rph);
1932 rp->rph = NULL;
1933 }
1934 }
1935
1936 /* This assumes the 'tsk' is the current task or the is not running. */
1937 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1938 struct llist_node **cur)
1939 {
1940 struct kretprobe_instance *ri = NULL;
1941 struct llist_node *node = *cur;
1942
1943 if (!node)
1944 node = tsk->kretprobe_instances.first;
1945 else
1946 node = node->next;
1947
1948 while (node) {
1949 ri = container_of(node, struct kretprobe_instance, llist);
1950 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1951 *cur = node;
1952 return ri->ret_addr;
1953 }
1954 node = node->next;
1955 }
1956 return NULL;
1957 }
1958 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1959
1960 /**
1961 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1962 * @tsk: Target task
1963 * @fp: A frame pointer
1964 * @cur: a storage of the loop cursor llist_node pointer for next call
1965 *
1966 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1967 * long type. If it finds the return address, this returns that address value,
1968 * or this returns 0.
1969 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1970 * to get the currect return address - which is compared with the
1971 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1972 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1973 * first call, but '@cur' itself must NOT NULL.
1974 */
1975 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1976 struct llist_node **cur)
1977 {
1978 struct kretprobe_instance *ri = NULL;
1979 kprobe_opcode_t *ret;
1980
1981 if (WARN_ON_ONCE(!cur))
1982 return 0;
1983
1984 do {
1985 ret = __kretprobe_find_ret_addr(tsk, cur);
1986 if (!ret)
1987 break;
1988 ri = container_of(*cur, struct kretprobe_instance, llist);
1989 } while (ri->fp != fp);
1990
1991 return (unsigned long)ret;
1992 }
1993 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1994
1995 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1996 kprobe_opcode_t *correct_ret_addr)
1997 {
1998 /*
1999 * Do nothing by default. Please fill this to update the fake return
2000 * address on the stack with the correct one on each arch if possible.
2001 */
2002 }
2003
2004 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2005 void *frame_pointer)
2006 {
2007 kprobe_opcode_t *correct_ret_addr = NULL;
2008 struct kretprobe_instance *ri = NULL;
2009 struct llist_node *first, *node = NULL;
2010 struct kretprobe *rp;
2011
2012 /* Find correct address and all nodes for this frame. */
2013 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2014 if (!correct_ret_addr) {
2015 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2016 BUG_ON(1);
2017 }
2018
2019 /*
2020 * Set the return address as the instruction pointer, because if the
2021 * user handler calls stack_trace_save_regs() with this 'regs',
2022 * the stack trace will start from the instruction pointer.
2023 */
2024 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2025
2026 /* Run the user handler of the nodes. */
2027 first = current->kretprobe_instances.first;
2028 while (first) {
2029 ri = container_of(first, struct kretprobe_instance, llist);
2030
2031 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2032 break;
2033
2034 rp = get_kretprobe(ri);
2035 if (rp && rp->handler) {
2036 struct kprobe *prev = kprobe_running();
2037
2038 __this_cpu_write(current_kprobe, &rp->kp);
2039 ri->ret_addr = correct_ret_addr;
2040 rp->handler(ri, regs);
2041 __this_cpu_write(current_kprobe, prev);
2042 }
2043 if (first == node)
2044 break;
2045
2046 first = first->next;
2047 }
2048
2049 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2050
2051 /* Unlink all nodes for this frame. */
2052 first = current->kretprobe_instances.first;
2053 current->kretprobe_instances.first = node->next;
2054 node->next = NULL;
2055
2056 /* Recycle free instances. */
2057 while (first) {
2058 ri = container_of(first, struct kretprobe_instance, llist);
2059 first = first->next;
2060
2061 recycle_rp_inst(ri);
2062 }
2063
2064 return (unsigned long)correct_ret_addr;
2065 }
2066 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2067
2068 /*
2069 * This kprobe pre_handler is registered with every kretprobe. When probe
2070 * hits it will set up the return probe.
2071 */
2072 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2073 {
2074 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2075 struct kretprobe_instance *ri;
2076 struct freelist_node *fn;
2077
2078 fn = freelist_try_get(&rp->freelist);
2079 if (!fn) {
2080 rp->nmissed++;
2081 return 0;
2082 }
2083
2084 ri = container_of(fn, struct kretprobe_instance, freelist);
2085
2086 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2087 freelist_add(&ri->freelist, &rp->freelist);
2088 return 0;
2089 }
2090
2091 arch_prepare_kretprobe(ri, regs);
2092
2093 __llist_add(&ri->llist, &current->kretprobe_instances);
2094
2095 return 0;
2096 }
2097 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2098 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2099 /*
2100 * This kprobe pre_handler is registered with every kretprobe. When probe
2101 * hits it will set up the return probe.
2102 */
2103 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2104 {
2105 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2106 struct kretprobe_instance *ri;
2107 struct rethook_node *rhn;
2108
2109 rhn = rethook_try_get(rp->rh);
2110 if (!rhn) {
2111 rp->nmissed++;
2112 return 0;
2113 }
2114
2115 ri = container_of(rhn, struct kretprobe_instance, node);
2116
2117 if (rp->entry_handler && rp->entry_handler(ri, regs))
2118 rethook_recycle(rhn);
2119 else
2120 rethook_hook(rhn, regs, kprobe_ftrace(p));
2121
2122 return 0;
2123 }
2124 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2125
2126 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2127 struct pt_regs *regs)
2128 {
2129 struct kretprobe *rp = (struct kretprobe *)data;
2130 struct kretprobe_instance *ri;
2131 struct kprobe_ctlblk *kcb;
2132
2133 /* The data must NOT be null. This means rethook data structure is broken. */
2134 if (WARN_ON_ONCE(!data) || !rp->handler)
2135 return;
2136
2137 __this_cpu_write(current_kprobe, &rp->kp);
2138 kcb = get_kprobe_ctlblk();
2139 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2140
2141 ri = container_of(rh, struct kretprobe_instance, node);
2142 rp->handler(ri, regs);
2143
2144 __this_cpu_write(current_kprobe, NULL);
2145 }
2146 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2147
2148 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2149
2150 /**
2151 * kprobe_on_func_entry() -- check whether given address is function entry
2152 * @addr: Target address
2153 * @sym: Target symbol name
2154 * @offset: The offset from the symbol or the address
2155 *
2156 * This checks whether the given @addr+@offset or @sym+@offset is on the
2157 * function entry address or not.
2158 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2159 * And also it returns -ENOENT if it fails the symbol or address lookup.
2160 * Caller must pass @addr or @sym (either one must be NULL), or this
2161 * returns -EINVAL.
2162 */
2163 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2164 {
2165 bool on_func_entry;
2166 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2167
2168 if (IS_ERR(kp_addr))
2169 return PTR_ERR(kp_addr);
2170
2171 if (!on_func_entry)
2172 return -EINVAL;
2173
2174 return 0;
2175 }
2176
2177 int register_kretprobe(struct kretprobe *rp)
2178 {
2179 int ret;
2180 struct kretprobe_instance *inst;
2181 int i;
2182 void *addr;
2183
2184 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2185 if (ret)
2186 return ret;
2187
2188 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2189 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2190 return -EINVAL;
2191
2192 if (kretprobe_blacklist_size) {
2193 addr = kprobe_addr(&rp->kp);
2194 if (IS_ERR(addr))
2195 return PTR_ERR(addr);
2196
2197 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2198 if (kretprobe_blacklist[i].addr == addr)
2199 return -EINVAL;
2200 }
2201 }
2202
2203 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2204 return -E2BIG;
2205
2206 rp->kp.pre_handler = pre_handler_kretprobe;
2207 rp->kp.post_handler = NULL;
2208
2209 /* Pre-allocate memory for max kretprobe instances */
2210 if (rp->maxactive <= 0) {
2211 #ifdef CONFIG_PREEMPTION
2212 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2213 #else
2214 rp->maxactive = num_possible_cpus();
2215 #endif
2216 }
2217 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2218 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2219 if (!rp->rh)
2220 return -ENOMEM;
2221
2222 for (i = 0; i < rp->maxactive; i++) {
2223 inst = kzalloc(sizeof(struct kretprobe_instance) +
2224 rp->data_size, GFP_KERNEL);
2225 if (inst == NULL) {
2226 rethook_free(rp->rh);
2227 rp->rh = NULL;
2228 return -ENOMEM;
2229 }
2230 rethook_add_node(rp->rh, &inst->node);
2231 }
2232 rp->nmissed = 0;
2233 /* Establish function entry probe point */
2234 ret = register_kprobe(&rp->kp);
2235 if (ret != 0) {
2236 rethook_free(rp->rh);
2237 rp->rh = NULL;
2238 }
2239 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2240 rp->freelist.head = NULL;
2241 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2242 if (!rp->rph)
2243 return -ENOMEM;
2244
2245 rp->rph->rp = rp;
2246 for (i = 0; i < rp->maxactive; i++) {
2247 inst = kzalloc(sizeof(struct kretprobe_instance) +
2248 rp->data_size, GFP_KERNEL);
2249 if (inst == NULL) {
2250 refcount_set(&rp->rph->ref, i);
2251 free_rp_inst(rp);
2252 return -ENOMEM;
2253 }
2254 inst->rph = rp->rph;
2255 freelist_add(&inst->freelist, &rp->freelist);
2256 }
2257 refcount_set(&rp->rph->ref, i);
2258
2259 rp->nmissed = 0;
2260 /* Establish function entry probe point */
2261 ret = register_kprobe(&rp->kp);
2262 if (ret != 0)
2263 free_rp_inst(rp);
2264 #endif
2265 return ret;
2266 }
2267 EXPORT_SYMBOL_GPL(register_kretprobe);
2268
2269 int register_kretprobes(struct kretprobe **rps, int num)
2270 {
2271 int ret = 0, i;
2272
2273 if (num <= 0)
2274 return -EINVAL;
2275 for (i = 0; i < num; i++) {
2276 ret = register_kretprobe(rps[i]);
2277 if (ret < 0) {
2278 if (i > 0)
2279 unregister_kretprobes(rps, i);
2280 break;
2281 }
2282 }
2283 return ret;
2284 }
2285 EXPORT_SYMBOL_GPL(register_kretprobes);
2286
2287 void unregister_kretprobe(struct kretprobe *rp)
2288 {
2289 unregister_kretprobes(&rp, 1);
2290 }
2291 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2292
2293 void unregister_kretprobes(struct kretprobe **rps, int num)
2294 {
2295 int i;
2296
2297 if (num <= 0)
2298 return;
2299 mutex_lock(&kprobe_mutex);
2300 for (i = 0; i < num; i++) {
2301 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2302 rps[i]->kp.addr = NULL;
2303 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2304 rethook_free(rps[i]->rh);
2305 #else
2306 rps[i]->rph->rp = NULL;
2307 #endif
2308 }
2309 mutex_unlock(&kprobe_mutex);
2310
2311 synchronize_rcu();
2312 for (i = 0; i < num; i++) {
2313 if (rps[i]->kp.addr) {
2314 __unregister_kprobe_bottom(&rps[i]->kp);
2315 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2316 free_rp_inst(rps[i]);
2317 #endif
2318 }
2319 }
2320 }
2321 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2322
2323 #else /* CONFIG_KRETPROBES */
2324 int register_kretprobe(struct kretprobe *rp)
2325 {
2326 return -EOPNOTSUPP;
2327 }
2328 EXPORT_SYMBOL_GPL(register_kretprobe);
2329
2330 int register_kretprobes(struct kretprobe **rps, int num)
2331 {
2332 return -EOPNOTSUPP;
2333 }
2334 EXPORT_SYMBOL_GPL(register_kretprobes);
2335
2336 void unregister_kretprobe(struct kretprobe *rp)
2337 {
2338 }
2339 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2340
2341 void unregister_kretprobes(struct kretprobe **rps, int num)
2342 {
2343 }
2344 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2345
2346 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2347 {
2348 return 0;
2349 }
2350 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2351
2352 #endif /* CONFIG_KRETPROBES */
2353
2354 /* Set the kprobe gone and remove its instruction buffer. */
2355 static void kill_kprobe(struct kprobe *p)
2356 {
2357 struct kprobe *kp;
2358
2359 lockdep_assert_held(&kprobe_mutex);
2360
2361 p->flags |= KPROBE_FLAG_GONE;
2362 if (kprobe_aggrprobe(p)) {
2363 /*
2364 * If this is an aggr_kprobe, we have to list all the
2365 * chained probes and mark them GONE.
2366 */
2367 list_for_each_entry(kp, &p->list, list)
2368 kp->flags |= KPROBE_FLAG_GONE;
2369 p->post_handler = NULL;
2370 kill_optimized_kprobe(p);
2371 }
2372 /*
2373 * Here, we can remove insn_slot safely, because no thread calls
2374 * the original probed function (which will be freed soon) any more.
2375 */
2376 arch_remove_kprobe(p);
2377
2378 /*
2379 * The module is going away. We should disarm the kprobe which
2380 * is using ftrace, because ftrace framework is still available at
2381 * 'MODULE_STATE_GOING' notification.
2382 */
2383 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2384 disarm_kprobe_ftrace(p);
2385 }
2386
2387 /* Disable one kprobe */
2388 int disable_kprobe(struct kprobe *kp)
2389 {
2390 int ret = 0;
2391 struct kprobe *p;
2392
2393 mutex_lock(&kprobe_mutex);
2394
2395 /* Disable this kprobe */
2396 p = __disable_kprobe(kp);
2397 if (IS_ERR(p))
2398 ret = PTR_ERR(p);
2399
2400 mutex_unlock(&kprobe_mutex);
2401 return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(disable_kprobe);
2404
2405 /* Enable one kprobe */
2406 int enable_kprobe(struct kprobe *kp)
2407 {
2408 int ret = 0;
2409 struct kprobe *p;
2410
2411 mutex_lock(&kprobe_mutex);
2412
2413 /* Check whether specified probe is valid. */
2414 p = __get_valid_kprobe(kp);
2415 if (unlikely(p == NULL)) {
2416 ret = -EINVAL;
2417 goto out;
2418 }
2419
2420 if (kprobe_gone(kp)) {
2421 /* This kprobe has gone, we couldn't enable it. */
2422 ret = -EINVAL;
2423 goto out;
2424 }
2425
2426 if (p != kp)
2427 kp->flags &= ~KPROBE_FLAG_DISABLED;
2428
2429 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2430 p->flags &= ~KPROBE_FLAG_DISABLED;
2431 ret = arm_kprobe(p);
2432 if (ret)
2433 p->flags |= KPROBE_FLAG_DISABLED;
2434 }
2435 out:
2436 mutex_unlock(&kprobe_mutex);
2437 return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(enable_kprobe);
2440
2441 /* Caller must NOT call this in usual path. This is only for critical case */
2442 void dump_kprobe(struct kprobe *kp)
2443 {
2444 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2445 kp->symbol_name, kp->offset, kp->addr);
2446 }
2447 NOKPROBE_SYMBOL(dump_kprobe);
2448
2449 int kprobe_add_ksym_blacklist(unsigned long entry)
2450 {
2451 struct kprobe_blacklist_entry *ent;
2452 unsigned long offset = 0, size = 0;
2453
2454 if (!kernel_text_address(entry) ||
2455 !kallsyms_lookup_size_offset(entry, &size, &offset))
2456 return -EINVAL;
2457
2458 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2459 if (!ent)
2460 return -ENOMEM;
2461 ent->start_addr = entry;
2462 ent->end_addr = entry + size;
2463 INIT_LIST_HEAD(&ent->list);
2464 list_add_tail(&ent->list, &kprobe_blacklist);
2465
2466 return (int)size;
2467 }
2468
2469 /* Add all symbols in given area into kprobe blacklist */
2470 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2471 {
2472 unsigned long entry;
2473 int ret = 0;
2474
2475 for (entry = start; entry < end; entry += ret) {
2476 ret = kprobe_add_ksym_blacklist(entry);
2477 if (ret < 0)
2478 return ret;
2479 if (ret == 0) /* In case of alias symbol */
2480 ret = 1;
2481 }
2482 return 0;
2483 }
2484
2485 /* Remove all symbols in given area from kprobe blacklist */
2486 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2487 {
2488 struct kprobe_blacklist_entry *ent, *n;
2489
2490 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2491 if (ent->start_addr < start || ent->start_addr >= end)
2492 continue;
2493 list_del(&ent->list);
2494 kfree(ent);
2495 }
2496 }
2497
2498 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2499 {
2500 kprobe_remove_area_blacklist(entry, entry + 1);
2501 }
2502
2503 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2504 char *type, char *sym)
2505 {
2506 return -ERANGE;
2507 }
2508
2509 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2510 char *sym)
2511 {
2512 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2513 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2514 return 0;
2515 #ifdef CONFIG_OPTPROBES
2516 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2517 return 0;
2518 #endif
2519 #endif
2520 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2521 return 0;
2522 return -ERANGE;
2523 }
2524
2525 int __init __weak arch_populate_kprobe_blacklist(void)
2526 {
2527 return 0;
2528 }
2529
2530 /*
2531 * Lookup and populate the kprobe_blacklist.
2532 *
2533 * Unlike the kretprobe blacklist, we'll need to determine
2534 * the range of addresses that belong to the said functions,
2535 * since a kprobe need not necessarily be at the beginning
2536 * of a function.
2537 */
2538 static int __init populate_kprobe_blacklist(unsigned long *start,
2539 unsigned long *end)
2540 {
2541 unsigned long entry;
2542 unsigned long *iter;
2543 int ret;
2544
2545 for (iter = start; iter < end; iter++) {
2546 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2547 ret = kprobe_add_ksym_blacklist(entry);
2548 if (ret == -EINVAL)
2549 continue;
2550 if (ret < 0)
2551 return ret;
2552 }
2553
2554 /* Symbols in '__kprobes_text' are blacklisted */
2555 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2556 (unsigned long)__kprobes_text_end);
2557 if (ret)
2558 return ret;
2559
2560 /* Symbols in 'noinstr' section are blacklisted */
2561 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2562 (unsigned long)__noinstr_text_end);
2563
2564 return ret ? : arch_populate_kprobe_blacklist();
2565 }
2566
2567 static void add_module_kprobe_blacklist(struct module *mod)
2568 {
2569 unsigned long start, end;
2570 int i;
2571
2572 if (mod->kprobe_blacklist) {
2573 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2574 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2575 }
2576
2577 start = (unsigned long)mod->kprobes_text_start;
2578 if (start) {
2579 end = start + mod->kprobes_text_size;
2580 kprobe_add_area_blacklist(start, end);
2581 }
2582
2583 start = (unsigned long)mod->noinstr_text_start;
2584 if (start) {
2585 end = start + mod->noinstr_text_size;
2586 kprobe_add_area_blacklist(start, end);
2587 }
2588 }
2589
2590 static void remove_module_kprobe_blacklist(struct module *mod)
2591 {
2592 unsigned long start, end;
2593 int i;
2594
2595 if (mod->kprobe_blacklist) {
2596 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2597 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2598 }
2599
2600 start = (unsigned long)mod->kprobes_text_start;
2601 if (start) {
2602 end = start + mod->kprobes_text_size;
2603 kprobe_remove_area_blacklist(start, end);
2604 }
2605
2606 start = (unsigned long)mod->noinstr_text_start;
2607 if (start) {
2608 end = start + mod->noinstr_text_size;
2609 kprobe_remove_area_blacklist(start, end);
2610 }
2611 }
2612
2613 /* Module notifier call back, checking kprobes on the module */
2614 static int kprobes_module_callback(struct notifier_block *nb,
2615 unsigned long val, void *data)
2616 {
2617 struct module *mod = data;
2618 struct hlist_head *head;
2619 struct kprobe *p;
2620 unsigned int i;
2621 int checkcore = (val == MODULE_STATE_GOING);
2622
2623 if (val == MODULE_STATE_COMING) {
2624 mutex_lock(&kprobe_mutex);
2625 add_module_kprobe_blacklist(mod);
2626 mutex_unlock(&kprobe_mutex);
2627 }
2628 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2629 return NOTIFY_DONE;
2630
2631 /*
2632 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2633 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2634 * notified, only '.init.text' section would be freed. We need to
2635 * disable kprobes which have been inserted in the sections.
2636 */
2637 mutex_lock(&kprobe_mutex);
2638 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2639 head = &kprobe_table[i];
2640 hlist_for_each_entry(p, head, hlist)
2641 if (within_module_init((unsigned long)p->addr, mod) ||
2642 (checkcore &&
2643 within_module_core((unsigned long)p->addr, mod))) {
2644 /*
2645 * The vaddr this probe is installed will soon
2646 * be vfreed buy not synced to disk. Hence,
2647 * disarming the breakpoint isn't needed.
2648 *
2649 * Note, this will also move any optimized probes
2650 * that are pending to be removed from their
2651 * corresponding lists to the 'freeing_list' and
2652 * will not be touched by the delayed
2653 * kprobe_optimizer() work handler.
2654 */
2655 kill_kprobe(p);
2656 }
2657 }
2658 if (val == MODULE_STATE_GOING)
2659 remove_module_kprobe_blacklist(mod);
2660 mutex_unlock(&kprobe_mutex);
2661 return NOTIFY_DONE;
2662 }
2663
2664 static struct notifier_block kprobe_module_nb = {
2665 .notifier_call = kprobes_module_callback,
2666 .priority = 0
2667 };
2668
2669 void kprobe_free_init_mem(void)
2670 {
2671 void *start = (void *)(&__init_begin);
2672 void *end = (void *)(&__init_end);
2673 struct hlist_head *head;
2674 struct kprobe *p;
2675 int i;
2676
2677 mutex_lock(&kprobe_mutex);
2678
2679 /* Kill all kprobes on initmem because the target code has been freed. */
2680 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2681 head = &kprobe_table[i];
2682 hlist_for_each_entry(p, head, hlist) {
2683 if (start <= (void *)p->addr && (void *)p->addr < end)
2684 kill_kprobe(p);
2685 }
2686 }
2687
2688 mutex_unlock(&kprobe_mutex);
2689 }
2690
2691 static int __init init_kprobes(void)
2692 {
2693 int i, err = 0;
2694
2695 /* FIXME allocate the probe table, currently defined statically */
2696 /* initialize all list heads */
2697 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2698 INIT_HLIST_HEAD(&kprobe_table[i]);
2699
2700 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2701 __stop_kprobe_blacklist);
2702 if (err)
2703 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2704
2705 if (kretprobe_blacklist_size) {
2706 /* lookup the function address from its name */
2707 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2708 kretprobe_blacklist[i].addr =
2709 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2710 if (!kretprobe_blacklist[i].addr)
2711 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2712 kretprobe_blacklist[i].name);
2713 }
2714 }
2715
2716 /* By default, kprobes are armed */
2717 kprobes_all_disarmed = false;
2718
2719 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2720 /* Init 'kprobe_optinsn_slots' for allocation */
2721 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2722 #endif
2723
2724 err = arch_init_kprobes();
2725 if (!err)
2726 err = register_die_notifier(&kprobe_exceptions_nb);
2727 if (!err)
2728 err = register_module_notifier(&kprobe_module_nb);
2729
2730 kprobes_initialized = (err == 0);
2731 kprobe_sysctls_init();
2732 return err;
2733 }
2734 early_initcall(init_kprobes);
2735
2736 #if defined(CONFIG_OPTPROBES)
2737 static int __init init_optprobes(void)
2738 {
2739 /*
2740 * Enable kprobe optimization - this kicks the optimizer which
2741 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2742 * not spawned in early initcall. So delay the optimization.
2743 */
2744 optimize_all_kprobes();
2745
2746 return 0;
2747 }
2748 subsys_initcall(init_optprobes);
2749 #endif
2750
2751 #ifdef CONFIG_DEBUG_FS
2752 static void report_probe(struct seq_file *pi, struct kprobe *p,
2753 const char *sym, int offset, char *modname, struct kprobe *pp)
2754 {
2755 char *kprobe_type;
2756 void *addr = p->addr;
2757
2758 if (p->pre_handler == pre_handler_kretprobe)
2759 kprobe_type = "r";
2760 else
2761 kprobe_type = "k";
2762
2763 if (!kallsyms_show_value(pi->file->f_cred))
2764 addr = NULL;
2765
2766 if (sym)
2767 seq_printf(pi, "%px %s %s+0x%x %s ",
2768 addr, kprobe_type, sym, offset,
2769 (modname ? modname : " "));
2770 else /* try to use %pS */
2771 seq_printf(pi, "%px %s %pS ",
2772 addr, kprobe_type, p->addr);
2773
2774 if (!pp)
2775 pp = p;
2776 seq_printf(pi, "%s%s%s%s\n",
2777 (kprobe_gone(p) ? "[GONE]" : ""),
2778 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2779 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2780 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2781 }
2782
2783 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2784 {
2785 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2786 }
2787
2788 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2789 {
2790 (*pos)++;
2791 if (*pos >= KPROBE_TABLE_SIZE)
2792 return NULL;
2793 return pos;
2794 }
2795
2796 static void kprobe_seq_stop(struct seq_file *f, void *v)
2797 {
2798 /* Nothing to do */
2799 }
2800
2801 static int show_kprobe_addr(struct seq_file *pi, void *v)
2802 {
2803 struct hlist_head *head;
2804 struct kprobe *p, *kp;
2805 const char *sym = NULL;
2806 unsigned int i = *(loff_t *) v;
2807 unsigned long offset = 0;
2808 char *modname, namebuf[KSYM_NAME_LEN];
2809
2810 head = &kprobe_table[i];
2811 preempt_disable();
2812 hlist_for_each_entry_rcu(p, head, hlist) {
2813 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2814 &offset, &modname, namebuf);
2815 if (kprobe_aggrprobe(p)) {
2816 list_for_each_entry_rcu(kp, &p->list, list)
2817 report_probe(pi, kp, sym, offset, modname, p);
2818 } else
2819 report_probe(pi, p, sym, offset, modname, NULL);
2820 }
2821 preempt_enable();
2822 return 0;
2823 }
2824
2825 static const struct seq_operations kprobes_sops = {
2826 .start = kprobe_seq_start,
2827 .next = kprobe_seq_next,
2828 .stop = kprobe_seq_stop,
2829 .show = show_kprobe_addr
2830 };
2831
2832 DEFINE_SEQ_ATTRIBUTE(kprobes);
2833
2834 /* kprobes/blacklist -- shows which functions can not be probed */
2835 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2836 {
2837 mutex_lock(&kprobe_mutex);
2838 return seq_list_start(&kprobe_blacklist, *pos);
2839 }
2840
2841 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2842 {
2843 return seq_list_next(v, &kprobe_blacklist, pos);
2844 }
2845
2846 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2847 {
2848 struct kprobe_blacklist_entry *ent =
2849 list_entry(v, struct kprobe_blacklist_entry, list);
2850
2851 /*
2852 * If '/proc/kallsyms' is not showing kernel address, we won't
2853 * show them here either.
2854 */
2855 if (!kallsyms_show_value(m->file->f_cred))
2856 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2857 (void *)ent->start_addr);
2858 else
2859 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2860 (void *)ent->end_addr, (void *)ent->start_addr);
2861 return 0;
2862 }
2863
2864 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2865 {
2866 mutex_unlock(&kprobe_mutex);
2867 }
2868
2869 static const struct seq_operations kprobe_blacklist_sops = {
2870 .start = kprobe_blacklist_seq_start,
2871 .next = kprobe_blacklist_seq_next,
2872 .stop = kprobe_blacklist_seq_stop,
2873 .show = kprobe_blacklist_seq_show,
2874 };
2875 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2876
2877 static int arm_all_kprobes(void)
2878 {
2879 struct hlist_head *head;
2880 struct kprobe *p;
2881 unsigned int i, total = 0, errors = 0;
2882 int err, ret = 0;
2883
2884 mutex_lock(&kprobe_mutex);
2885
2886 /* If kprobes are armed, just return */
2887 if (!kprobes_all_disarmed)
2888 goto already_enabled;
2889
2890 /*
2891 * optimize_kprobe() called by arm_kprobe() checks
2892 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2893 * arm_kprobe.
2894 */
2895 kprobes_all_disarmed = false;
2896 /* Arming kprobes doesn't optimize kprobe itself */
2897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2898 head = &kprobe_table[i];
2899 /* Arm all kprobes on a best-effort basis */
2900 hlist_for_each_entry(p, head, hlist) {
2901 if (!kprobe_disabled(p)) {
2902 err = arm_kprobe(p);
2903 if (err) {
2904 errors++;
2905 ret = err;
2906 }
2907 total++;
2908 }
2909 }
2910 }
2911
2912 if (errors)
2913 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2914 errors, total);
2915 else
2916 pr_info("Kprobes globally enabled\n");
2917
2918 already_enabled:
2919 mutex_unlock(&kprobe_mutex);
2920 return ret;
2921 }
2922
2923 static int disarm_all_kprobes(void)
2924 {
2925 struct hlist_head *head;
2926 struct kprobe *p;
2927 unsigned int i, total = 0, errors = 0;
2928 int err, ret = 0;
2929
2930 mutex_lock(&kprobe_mutex);
2931
2932 /* If kprobes are already disarmed, just return */
2933 if (kprobes_all_disarmed) {
2934 mutex_unlock(&kprobe_mutex);
2935 return 0;
2936 }
2937
2938 kprobes_all_disarmed = true;
2939
2940 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2941 head = &kprobe_table[i];
2942 /* Disarm all kprobes on a best-effort basis */
2943 hlist_for_each_entry(p, head, hlist) {
2944 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2945 err = disarm_kprobe(p, false);
2946 if (err) {
2947 errors++;
2948 ret = err;
2949 }
2950 total++;
2951 }
2952 }
2953 }
2954
2955 if (errors)
2956 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2957 errors, total);
2958 else
2959 pr_info("Kprobes globally disabled\n");
2960
2961 mutex_unlock(&kprobe_mutex);
2962
2963 /* Wait for disarming all kprobes by optimizer */
2964 wait_for_kprobe_optimizer();
2965
2966 return ret;
2967 }
2968
2969 /*
2970 * XXX: The debugfs bool file interface doesn't allow for callbacks
2971 * when the bool state is switched. We can reuse that facility when
2972 * available
2973 */
2974 static ssize_t read_enabled_file_bool(struct file *file,
2975 char __user *user_buf, size_t count, loff_t *ppos)
2976 {
2977 char buf[3];
2978
2979 if (!kprobes_all_disarmed)
2980 buf[0] = '1';
2981 else
2982 buf[0] = '0';
2983 buf[1] = '\n';
2984 buf[2] = 0x00;
2985 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2986 }
2987
2988 static ssize_t write_enabled_file_bool(struct file *file,
2989 const char __user *user_buf, size_t count, loff_t *ppos)
2990 {
2991 bool enable;
2992 int ret;
2993
2994 ret = kstrtobool_from_user(user_buf, count, &enable);
2995 if (ret)
2996 return ret;
2997
2998 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2999 if (ret)
3000 return ret;
3001
3002 return count;
3003 }
3004
3005 static const struct file_operations fops_kp = {
3006 .read = read_enabled_file_bool,
3007 .write = write_enabled_file_bool,
3008 .llseek = default_llseek,
3009 };
3010
3011 static int __init debugfs_kprobe_init(void)
3012 {
3013 struct dentry *dir;
3014
3015 dir = debugfs_create_dir("kprobes", NULL);
3016
3017 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3018
3019 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3020
3021 debugfs_create_file("blacklist", 0400, dir, NULL,
3022 &kprobe_blacklist_fops);
3023
3024 return 0;
3025 }
3026
3027 late_initcall(debugfs_kprobe_init);
3028 #endif /* CONFIG_DEBUG_FS */