]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/kthread.c
mt76: mt7615: fix tx skb dma unmap
[mirror_ubuntu-jammy-kernel.git] / kernel / kthread.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32
33
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37
38 struct kthread_create_info
39 {
40 /* Information passed to kthread() from kthreadd. */
41 int (*threadfn)(void *data);
42 void *data;
43 int node;
44
45 /* Result passed back to kthread_create() from kthreadd. */
46 struct task_struct *result;
47 struct completion *done;
48
49 struct list_head list;
50 };
51
52 struct kthread {
53 unsigned long flags;
54 unsigned int cpu;
55 int (*threadfn)(void *);
56 void *data;
57 mm_segment_t oldfs;
58 struct completion parked;
59 struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64
65 enum KTHREAD_BITS {
66 KTHREAD_IS_PER_CPU = 0,
67 KTHREAD_SHOULD_STOP,
68 KTHREAD_SHOULD_PARK,
69 };
70
71 static inline void set_kthread_struct(void *kthread)
72 {
73 /*
74 * We abuse ->set_child_tid to avoid the new member and because it
75 * can't be wrongly copied by copy_process(). We also rely on fact
76 * that the caller can't exec, so PF_KTHREAD can't be cleared.
77 */
78 current->set_child_tid = (__force void __user *)kthread;
79 }
80
81 static inline struct kthread *to_kthread(struct task_struct *k)
82 {
83 WARN_ON(!(k->flags & PF_KTHREAD));
84 return (__force void *)k->set_child_tid;
85 }
86
87 void free_kthread_struct(struct task_struct *k)
88 {
89 struct kthread *kthread;
90
91 /*
92 * Can be NULL if this kthread was created by kernel_thread()
93 * or if kmalloc() in kthread() failed.
94 */
95 kthread = to_kthread(k);
96 #ifdef CONFIG_BLK_CGROUP
97 WARN_ON_ONCE(kthread && kthread->blkcg_css);
98 #endif
99 kfree(kthread);
100 }
101
102 /**
103 * kthread_should_stop - should this kthread return now?
104 *
105 * When someone calls kthread_stop() on your kthread, it will be woken
106 * and this will return true. You should then return, and your return
107 * value will be passed through to kthread_stop().
108 */
109 bool kthread_should_stop(void)
110 {
111 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
112 }
113 EXPORT_SYMBOL(kthread_should_stop);
114
115 bool __kthread_should_park(struct task_struct *k)
116 {
117 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
118 }
119 EXPORT_SYMBOL_GPL(__kthread_should_park);
120
121 /**
122 * kthread_should_park - should this kthread park now?
123 *
124 * When someone calls kthread_park() on your kthread, it will be woken
125 * and this will return true. You should then do the necessary
126 * cleanup and call kthread_parkme()
127 *
128 * Similar to kthread_should_stop(), but this keeps the thread alive
129 * and in a park position. kthread_unpark() "restarts" the thread and
130 * calls the thread function again.
131 */
132 bool kthread_should_park(void)
133 {
134 return __kthread_should_park(current);
135 }
136 EXPORT_SYMBOL_GPL(kthread_should_park);
137
138 /**
139 * kthread_freezable_should_stop - should this freezable kthread return now?
140 * @was_frozen: optional out parameter, indicates whether %current was frozen
141 *
142 * kthread_should_stop() for freezable kthreads, which will enter
143 * refrigerator if necessary. This function is safe from kthread_stop() /
144 * freezer deadlock and freezable kthreads should use this function instead
145 * of calling try_to_freeze() directly.
146 */
147 bool kthread_freezable_should_stop(bool *was_frozen)
148 {
149 bool frozen = false;
150
151 might_sleep();
152
153 if (unlikely(freezing(current)))
154 frozen = __refrigerator(true);
155
156 if (was_frozen)
157 *was_frozen = frozen;
158
159 return kthread_should_stop();
160 }
161 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
162
163 /**
164 * kthread_func - return the function specified on kthread creation
165 * @task: kthread task in question
166 *
167 * Returns NULL if the task is not a kthread.
168 */
169 void *kthread_func(struct task_struct *task)
170 {
171 if (task->flags & PF_KTHREAD)
172 return to_kthread(task)->threadfn;
173 return NULL;
174 }
175 EXPORT_SYMBOL_GPL(kthread_func);
176
177 /**
178 * kthread_data - return data value specified on kthread creation
179 * @task: kthread task in question
180 *
181 * Return the data value specified when kthread @task was created.
182 * The caller is responsible for ensuring the validity of @task when
183 * calling this function.
184 */
185 void *kthread_data(struct task_struct *task)
186 {
187 return to_kthread(task)->data;
188 }
189 EXPORT_SYMBOL_GPL(kthread_data);
190
191 /**
192 * kthread_probe_data - speculative version of kthread_data()
193 * @task: possible kthread task in question
194 *
195 * @task could be a kthread task. Return the data value specified when it
196 * was created if accessible. If @task isn't a kthread task or its data is
197 * inaccessible for any reason, %NULL is returned. This function requires
198 * that @task itself is safe to dereference.
199 */
200 void *kthread_probe_data(struct task_struct *task)
201 {
202 struct kthread *kthread = to_kthread(task);
203 void *data = NULL;
204
205 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
206 return data;
207 }
208
209 static void __kthread_parkme(struct kthread *self)
210 {
211 for (;;) {
212 /*
213 * TASK_PARKED is a special state; we must serialize against
214 * possible pending wakeups to avoid store-store collisions on
215 * task->state.
216 *
217 * Such a collision might possibly result in the task state
218 * changin from TASK_PARKED and us failing the
219 * wait_task_inactive() in kthread_park().
220 */
221 set_special_state(TASK_PARKED);
222 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
223 break;
224
225 /*
226 * Thread is going to call schedule(), do not preempt it,
227 * or the caller of kthread_park() may spend more time in
228 * wait_task_inactive().
229 */
230 preempt_disable();
231 complete(&self->parked);
232 schedule_preempt_disabled();
233 preempt_enable();
234 }
235 __set_current_state(TASK_RUNNING);
236 }
237
238 void kthread_parkme(void)
239 {
240 __kthread_parkme(to_kthread(current));
241 }
242 EXPORT_SYMBOL_GPL(kthread_parkme);
243
244 static int kthread(void *_create)
245 {
246 /* Copy data: it's on kthread's stack */
247 struct kthread_create_info *create = _create;
248 int (*threadfn)(void *data) = create->threadfn;
249 void *data = create->data;
250 struct completion *done;
251 struct kthread *self;
252 int ret;
253
254 self = kzalloc(sizeof(*self), GFP_KERNEL);
255 set_kthread_struct(self);
256
257 /* If user was SIGKILLed, I release the structure. */
258 done = xchg(&create->done, NULL);
259 if (!done) {
260 kfree(create);
261 do_exit(-EINTR);
262 }
263
264 if (!self) {
265 create->result = ERR_PTR(-ENOMEM);
266 complete(done);
267 do_exit(-ENOMEM);
268 }
269
270 self->threadfn = threadfn;
271 self->data = data;
272 init_completion(&self->exited);
273 init_completion(&self->parked);
274 current->vfork_done = &self->exited;
275
276 /* OK, tell user we're spawned, wait for stop or wakeup */
277 __set_current_state(TASK_UNINTERRUPTIBLE);
278 create->result = current;
279 /*
280 * Thread is going to call schedule(), do not preempt it,
281 * or the creator may spend more time in wait_task_inactive().
282 */
283 preempt_disable();
284 complete(done);
285 schedule_preempt_disabled();
286 preempt_enable();
287
288 ret = -EINTR;
289 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
290 cgroup_kthread_ready();
291 __kthread_parkme(self);
292 ret = threadfn(data);
293 }
294 do_exit(ret);
295 }
296
297 /* called from kernel_clone() to get node information for about to be created task */
298 int tsk_fork_get_node(struct task_struct *tsk)
299 {
300 #ifdef CONFIG_NUMA
301 if (tsk == kthreadd_task)
302 return tsk->pref_node_fork;
303 #endif
304 return NUMA_NO_NODE;
305 }
306
307 static void create_kthread(struct kthread_create_info *create)
308 {
309 int pid;
310
311 #ifdef CONFIG_NUMA
312 current->pref_node_fork = create->node;
313 #endif
314 /* We want our own signal handler (we take no signals by default). */
315 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
316 if (pid < 0) {
317 /* If user was SIGKILLed, I release the structure. */
318 struct completion *done = xchg(&create->done, NULL);
319
320 if (!done) {
321 kfree(create);
322 return;
323 }
324 create->result = ERR_PTR(pid);
325 complete(done);
326 }
327 }
328
329 static __printf(4, 0)
330 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
331 void *data, int node,
332 const char namefmt[],
333 va_list args)
334 {
335 DECLARE_COMPLETION_ONSTACK(done);
336 struct task_struct *task;
337 struct kthread_create_info *create = kmalloc(sizeof(*create),
338 GFP_KERNEL);
339
340 if (!create)
341 return ERR_PTR(-ENOMEM);
342 create->threadfn = threadfn;
343 create->data = data;
344 create->node = node;
345 create->done = &done;
346
347 spin_lock(&kthread_create_lock);
348 list_add_tail(&create->list, &kthread_create_list);
349 spin_unlock(&kthread_create_lock);
350
351 wake_up_process(kthreadd_task);
352 /*
353 * Wait for completion in killable state, for I might be chosen by
354 * the OOM killer while kthreadd is trying to allocate memory for
355 * new kernel thread.
356 */
357 if (unlikely(wait_for_completion_killable(&done))) {
358 /*
359 * If I was SIGKILLed before kthreadd (or new kernel thread)
360 * calls complete(), leave the cleanup of this structure to
361 * that thread.
362 */
363 if (xchg(&create->done, NULL))
364 return ERR_PTR(-EINTR);
365 /*
366 * kthreadd (or new kernel thread) will call complete()
367 * shortly.
368 */
369 wait_for_completion(&done);
370 }
371 task = create->result;
372 if (!IS_ERR(task)) {
373 static const struct sched_param param = { .sched_priority = 0 };
374 char name[TASK_COMM_LEN];
375
376 /*
377 * task is already visible to other tasks, so updating
378 * COMM must be protected.
379 */
380 vsnprintf(name, sizeof(name), namefmt, args);
381 set_task_comm(task, name);
382 /*
383 * root may have changed our (kthreadd's) priority or CPU mask.
384 * The kernel thread should not inherit these properties.
385 */
386 sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
387 set_cpus_allowed_ptr(task,
388 housekeeping_cpumask(HK_FLAG_KTHREAD));
389 }
390 kfree(create);
391 return task;
392 }
393
394 /**
395 * kthread_create_on_node - create a kthread.
396 * @threadfn: the function to run until signal_pending(current).
397 * @data: data ptr for @threadfn.
398 * @node: task and thread structures for the thread are allocated on this node
399 * @namefmt: printf-style name for the thread.
400 *
401 * Description: This helper function creates and names a kernel
402 * thread. The thread will be stopped: use wake_up_process() to start
403 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
404 * is affine to all CPUs.
405 *
406 * If thread is going to be bound on a particular cpu, give its node
407 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
408 * When woken, the thread will run @threadfn() with @data as its
409 * argument. @threadfn() can either call do_exit() directly if it is a
410 * standalone thread for which no one will call kthread_stop(), or
411 * return when 'kthread_should_stop()' is true (which means
412 * kthread_stop() has been called). The return value should be zero
413 * or a negative error number; it will be passed to kthread_stop().
414 *
415 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
416 */
417 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
418 void *data, int node,
419 const char namefmt[],
420 ...)
421 {
422 struct task_struct *task;
423 va_list args;
424
425 va_start(args, namefmt);
426 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
427 va_end(args);
428
429 return task;
430 }
431 EXPORT_SYMBOL(kthread_create_on_node);
432
433 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
434 {
435 unsigned long flags;
436
437 if (!wait_task_inactive(p, state)) {
438 WARN_ON(1);
439 return;
440 }
441
442 /* It's safe because the task is inactive. */
443 raw_spin_lock_irqsave(&p->pi_lock, flags);
444 do_set_cpus_allowed(p, mask);
445 p->flags |= PF_NO_SETAFFINITY;
446 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
447 }
448
449 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
450 {
451 __kthread_bind_mask(p, cpumask_of(cpu), state);
452 }
453
454 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
455 {
456 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
457 }
458
459 /**
460 * kthread_bind - bind a just-created kthread to a cpu.
461 * @p: thread created by kthread_create().
462 * @cpu: cpu (might not be online, must be possible) for @k to run on.
463 *
464 * Description: This function is equivalent to set_cpus_allowed(),
465 * except that @cpu doesn't need to be online, and the thread must be
466 * stopped (i.e., just returned from kthread_create()).
467 */
468 void kthread_bind(struct task_struct *p, unsigned int cpu)
469 {
470 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
471 }
472 EXPORT_SYMBOL(kthread_bind);
473
474 /**
475 * kthread_create_on_cpu - Create a cpu bound kthread
476 * @threadfn: the function to run until signal_pending(current).
477 * @data: data ptr for @threadfn.
478 * @cpu: The cpu on which the thread should be bound,
479 * @namefmt: printf-style name for the thread. Format is restricted
480 * to "name.*%u". Code fills in cpu number.
481 *
482 * Description: This helper function creates and names a kernel thread
483 */
484 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
485 void *data, unsigned int cpu,
486 const char *namefmt)
487 {
488 struct task_struct *p;
489
490 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
491 cpu);
492 if (IS_ERR(p))
493 return p;
494 kthread_bind(p, cpu);
495 /* CPU hotplug need to bind once again when unparking the thread. */
496 to_kthread(p)->cpu = cpu;
497 return p;
498 }
499
500 void kthread_set_per_cpu(struct task_struct *k, int cpu)
501 {
502 struct kthread *kthread = to_kthread(k);
503 if (!kthread)
504 return;
505
506 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
507
508 if (cpu < 0) {
509 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
510 return;
511 }
512
513 kthread->cpu = cpu;
514 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
515 }
516
517 bool kthread_is_per_cpu(struct task_struct *k)
518 {
519 struct kthread *kthread = to_kthread(k);
520 if (!kthread)
521 return false;
522
523 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
524 }
525
526 /**
527 * kthread_unpark - unpark a thread created by kthread_create().
528 * @k: thread created by kthread_create().
529 *
530 * Sets kthread_should_park() for @k to return false, wakes it, and
531 * waits for it to return. If the thread is marked percpu then its
532 * bound to the cpu again.
533 */
534 void kthread_unpark(struct task_struct *k)
535 {
536 struct kthread *kthread = to_kthread(k);
537
538 /*
539 * Newly created kthread was parked when the CPU was offline.
540 * The binding was lost and we need to set it again.
541 */
542 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
543 __kthread_bind(k, kthread->cpu, TASK_PARKED);
544
545 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
546 /*
547 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
548 */
549 wake_up_state(k, TASK_PARKED);
550 }
551 EXPORT_SYMBOL_GPL(kthread_unpark);
552
553 /**
554 * kthread_park - park a thread created by kthread_create().
555 * @k: thread created by kthread_create().
556 *
557 * Sets kthread_should_park() for @k to return true, wakes it, and
558 * waits for it to return. This can also be called after kthread_create()
559 * instead of calling wake_up_process(): the thread will park without
560 * calling threadfn().
561 *
562 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
563 * If called by the kthread itself just the park bit is set.
564 */
565 int kthread_park(struct task_struct *k)
566 {
567 struct kthread *kthread = to_kthread(k);
568
569 if (WARN_ON(k->flags & PF_EXITING))
570 return -ENOSYS;
571
572 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
573 return -EBUSY;
574
575 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
576 if (k != current) {
577 wake_up_process(k);
578 /*
579 * Wait for __kthread_parkme() to complete(), this means we
580 * _will_ have TASK_PARKED and are about to call schedule().
581 */
582 wait_for_completion(&kthread->parked);
583 /*
584 * Now wait for that schedule() to complete and the task to
585 * get scheduled out.
586 */
587 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
588 }
589
590 return 0;
591 }
592 EXPORT_SYMBOL_GPL(kthread_park);
593
594 /**
595 * kthread_stop - stop a thread created by kthread_create().
596 * @k: thread created by kthread_create().
597 *
598 * Sets kthread_should_stop() for @k to return true, wakes it, and
599 * waits for it to exit. This can also be called after kthread_create()
600 * instead of calling wake_up_process(): the thread will exit without
601 * calling threadfn().
602 *
603 * If threadfn() may call do_exit() itself, the caller must ensure
604 * task_struct can't go away.
605 *
606 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
607 * was never called.
608 */
609 int kthread_stop(struct task_struct *k)
610 {
611 struct kthread *kthread;
612 int ret;
613
614 trace_sched_kthread_stop(k);
615
616 get_task_struct(k);
617 kthread = to_kthread(k);
618 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
619 kthread_unpark(k);
620 wake_up_process(k);
621 wait_for_completion(&kthread->exited);
622 ret = k->exit_code;
623 put_task_struct(k);
624
625 trace_sched_kthread_stop_ret(ret);
626 return ret;
627 }
628 EXPORT_SYMBOL(kthread_stop);
629
630 int kthreadd(void *unused)
631 {
632 struct task_struct *tsk = current;
633
634 /* Setup a clean context for our children to inherit. */
635 set_task_comm(tsk, "kthreadd");
636 ignore_signals(tsk);
637 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
638 set_mems_allowed(node_states[N_MEMORY]);
639
640 current->flags |= PF_NOFREEZE;
641 cgroup_init_kthreadd();
642
643 for (;;) {
644 set_current_state(TASK_INTERRUPTIBLE);
645 if (list_empty(&kthread_create_list))
646 schedule();
647 __set_current_state(TASK_RUNNING);
648
649 spin_lock(&kthread_create_lock);
650 while (!list_empty(&kthread_create_list)) {
651 struct kthread_create_info *create;
652
653 create = list_entry(kthread_create_list.next,
654 struct kthread_create_info, list);
655 list_del_init(&create->list);
656 spin_unlock(&kthread_create_lock);
657
658 create_kthread(create);
659
660 spin_lock(&kthread_create_lock);
661 }
662 spin_unlock(&kthread_create_lock);
663 }
664
665 return 0;
666 }
667
668 void __kthread_init_worker(struct kthread_worker *worker,
669 const char *name,
670 struct lock_class_key *key)
671 {
672 memset(worker, 0, sizeof(struct kthread_worker));
673 raw_spin_lock_init(&worker->lock);
674 lockdep_set_class_and_name(&worker->lock, key, name);
675 INIT_LIST_HEAD(&worker->work_list);
676 INIT_LIST_HEAD(&worker->delayed_work_list);
677 }
678 EXPORT_SYMBOL_GPL(__kthread_init_worker);
679
680 /**
681 * kthread_worker_fn - kthread function to process kthread_worker
682 * @worker_ptr: pointer to initialized kthread_worker
683 *
684 * This function implements the main cycle of kthread worker. It processes
685 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
686 * is empty.
687 *
688 * The works are not allowed to keep any locks, disable preemption or interrupts
689 * when they finish. There is defined a safe point for freezing when one work
690 * finishes and before a new one is started.
691 *
692 * Also the works must not be handled by more than one worker at the same time,
693 * see also kthread_queue_work().
694 */
695 int kthread_worker_fn(void *worker_ptr)
696 {
697 struct kthread_worker *worker = worker_ptr;
698 struct kthread_work *work;
699
700 /*
701 * FIXME: Update the check and remove the assignment when all kthread
702 * worker users are created using kthread_create_worker*() functions.
703 */
704 WARN_ON(worker->task && worker->task != current);
705 worker->task = current;
706
707 if (worker->flags & KTW_FREEZABLE)
708 set_freezable();
709
710 repeat:
711 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
712
713 if (kthread_should_stop()) {
714 __set_current_state(TASK_RUNNING);
715 raw_spin_lock_irq(&worker->lock);
716 worker->task = NULL;
717 raw_spin_unlock_irq(&worker->lock);
718 return 0;
719 }
720
721 work = NULL;
722 raw_spin_lock_irq(&worker->lock);
723 if (!list_empty(&worker->work_list)) {
724 work = list_first_entry(&worker->work_list,
725 struct kthread_work, node);
726 list_del_init(&work->node);
727 }
728 worker->current_work = work;
729 raw_spin_unlock_irq(&worker->lock);
730
731 if (work) {
732 kthread_work_func_t func = work->func;
733 __set_current_state(TASK_RUNNING);
734 trace_sched_kthread_work_execute_start(work);
735 work->func(work);
736 /*
737 * Avoid dereferencing work after this point. The trace
738 * event only cares about the address.
739 */
740 trace_sched_kthread_work_execute_end(work, func);
741 } else if (!freezing(current))
742 schedule();
743
744 try_to_freeze();
745 cond_resched();
746 goto repeat;
747 }
748 EXPORT_SYMBOL_GPL(kthread_worker_fn);
749
750 static __printf(3, 0) struct kthread_worker *
751 __kthread_create_worker(int cpu, unsigned int flags,
752 const char namefmt[], va_list args)
753 {
754 struct kthread_worker *worker;
755 struct task_struct *task;
756 int node = NUMA_NO_NODE;
757
758 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
759 if (!worker)
760 return ERR_PTR(-ENOMEM);
761
762 kthread_init_worker(worker);
763
764 if (cpu >= 0)
765 node = cpu_to_node(cpu);
766
767 task = __kthread_create_on_node(kthread_worker_fn, worker,
768 node, namefmt, args);
769 if (IS_ERR(task))
770 goto fail_task;
771
772 if (cpu >= 0)
773 kthread_bind(task, cpu);
774
775 worker->flags = flags;
776 worker->task = task;
777 wake_up_process(task);
778 return worker;
779
780 fail_task:
781 kfree(worker);
782 return ERR_CAST(task);
783 }
784
785 /**
786 * kthread_create_worker - create a kthread worker
787 * @flags: flags modifying the default behavior of the worker
788 * @namefmt: printf-style name for the kthread worker (task).
789 *
790 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
791 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
792 * when the worker was SIGKILLed.
793 */
794 struct kthread_worker *
795 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
796 {
797 struct kthread_worker *worker;
798 va_list args;
799
800 va_start(args, namefmt);
801 worker = __kthread_create_worker(-1, flags, namefmt, args);
802 va_end(args);
803
804 return worker;
805 }
806 EXPORT_SYMBOL(kthread_create_worker);
807
808 /**
809 * kthread_create_worker_on_cpu - create a kthread worker and bind it
810 * to a given CPU and the associated NUMA node.
811 * @cpu: CPU number
812 * @flags: flags modifying the default behavior of the worker
813 * @namefmt: printf-style name for the kthread worker (task).
814 *
815 * Use a valid CPU number if you want to bind the kthread worker
816 * to the given CPU and the associated NUMA node.
817 *
818 * A good practice is to add the cpu number also into the worker name.
819 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
820 *
821 * CPU hotplug:
822 * The kthread worker API is simple and generic. It just provides a way
823 * to create, use, and destroy workers.
824 *
825 * It is up to the API user how to handle CPU hotplug. They have to decide
826 * how to handle pending work items, prevent queuing new ones, and
827 * restore the functionality when the CPU goes off and on. There are a
828 * few catches:
829 *
830 * - CPU affinity gets lost when it is scheduled on an offline CPU.
831 *
832 * - The worker might not exist when the CPU was off when the user
833 * created the workers.
834 *
835 * Good practice is to implement two CPU hotplug callbacks and to
836 * destroy/create the worker when the CPU goes down/up.
837 *
838 * Return:
839 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
840 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
841 * when the worker was SIGKILLed.
842 */
843 struct kthread_worker *
844 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
845 const char namefmt[], ...)
846 {
847 struct kthread_worker *worker;
848 va_list args;
849
850 va_start(args, namefmt);
851 worker = __kthread_create_worker(cpu, flags, namefmt, args);
852 va_end(args);
853
854 return worker;
855 }
856 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
857
858 /*
859 * Returns true when the work could not be queued at the moment.
860 * It happens when it is already pending in a worker list
861 * or when it is being cancelled.
862 */
863 static inline bool queuing_blocked(struct kthread_worker *worker,
864 struct kthread_work *work)
865 {
866 lockdep_assert_held(&worker->lock);
867
868 return !list_empty(&work->node) || work->canceling;
869 }
870
871 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
872 struct kthread_work *work)
873 {
874 lockdep_assert_held(&worker->lock);
875 WARN_ON_ONCE(!list_empty(&work->node));
876 /* Do not use a work with >1 worker, see kthread_queue_work() */
877 WARN_ON_ONCE(work->worker && work->worker != worker);
878 }
879
880 /* insert @work before @pos in @worker */
881 static void kthread_insert_work(struct kthread_worker *worker,
882 struct kthread_work *work,
883 struct list_head *pos)
884 {
885 kthread_insert_work_sanity_check(worker, work);
886
887 trace_sched_kthread_work_queue_work(worker, work);
888
889 list_add_tail(&work->node, pos);
890 work->worker = worker;
891 if (!worker->current_work && likely(worker->task))
892 wake_up_process(worker->task);
893 }
894
895 /**
896 * kthread_queue_work - queue a kthread_work
897 * @worker: target kthread_worker
898 * @work: kthread_work to queue
899 *
900 * Queue @work to work processor @task for async execution. @task
901 * must have been created with kthread_worker_create(). Returns %true
902 * if @work was successfully queued, %false if it was already pending.
903 *
904 * Reinitialize the work if it needs to be used by another worker.
905 * For example, when the worker was stopped and started again.
906 */
907 bool kthread_queue_work(struct kthread_worker *worker,
908 struct kthread_work *work)
909 {
910 bool ret = false;
911 unsigned long flags;
912
913 raw_spin_lock_irqsave(&worker->lock, flags);
914 if (!queuing_blocked(worker, work)) {
915 kthread_insert_work(worker, work, &worker->work_list);
916 ret = true;
917 }
918 raw_spin_unlock_irqrestore(&worker->lock, flags);
919 return ret;
920 }
921 EXPORT_SYMBOL_GPL(kthread_queue_work);
922
923 /**
924 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
925 * delayed work when the timer expires.
926 * @t: pointer to the expired timer
927 *
928 * The format of the function is defined by struct timer_list.
929 * It should have been called from irqsafe timer with irq already off.
930 */
931 void kthread_delayed_work_timer_fn(struct timer_list *t)
932 {
933 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
934 struct kthread_work *work = &dwork->work;
935 struct kthread_worker *worker = work->worker;
936 unsigned long flags;
937
938 /*
939 * This might happen when a pending work is reinitialized.
940 * It means that it is used a wrong way.
941 */
942 if (WARN_ON_ONCE(!worker))
943 return;
944
945 raw_spin_lock_irqsave(&worker->lock, flags);
946 /* Work must not be used with >1 worker, see kthread_queue_work(). */
947 WARN_ON_ONCE(work->worker != worker);
948
949 /* Move the work from worker->delayed_work_list. */
950 WARN_ON_ONCE(list_empty(&work->node));
951 list_del_init(&work->node);
952 if (!work->canceling)
953 kthread_insert_work(worker, work, &worker->work_list);
954
955 raw_spin_unlock_irqrestore(&worker->lock, flags);
956 }
957 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
958
959 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
960 struct kthread_delayed_work *dwork,
961 unsigned long delay)
962 {
963 struct timer_list *timer = &dwork->timer;
964 struct kthread_work *work = &dwork->work;
965
966 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
967
968 /*
969 * If @delay is 0, queue @dwork->work immediately. This is for
970 * both optimization and correctness. The earliest @timer can
971 * expire is on the closest next tick and delayed_work users depend
972 * on that there's no such delay when @delay is 0.
973 */
974 if (!delay) {
975 kthread_insert_work(worker, work, &worker->work_list);
976 return;
977 }
978
979 /* Be paranoid and try to detect possible races already now. */
980 kthread_insert_work_sanity_check(worker, work);
981
982 list_add(&work->node, &worker->delayed_work_list);
983 work->worker = worker;
984 timer->expires = jiffies + delay;
985 add_timer(timer);
986 }
987
988 /**
989 * kthread_queue_delayed_work - queue the associated kthread work
990 * after a delay.
991 * @worker: target kthread_worker
992 * @dwork: kthread_delayed_work to queue
993 * @delay: number of jiffies to wait before queuing
994 *
995 * If the work has not been pending it starts a timer that will queue
996 * the work after the given @delay. If @delay is zero, it queues the
997 * work immediately.
998 *
999 * Return: %false if the @work has already been pending. It means that
1000 * either the timer was running or the work was queued. It returns %true
1001 * otherwise.
1002 */
1003 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1004 struct kthread_delayed_work *dwork,
1005 unsigned long delay)
1006 {
1007 struct kthread_work *work = &dwork->work;
1008 unsigned long flags;
1009 bool ret = false;
1010
1011 raw_spin_lock_irqsave(&worker->lock, flags);
1012
1013 if (!queuing_blocked(worker, work)) {
1014 __kthread_queue_delayed_work(worker, dwork, delay);
1015 ret = true;
1016 }
1017
1018 raw_spin_unlock_irqrestore(&worker->lock, flags);
1019 return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1022
1023 struct kthread_flush_work {
1024 struct kthread_work work;
1025 struct completion done;
1026 };
1027
1028 static void kthread_flush_work_fn(struct kthread_work *work)
1029 {
1030 struct kthread_flush_work *fwork =
1031 container_of(work, struct kthread_flush_work, work);
1032 complete(&fwork->done);
1033 }
1034
1035 /**
1036 * kthread_flush_work - flush a kthread_work
1037 * @work: work to flush
1038 *
1039 * If @work is queued or executing, wait for it to finish execution.
1040 */
1041 void kthread_flush_work(struct kthread_work *work)
1042 {
1043 struct kthread_flush_work fwork = {
1044 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1045 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1046 };
1047 struct kthread_worker *worker;
1048 bool noop = false;
1049
1050 worker = work->worker;
1051 if (!worker)
1052 return;
1053
1054 raw_spin_lock_irq(&worker->lock);
1055 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1056 WARN_ON_ONCE(work->worker != worker);
1057
1058 if (!list_empty(&work->node))
1059 kthread_insert_work(worker, &fwork.work, work->node.next);
1060 else if (worker->current_work == work)
1061 kthread_insert_work(worker, &fwork.work,
1062 worker->work_list.next);
1063 else
1064 noop = true;
1065
1066 raw_spin_unlock_irq(&worker->lock);
1067
1068 if (!noop)
1069 wait_for_completion(&fwork.done);
1070 }
1071 EXPORT_SYMBOL_GPL(kthread_flush_work);
1072
1073 /*
1074 * This function removes the work from the worker queue. Also it makes sure
1075 * that it won't get queued later via the delayed work's timer.
1076 *
1077 * The work might still be in use when this function finishes. See the
1078 * current_work proceed by the worker.
1079 *
1080 * Return: %true if @work was pending and successfully canceled,
1081 * %false if @work was not pending
1082 */
1083 static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1084 unsigned long *flags)
1085 {
1086 /* Try to cancel the timer if exists. */
1087 if (is_dwork) {
1088 struct kthread_delayed_work *dwork =
1089 container_of(work, struct kthread_delayed_work, work);
1090 struct kthread_worker *worker = work->worker;
1091
1092 /*
1093 * del_timer_sync() must be called to make sure that the timer
1094 * callback is not running. The lock must be temporary released
1095 * to avoid a deadlock with the callback. In the meantime,
1096 * any queuing is blocked by setting the canceling counter.
1097 */
1098 work->canceling++;
1099 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1100 del_timer_sync(&dwork->timer);
1101 raw_spin_lock_irqsave(&worker->lock, *flags);
1102 work->canceling--;
1103 }
1104
1105 /*
1106 * Try to remove the work from a worker list. It might either
1107 * be from worker->work_list or from worker->delayed_work_list.
1108 */
1109 if (!list_empty(&work->node)) {
1110 list_del_init(&work->node);
1111 return true;
1112 }
1113
1114 return false;
1115 }
1116
1117 /**
1118 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1119 * @worker: kthread worker to use
1120 * @dwork: kthread delayed work to queue
1121 * @delay: number of jiffies to wait before queuing
1122 *
1123 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1124 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1125 * @work is guaranteed to be queued immediately.
1126 *
1127 * Return: %true if @dwork was pending and its timer was modified,
1128 * %false otherwise.
1129 *
1130 * A special case is when the work is being canceled in parallel.
1131 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1132 * or yet another kthread_mod_delayed_work() call. We let the other command
1133 * win and return %false here. The caller is supposed to synchronize these
1134 * operations a reasonable way.
1135 *
1136 * This function is safe to call from any context including IRQ handler.
1137 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1138 * for details.
1139 */
1140 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1141 struct kthread_delayed_work *dwork,
1142 unsigned long delay)
1143 {
1144 struct kthread_work *work = &dwork->work;
1145 unsigned long flags;
1146 int ret = false;
1147
1148 raw_spin_lock_irqsave(&worker->lock, flags);
1149
1150 /* Do not bother with canceling when never queued. */
1151 if (!work->worker)
1152 goto fast_queue;
1153
1154 /* Work must not be used with >1 worker, see kthread_queue_work() */
1155 WARN_ON_ONCE(work->worker != worker);
1156
1157 /* Do not fight with another command that is canceling this work. */
1158 if (work->canceling)
1159 goto out;
1160
1161 ret = __kthread_cancel_work(work, true, &flags);
1162 fast_queue:
1163 __kthread_queue_delayed_work(worker, dwork, delay);
1164 out:
1165 raw_spin_unlock_irqrestore(&worker->lock, flags);
1166 return ret;
1167 }
1168 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1169
1170 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1171 {
1172 struct kthread_worker *worker = work->worker;
1173 unsigned long flags;
1174 int ret = false;
1175
1176 if (!worker)
1177 goto out;
1178
1179 raw_spin_lock_irqsave(&worker->lock, flags);
1180 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1181 WARN_ON_ONCE(work->worker != worker);
1182
1183 ret = __kthread_cancel_work(work, is_dwork, &flags);
1184
1185 if (worker->current_work != work)
1186 goto out_fast;
1187
1188 /*
1189 * The work is in progress and we need to wait with the lock released.
1190 * In the meantime, block any queuing by setting the canceling counter.
1191 */
1192 work->canceling++;
1193 raw_spin_unlock_irqrestore(&worker->lock, flags);
1194 kthread_flush_work(work);
1195 raw_spin_lock_irqsave(&worker->lock, flags);
1196 work->canceling--;
1197
1198 out_fast:
1199 raw_spin_unlock_irqrestore(&worker->lock, flags);
1200 out:
1201 return ret;
1202 }
1203
1204 /**
1205 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1206 * @work: the kthread work to cancel
1207 *
1208 * Cancel @work and wait for its execution to finish. This function
1209 * can be used even if the work re-queues itself. On return from this
1210 * function, @work is guaranteed to be not pending or executing on any CPU.
1211 *
1212 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1213 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1214 *
1215 * The caller must ensure that the worker on which @work was last
1216 * queued can't be destroyed before this function returns.
1217 *
1218 * Return: %true if @work was pending, %false otherwise.
1219 */
1220 bool kthread_cancel_work_sync(struct kthread_work *work)
1221 {
1222 return __kthread_cancel_work_sync(work, false);
1223 }
1224 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1225
1226 /**
1227 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1228 * wait for it to finish.
1229 * @dwork: the kthread delayed work to cancel
1230 *
1231 * This is kthread_cancel_work_sync() for delayed works.
1232 *
1233 * Return: %true if @dwork was pending, %false otherwise.
1234 */
1235 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1236 {
1237 return __kthread_cancel_work_sync(&dwork->work, true);
1238 }
1239 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1240
1241 /**
1242 * kthread_flush_worker - flush all current works on a kthread_worker
1243 * @worker: worker to flush
1244 *
1245 * Wait until all currently executing or pending works on @worker are
1246 * finished.
1247 */
1248 void kthread_flush_worker(struct kthread_worker *worker)
1249 {
1250 struct kthread_flush_work fwork = {
1251 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1252 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1253 };
1254
1255 kthread_queue_work(worker, &fwork.work);
1256 wait_for_completion(&fwork.done);
1257 }
1258 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1259
1260 /**
1261 * kthread_destroy_worker - destroy a kthread worker
1262 * @worker: worker to be destroyed
1263 *
1264 * Flush and destroy @worker. The simple flush is enough because the kthread
1265 * worker API is used only in trivial scenarios. There are no multi-step state
1266 * machines needed.
1267 */
1268 void kthread_destroy_worker(struct kthread_worker *worker)
1269 {
1270 struct task_struct *task;
1271
1272 task = worker->task;
1273 if (WARN_ON(!task))
1274 return;
1275
1276 kthread_flush_worker(worker);
1277 kthread_stop(task);
1278 WARN_ON(!list_empty(&worker->work_list));
1279 kfree(worker);
1280 }
1281 EXPORT_SYMBOL(kthread_destroy_worker);
1282
1283 /**
1284 * kthread_use_mm - make the calling kthread operate on an address space
1285 * @mm: address space to operate on
1286 */
1287 void kthread_use_mm(struct mm_struct *mm)
1288 {
1289 struct mm_struct *active_mm;
1290 struct task_struct *tsk = current;
1291
1292 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1293 WARN_ON_ONCE(tsk->mm);
1294
1295 task_lock(tsk);
1296 /* Hold off tlb flush IPIs while switching mm's */
1297 local_irq_disable();
1298 active_mm = tsk->active_mm;
1299 if (active_mm != mm) {
1300 mmgrab(mm);
1301 tsk->active_mm = mm;
1302 }
1303 tsk->mm = mm;
1304 membarrier_update_current_mm(mm);
1305 switch_mm_irqs_off(active_mm, mm, tsk);
1306 local_irq_enable();
1307 task_unlock(tsk);
1308 #ifdef finish_arch_post_lock_switch
1309 finish_arch_post_lock_switch();
1310 #endif
1311
1312 /*
1313 * When a kthread starts operating on an address space, the loop
1314 * in membarrier_{private,global}_expedited() may not observe
1315 * that tsk->mm, and not issue an IPI. Membarrier requires a
1316 * memory barrier after storing to tsk->mm, before accessing
1317 * user-space memory. A full memory barrier for membarrier
1318 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1319 * mmdrop(), or explicitly with smp_mb().
1320 */
1321 if (active_mm != mm)
1322 mmdrop(active_mm);
1323 else
1324 smp_mb();
1325
1326 to_kthread(tsk)->oldfs = force_uaccess_begin();
1327 }
1328 EXPORT_SYMBOL_GPL(kthread_use_mm);
1329
1330 /**
1331 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1332 * @mm: address space to operate on
1333 */
1334 void kthread_unuse_mm(struct mm_struct *mm)
1335 {
1336 struct task_struct *tsk = current;
1337
1338 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1339 WARN_ON_ONCE(!tsk->mm);
1340
1341 force_uaccess_end(to_kthread(tsk)->oldfs);
1342
1343 task_lock(tsk);
1344 /*
1345 * When a kthread stops operating on an address space, the loop
1346 * in membarrier_{private,global}_expedited() may not observe
1347 * that tsk->mm, and not issue an IPI. Membarrier requires a
1348 * memory barrier after accessing user-space memory, before
1349 * clearing tsk->mm.
1350 */
1351 smp_mb__after_spinlock();
1352 sync_mm_rss(mm);
1353 local_irq_disable();
1354 tsk->mm = NULL;
1355 membarrier_update_current_mm(NULL);
1356 /* active_mm is still 'mm' */
1357 enter_lazy_tlb(mm, tsk);
1358 local_irq_enable();
1359 task_unlock(tsk);
1360 }
1361 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1362
1363 #ifdef CONFIG_BLK_CGROUP
1364 /**
1365 * kthread_associate_blkcg - associate blkcg to current kthread
1366 * @css: the cgroup info
1367 *
1368 * Current thread must be a kthread. The thread is running jobs on behalf of
1369 * other threads. In some cases, we expect the jobs attach cgroup info of
1370 * original threads instead of that of current thread. This function stores
1371 * original thread's cgroup info in current kthread context for later
1372 * retrieval.
1373 */
1374 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1375 {
1376 struct kthread *kthread;
1377
1378 if (!(current->flags & PF_KTHREAD))
1379 return;
1380 kthread = to_kthread(current);
1381 if (!kthread)
1382 return;
1383
1384 if (kthread->blkcg_css) {
1385 css_put(kthread->blkcg_css);
1386 kthread->blkcg_css = NULL;
1387 }
1388 if (css) {
1389 css_get(css);
1390 kthread->blkcg_css = css;
1391 }
1392 }
1393 EXPORT_SYMBOL(kthread_associate_blkcg);
1394
1395 /**
1396 * kthread_blkcg - get associated blkcg css of current kthread
1397 *
1398 * Current thread must be a kthread.
1399 */
1400 struct cgroup_subsys_state *kthread_blkcg(void)
1401 {
1402 struct kthread *kthread;
1403
1404 if (current->flags & PF_KTHREAD) {
1405 kthread = to_kthread(current);
1406 if (kthread)
1407 return kthread->blkcg_css;
1408 }
1409 return NULL;
1410 }
1411 EXPORT_SYMBOL(kthread_blkcg);
1412 #endif