1 /* Kernel thread helper functions.
2 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Creation is done via kthreadd, so that we get a clean environment
5 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 #include <uapi/linux/sched/types.h>
9 #include <linux/sched.h>
10 #include <linux/sched/task.h>
11 #include <linux/kthread.h>
12 #include <linux/completion.h>
13 #include <linux/err.h>
14 #include <linux/cpuset.h>
15 #include <linux/unistd.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/mutex.h>
19 #include <linux/slab.h>
20 #include <linux/freezer.h>
21 #include <linux/ptrace.h>
22 #include <linux/uaccess.h>
23 #include <trace/events/sched.h>
25 static DEFINE_SPINLOCK(kthread_create_lock
);
26 static LIST_HEAD(kthread_create_list
);
27 struct task_struct
*kthreadd_task
;
29 struct kthread_create_info
31 /* Information passed to kthread() from kthreadd. */
32 int (*threadfn
)(void *data
);
36 /* Result passed back to kthread_create() from kthreadd. */
37 struct task_struct
*result
;
38 struct completion
*done
;
40 struct list_head list
;
47 struct completion parked
;
48 struct completion exited
;
52 KTHREAD_IS_PER_CPU
= 0,
58 static inline void set_kthread_struct(void *kthread
)
61 * We abuse ->set_child_tid to avoid the new member and because it
62 * can't be wrongly copied by copy_process(). We also rely on fact
63 * that the caller can't exec, so PF_KTHREAD can't be cleared.
65 current
->set_child_tid
= (__force
void __user
*)kthread
;
68 static inline struct kthread
*to_kthread(struct task_struct
*k
)
70 WARN_ON(!(k
->flags
& PF_KTHREAD
));
71 return (__force
void *)k
->set_child_tid
;
74 void free_kthread_struct(struct task_struct
*k
)
77 * Can be NULL if this kthread was created by kernel_thread()
78 * or if kmalloc() in kthread() failed.
84 * kthread_should_stop - should this kthread return now?
86 * When someone calls kthread_stop() on your kthread, it will be woken
87 * and this will return true. You should then return, and your return
88 * value will be passed through to kthread_stop().
90 bool kthread_should_stop(void)
92 return test_bit(KTHREAD_SHOULD_STOP
, &to_kthread(current
)->flags
);
94 EXPORT_SYMBOL(kthread_should_stop
);
97 * kthread_should_park - should this kthread park now?
99 * When someone calls kthread_park() on your kthread, it will be woken
100 * and this will return true. You should then do the necessary
101 * cleanup and call kthread_parkme()
103 * Similar to kthread_should_stop(), but this keeps the thread alive
104 * and in a park position. kthread_unpark() "restarts" the thread and
105 * calls the thread function again.
107 bool kthread_should_park(void)
109 return test_bit(KTHREAD_SHOULD_PARK
, &to_kthread(current
)->flags
);
111 EXPORT_SYMBOL_GPL(kthread_should_park
);
114 * kthread_freezable_should_stop - should this freezable kthread return now?
115 * @was_frozen: optional out parameter, indicates whether %current was frozen
117 * kthread_should_stop() for freezable kthreads, which will enter
118 * refrigerator if necessary. This function is safe from kthread_stop() /
119 * freezer deadlock and freezable kthreads should use this function instead
120 * of calling try_to_freeze() directly.
122 bool kthread_freezable_should_stop(bool *was_frozen
)
128 if (unlikely(freezing(current
)))
129 frozen
= __refrigerator(true);
132 *was_frozen
= frozen
;
134 return kthread_should_stop();
136 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop
);
139 * kthread_data - return data value specified on kthread creation
140 * @task: kthread task in question
142 * Return the data value specified when kthread @task was created.
143 * The caller is responsible for ensuring the validity of @task when
144 * calling this function.
146 void *kthread_data(struct task_struct
*task
)
148 return to_kthread(task
)->data
;
152 * kthread_probe_data - speculative version of kthread_data()
153 * @task: possible kthread task in question
155 * @task could be a kthread task. Return the data value specified when it
156 * was created if accessible. If @task isn't a kthread task or its data is
157 * inaccessible for any reason, %NULL is returned. This function requires
158 * that @task itself is safe to dereference.
160 void *kthread_probe_data(struct task_struct
*task
)
162 struct kthread
*kthread
= to_kthread(task
);
165 probe_kernel_read(&data
, &kthread
->data
, sizeof(data
));
169 static void __kthread_parkme(struct kthread
*self
)
171 __set_current_state(TASK_PARKED
);
172 while (test_bit(KTHREAD_SHOULD_PARK
, &self
->flags
)) {
173 if (!test_and_set_bit(KTHREAD_IS_PARKED
, &self
->flags
))
174 complete(&self
->parked
);
176 __set_current_state(TASK_PARKED
);
178 clear_bit(KTHREAD_IS_PARKED
, &self
->flags
);
179 __set_current_state(TASK_RUNNING
);
182 void kthread_parkme(void)
184 __kthread_parkme(to_kthread(current
));
186 EXPORT_SYMBOL_GPL(kthread_parkme
);
188 static int kthread(void *_create
)
190 /* Copy data: it's on kthread's stack */
191 struct kthread_create_info
*create
= _create
;
192 int (*threadfn
)(void *data
) = create
->threadfn
;
193 void *data
= create
->data
;
194 struct completion
*done
;
195 struct kthread
*self
;
198 self
= kmalloc(sizeof(*self
), GFP_KERNEL
);
199 set_kthread_struct(self
);
201 /* If user was SIGKILLed, I release the structure. */
202 done
= xchg(&create
->done
, NULL
);
209 create
->result
= ERR_PTR(-ENOMEM
);
216 init_completion(&self
->exited
);
217 init_completion(&self
->parked
);
218 current
->vfork_done
= &self
->exited
;
220 /* OK, tell user we're spawned, wait for stop or wakeup */
221 __set_current_state(TASK_UNINTERRUPTIBLE
);
222 create
->result
= current
;
227 if (!test_bit(KTHREAD_SHOULD_STOP
, &self
->flags
)) {
228 __kthread_parkme(self
);
229 ret
= threadfn(data
);
234 /* called from do_fork() to get node information for about to be created task */
235 int tsk_fork_get_node(struct task_struct
*tsk
)
238 if (tsk
== kthreadd_task
)
239 return tsk
->pref_node_fork
;
244 static void create_kthread(struct kthread_create_info
*create
)
249 current
->pref_node_fork
= create
->node
;
251 /* We want our own signal handler (we take no signals by default). */
252 pid
= kernel_thread(kthread
, create
, CLONE_FS
| CLONE_FILES
| SIGCHLD
);
254 /* If user was SIGKILLed, I release the structure. */
255 struct completion
*done
= xchg(&create
->done
, NULL
);
261 create
->result
= ERR_PTR(pid
);
266 static __printf(4, 0)
267 struct task_struct
*__kthread_create_on_node(int (*threadfn
)(void *data
),
268 void *data
, int node
,
269 const char namefmt
[],
272 DECLARE_COMPLETION_ONSTACK(done
);
273 struct task_struct
*task
;
274 struct kthread_create_info
*create
= kmalloc(sizeof(*create
),
278 return ERR_PTR(-ENOMEM
);
279 create
->threadfn
= threadfn
;
282 create
->done
= &done
;
284 spin_lock(&kthread_create_lock
);
285 list_add_tail(&create
->list
, &kthread_create_list
);
286 spin_unlock(&kthread_create_lock
);
288 wake_up_process(kthreadd_task
);
290 * Wait for completion in killable state, for I might be chosen by
291 * the OOM killer while kthreadd is trying to allocate memory for
294 if (unlikely(wait_for_completion_killable(&done
))) {
296 * If I was SIGKILLed before kthreadd (or new kernel thread)
297 * calls complete(), leave the cleanup of this structure to
300 if (xchg(&create
->done
, NULL
))
301 return ERR_PTR(-EINTR
);
303 * kthreadd (or new kernel thread) will call complete()
306 wait_for_completion(&done
);
308 task
= create
->result
;
310 static const struct sched_param param
= { .sched_priority
= 0 };
312 vsnprintf(task
->comm
, sizeof(task
->comm
), namefmt
, args
);
314 * root may have changed our (kthreadd's) priority or CPU mask.
315 * The kernel thread should not inherit these properties.
317 sched_setscheduler_nocheck(task
, SCHED_NORMAL
, ¶m
);
318 set_cpus_allowed_ptr(task
, cpu_all_mask
);
325 * kthread_create_on_node - create a kthread.
326 * @threadfn: the function to run until signal_pending(current).
327 * @data: data ptr for @threadfn.
328 * @node: task and thread structures for the thread are allocated on this node
329 * @namefmt: printf-style name for the thread.
331 * Description: This helper function creates and names a kernel
332 * thread. The thread will be stopped: use wake_up_process() to start
333 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
334 * is affine to all CPUs.
336 * If thread is going to be bound on a particular cpu, give its node
337 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
338 * When woken, the thread will run @threadfn() with @data as its
339 * argument. @threadfn() can either call do_exit() directly if it is a
340 * standalone thread for which no one will call kthread_stop(), or
341 * return when 'kthread_should_stop()' is true (which means
342 * kthread_stop() has been called). The return value should be zero
343 * or a negative error number; it will be passed to kthread_stop().
345 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
347 struct task_struct
*kthread_create_on_node(int (*threadfn
)(void *data
),
348 void *data
, int node
,
349 const char namefmt
[],
352 struct task_struct
*task
;
355 va_start(args
, namefmt
);
356 task
= __kthread_create_on_node(threadfn
, data
, node
, namefmt
, args
);
361 EXPORT_SYMBOL(kthread_create_on_node
);
363 static void __kthread_bind_mask(struct task_struct
*p
, const struct cpumask
*mask
, long state
)
367 if (!wait_task_inactive(p
, state
)) {
372 /* It's safe because the task is inactive. */
373 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
374 do_set_cpus_allowed(p
, mask
);
375 p
->flags
|= PF_NO_SETAFFINITY
;
376 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
379 static void __kthread_bind(struct task_struct
*p
, unsigned int cpu
, long state
)
381 __kthread_bind_mask(p
, cpumask_of(cpu
), state
);
384 void kthread_bind_mask(struct task_struct
*p
, const struct cpumask
*mask
)
386 __kthread_bind_mask(p
, mask
, TASK_UNINTERRUPTIBLE
);
390 * kthread_bind - bind a just-created kthread to a cpu.
391 * @p: thread created by kthread_create().
392 * @cpu: cpu (might not be online, must be possible) for @k to run on.
394 * Description: This function is equivalent to set_cpus_allowed(),
395 * except that @cpu doesn't need to be online, and the thread must be
396 * stopped (i.e., just returned from kthread_create()).
398 void kthread_bind(struct task_struct
*p
, unsigned int cpu
)
400 __kthread_bind(p
, cpu
, TASK_UNINTERRUPTIBLE
);
402 EXPORT_SYMBOL(kthread_bind
);
405 * kthread_create_on_cpu - Create a cpu bound kthread
406 * @threadfn: the function to run until signal_pending(current).
407 * @data: data ptr for @threadfn.
408 * @cpu: The cpu on which the thread should be bound,
409 * @namefmt: printf-style name for the thread. Format is restricted
410 * to "name.*%u". Code fills in cpu number.
412 * Description: This helper function creates and names a kernel thread
413 * The thread will be woken and put into park mode.
415 struct task_struct
*kthread_create_on_cpu(int (*threadfn
)(void *data
),
416 void *data
, unsigned int cpu
,
419 struct task_struct
*p
;
421 p
= kthread_create_on_node(threadfn
, data
, cpu_to_node(cpu
), namefmt
,
425 kthread_bind(p
, cpu
);
426 /* CPU hotplug need to bind once again when unparking the thread. */
427 set_bit(KTHREAD_IS_PER_CPU
, &to_kthread(p
)->flags
);
428 to_kthread(p
)->cpu
= cpu
;
433 * kthread_unpark - unpark a thread created by kthread_create().
434 * @k: thread created by kthread_create().
436 * Sets kthread_should_park() for @k to return false, wakes it, and
437 * waits for it to return. If the thread is marked percpu then its
438 * bound to the cpu again.
440 void kthread_unpark(struct task_struct
*k
)
442 struct kthread
*kthread
= to_kthread(k
);
444 clear_bit(KTHREAD_SHOULD_PARK
, &kthread
->flags
);
446 * We clear the IS_PARKED bit here as we don't wait
447 * until the task has left the park code. So if we'd
448 * park before that happens we'd see the IS_PARKED bit
449 * which might be about to be cleared.
451 if (test_and_clear_bit(KTHREAD_IS_PARKED
, &kthread
->flags
)) {
453 * Newly created kthread was parked when the CPU was offline.
454 * The binding was lost and we need to set it again.
456 if (test_bit(KTHREAD_IS_PER_CPU
, &kthread
->flags
))
457 __kthread_bind(k
, kthread
->cpu
, TASK_PARKED
);
458 wake_up_state(k
, TASK_PARKED
);
461 EXPORT_SYMBOL_GPL(kthread_unpark
);
464 * kthread_park - park a thread created by kthread_create().
465 * @k: thread created by kthread_create().
467 * Sets kthread_should_park() for @k to return true, wakes it, and
468 * waits for it to return. This can also be called after kthread_create()
469 * instead of calling wake_up_process(): the thread will park without
470 * calling threadfn().
472 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
473 * If called by the kthread itself just the park bit is set.
475 int kthread_park(struct task_struct
*k
)
477 struct kthread
*kthread
= to_kthread(k
);
479 if (WARN_ON(k
->flags
& PF_EXITING
))
482 if (!test_bit(KTHREAD_IS_PARKED
, &kthread
->flags
)) {
483 set_bit(KTHREAD_SHOULD_PARK
, &kthread
->flags
);
486 wait_for_completion(&kthread
->parked
);
492 EXPORT_SYMBOL_GPL(kthread_park
);
495 * kthread_stop - stop a thread created by kthread_create().
496 * @k: thread created by kthread_create().
498 * Sets kthread_should_stop() for @k to return true, wakes it, and
499 * waits for it to exit. This can also be called after kthread_create()
500 * instead of calling wake_up_process(): the thread will exit without
501 * calling threadfn().
503 * If threadfn() may call do_exit() itself, the caller must ensure
504 * task_struct can't go away.
506 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
509 int kthread_stop(struct task_struct
*k
)
511 struct kthread
*kthread
;
514 trace_sched_kthread_stop(k
);
517 kthread
= to_kthread(k
);
518 set_bit(KTHREAD_SHOULD_STOP
, &kthread
->flags
);
521 wait_for_completion(&kthread
->exited
);
525 trace_sched_kthread_stop_ret(ret
);
528 EXPORT_SYMBOL(kthread_stop
);
530 int kthreadd(void *unused
)
532 struct task_struct
*tsk
= current
;
534 /* Setup a clean context for our children to inherit. */
535 set_task_comm(tsk
, "kthreadd");
537 set_cpus_allowed_ptr(tsk
, cpu_all_mask
);
538 set_mems_allowed(node_states
[N_MEMORY
]);
540 current
->flags
|= PF_NOFREEZE
;
543 set_current_state(TASK_INTERRUPTIBLE
);
544 if (list_empty(&kthread_create_list
))
546 __set_current_state(TASK_RUNNING
);
548 spin_lock(&kthread_create_lock
);
549 while (!list_empty(&kthread_create_list
)) {
550 struct kthread_create_info
*create
;
552 create
= list_entry(kthread_create_list
.next
,
553 struct kthread_create_info
, list
);
554 list_del_init(&create
->list
);
555 spin_unlock(&kthread_create_lock
);
557 create_kthread(create
);
559 spin_lock(&kthread_create_lock
);
561 spin_unlock(&kthread_create_lock
);
567 void __kthread_init_worker(struct kthread_worker
*worker
,
569 struct lock_class_key
*key
)
571 memset(worker
, 0, sizeof(struct kthread_worker
));
572 spin_lock_init(&worker
->lock
);
573 lockdep_set_class_and_name(&worker
->lock
, key
, name
);
574 INIT_LIST_HEAD(&worker
->work_list
);
575 INIT_LIST_HEAD(&worker
->delayed_work_list
);
577 EXPORT_SYMBOL_GPL(__kthread_init_worker
);
580 * kthread_worker_fn - kthread function to process kthread_worker
581 * @worker_ptr: pointer to initialized kthread_worker
583 * This function implements the main cycle of kthread worker. It processes
584 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
587 * The works are not allowed to keep any locks, disable preemption or interrupts
588 * when they finish. There is defined a safe point for freezing when one work
589 * finishes and before a new one is started.
591 * Also the works must not be handled by more than one worker at the same time,
592 * see also kthread_queue_work().
594 int kthread_worker_fn(void *worker_ptr
)
596 struct kthread_worker
*worker
= worker_ptr
;
597 struct kthread_work
*work
;
600 * FIXME: Update the check and remove the assignment when all kthread
601 * worker users are created using kthread_create_worker*() functions.
603 WARN_ON(worker
->task
&& worker
->task
!= current
);
604 worker
->task
= current
;
606 if (worker
->flags
& KTW_FREEZABLE
)
610 set_current_state(TASK_INTERRUPTIBLE
); /* mb paired w/ kthread_stop */
612 if (kthread_should_stop()) {
613 __set_current_state(TASK_RUNNING
);
614 spin_lock_irq(&worker
->lock
);
616 spin_unlock_irq(&worker
->lock
);
621 spin_lock_irq(&worker
->lock
);
622 if (!list_empty(&worker
->work_list
)) {
623 work
= list_first_entry(&worker
->work_list
,
624 struct kthread_work
, node
);
625 list_del_init(&work
->node
);
627 worker
->current_work
= work
;
628 spin_unlock_irq(&worker
->lock
);
631 __set_current_state(TASK_RUNNING
);
633 } else if (!freezing(current
))
639 EXPORT_SYMBOL_GPL(kthread_worker_fn
);
641 static __printf(3, 0) struct kthread_worker
*
642 __kthread_create_worker(int cpu
, unsigned int flags
,
643 const char namefmt
[], va_list args
)
645 struct kthread_worker
*worker
;
646 struct task_struct
*task
;
649 worker
= kzalloc(sizeof(*worker
), GFP_KERNEL
);
651 return ERR_PTR(-ENOMEM
);
653 kthread_init_worker(worker
);
656 node
= cpu_to_node(cpu
);
658 task
= __kthread_create_on_node(kthread_worker_fn
, worker
,
659 node
, namefmt
, args
);
664 kthread_bind(task
, cpu
);
666 worker
->flags
= flags
;
668 wake_up_process(task
);
673 return ERR_CAST(task
);
677 * kthread_create_worker - create a kthread worker
678 * @flags: flags modifying the default behavior of the worker
679 * @namefmt: printf-style name for the kthread worker (task).
681 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
682 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
683 * when the worker was SIGKILLed.
685 struct kthread_worker
*
686 kthread_create_worker(unsigned int flags
, const char namefmt
[], ...)
688 struct kthread_worker
*worker
;
691 va_start(args
, namefmt
);
692 worker
= __kthread_create_worker(-1, flags
, namefmt
, args
);
697 EXPORT_SYMBOL(kthread_create_worker
);
700 * kthread_create_worker_on_cpu - create a kthread worker and bind it
701 * it to a given CPU and the associated NUMA node.
703 * @flags: flags modifying the default behavior of the worker
704 * @namefmt: printf-style name for the kthread worker (task).
706 * Use a valid CPU number if you want to bind the kthread worker
707 * to the given CPU and the associated NUMA node.
709 * A good practice is to add the cpu number also into the worker name.
710 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
712 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
713 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
714 * when the worker was SIGKILLed.
716 struct kthread_worker
*
717 kthread_create_worker_on_cpu(int cpu
, unsigned int flags
,
718 const char namefmt
[], ...)
720 struct kthread_worker
*worker
;
723 va_start(args
, namefmt
);
724 worker
= __kthread_create_worker(cpu
, flags
, namefmt
, args
);
729 EXPORT_SYMBOL(kthread_create_worker_on_cpu
);
732 * Returns true when the work could not be queued at the moment.
733 * It happens when it is already pending in a worker list
734 * or when it is being cancelled.
736 static inline bool queuing_blocked(struct kthread_worker
*worker
,
737 struct kthread_work
*work
)
739 lockdep_assert_held(&worker
->lock
);
741 return !list_empty(&work
->node
) || work
->canceling
;
744 static void kthread_insert_work_sanity_check(struct kthread_worker
*worker
,
745 struct kthread_work
*work
)
747 lockdep_assert_held(&worker
->lock
);
748 WARN_ON_ONCE(!list_empty(&work
->node
));
749 /* Do not use a work with >1 worker, see kthread_queue_work() */
750 WARN_ON_ONCE(work
->worker
&& work
->worker
!= worker
);
753 /* insert @work before @pos in @worker */
754 static void kthread_insert_work(struct kthread_worker
*worker
,
755 struct kthread_work
*work
,
756 struct list_head
*pos
)
758 kthread_insert_work_sanity_check(worker
, work
);
760 list_add_tail(&work
->node
, pos
);
761 work
->worker
= worker
;
762 if (!worker
->current_work
&& likely(worker
->task
))
763 wake_up_process(worker
->task
);
767 * kthread_queue_work - queue a kthread_work
768 * @worker: target kthread_worker
769 * @work: kthread_work to queue
771 * Queue @work to work processor @task for async execution. @task
772 * must have been created with kthread_worker_create(). Returns %true
773 * if @work was successfully queued, %false if it was already pending.
775 * Reinitialize the work if it needs to be used by another worker.
776 * For example, when the worker was stopped and started again.
778 bool kthread_queue_work(struct kthread_worker
*worker
,
779 struct kthread_work
*work
)
784 spin_lock_irqsave(&worker
->lock
, flags
);
785 if (!queuing_blocked(worker
, work
)) {
786 kthread_insert_work(worker
, work
, &worker
->work_list
);
789 spin_unlock_irqrestore(&worker
->lock
, flags
);
792 EXPORT_SYMBOL_GPL(kthread_queue_work
);
795 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
796 * delayed work when the timer expires.
797 * @__data: pointer to the data associated with the timer
799 * The format of the function is defined by struct timer_list.
800 * It should have been called from irqsafe timer with irq already off.
802 void kthread_delayed_work_timer_fn(unsigned long __data
)
804 struct kthread_delayed_work
*dwork
=
805 (struct kthread_delayed_work
*)__data
;
806 struct kthread_work
*work
= &dwork
->work
;
807 struct kthread_worker
*worker
= work
->worker
;
810 * This might happen when a pending work is reinitialized.
811 * It means that it is used a wrong way.
813 if (WARN_ON_ONCE(!worker
))
816 spin_lock(&worker
->lock
);
817 /* Work must not be used with >1 worker, see kthread_queue_work(). */
818 WARN_ON_ONCE(work
->worker
!= worker
);
820 /* Move the work from worker->delayed_work_list. */
821 WARN_ON_ONCE(list_empty(&work
->node
));
822 list_del_init(&work
->node
);
823 kthread_insert_work(worker
, work
, &worker
->work_list
);
825 spin_unlock(&worker
->lock
);
827 EXPORT_SYMBOL(kthread_delayed_work_timer_fn
);
829 void __kthread_queue_delayed_work(struct kthread_worker
*worker
,
830 struct kthread_delayed_work
*dwork
,
833 struct timer_list
*timer
= &dwork
->timer
;
834 struct kthread_work
*work
= &dwork
->work
;
836 WARN_ON_ONCE(timer
->function
!= kthread_delayed_work_timer_fn
||
837 timer
->data
!= (unsigned long)dwork
);
840 * If @delay is 0, queue @dwork->work immediately. This is for
841 * both optimization and correctness. The earliest @timer can
842 * expire is on the closest next tick and delayed_work users depend
843 * on that there's no such delay when @delay is 0.
846 kthread_insert_work(worker
, work
, &worker
->work_list
);
850 /* Be paranoid and try to detect possible races already now. */
851 kthread_insert_work_sanity_check(worker
, work
);
853 list_add(&work
->node
, &worker
->delayed_work_list
);
854 work
->worker
= worker
;
855 timer
->expires
= jiffies
+ delay
;
860 * kthread_queue_delayed_work - queue the associated kthread work
862 * @worker: target kthread_worker
863 * @dwork: kthread_delayed_work to queue
864 * @delay: number of jiffies to wait before queuing
866 * If the work has not been pending it starts a timer that will queue
867 * the work after the given @delay. If @delay is zero, it queues the
870 * Return: %false if the @work has already been pending. It means that
871 * either the timer was running or the work was queued. It returns %true
874 bool kthread_queue_delayed_work(struct kthread_worker
*worker
,
875 struct kthread_delayed_work
*dwork
,
878 struct kthread_work
*work
= &dwork
->work
;
882 spin_lock_irqsave(&worker
->lock
, flags
);
884 if (!queuing_blocked(worker
, work
)) {
885 __kthread_queue_delayed_work(worker
, dwork
, delay
);
889 spin_unlock_irqrestore(&worker
->lock
, flags
);
892 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work
);
894 struct kthread_flush_work
{
895 struct kthread_work work
;
896 struct completion done
;
899 static void kthread_flush_work_fn(struct kthread_work
*work
)
901 struct kthread_flush_work
*fwork
=
902 container_of(work
, struct kthread_flush_work
, work
);
903 complete(&fwork
->done
);
907 * kthread_flush_work - flush a kthread_work
908 * @work: work to flush
910 * If @work is queued or executing, wait for it to finish execution.
912 void kthread_flush_work(struct kthread_work
*work
)
914 struct kthread_flush_work fwork
= {
915 KTHREAD_WORK_INIT(fwork
.work
, kthread_flush_work_fn
),
916 COMPLETION_INITIALIZER_ONSTACK(fwork
.done
),
918 struct kthread_worker
*worker
;
921 worker
= work
->worker
;
925 spin_lock_irq(&worker
->lock
);
926 /* Work must not be used with >1 worker, see kthread_queue_work(). */
927 WARN_ON_ONCE(work
->worker
!= worker
);
929 if (!list_empty(&work
->node
))
930 kthread_insert_work(worker
, &fwork
.work
, work
->node
.next
);
931 else if (worker
->current_work
== work
)
932 kthread_insert_work(worker
, &fwork
.work
,
933 worker
->work_list
.next
);
937 spin_unlock_irq(&worker
->lock
);
940 wait_for_completion(&fwork
.done
);
942 EXPORT_SYMBOL_GPL(kthread_flush_work
);
945 * This function removes the work from the worker queue. Also it makes sure
946 * that it won't get queued later via the delayed work's timer.
948 * The work might still be in use when this function finishes. See the
949 * current_work proceed by the worker.
951 * Return: %true if @work was pending and successfully canceled,
952 * %false if @work was not pending
954 static bool __kthread_cancel_work(struct kthread_work
*work
, bool is_dwork
,
955 unsigned long *flags
)
957 /* Try to cancel the timer if exists. */
959 struct kthread_delayed_work
*dwork
=
960 container_of(work
, struct kthread_delayed_work
, work
);
961 struct kthread_worker
*worker
= work
->worker
;
964 * del_timer_sync() must be called to make sure that the timer
965 * callback is not running. The lock must be temporary released
966 * to avoid a deadlock with the callback. In the meantime,
967 * any queuing is blocked by setting the canceling counter.
970 spin_unlock_irqrestore(&worker
->lock
, *flags
);
971 del_timer_sync(&dwork
->timer
);
972 spin_lock_irqsave(&worker
->lock
, *flags
);
977 * Try to remove the work from a worker list. It might either
978 * be from worker->work_list or from worker->delayed_work_list.
980 if (!list_empty(&work
->node
)) {
981 list_del_init(&work
->node
);
989 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
990 * @worker: kthread worker to use
991 * @dwork: kthread delayed work to queue
992 * @delay: number of jiffies to wait before queuing
994 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
995 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
996 * @work is guaranteed to be queued immediately.
998 * Return: %true if @dwork was pending and its timer was modified,
1001 * A special case is when the work is being canceled in parallel.
1002 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1003 * or yet another kthread_mod_delayed_work() call. We let the other command
1004 * win and return %false here. The caller is supposed to synchronize these
1005 * operations a reasonable way.
1007 * This function is safe to call from any context including IRQ handler.
1008 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1011 bool kthread_mod_delayed_work(struct kthread_worker
*worker
,
1012 struct kthread_delayed_work
*dwork
,
1013 unsigned long delay
)
1015 struct kthread_work
*work
= &dwork
->work
;
1016 unsigned long flags
;
1019 spin_lock_irqsave(&worker
->lock
, flags
);
1021 /* Do not bother with canceling when never queued. */
1025 /* Work must not be used with >1 worker, see kthread_queue_work() */
1026 WARN_ON_ONCE(work
->worker
!= worker
);
1028 /* Do not fight with another command that is canceling this work. */
1029 if (work
->canceling
)
1032 ret
= __kthread_cancel_work(work
, true, &flags
);
1034 __kthread_queue_delayed_work(worker
, dwork
, delay
);
1036 spin_unlock_irqrestore(&worker
->lock
, flags
);
1039 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work
);
1041 static bool __kthread_cancel_work_sync(struct kthread_work
*work
, bool is_dwork
)
1043 struct kthread_worker
*worker
= work
->worker
;
1044 unsigned long flags
;
1050 spin_lock_irqsave(&worker
->lock
, flags
);
1051 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1052 WARN_ON_ONCE(work
->worker
!= worker
);
1054 ret
= __kthread_cancel_work(work
, is_dwork
, &flags
);
1056 if (worker
->current_work
!= work
)
1060 * The work is in progress and we need to wait with the lock released.
1061 * In the meantime, block any queuing by setting the canceling counter.
1064 spin_unlock_irqrestore(&worker
->lock
, flags
);
1065 kthread_flush_work(work
);
1066 spin_lock_irqsave(&worker
->lock
, flags
);
1070 spin_unlock_irqrestore(&worker
->lock
, flags
);
1076 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1077 * @work: the kthread work to cancel
1079 * Cancel @work and wait for its execution to finish. This function
1080 * can be used even if the work re-queues itself. On return from this
1081 * function, @work is guaranteed to be not pending or executing on any CPU.
1083 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1084 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1086 * The caller must ensure that the worker on which @work was last
1087 * queued can't be destroyed before this function returns.
1089 * Return: %true if @work was pending, %false otherwise.
1091 bool kthread_cancel_work_sync(struct kthread_work
*work
)
1093 return __kthread_cancel_work_sync(work
, false);
1095 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync
);
1098 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1099 * wait for it to finish.
1100 * @dwork: the kthread delayed work to cancel
1102 * This is kthread_cancel_work_sync() for delayed works.
1104 * Return: %true if @dwork was pending, %false otherwise.
1106 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work
*dwork
)
1108 return __kthread_cancel_work_sync(&dwork
->work
, true);
1110 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync
);
1113 * kthread_flush_worker - flush all current works on a kthread_worker
1114 * @worker: worker to flush
1116 * Wait until all currently executing or pending works on @worker are
1119 void kthread_flush_worker(struct kthread_worker
*worker
)
1121 struct kthread_flush_work fwork
= {
1122 KTHREAD_WORK_INIT(fwork
.work
, kthread_flush_work_fn
),
1123 COMPLETION_INITIALIZER_ONSTACK(fwork
.done
),
1126 kthread_queue_work(worker
, &fwork
.work
);
1127 wait_for_completion(&fwork
.done
);
1129 EXPORT_SYMBOL_GPL(kthread_flush_worker
);
1132 * kthread_destroy_worker - destroy a kthread worker
1133 * @worker: worker to be destroyed
1135 * Flush and destroy @worker. The simple flush is enough because the kthread
1136 * worker API is used only in trivial scenarios. There are no multi-step state
1139 void kthread_destroy_worker(struct kthread_worker
*worker
)
1141 struct task_struct
*task
;
1143 task
= worker
->task
;
1147 kthread_flush_worker(worker
);
1149 WARN_ON(!list_empty(&worker
->work_list
));
1152 EXPORT_SYMBOL(kthread_destroy_worker
);