]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/kthread.c
yam: fix a memory leak in yam_siocdevprivate()
[mirror_ubuntu-jammy-kernel.git] / kernel / kthread.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32
33
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37
38 struct kthread_create_info
39 {
40 /* Information passed to kthread() from kthreadd. */
41 int (*threadfn)(void *data);
42 void *data;
43 int node;
44
45 /* Result passed back to kthread_create() from kthreadd. */
46 struct task_struct *result;
47 struct completion *done;
48
49 struct list_head list;
50 };
51
52 struct kthread {
53 unsigned long flags;
54 unsigned int cpu;
55 int (*threadfn)(void *);
56 void *data;
57 mm_segment_t oldfs;
58 struct completion parked;
59 struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64
65 enum KTHREAD_BITS {
66 KTHREAD_IS_PER_CPU = 0,
67 KTHREAD_SHOULD_STOP,
68 KTHREAD_SHOULD_PARK,
69 };
70
71 static inline struct kthread *to_kthread(struct task_struct *k)
72 {
73 WARN_ON(!(k->flags & PF_KTHREAD));
74 return (__force void *)k->set_child_tid;
75 }
76
77 /*
78 * Variant of to_kthread() that doesn't assume @p is a kthread.
79 *
80 * Per construction; when:
81 *
82 * (p->flags & PF_KTHREAD) && p->set_child_tid
83 *
84 * the task is both a kthread and struct kthread is persistent. However
85 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
86 * begin_new_exec()).
87 */
88 static inline struct kthread *__to_kthread(struct task_struct *p)
89 {
90 void *kthread = (__force void *)p->set_child_tid;
91 if (kthread && !(p->flags & PF_KTHREAD))
92 kthread = NULL;
93 return kthread;
94 }
95
96 void set_kthread_struct(struct task_struct *p)
97 {
98 struct kthread *kthread;
99
100 if (__to_kthread(p))
101 return;
102
103 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
104 /*
105 * We abuse ->set_child_tid to avoid the new member and because it
106 * can't be wrongly copied by copy_process(). We also rely on fact
107 * that the caller can't exec, so PF_KTHREAD can't be cleared.
108 */
109 p->set_child_tid = (__force void __user *)kthread;
110 }
111
112 void free_kthread_struct(struct task_struct *k)
113 {
114 struct kthread *kthread;
115
116 /*
117 * Can be NULL if this kthread was created by kernel_thread()
118 * or if kmalloc() in kthread() failed.
119 */
120 kthread = to_kthread(k);
121 #ifdef CONFIG_BLK_CGROUP
122 WARN_ON_ONCE(kthread && kthread->blkcg_css);
123 #endif
124 kfree(kthread);
125 }
126
127 /**
128 * kthread_should_stop - should this kthread return now?
129 *
130 * When someone calls kthread_stop() on your kthread, it will be woken
131 * and this will return true. You should then return, and your return
132 * value will be passed through to kthread_stop().
133 */
134 bool kthread_should_stop(void)
135 {
136 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
137 }
138 EXPORT_SYMBOL(kthread_should_stop);
139
140 bool __kthread_should_park(struct task_struct *k)
141 {
142 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
143 }
144 EXPORT_SYMBOL_GPL(__kthread_should_park);
145
146 /**
147 * kthread_should_park - should this kthread park now?
148 *
149 * When someone calls kthread_park() on your kthread, it will be woken
150 * and this will return true. You should then do the necessary
151 * cleanup and call kthread_parkme()
152 *
153 * Similar to kthread_should_stop(), but this keeps the thread alive
154 * and in a park position. kthread_unpark() "restarts" the thread and
155 * calls the thread function again.
156 */
157 bool kthread_should_park(void)
158 {
159 return __kthread_should_park(current);
160 }
161 EXPORT_SYMBOL_GPL(kthread_should_park);
162
163 /**
164 * kthread_freezable_should_stop - should this freezable kthread return now?
165 * @was_frozen: optional out parameter, indicates whether %current was frozen
166 *
167 * kthread_should_stop() for freezable kthreads, which will enter
168 * refrigerator if necessary. This function is safe from kthread_stop() /
169 * freezer deadlock and freezable kthreads should use this function instead
170 * of calling try_to_freeze() directly.
171 */
172 bool kthread_freezable_should_stop(bool *was_frozen)
173 {
174 bool frozen = false;
175
176 might_sleep();
177
178 if (unlikely(freezing(current)))
179 frozen = __refrigerator(true);
180
181 if (was_frozen)
182 *was_frozen = frozen;
183
184 return kthread_should_stop();
185 }
186 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
187
188 /**
189 * kthread_func - return the function specified on kthread creation
190 * @task: kthread task in question
191 *
192 * Returns NULL if the task is not a kthread.
193 */
194 void *kthread_func(struct task_struct *task)
195 {
196 struct kthread *kthread = __to_kthread(task);
197 if (kthread)
198 return kthread->threadfn;
199 return NULL;
200 }
201 EXPORT_SYMBOL_GPL(kthread_func);
202
203 /**
204 * kthread_data - return data value specified on kthread creation
205 * @task: kthread task in question
206 *
207 * Return the data value specified when kthread @task was created.
208 * The caller is responsible for ensuring the validity of @task when
209 * calling this function.
210 */
211 void *kthread_data(struct task_struct *task)
212 {
213 return to_kthread(task)->data;
214 }
215 EXPORT_SYMBOL_GPL(kthread_data);
216
217 /**
218 * kthread_probe_data - speculative version of kthread_data()
219 * @task: possible kthread task in question
220 *
221 * @task could be a kthread task. Return the data value specified when it
222 * was created if accessible. If @task isn't a kthread task or its data is
223 * inaccessible for any reason, %NULL is returned. This function requires
224 * that @task itself is safe to dereference.
225 */
226 void *kthread_probe_data(struct task_struct *task)
227 {
228 struct kthread *kthread = __to_kthread(task);
229 void *data = NULL;
230
231 if (kthread)
232 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
233 return data;
234 }
235
236 static void __kthread_parkme(struct kthread *self)
237 {
238 for (;;) {
239 /*
240 * TASK_PARKED is a special state; we must serialize against
241 * possible pending wakeups to avoid store-store collisions on
242 * task->state.
243 *
244 * Such a collision might possibly result in the task state
245 * changin from TASK_PARKED and us failing the
246 * wait_task_inactive() in kthread_park().
247 */
248 set_special_state(TASK_PARKED);
249 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
250 break;
251
252 /*
253 * Thread is going to call schedule(), do not preempt it,
254 * or the caller of kthread_park() may spend more time in
255 * wait_task_inactive().
256 */
257 preempt_disable();
258 complete(&self->parked);
259 schedule_preempt_disabled();
260 preempt_enable();
261 }
262 __set_current_state(TASK_RUNNING);
263 }
264
265 void kthread_parkme(void)
266 {
267 __kthread_parkme(to_kthread(current));
268 }
269 EXPORT_SYMBOL_GPL(kthread_parkme);
270
271 static int kthread(void *_create)
272 {
273 /* Copy data: it's on kthread's stack */
274 struct kthread_create_info *create = _create;
275 int (*threadfn)(void *data) = create->threadfn;
276 void *data = create->data;
277 struct completion *done;
278 struct kthread *self;
279 int ret;
280
281 set_kthread_struct(current);
282 self = to_kthread(current);
283
284 /* If user was SIGKILLed, I release the structure. */
285 done = xchg(&create->done, NULL);
286 if (!done) {
287 kfree(create);
288 do_exit(-EINTR);
289 }
290
291 if (!self) {
292 create->result = ERR_PTR(-ENOMEM);
293 complete(done);
294 do_exit(-ENOMEM);
295 }
296
297 self->threadfn = threadfn;
298 self->data = data;
299 init_completion(&self->exited);
300 init_completion(&self->parked);
301 current->vfork_done = &self->exited;
302
303 /* OK, tell user we're spawned, wait for stop or wakeup */
304 __set_current_state(TASK_UNINTERRUPTIBLE);
305 create->result = current;
306 /*
307 * Thread is going to call schedule(), do not preempt it,
308 * or the creator may spend more time in wait_task_inactive().
309 */
310 preempt_disable();
311 complete(done);
312 schedule_preempt_disabled();
313 preempt_enable();
314
315 ret = -EINTR;
316 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
317 cgroup_kthread_ready();
318 __kthread_parkme(self);
319 ret = threadfn(data);
320 }
321 do_exit(ret);
322 }
323
324 /* called from kernel_clone() to get node information for about to be created task */
325 int tsk_fork_get_node(struct task_struct *tsk)
326 {
327 #ifdef CONFIG_NUMA
328 if (tsk == kthreadd_task)
329 return tsk->pref_node_fork;
330 #endif
331 return NUMA_NO_NODE;
332 }
333
334 static void create_kthread(struct kthread_create_info *create)
335 {
336 int pid;
337
338 #ifdef CONFIG_NUMA
339 current->pref_node_fork = create->node;
340 #endif
341 /* We want our own signal handler (we take no signals by default). */
342 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
343 if (pid < 0) {
344 /* If user was SIGKILLed, I release the structure. */
345 struct completion *done = xchg(&create->done, NULL);
346
347 if (!done) {
348 kfree(create);
349 return;
350 }
351 create->result = ERR_PTR(pid);
352 complete(done);
353 }
354 }
355
356 static __printf(4, 0)
357 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
358 void *data, int node,
359 const char namefmt[],
360 va_list args)
361 {
362 DECLARE_COMPLETION_ONSTACK(done);
363 struct task_struct *task;
364 struct kthread_create_info *create = kmalloc(sizeof(*create),
365 GFP_KERNEL);
366
367 if (!create)
368 return ERR_PTR(-ENOMEM);
369 create->threadfn = threadfn;
370 create->data = data;
371 create->node = node;
372 create->done = &done;
373
374 spin_lock(&kthread_create_lock);
375 list_add_tail(&create->list, &kthread_create_list);
376 spin_unlock(&kthread_create_lock);
377
378 wake_up_process(kthreadd_task);
379 /*
380 * Wait for completion in killable state, for I might be chosen by
381 * the OOM killer while kthreadd is trying to allocate memory for
382 * new kernel thread.
383 */
384 if (unlikely(wait_for_completion_killable(&done))) {
385 int i = 0;
386
387 /*
388 * I got SIGKILL, but wait for 10 more seconds for completion
389 * unless chosen by the OOM killer. This delay is there as a
390 * workaround for boot failure caused by SIGKILL upon device
391 * driver initialization timeout.
392 */
393 while (i++ < 10 && !test_tsk_thread_flag(current, TIF_MEMDIE))
394 if (wait_for_completion_timeout(&done, HZ))
395 goto ready;
396 /*
397 * If I was SIGKILLed before kthreadd (or new kernel thread)
398 * calls complete(), leave the cleanup of this structure to
399 * that thread.
400 */
401 if (xchg(&create->done, NULL))
402 return ERR_PTR(-EINTR);
403 /*
404 * kthreadd (or new kernel thread) will call complete()
405 * shortly.
406 */
407 wait_for_completion(&done);
408 }
409 ready:
410 task = create->result;
411 if (!IS_ERR(task)) {
412 static const struct sched_param param = { .sched_priority = 0 };
413 char name[TASK_COMM_LEN];
414
415 /*
416 * task is already visible to other tasks, so updating
417 * COMM must be protected.
418 */
419 vsnprintf(name, sizeof(name), namefmt, args);
420 set_task_comm(task, name);
421 /*
422 * root may have changed our (kthreadd's) priority or CPU mask.
423 * The kernel thread should not inherit these properties.
424 */
425 sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
426 set_cpus_allowed_ptr(task,
427 housekeeping_cpumask(HK_FLAG_KTHREAD));
428 }
429 kfree(create);
430 return task;
431 }
432
433 /**
434 * kthread_create_on_node - create a kthread.
435 * @threadfn: the function to run until signal_pending(current).
436 * @data: data ptr for @threadfn.
437 * @node: task and thread structures for the thread are allocated on this node
438 * @namefmt: printf-style name for the thread.
439 *
440 * Description: This helper function creates and names a kernel
441 * thread. The thread will be stopped: use wake_up_process() to start
442 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
443 * is affine to all CPUs.
444 *
445 * If thread is going to be bound on a particular cpu, give its node
446 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
447 * When woken, the thread will run @threadfn() with @data as its
448 * argument. @threadfn() can either call do_exit() directly if it is a
449 * standalone thread for which no one will call kthread_stop(), or
450 * return when 'kthread_should_stop()' is true (which means
451 * kthread_stop() has been called). The return value should be zero
452 * or a negative error number; it will be passed to kthread_stop().
453 *
454 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
455 */
456 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
457 void *data, int node,
458 const char namefmt[],
459 ...)
460 {
461 struct task_struct *task;
462 va_list args;
463
464 va_start(args, namefmt);
465 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
466 va_end(args);
467
468 return task;
469 }
470 EXPORT_SYMBOL(kthread_create_on_node);
471
472 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
473 {
474 unsigned long flags;
475
476 if (!wait_task_inactive(p, state)) {
477 WARN_ON(1);
478 return;
479 }
480
481 /* It's safe because the task is inactive. */
482 raw_spin_lock_irqsave(&p->pi_lock, flags);
483 do_set_cpus_allowed(p, mask);
484 p->flags |= PF_NO_SETAFFINITY;
485 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
486 }
487
488 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
489 {
490 __kthread_bind_mask(p, cpumask_of(cpu), state);
491 }
492
493 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
494 {
495 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
496 }
497
498 /**
499 * kthread_bind - bind a just-created kthread to a cpu.
500 * @p: thread created by kthread_create().
501 * @cpu: cpu (might not be online, must be possible) for @k to run on.
502 *
503 * Description: This function is equivalent to set_cpus_allowed(),
504 * except that @cpu doesn't need to be online, and the thread must be
505 * stopped (i.e., just returned from kthread_create()).
506 */
507 void kthread_bind(struct task_struct *p, unsigned int cpu)
508 {
509 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
510 }
511 EXPORT_SYMBOL(kthread_bind);
512
513 /**
514 * kthread_create_on_cpu - Create a cpu bound kthread
515 * @threadfn: the function to run until signal_pending(current).
516 * @data: data ptr for @threadfn.
517 * @cpu: The cpu on which the thread should be bound,
518 * @namefmt: printf-style name for the thread. Format is restricted
519 * to "name.*%u". Code fills in cpu number.
520 *
521 * Description: This helper function creates and names a kernel thread
522 */
523 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
524 void *data, unsigned int cpu,
525 const char *namefmt)
526 {
527 struct task_struct *p;
528
529 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
530 cpu);
531 if (IS_ERR(p))
532 return p;
533 kthread_bind(p, cpu);
534 /* CPU hotplug need to bind once again when unparking the thread. */
535 to_kthread(p)->cpu = cpu;
536 return p;
537 }
538
539 void kthread_set_per_cpu(struct task_struct *k, int cpu)
540 {
541 struct kthread *kthread = to_kthread(k);
542 if (!kthread)
543 return;
544
545 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
546
547 if (cpu < 0) {
548 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
549 return;
550 }
551
552 kthread->cpu = cpu;
553 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
554 }
555
556 bool kthread_is_per_cpu(struct task_struct *p)
557 {
558 struct kthread *kthread = __to_kthread(p);
559 if (!kthread)
560 return false;
561
562 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
563 }
564
565 /**
566 * kthread_unpark - unpark a thread created by kthread_create().
567 * @k: thread created by kthread_create().
568 *
569 * Sets kthread_should_park() for @k to return false, wakes it, and
570 * waits for it to return. If the thread is marked percpu then its
571 * bound to the cpu again.
572 */
573 void kthread_unpark(struct task_struct *k)
574 {
575 struct kthread *kthread = to_kthread(k);
576
577 /*
578 * Newly created kthread was parked when the CPU was offline.
579 * The binding was lost and we need to set it again.
580 */
581 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
582 __kthread_bind(k, kthread->cpu, TASK_PARKED);
583
584 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
585 /*
586 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
587 */
588 wake_up_state(k, TASK_PARKED);
589 }
590 EXPORT_SYMBOL_GPL(kthread_unpark);
591
592 /**
593 * kthread_park - park a thread created by kthread_create().
594 * @k: thread created by kthread_create().
595 *
596 * Sets kthread_should_park() for @k to return true, wakes it, and
597 * waits for it to return. This can also be called after kthread_create()
598 * instead of calling wake_up_process(): the thread will park without
599 * calling threadfn().
600 *
601 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
602 * If called by the kthread itself just the park bit is set.
603 */
604 int kthread_park(struct task_struct *k)
605 {
606 struct kthread *kthread = to_kthread(k);
607
608 if (WARN_ON(k->flags & PF_EXITING))
609 return -ENOSYS;
610
611 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
612 return -EBUSY;
613
614 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
615 if (k != current) {
616 wake_up_process(k);
617 /*
618 * Wait for __kthread_parkme() to complete(), this means we
619 * _will_ have TASK_PARKED and are about to call schedule().
620 */
621 wait_for_completion(&kthread->parked);
622 /*
623 * Now wait for that schedule() to complete and the task to
624 * get scheduled out.
625 */
626 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
627 }
628
629 return 0;
630 }
631 EXPORT_SYMBOL_GPL(kthread_park);
632
633 /**
634 * kthread_stop - stop a thread created by kthread_create().
635 * @k: thread created by kthread_create().
636 *
637 * Sets kthread_should_stop() for @k to return true, wakes it, and
638 * waits for it to exit. This can also be called after kthread_create()
639 * instead of calling wake_up_process(): the thread will exit without
640 * calling threadfn().
641 *
642 * If threadfn() may call do_exit() itself, the caller must ensure
643 * task_struct can't go away.
644 *
645 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
646 * was never called.
647 */
648 int kthread_stop(struct task_struct *k)
649 {
650 struct kthread *kthread;
651 int ret;
652
653 trace_sched_kthread_stop(k);
654
655 get_task_struct(k);
656 kthread = to_kthread(k);
657 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
658 kthread_unpark(k);
659 wake_up_process(k);
660 wait_for_completion(&kthread->exited);
661 ret = k->exit_code;
662 put_task_struct(k);
663
664 trace_sched_kthread_stop_ret(ret);
665 return ret;
666 }
667 EXPORT_SYMBOL(kthread_stop);
668
669 int kthreadd(void *unused)
670 {
671 struct task_struct *tsk = current;
672
673 /* Setup a clean context for our children to inherit. */
674 set_task_comm(tsk, "kthreadd");
675 ignore_signals(tsk);
676 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
677 set_mems_allowed(node_states[N_MEMORY]);
678
679 current->flags |= PF_NOFREEZE;
680 cgroup_init_kthreadd();
681
682 for (;;) {
683 set_current_state(TASK_INTERRUPTIBLE);
684 if (list_empty(&kthread_create_list))
685 schedule();
686 __set_current_state(TASK_RUNNING);
687
688 spin_lock(&kthread_create_lock);
689 while (!list_empty(&kthread_create_list)) {
690 struct kthread_create_info *create;
691
692 create = list_entry(kthread_create_list.next,
693 struct kthread_create_info, list);
694 list_del_init(&create->list);
695 spin_unlock(&kthread_create_lock);
696
697 create_kthread(create);
698
699 spin_lock(&kthread_create_lock);
700 }
701 spin_unlock(&kthread_create_lock);
702 }
703
704 return 0;
705 }
706
707 void __kthread_init_worker(struct kthread_worker *worker,
708 const char *name,
709 struct lock_class_key *key)
710 {
711 memset(worker, 0, sizeof(struct kthread_worker));
712 raw_spin_lock_init(&worker->lock);
713 lockdep_set_class_and_name(&worker->lock, key, name);
714 INIT_LIST_HEAD(&worker->work_list);
715 INIT_LIST_HEAD(&worker->delayed_work_list);
716 }
717 EXPORT_SYMBOL_GPL(__kthread_init_worker);
718
719 /**
720 * kthread_worker_fn - kthread function to process kthread_worker
721 * @worker_ptr: pointer to initialized kthread_worker
722 *
723 * This function implements the main cycle of kthread worker. It processes
724 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
725 * is empty.
726 *
727 * The works are not allowed to keep any locks, disable preemption or interrupts
728 * when they finish. There is defined a safe point for freezing when one work
729 * finishes and before a new one is started.
730 *
731 * Also the works must not be handled by more than one worker at the same time,
732 * see also kthread_queue_work().
733 */
734 int kthread_worker_fn(void *worker_ptr)
735 {
736 struct kthread_worker *worker = worker_ptr;
737 struct kthread_work *work;
738
739 /*
740 * FIXME: Update the check and remove the assignment when all kthread
741 * worker users are created using kthread_create_worker*() functions.
742 */
743 WARN_ON(worker->task && worker->task != current);
744 worker->task = current;
745
746 if (worker->flags & KTW_FREEZABLE)
747 set_freezable();
748
749 repeat:
750 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
751
752 if (kthread_should_stop()) {
753 __set_current_state(TASK_RUNNING);
754 raw_spin_lock_irq(&worker->lock);
755 worker->task = NULL;
756 raw_spin_unlock_irq(&worker->lock);
757 return 0;
758 }
759
760 work = NULL;
761 raw_spin_lock_irq(&worker->lock);
762 if (!list_empty(&worker->work_list)) {
763 work = list_first_entry(&worker->work_list,
764 struct kthread_work, node);
765 list_del_init(&work->node);
766 }
767 worker->current_work = work;
768 raw_spin_unlock_irq(&worker->lock);
769
770 if (work) {
771 kthread_work_func_t func = work->func;
772 __set_current_state(TASK_RUNNING);
773 trace_sched_kthread_work_execute_start(work);
774 work->func(work);
775 /*
776 * Avoid dereferencing work after this point. The trace
777 * event only cares about the address.
778 */
779 trace_sched_kthread_work_execute_end(work, func);
780 } else if (!freezing(current))
781 schedule();
782
783 try_to_freeze();
784 cond_resched();
785 goto repeat;
786 }
787 EXPORT_SYMBOL_GPL(kthread_worker_fn);
788
789 static __printf(3, 0) struct kthread_worker *
790 __kthread_create_worker(int cpu, unsigned int flags,
791 const char namefmt[], va_list args)
792 {
793 struct kthread_worker *worker;
794 struct task_struct *task;
795 int node = NUMA_NO_NODE;
796
797 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
798 if (!worker)
799 return ERR_PTR(-ENOMEM);
800
801 kthread_init_worker(worker);
802
803 if (cpu >= 0)
804 node = cpu_to_node(cpu);
805
806 task = __kthread_create_on_node(kthread_worker_fn, worker,
807 node, namefmt, args);
808 if (IS_ERR(task))
809 goto fail_task;
810
811 if (cpu >= 0)
812 kthread_bind(task, cpu);
813
814 worker->flags = flags;
815 worker->task = task;
816 wake_up_process(task);
817 return worker;
818
819 fail_task:
820 kfree(worker);
821 return ERR_CAST(task);
822 }
823
824 /**
825 * kthread_create_worker - create a kthread worker
826 * @flags: flags modifying the default behavior of the worker
827 * @namefmt: printf-style name for the kthread worker (task).
828 *
829 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
830 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
831 * when the worker was SIGKILLed.
832 */
833 struct kthread_worker *
834 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
835 {
836 struct kthread_worker *worker;
837 va_list args;
838
839 va_start(args, namefmt);
840 worker = __kthread_create_worker(-1, flags, namefmt, args);
841 va_end(args);
842
843 return worker;
844 }
845 EXPORT_SYMBOL(kthread_create_worker);
846
847 /**
848 * kthread_create_worker_on_cpu - create a kthread worker and bind it
849 * to a given CPU and the associated NUMA node.
850 * @cpu: CPU number
851 * @flags: flags modifying the default behavior of the worker
852 * @namefmt: printf-style name for the kthread worker (task).
853 *
854 * Use a valid CPU number if you want to bind the kthread worker
855 * to the given CPU and the associated NUMA node.
856 *
857 * A good practice is to add the cpu number also into the worker name.
858 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
859 *
860 * CPU hotplug:
861 * The kthread worker API is simple and generic. It just provides a way
862 * to create, use, and destroy workers.
863 *
864 * It is up to the API user how to handle CPU hotplug. They have to decide
865 * how to handle pending work items, prevent queuing new ones, and
866 * restore the functionality when the CPU goes off and on. There are a
867 * few catches:
868 *
869 * - CPU affinity gets lost when it is scheduled on an offline CPU.
870 *
871 * - The worker might not exist when the CPU was off when the user
872 * created the workers.
873 *
874 * Good practice is to implement two CPU hotplug callbacks and to
875 * destroy/create the worker when the CPU goes down/up.
876 *
877 * Return:
878 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
879 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
880 * when the worker was SIGKILLed.
881 */
882 struct kthread_worker *
883 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
884 const char namefmt[], ...)
885 {
886 struct kthread_worker *worker;
887 va_list args;
888
889 va_start(args, namefmt);
890 worker = __kthread_create_worker(cpu, flags, namefmt, args);
891 va_end(args);
892
893 return worker;
894 }
895 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
896
897 /*
898 * Returns true when the work could not be queued at the moment.
899 * It happens when it is already pending in a worker list
900 * or when it is being cancelled.
901 */
902 static inline bool queuing_blocked(struct kthread_worker *worker,
903 struct kthread_work *work)
904 {
905 lockdep_assert_held(&worker->lock);
906
907 return !list_empty(&work->node) || work->canceling;
908 }
909
910 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
911 struct kthread_work *work)
912 {
913 lockdep_assert_held(&worker->lock);
914 WARN_ON_ONCE(!list_empty(&work->node));
915 /* Do not use a work with >1 worker, see kthread_queue_work() */
916 WARN_ON_ONCE(work->worker && work->worker != worker);
917 }
918
919 /* insert @work before @pos in @worker */
920 static void kthread_insert_work(struct kthread_worker *worker,
921 struct kthread_work *work,
922 struct list_head *pos)
923 {
924 kthread_insert_work_sanity_check(worker, work);
925
926 trace_sched_kthread_work_queue_work(worker, work);
927
928 list_add_tail(&work->node, pos);
929 work->worker = worker;
930 if (!worker->current_work && likely(worker->task))
931 wake_up_process(worker->task);
932 }
933
934 /**
935 * kthread_queue_work - queue a kthread_work
936 * @worker: target kthread_worker
937 * @work: kthread_work to queue
938 *
939 * Queue @work to work processor @task for async execution. @task
940 * must have been created with kthread_worker_create(). Returns %true
941 * if @work was successfully queued, %false if it was already pending.
942 *
943 * Reinitialize the work if it needs to be used by another worker.
944 * For example, when the worker was stopped and started again.
945 */
946 bool kthread_queue_work(struct kthread_worker *worker,
947 struct kthread_work *work)
948 {
949 bool ret = false;
950 unsigned long flags;
951
952 raw_spin_lock_irqsave(&worker->lock, flags);
953 if (!queuing_blocked(worker, work)) {
954 kthread_insert_work(worker, work, &worker->work_list);
955 ret = true;
956 }
957 raw_spin_unlock_irqrestore(&worker->lock, flags);
958 return ret;
959 }
960 EXPORT_SYMBOL_GPL(kthread_queue_work);
961
962 /**
963 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
964 * delayed work when the timer expires.
965 * @t: pointer to the expired timer
966 *
967 * The format of the function is defined by struct timer_list.
968 * It should have been called from irqsafe timer with irq already off.
969 */
970 void kthread_delayed_work_timer_fn(struct timer_list *t)
971 {
972 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
973 struct kthread_work *work = &dwork->work;
974 struct kthread_worker *worker = work->worker;
975 unsigned long flags;
976
977 /*
978 * This might happen when a pending work is reinitialized.
979 * It means that it is used a wrong way.
980 */
981 if (WARN_ON_ONCE(!worker))
982 return;
983
984 raw_spin_lock_irqsave(&worker->lock, flags);
985 /* Work must not be used with >1 worker, see kthread_queue_work(). */
986 WARN_ON_ONCE(work->worker != worker);
987
988 /* Move the work from worker->delayed_work_list. */
989 WARN_ON_ONCE(list_empty(&work->node));
990 list_del_init(&work->node);
991 if (!work->canceling)
992 kthread_insert_work(worker, work, &worker->work_list);
993
994 raw_spin_unlock_irqrestore(&worker->lock, flags);
995 }
996 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
997
998 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
999 struct kthread_delayed_work *dwork,
1000 unsigned long delay)
1001 {
1002 struct timer_list *timer = &dwork->timer;
1003 struct kthread_work *work = &dwork->work;
1004
1005 WARN_ON_FUNCTION_MISMATCH(timer->function,
1006 kthread_delayed_work_timer_fn);
1007
1008 /*
1009 * If @delay is 0, queue @dwork->work immediately. This is for
1010 * both optimization and correctness. The earliest @timer can
1011 * expire is on the closest next tick and delayed_work users depend
1012 * on that there's no such delay when @delay is 0.
1013 */
1014 if (!delay) {
1015 kthread_insert_work(worker, work, &worker->work_list);
1016 return;
1017 }
1018
1019 /* Be paranoid and try to detect possible races already now. */
1020 kthread_insert_work_sanity_check(worker, work);
1021
1022 list_add(&work->node, &worker->delayed_work_list);
1023 work->worker = worker;
1024 timer->expires = jiffies + delay;
1025 add_timer(timer);
1026 }
1027
1028 /**
1029 * kthread_queue_delayed_work - queue the associated kthread work
1030 * after a delay.
1031 * @worker: target kthread_worker
1032 * @dwork: kthread_delayed_work to queue
1033 * @delay: number of jiffies to wait before queuing
1034 *
1035 * If the work has not been pending it starts a timer that will queue
1036 * the work after the given @delay. If @delay is zero, it queues the
1037 * work immediately.
1038 *
1039 * Return: %false if the @work has already been pending. It means that
1040 * either the timer was running or the work was queued. It returns %true
1041 * otherwise.
1042 */
1043 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1044 struct kthread_delayed_work *dwork,
1045 unsigned long delay)
1046 {
1047 struct kthread_work *work = &dwork->work;
1048 unsigned long flags;
1049 bool ret = false;
1050
1051 raw_spin_lock_irqsave(&worker->lock, flags);
1052
1053 if (!queuing_blocked(worker, work)) {
1054 __kthread_queue_delayed_work(worker, dwork, delay);
1055 ret = true;
1056 }
1057
1058 raw_spin_unlock_irqrestore(&worker->lock, flags);
1059 return ret;
1060 }
1061 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1062
1063 struct kthread_flush_work {
1064 struct kthread_work work;
1065 struct completion done;
1066 };
1067
1068 static void kthread_flush_work_fn(struct kthread_work *work)
1069 {
1070 struct kthread_flush_work *fwork =
1071 container_of(work, struct kthread_flush_work, work);
1072 complete(&fwork->done);
1073 }
1074
1075 /**
1076 * kthread_flush_work - flush a kthread_work
1077 * @work: work to flush
1078 *
1079 * If @work is queued or executing, wait for it to finish execution.
1080 */
1081 void kthread_flush_work(struct kthread_work *work)
1082 {
1083 struct kthread_flush_work fwork = {
1084 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1085 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1086 };
1087 struct kthread_worker *worker;
1088 bool noop = false;
1089
1090 worker = work->worker;
1091 if (!worker)
1092 return;
1093
1094 raw_spin_lock_irq(&worker->lock);
1095 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1096 WARN_ON_ONCE(work->worker != worker);
1097
1098 if (!list_empty(&work->node))
1099 kthread_insert_work(worker, &fwork.work, work->node.next);
1100 else if (worker->current_work == work)
1101 kthread_insert_work(worker, &fwork.work,
1102 worker->work_list.next);
1103 else
1104 noop = true;
1105
1106 raw_spin_unlock_irq(&worker->lock);
1107
1108 if (!noop)
1109 wait_for_completion(&fwork.done);
1110 }
1111 EXPORT_SYMBOL_GPL(kthread_flush_work);
1112
1113 /*
1114 * Make sure that the timer is neither set nor running and could
1115 * not manipulate the work list_head any longer.
1116 *
1117 * The function is called under worker->lock. The lock is temporary
1118 * released but the timer can't be set again in the meantime.
1119 */
1120 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1121 unsigned long *flags)
1122 {
1123 struct kthread_delayed_work *dwork =
1124 container_of(work, struct kthread_delayed_work, work);
1125 struct kthread_worker *worker = work->worker;
1126
1127 /*
1128 * del_timer_sync() must be called to make sure that the timer
1129 * callback is not running. The lock must be temporary released
1130 * to avoid a deadlock with the callback. In the meantime,
1131 * any queuing is blocked by setting the canceling counter.
1132 */
1133 work->canceling++;
1134 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1135 del_timer_sync(&dwork->timer);
1136 raw_spin_lock_irqsave(&worker->lock, *flags);
1137 work->canceling--;
1138 }
1139
1140 /*
1141 * This function removes the work from the worker queue.
1142 *
1143 * It is called under worker->lock. The caller must make sure that
1144 * the timer used by delayed work is not running, e.g. by calling
1145 * kthread_cancel_delayed_work_timer().
1146 *
1147 * The work might still be in use when this function finishes. See the
1148 * current_work proceed by the worker.
1149 *
1150 * Return: %true if @work was pending and successfully canceled,
1151 * %false if @work was not pending
1152 */
1153 static bool __kthread_cancel_work(struct kthread_work *work)
1154 {
1155 /*
1156 * Try to remove the work from a worker list. It might either
1157 * be from worker->work_list or from worker->delayed_work_list.
1158 */
1159 if (!list_empty(&work->node)) {
1160 list_del_init(&work->node);
1161 return true;
1162 }
1163
1164 return false;
1165 }
1166
1167 /**
1168 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1169 * @worker: kthread worker to use
1170 * @dwork: kthread delayed work to queue
1171 * @delay: number of jiffies to wait before queuing
1172 *
1173 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1174 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1175 * @work is guaranteed to be queued immediately.
1176 *
1177 * Return: %false if @dwork was idle and queued, %true otherwise.
1178 *
1179 * A special case is when the work is being canceled in parallel.
1180 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1181 * or yet another kthread_mod_delayed_work() call. We let the other command
1182 * win and return %true here. The return value can be used for reference
1183 * counting and the number of queued works stays the same. Anyway, the caller
1184 * is supposed to synchronize these operations a reasonable way.
1185 *
1186 * This function is safe to call from any context including IRQ handler.
1187 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1188 * for details.
1189 */
1190 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1191 struct kthread_delayed_work *dwork,
1192 unsigned long delay)
1193 {
1194 struct kthread_work *work = &dwork->work;
1195 unsigned long flags;
1196 int ret;
1197
1198 raw_spin_lock_irqsave(&worker->lock, flags);
1199
1200 /* Do not bother with canceling when never queued. */
1201 if (!work->worker) {
1202 ret = false;
1203 goto fast_queue;
1204 }
1205
1206 /* Work must not be used with >1 worker, see kthread_queue_work() */
1207 WARN_ON_ONCE(work->worker != worker);
1208
1209 /*
1210 * Temporary cancel the work but do not fight with another command
1211 * that is canceling the work as well.
1212 *
1213 * It is a bit tricky because of possible races with another
1214 * mod_delayed_work() and cancel_delayed_work() callers.
1215 *
1216 * The timer must be canceled first because worker->lock is released
1217 * when doing so. But the work can be removed from the queue (list)
1218 * only when it can be queued again so that the return value can
1219 * be used for reference counting.
1220 */
1221 kthread_cancel_delayed_work_timer(work, &flags);
1222 if (work->canceling) {
1223 /* The number of works in the queue does not change. */
1224 ret = true;
1225 goto out;
1226 }
1227 ret = __kthread_cancel_work(work);
1228
1229 fast_queue:
1230 __kthread_queue_delayed_work(worker, dwork, delay);
1231 out:
1232 raw_spin_unlock_irqrestore(&worker->lock, flags);
1233 return ret;
1234 }
1235 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1236
1237 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1238 {
1239 struct kthread_worker *worker = work->worker;
1240 unsigned long flags;
1241 int ret = false;
1242
1243 if (!worker)
1244 goto out;
1245
1246 raw_spin_lock_irqsave(&worker->lock, flags);
1247 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1248 WARN_ON_ONCE(work->worker != worker);
1249
1250 if (is_dwork)
1251 kthread_cancel_delayed_work_timer(work, &flags);
1252
1253 ret = __kthread_cancel_work(work);
1254
1255 if (worker->current_work != work)
1256 goto out_fast;
1257
1258 /*
1259 * The work is in progress and we need to wait with the lock released.
1260 * In the meantime, block any queuing by setting the canceling counter.
1261 */
1262 work->canceling++;
1263 raw_spin_unlock_irqrestore(&worker->lock, flags);
1264 kthread_flush_work(work);
1265 raw_spin_lock_irqsave(&worker->lock, flags);
1266 work->canceling--;
1267
1268 out_fast:
1269 raw_spin_unlock_irqrestore(&worker->lock, flags);
1270 out:
1271 return ret;
1272 }
1273
1274 /**
1275 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1276 * @work: the kthread work to cancel
1277 *
1278 * Cancel @work and wait for its execution to finish. This function
1279 * can be used even if the work re-queues itself. On return from this
1280 * function, @work is guaranteed to be not pending or executing on any CPU.
1281 *
1282 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1283 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1284 *
1285 * The caller must ensure that the worker on which @work was last
1286 * queued can't be destroyed before this function returns.
1287 *
1288 * Return: %true if @work was pending, %false otherwise.
1289 */
1290 bool kthread_cancel_work_sync(struct kthread_work *work)
1291 {
1292 return __kthread_cancel_work_sync(work, false);
1293 }
1294 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1295
1296 /**
1297 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1298 * wait for it to finish.
1299 * @dwork: the kthread delayed work to cancel
1300 *
1301 * This is kthread_cancel_work_sync() for delayed works.
1302 *
1303 * Return: %true if @dwork was pending, %false otherwise.
1304 */
1305 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1306 {
1307 return __kthread_cancel_work_sync(&dwork->work, true);
1308 }
1309 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1310
1311 /**
1312 * kthread_flush_worker - flush all current works on a kthread_worker
1313 * @worker: worker to flush
1314 *
1315 * Wait until all currently executing or pending works on @worker are
1316 * finished.
1317 */
1318 void kthread_flush_worker(struct kthread_worker *worker)
1319 {
1320 struct kthread_flush_work fwork = {
1321 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1322 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1323 };
1324
1325 kthread_queue_work(worker, &fwork.work);
1326 wait_for_completion(&fwork.done);
1327 }
1328 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1329
1330 /**
1331 * kthread_destroy_worker - destroy a kthread worker
1332 * @worker: worker to be destroyed
1333 *
1334 * Flush and destroy @worker. The simple flush is enough because the kthread
1335 * worker API is used only in trivial scenarios. There are no multi-step state
1336 * machines needed.
1337 */
1338 void kthread_destroy_worker(struct kthread_worker *worker)
1339 {
1340 struct task_struct *task;
1341
1342 task = worker->task;
1343 if (WARN_ON(!task))
1344 return;
1345
1346 kthread_flush_worker(worker);
1347 kthread_stop(task);
1348 WARN_ON(!list_empty(&worker->work_list));
1349 kfree(worker);
1350 }
1351 EXPORT_SYMBOL(kthread_destroy_worker);
1352
1353 /**
1354 * kthread_use_mm - make the calling kthread operate on an address space
1355 * @mm: address space to operate on
1356 */
1357 void kthread_use_mm(struct mm_struct *mm)
1358 {
1359 struct mm_struct *active_mm;
1360 struct task_struct *tsk = current;
1361
1362 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1363 WARN_ON_ONCE(tsk->mm);
1364
1365 task_lock(tsk);
1366 /* Hold off tlb flush IPIs while switching mm's */
1367 local_irq_disable();
1368 active_mm = tsk->active_mm;
1369 if (active_mm != mm) {
1370 mmgrab(mm);
1371 tsk->active_mm = mm;
1372 }
1373 tsk->mm = mm;
1374 membarrier_update_current_mm(mm);
1375 switch_mm_irqs_off(active_mm, mm, tsk);
1376 local_irq_enable();
1377 task_unlock(tsk);
1378 #ifdef finish_arch_post_lock_switch
1379 finish_arch_post_lock_switch();
1380 #endif
1381
1382 /*
1383 * When a kthread starts operating on an address space, the loop
1384 * in membarrier_{private,global}_expedited() may not observe
1385 * that tsk->mm, and not issue an IPI. Membarrier requires a
1386 * memory barrier after storing to tsk->mm, before accessing
1387 * user-space memory. A full memory barrier for membarrier
1388 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1389 * mmdrop(), or explicitly with smp_mb().
1390 */
1391 if (active_mm != mm)
1392 mmdrop(active_mm);
1393 else
1394 smp_mb();
1395
1396 to_kthread(tsk)->oldfs = force_uaccess_begin();
1397 }
1398 EXPORT_SYMBOL_GPL(kthread_use_mm);
1399
1400 /**
1401 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1402 * @mm: address space to operate on
1403 */
1404 void kthread_unuse_mm(struct mm_struct *mm)
1405 {
1406 struct task_struct *tsk = current;
1407
1408 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1409 WARN_ON_ONCE(!tsk->mm);
1410
1411 force_uaccess_end(to_kthread(tsk)->oldfs);
1412
1413 task_lock(tsk);
1414 /*
1415 * When a kthread stops operating on an address space, the loop
1416 * in membarrier_{private,global}_expedited() may not observe
1417 * that tsk->mm, and not issue an IPI. Membarrier requires a
1418 * memory barrier after accessing user-space memory, before
1419 * clearing tsk->mm.
1420 */
1421 smp_mb__after_spinlock();
1422 sync_mm_rss(mm);
1423 local_irq_disable();
1424 tsk->mm = NULL;
1425 membarrier_update_current_mm(NULL);
1426 /* active_mm is still 'mm' */
1427 enter_lazy_tlb(mm, tsk);
1428 local_irq_enable();
1429 task_unlock(tsk);
1430 }
1431 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1432
1433 #ifdef CONFIG_BLK_CGROUP
1434 /**
1435 * kthread_associate_blkcg - associate blkcg to current kthread
1436 * @css: the cgroup info
1437 *
1438 * Current thread must be a kthread. The thread is running jobs on behalf of
1439 * other threads. In some cases, we expect the jobs attach cgroup info of
1440 * original threads instead of that of current thread. This function stores
1441 * original thread's cgroup info in current kthread context for later
1442 * retrieval.
1443 */
1444 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1445 {
1446 struct kthread *kthread;
1447
1448 if (!(current->flags & PF_KTHREAD))
1449 return;
1450 kthread = to_kthread(current);
1451 if (!kthread)
1452 return;
1453
1454 if (kthread->blkcg_css) {
1455 css_put(kthread->blkcg_css);
1456 kthread->blkcg_css = NULL;
1457 }
1458 if (css) {
1459 css_get(css);
1460 kthread->blkcg_css = css;
1461 }
1462 }
1463 EXPORT_SYMBOL(kthread_associate_blkcg);
1464
1465 /**
1466 * kthread_blkcg - get associated blkcg css of current kthread
1467 *
1468 * Current thread must be a kthread.
1469 */
1470 struct cgroup_subsys_state *kthread_blkcg(void)
1471 {
1472 struct kthread *kthread;
1473
1474 if (current->flags & PF_KTHREAD) {
1475 kthread = to_kthread(current);
1476 if (kthread)
1477 return kthread->blkcg_css;
1478 }
1479 return NULL;
1480 }
1481 EXPORT_SYMBOL(kthread_blkcg);
1482 #endif