]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/livepatch/core.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / livepatch / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * core.c - Kernel Live Patching Core
4 *
5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6 * Copyright (C) 2014 SUSE
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <asm/cacheflush.h>
23 #include "core.h"
24 #include "patch.h"
25 #include "state.h"
26 #include "transition.h"
27
28 /*
29 * klp_mutex is a coarse lock which serializes access to klp data. All
30 * accesses to klp-related variables and structures must have mutex protection,
31 * except within the following functions which carefully avoid the need for it:
32 *
33 * - klp_ftrace_handler()
34 * - klp_update_patch_state()
35 */
36 DEFINE_MUTEX(klp_mutex);
37
38 /*
39 * Actively used patches: enabled or in transition. Note that replaced
40 * or disabled patches are not listed even though the related kernel
41 * module still can be loaded.
42 */
43 LIST_HEAD(klp_patches);
44
45 static struct kobject *klp_root_kobj;
46
47 static bool klp_is_module(struct klp_object *obj)
48 {
49 return obj->name;
50 }
51
52 /* sets obj->mod if object is not vmlinux and module is found */
53 static void klp_find_object_module(struct klp_object *obj)
54 {
55 struct module *mod;
56
57 if (!klp_is_module(obj))
58 return;
59
60 mutex_lock(&module_mutex);
61 /*
62 * We do not want to block removal of patched modules and therefore
63 * we do not take a reference here. The patches are removed by
64 * klp_module_going() instead.
65 */
66 mod = find_module(obj->name);
67 /*
68 * Do not mess work of klp_module_coming() and klp_module_going().
69 * Note that the patch might still be needed before klp_module_going()
70 * is called. Module functions can be called even in the GOING state
71 * until mod->exit() finishes. This is especially important for
72 * patches that modify semantic of the functions.
73 */
74 if (mod && mod->klp_alive)
75 obj->mod = mod;
76
77 mutex_unlock(&module_mutex);
78 }
79
80 static bool klp_initialized(void)
81 {
82 return !!klp_root_kobj;
83 }
84
85 static struct klp_func *klp_find_func(struct klp_object *obj,
86 struct klp_func *old_func)
87 {
88 struct klp_func *func;
89
90 klp_for_each_func(obj, func) {
91 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
92 (old_func->old_sympos == func->old_sympos)) {
93 return func;
94 }
95 }
96
97 return NULL;
98 }
99
100 static struct klp_object *klp_find_object(struct klp_patch *patch,
101 struct klp_object *old_obj)
102 {
103 struct klp_object *obj;
104
105 klp_for_each_object(patch, obj) {
106 if (klp_is_module(old_obj)) {
107 if (klp_is_module(obj) &&
108 strcmp(old_obj->name, obj->name) == 0) {
109 return obj;
110 }
111 } else if (!klp_is_module(obj)) {
112 return obj;
113 }
114 }
115
116 return NULL;
117 }
118
119 struct klp_find_arg {
120 const char *objname;
121 const char *name;
122 unsigned long addr;
123 unsigned long count;
124 unsigned long pos;
125 };
126
127 static int klp_find_callback(void *data, const char *name,
128 struct module *mod, unsigned long addr)
129 {
130 struct klp_find_arg *args = data;
131
132 if ((mod && !args->objname) || (!mod && args->objname))
133 return 0;
134
135 if (strcmp(args->name, name))
136 return 0;
137
138 if (args->objname && strcmp(args->objname, mod->name))
139 return 0;
140
141 args->addr = addr;
142 args->count++;
143
144 /*
145 * Finish the search when the symbol is found for the desired position
146 * or the position is not defined for a non-unique symbol.
147 */
148 if ((args->pos && (args->count == args->pos)) ||
149 (!args->pos && (args->count > 1)))
150 return 1;
151
152 return 0;
153 }
154
155 static int klp_find_object_symbol(const char *objname, const char *name,
156 unsigned long sympos, unsigned long *addr)
157 {
158 struct klp_find_arg args = {
159 .objname = objname,
160 .name = name,
161 .addr = 0,
162 .count = 0,
163 .pos = sympos,
164 };
165
166 mutex_lock(&module_mutex);
167 if (objname)
168 module_kallsyms_on_each_symbol(klp_find_callback, &args);
169 else
170 kallsyms_on_each_symbol(klp_find_callback, &args);
171 mutex_unlock(&module_mutex);
172
173 /*
174 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
175 * otherwise ensure the symbol position count matches sympos.
176 */
177 if (args.addr == 0)
178 pr_err("symbol '%s' not found in symbol table\n", name);
179 else if (args.count > 1 && sympos == 0) {
180 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
181 name, objname);
182 } else if (sympos != args.count && sympos > 0) {
183 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
184 sympos, name, objname ? objname : "vmlinux");
185 } else {
186 *addr = args.addr;
187 return 0;
188 }
189
190 *addr = 0;
191 return -EINVAL;
192 }
193
194 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
195 unsigned int symndx, Elf_Shdr *relasec,
196 const char *sec_objname)
197 {
198 int i, cnt, ret;
199 char sym_objname[MODULE_NAME_LEN];
200 char sym_name[KSYM_NAME_LEN];
201 Elf_Rela *relas;
202 Elf_Sym *sym;
203 unsigned long sympos, addr;
204 bool sym_vmlinux;
205 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
206
207 /*
208 * Since the field widths for sym_objname and sym_name in the sscanf()
209 * call are hard-coded and correspond to MODULE_NAME_LEN and
210 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
211 * and KSYM_NAME_LEN have the values we expect them to have.
212 *
213 * Because the value of MODULE_NAME_LEN can differ among architectures,
214 * we use the smallest/strictest upper bound possible (56, based on
215 * the current definition of MODULE_NAME_LEN) to prevent overflows.
216 */
217 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
218
219 relas = (Elf_Rela *) relasec->sh_addr;
220 /* For each rela in this klp relocation section */
221 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
222 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
223 if (sym->st_shndx != SHN_LIVEPATCH) {
224 pr_err("symbol %s is not marked as a livepatch symbol\n",
225 strtab + sym->st_name);
226 return -EINVAL;
227 }
228
229 /* Format: .klp.sym.sym_objname.sym_name,sympos */
230 cnt = sscanf(strtab + sym->st_name,
231 ".klp.sym.%55[^.].%127[^,],%lu",
232 sym_objname, sym_name, &sympos);
233 if (cnt != 3) {
234 pr_err("symbol %s has an incorrectly formatted name\n",
235 strtab + sym->st_name);
236 return -EINVAL;
237 }
238
239 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
240
241 /*
242 * Prevent module-specific KLP rela sections from referencing
243 * vmlinux symbols. This helps prevent ordering issues with
244 * module special section initializations. Presumably such
245 * symbols are exported and normal relas can be used instead.
246 */
247 if (!sec_vmlinux && sym_vmlinux) {
248 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
249 sym_name);
250 return -EINVAL;
251 }
252
253 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
254 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
255 sym_name, sympos, &addr);
256 if (ret)
257 return ret;
258
259 sym->st_value = addr;
260 }
261
262 return 0;
263 }
264
265 /*
266 * At a high-level, there are two types of klp relocation sections: those which
267 * reference symbols which live in vmlinux; and those which reference symbols
268 * which live in other modules. This function is called for both types:
269 *
270 * 1) When a klp module itself loads, the module code calls this function to
271 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
272 * These relocations are written to the klp module text to allow the patched
273 * code/data to reference unexported vmlinux symbols. They're written as
274 * early as possible to ensure that other module init code (.e.g.,
275 * jump_label_apply_nops) can access any unexported vmlinux symbols which
276 * might be referenced by the klp module's special sections.
277 *
278 * 2) When a to-be-patched module loads -- or is already loaded when a
279 * corresponding klp module loads -- klp code calls this function to write
280 * module-specific klp relocations (.klp.rela.{module}.* sections). These
281 * are written to the klp module text to allow the patched code/data to
282 * reference symbols which live in the to-be-patched module or one of its
283 * module dependencies. Exported symbols are supported, in addition to
284 * unexported symbols, in order to enable late module patching, which allows
285 * the to-be-patched module to be loaded and patched sometime *after* the
286 * klp module is loaded.
287 */
288 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
289 const char *shstrtab, const char *strtab,
290 unsigned int symndx, unsigned int secndx,
291 const char *objname)
292 {
293 int cnt, ret;
294 char sec_objname[MODULE_NAME_LEN];
295 Elf_Shdr *sec = sechdrs + secndx;
296
297 /*
298 * Format: .klp.rela.sec_objname.section_name
299 * See comment in klp_resolve_symbols() for an explanation
300 * of the selected field width value.
301 */
302 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
303 sec_objname);
304 if (cnt != 1) {
305 pr_err("section %s has an incorrectly formatted name\n",
306 shstrtab + sec->sh_name);
307 return -EINVAL;
308 }
309
310 if (strcmp(objname ? objname : "vmlinux", sec_objname))
311 return 0;
312
313 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
314 if (ret)
315 return ret;
316
317 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
318 }
319
320 /*
321 * Sysfs Interface
322 *
323 * /sys/kernel/livepatch
324 * /sys/kernel/livepatch/<patch>
325 * /sys/kernel/livepatch/<patch>/enabled
326 * /sys/kernel/livepatch/<patch>/transition
327 * /sys/kernel/livepatch/<patch>/force
328 * /sys/kernel/livepatch/<patch>/<object>
329 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
330 */
331 static int __klp_disable_patch(struct klp_patch *patch);
332
333 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
334 const char *buf, size_t count)
335 {
336 struct klp_patch *patch;
337 int ret;
338 bool enabled;
339
340 ret = kstrtobool(buf, &enabled);
341 if (ret)
342 return ret;
343
344 patch = container_of(kobj, struct klp_patch, kobj);
345
346 mutex_lock(&klp_mutex);
347
348 if (patch->enabled == enabled) {
349 /* already in requested state */
350 ret = -EINVAL;
351 goto out;
352 }
353
354 /*
355 * Allow to reverse a pending transition in both ways. It might be
356 * necessary to complete the transition without forcing and breaking
357 * the system integrity.
358 *
359 * Do not allow to re-enable a disabled patch.
360 */
361 if (patch == klp_transition_patch)
362 klp_reverse_transition();
363 else if (!enabled)
364 ret = __klp_disable_patch(patch);
365 else
366 ret = -EINVAL;
367
368 out:
369 mutex_unlock(&klp_mutex);
370
371 if (ret)
372 return ret;
373 return count;
374 }
375
376 static ssize_t enabled_show(struct kobject *kobj,
377 struct kobj_attribute *attr, char *buf)
378 {
379 struct klp_patch *patch;
380
381 patch = container_of(kobj, struct klp_patch, kobj);
382 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
383 }
384
385 static ssize_t transition_show(struct kobject *kobj,
386 struct kobj_attribute *attr, char *buf)
387 {
388 struct klp_patch *patch;
389
390 patch = container_of(kobj, struct klp_patch, kobj);
391 return snprintf(buf, PAGE_SIZE-1, "%d\n",
392 patch == klp_transition_patch);
393 }
394
395 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
396 const char *buf, size_t count)
397 {
398 struct klp_patch *patch;
399 int ret;
400 bool val;
401
402 ret = kstrtobool(buf, &val);
403 if (ret)
404 return ret;
405
406 if (!val)
407 return count;
408
409 mutex_lock(&klp_mutex);
410
411 patch = container_of(kobj, struct klp_patch, kobj);
412 if (patch != klp_transition_patch) {
413 mutex_unlock(&klp_mutex);
414 return -EINVAL;
415 }
416
417 klp_force_transition();
418
419 mutex_unlock(&klp_mutex);
420
421 return count;
422 }
423
424 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
425 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
426 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
427 static struct attribute *klp_patch_attrs[] = {
428 &enabled_kobj_attr.attr,
429 &transition_kobj_attr.attr,
430 &force_kobj_attr.attr,
431 NULL
432 };
433 ATTRIBUTE_GROUPS(klp_patch);
434
435 static void klp_free_object_dynamic(struct klp_object *obj)
436 {
437 kfree(obj->name);
438 kfree(obj);
439 }
440
441 static void klp_init_func_early(struct klp_object *obj,
442 struct klp_func *func);
443 static void klp_init_object_early(struct klp_patch *patch,
444 struct klp_object *obj);
445
446 static struct klp_object *klp_alloc_object_dynamic(const char *name,
447 struct klp_patch *patch)
448 {
449 struct klp_object *obj;
450
451 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
452 if (!obj)
453 return NULL;
454
455 if (name) {
456 obj->name = kstrdup(name, GFP_KERNEL);
457 if (!obj->name) {
458 kfree(obj);
459 return NULL;
460 }
461 }
462
463 klp_init_object_early(patch, obj);
464 obj->dynamic = true;
465
466 return obj;
467 }
468
469 static void klp_free_func_nop(struct klp_func *func)
470 {
471 kfree(func->old_name);
472 kfree(func);
473 }
474
475 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
476 struct klp_object *obj)
477 {
478 struct klp_func *func;
479
480 func = kzalloc(sizeof(*func), GFP_KERNEL);
481 if (!func)
482 return NULL;
483
484 if (old_func->old_name) {
485 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
486 if (!func->old_name) {
487 kfree(func);
488 return NULL;
489 }
490 }
491
492 klp_init_func_early(obj, func);
493 /*
494 * func->new_func is same as func->old_func. These addresses are
495 * set when the object is loaded, see klp_init_object_loaded().
496 */
497 func->old_sympos = old_func->old_sympos;
498 func->nop = true;
499
500 return func;
501 }
502
503 static int klp_add_object_nops(struct klp_patch *patch,
504 struct klp_object *old_obj)
505 {
506 struct klp_object *obj;
507 struct klp_func *func, *old_func;
508
509 obj = klp_find_object(patch, old_obj);
510
511 if (!obj) {
512 obj = klp_alloc_object_dynamic(old_obj->name, patch);
513 if (!obj)
514 return -ENOMEM;
515 }
516
517 klp_for_each_func(old_obj, old_func) {
518 func = klp_find_func(obj, old_func);
519 if (func)
520 continue;
521
522 func = klp_alloc_func_nop(old_func, obj);
523 if (!func)
524 return -ENOMEM;
525 }
526
527 return 0;
528 }
529
530 /*
531 * Add 'nop' functions which simply return to the caller to run
532 * the original function. The 'nop' functions are added to a
533 * patch to facilitate a 'replace' mode.
534 */
535 static int klp_add_nops(struct klp_patch *patch)
536 {
537 struct klp_patch *old_patch;
538 struct klp_object *old_obj;
539
540 klp_for_each_patch(old_patch) {
541 klp_for_each_object(old_patch, old_obj) {
542 int err;
543
544 err = klp_add_object_nops(patch, old_obj);
545 if (err)
546 return err;
547 }
548 }
549
550 return 0;
551 }
552
553 static void klp_kobj_release_patch(struct kobject *kobj)
554 {
555 struct klp_patch *patch;
556
557 patch = container_of(kobj, struct klp_patch, kobj);
558 complete(&patch->finish);
559 }
560
561 static struct kobj_type klp_ktype_patch = {
562 .release = klp_kobj_release_patch,
563 .sysfs_ops = &kobj_sysfs_ops,
564 .default_groups = klp_patch_groups,
565 };
566
567 static void klp_kobj_release_object(struct kobject *kobj)
568 {
569 struct klp_object *obj;
570
571 obj = container_of(kobj, struct klp_object, kobj);
572
573 if (obj->dynamic)
574 klp_free_object_dynamic(obj);
575 }
576
577 static struct kobj_type klp_ktype_object = {
578 .release = klp_kobj_release_object,
579 .sysfs_ops = &kobj_sysfs_ops,
580 };
581
582 static void klp_kobj_release_func(struct kobject *kobj)
583 {
584 struct klp_func *func;
585
586 func = container_of(kobj, struct klp_func, kobj);
587
588 if (func->nop)
589 klp_free_func_nop(func);
590 }
591
592 static struct kobj_type klp_ktype_func = {
593 .release = klp_kobj_release_func,
594 .sysfs_ops = &kobj_sysfs_ops,
595 };
596
597 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
598 {
599 struct klp_func *func, *tmp_func;
600
601 klp_for_each_func_safe(obj, func, tmp_func) {
602 if (nops_only && !func->nop)
603 continue;
604
605 list_del(&func->node);
606 kobject_put(&func->kobj);
607 }
608 }
609
610 /* Clean up when a patched object is unloaded */
611 static void klp_free_object_loaded(struct klp_object *obj)
612 {
613 struct klp_func *func;
614
615 obj->mod = NULL;
616
617 klp_for_each_func(obj, func) {
618 func->old_func = NULL;
619
620 if (func->nop)
621 func->new_func = NULL;
622 }
623 }
624
625 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
626 {
627 struct klp_object *obj, *tmp_obj;
628
629 klp_for_each_object_safe(patch, obj, tmp_obj) {
630 __klp_free_funcs(obj, nops_only);
631
632 if (nops_only && !obj->dynamic)
633 continue;
634
635 list_del(&obj->node);
636 kobject_put(&obj->kobj);
637 }
638 }
639
640 static void klp_free_objects(struct klp_patch *patch)
641 {
642 __klp_free_objects(patch, false);
643 }
644
645 static void klp_free_objects_dynamic(struct klp_patch *patch)
646 {
647 __klp_free_objects(patch, true);
648 }
649
650 /*
651 * This function implements the free operations that can be called safely
652 * under klp_mutex.
653 *
654 * The operation must be completed by calling klp_free_patch_finish()
655 * outside klp_mutex.
656 */
657 static void klp_free_patch_start(struct klp_patch *patch)
658 {
659 if (!list_empty(&patch->list))
660 list_del(&patch->list);
661
662 klp_free_objects(patch);
663 }
664
665 /*
666 * This function implements the free part that must be called outside
667 * klp_mutex.
668 *
669 * It must be called after klp_free_patch_start(). And it has to be
670 * the last function accessing the livepatch structures when the patch
671 * gets disabled.
672 */
673 static void klp_free_patch_finish(struct klp_patch *patch)
674 {
675 /*
676 * Avoid deadlock with enabled_store() sysfs callback by
677 * calling this outside klp_mutex. It is safe because
678 * this is called when the patch gets disabled and it
679 * cannot get enabled again.
680 */
681 kobject_put(&patch->kobj);
682 wait_for_completion(&patch->finish);
683
684 /* Put the module after the last access to struct klp_patch. */
685 if (!patch->forced)
686 module_put(patch->mod);
687 }
688
689 /*
690 * The livepatch might be freed from sysfs interface created by the patch.
691 * This work allows to wait until the interface is destroyed in a separate
692 * context.
693 */
694 static void klp_free_patch_work_fn(struct work_struct *work)
695 {
696 struct klp_patch *patch =
697 container_of(work, struct klp_patch, free_work);
698
699 klp_free_patch_finish(patch);
700 }
701
702 void klp_free_patch_async(struct klp_patch *patch)
703 {
704 klp_free_patch_start(patch);
705 schedule_work(&patch->free_work);
706 }
707
708 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
709 {
710 struct klp_patch *old_patch, *tmp_patch;
711
712 klp_for_each_patch_safe(old_patch, tmp_patch) {
713 if (old_patch == new_patch)
714 return;
715 klp_free_patch_async(old_patch);
716 }
717 }
718
719 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
720 {
721 if (!func->old_name)
722 return -EINVAL;
723
724 /*
725 * NOPs get the address later. The patched module must be loaded,
726 * see klp_init_object_loaded().
727 */
728 if (!func->new_func && !func->nop)
729 return -EINVAL;
730
731 if (strlen(func->old_name) >= KSYM_NAME_LEN)
732 return -EINVAL;
733
734 INIT_LIST_HEAD(&func->stack_node);
735 func->patched = false;
736 func->transition = false;
737
738 /* The format for the sysfs directory is <function,sympos> where sympos
739 * is the nth occurrence of this symbol in kallsyms for the patched
740 * object. If the user selects 0 for old_sympos, then 1 will be used
741 * since a unique symbol will be the first occurrence.
742 */
743 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
744 func->old_name,
745 func->old_sympos ? func->old_sympos : 1);
746 }
747
748 static int klp_apply_object_relocs(struct klp_patch *patch,
749 struct klp_object *obj)
750 {
751 int i, ret;
752 struct klp_modinfo *info = patch->mod->klp_info;
753
754 for (i = 1; i < info->hdr.e_shnum; i++) {
755 Elf_Shdr *sec = info->sechdrs + i;
756
757 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
758 continue;
759
760 ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
761 info->secstrings,
762 patch->mod->core_kallsyms.strtab,
763 info->symndx, i, obj->name);
764 if (ret)
765 return ret;
766 }
767
768 return 0;
769 }
770
771 /* parts of the initialization that is done only when the object is loaded */
772 static int klp_init_object_loaded(struct klp_patch *patch,
773 struct klp_object *obj)
774 {
775 struct klp_func *func;
776 int ret;
777
778 if (klp_is_module(obj)) {
779 /*
780 * Only write module-specific relocations here
781 * (.klp.rela.{module}.*). vmlinux-specific relocations were
782 * written earlier during the initialization of the klp module
783 * itself.
784 */
785 ret = klp_apply_object_relocs(patch, obj);
786 if (ret)
787 return ret;
788 }
789
790 klp_for_each_func(obj, func) {
791 ret = klp_find_object_symbol(obj->name, func->old_name,
792 func->old_sympos,
793 (unsigned long *)&func->old_func);
794 if (ret)
795 return ret;
796
797 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
798 &func->old_size, NULL);
799 if (!ret) {
800 pr_err("kallsyms size lookup failed for '%s'\n",
801 func->old_name);
802 return -ENOENT;
803 }
804
805 if (func->nop)
806 func->new_func = func->old_func;
807
808 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
809 &func->new_size, NULL);
810 if (!ret) {
811 pr_err("kallsyms size lookup failed for '%s' replacement\n",
812 func->old_name);
813 return -ENOENT;
814 }
815 }
816
817 return 0;
818 }
819
820 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
821 {
822 struct klp_func *func;
823 int ret;
824 const char *name;
825
826 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
827 return -EINVAL;
828
829 obj->patched = false;
830 obj->mod = NULL;
831
832 klp_find_object_module(obj);
833
834 name = klp_is_module(obj) ? obj->name : "vmlinux";
835 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
836 if (ret)
837 return ret;
838
839 klp_for_each_func(obj, func) {
840 ret = klp_init_func(obj, func);
841 if (ret)
842 return ret;
843 }
844
845 if (klp_is_object_loaded(obj))
846 ret = klp_init_object_loaded(patch, obj);
847
848 return ret;
849 }
850
851 static void klp_init_func_early(struct klp_object *obj,
852 struct klp_func *func)
853 {
854 kobject_init(&func->kobj, &klp_ktype_func);
855 list_add_tail(&func->node, &obj->func_list);
856 }
857
858 static void klp_init_object_early(struct klp_patch *patch,
859 struct klp_object *obj)
860 {
861 INIT_LIST_HEAD(&obj->func_list);
862 kobject_init(&obj->kobj, &klp_ktype_object);
863 list_add_tail(&obj->node, &patch->obj_list);
864 }
865
866 static int klp_init_patch_early(struct klp_patch *patch)
867 {
868 struct klp_object *obj;
869 struct klp_func *func;
870
871 if (!patch->objs)
872 return -EINVAL;
873
874 INIT_LIST_HEAD(&patch->list);
875 INIT_LIST_HEAD(&patch->obj_list);
876 kobject_init(&patch->kobj, &klp_ktype_patch);
877 patch->enabled = false;
878 patch->forced = false;
879 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
880 init_completion(&patch->finish);
881
882 klp_for_each_object_static(patch, obj) {
883 if (!obj->funcs)
884 return -EINVAL;
885
886 klp_init_object_early(patch, obj);
887
888 klp_for_each_func_static(obj, func) {
889 klp_init_func_early(obj, func);
890 }
891 }
892
893 if (!try_module_get(patch->mod))
894 return -ENODEV;
895
896 return 0;
897 }
898
899 static int klp_init_patch(struct klp_patch *patch)
900 {
901 struct klp_object *obj;
902 int ret;
903
904 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
905 if (ret)
906 return ret;
907
908 if (patch->replace) {
909 ret = klp_add_nops(patch);
910 if (ret)
911 return ret;
912 }
913
914 klp_for_each_object(patch, obj) {
915 ret = klp_init_object(patch, obj);
916 if (ret)
917 return ret;
918 }
919
920 list_add_tail(&patch->list, &klp_patches);
921
922 return 0;
923 }
924
925 static int __klp_disable_patch(struct klp_patch *patch)
926 {
927 struct klp_object *obj;
928
929 if (WARN_ON(!patch->enabled))
930 return -EINVAL;
931
932 if (klp_transition_patch)
933 return -EBUSY;
934
935 klp_init_transition(patch, KLP_UNPATCHED);
936
937 klp_for_each_object(patch, obj)
938 if (obj->patched)
939 klp_pre_unpatch_callback(obj);
940
941 /*
942 * Enforce the order of the func->transition writes in
943 * klp_init_transition() and the TIF_PATCH_PENDING writes in
944 * klp_start_transition(). In the rare case where klp_ftrace_handler()
945 * is called shortly after klp_update_patch_state() switches the task,
946 * this ensures the handler sees that func->transition is set.
947 */
948 smp_wmb();
949
950 klp_start_transition();
951 patch->enabled = false;
952 klp_try_complete_transition();
953
954 return 0;
955 }
956
957 static int __klp_enable_patch(struct klp_patch *patch)
958 {
959 struct klp_object *obj;
960 int ret;
961
962 if (klp_transition_patch)
963 return -EBUSY;
964
965 if (WARN_ON(patch->enabled))
966 return -EINVAL;
967
968 pr_notice("enabling patch '%s'\n", patch->mod->name);
969
970 klp_init_transition(patch, KLP_PATCHED);
971
972 /*
973 * Enforce the order of the func->transition writes in
974 * klp_init_transition() and the ops->func_stack writes in
975 * klp_patch_object(), so that klp_ftrace_handler() will see the
976 * func->transition updates before the handler is registered and the
977 * new funcs become visible to the handler.
978 */
979 smp_wmb();
980
981 klp_for_each_object(patch, obj) {
982 if (!klp_is_object_loaded(obj))
983 continue;
984
985 ret = klp_pre_patch_callback(obj);
986 if (ret) {
987 pr_warn("pre-patch callback failed for object '%s'\n",
988 klp_is_module(obj) ? obj->name : "vmlinux");
989 goto err;
990 }
991
992 ret = klp_patch_object(obj);
993 if (ret) {
994 pr_warn("failed to patch object '%s'\n",
995 klp_is_module(obj) ? obj->name : "vmlinux");
996 goto err;
997 }
998 }
999
1000 klp_start_transition();
1001 patch->enabled = true;
1002 klp_try_complete_transition();
1003
1004 return 0;
1005 err:
1006 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1007
1008 klp_cancel_transition();
1009 return ret;
1010 }
1011
1012 /**
1013 * klp_enable_patch() - enable the livepatch
1014 * @patch: patch to be enabled
1015 *
1016 * Initializes the data structure associated with the patch, creates the sysfs
1017 * interface, performs the needed symbol lookups and code relocations,
1018 * registers the patched functions with ftrace.
1019 *
1020 * This function is supposed to be called from the livepatch module_init()
1021 * callback.
1022 *
1023 * Return: 0 on success, otherwise error
1024 */
1025 int klp_enable_patch(struct klp_patch *patch)
1026 {
1027 int ret;
1028
1029 if (!patch || !patch->mod)
1030 return -EINVAL;
1031
1032 if (!is_livepatch_module(patch->mod)) {
1033 pr_err("module %s is not marked as a livepatch module\n",
1034 patch->mod->name);
1035 return -EINVAL;
1036 }
1037
1038 if (!klp_initialized())
1039 return -ENODEV;
1040
1041 if (!klp_have_reliable_stack()) {
1042 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1043 pr_warn("The livepatch transition may never complete.\n");
1044 }
1045
1046 mutex_lock(&klp_mutex);
1047
1048 if (!klp_is_patch_compatible(patch)) {
1049 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1050 patch->mod->name);
1051 mutex_unlock(&klp_mutex);
1052 return -EINVAL;
1053 }
1054
1055 ret = klp_init_patch_early(patch);
1056 if (ret) {
1057 mutex_unlock(&klp_mutex);
1058 return ret;
1059 }
1060
1061 ret = klp_init_patch(patch);
1062 if (ret)
1063 goto err;
1064
1065 ret = __klp_enable_patch(patch);
1066 if (ret)
1067 goto err;
1068
1069 mutex_unlock(&klp_mutex);
1070
1071 return 0;
1072
1073 err:
1074 klp_free_patch_start(patch);
1075
1076 mutex_unlock(&klp_mutex);
1077
1078 klp_free_patch_finish(patch);
1079
1080 return ret;
1081 }
1082 EXPORT_SYMBOL_GPL(klp_enable_patch);
1083
1084 /*
1085 * This function unpatches objects from the replaced livepatches.
1086 *
1087 * We could be pretty aggressive here. It is called in the situation where
1088 * these structures are no longer accessed from the ftrace handler.
1089 * All functions are redirected by the klp_transition_patch. They
1090 * use either a new code or they are in the original code because
1091 * of the special nop function patches.
1092 *
1093 * The only exception is when the transition was forced. In this case,
1094 * klp_ftrace_handler() might still see the replaced patch on the stack.
1095 * Fortunately, it is carefully designed to work with removed functions
1096 * thanks to RCU. We only have to keep the patches on the system. Also
1097 * this is handled transparently by patch->module_put.
1098 */
1099 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1100 {
1101 struct klp_patch *old_patch;
1102
1103 klp_for_each_patch(old_patch) {
1104 if (old_patch == new_patch)
1105 return;
1106
1107 old_patch->enabled = false;
1108 klp_unpatch_objects(old_patch);
1109 }
1110 }
1111
1112 /*
1113 * This function removes the dynamically allocated 'nop' functions.
1114 *
1115 * We could be pretty aggressive. NOPs do not change the existing
1116 * behavior except for adding unnecessary delay by the ftrace handler.
1117 *
1118 * It is safe even when the transition was forced. The ftrace handler
1119 * will see a valid ops->func_stack entry thanks to RCU.
1120 *
1121 * We could even free the NOPs structures. They must be the last entry
1122 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1123 * It does the same as klp_synchronize_transition() to make sure that
1124 * nobody is inside the ftrace handler once the operation finishes.
1125 *
1126 * IMPORTANT: It must be called right after removing the replaced patches!
1127 */
1128 void klp_discard_nops(struct klp_patch *new_patch)
1129 {
1130 klp_unpatch_objects_dynamic(klp_transition_patch);
1131 klp_free_objects_dynamic(klp_transition_patch);
1132 }
1133
1134 /*
1135 * Remove parts of patches that touch a given kernel module. The list of
1136 * patches processed might be limited. When limit is NULL, all patches
1137 * will be handled.
1138 */
1139 static void klp_cleanup_module_patches_limited(struct module *mod,
1140 struct klp_patch *limit)
1141 {
1142 struct klp_patch *patch;
1143 struct klp_object *obj;
1144
1145 klp_for_each_patch(patch) {
1146 if (patch == limit)
1147 break;
1148
1149 klp_for_each_object(patch, obj) {
1150 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1151 continue;
1152
1153 if (patch != klp_transition_patch)
1154 klp_pre_unpatch_callback(obj);
1155
1156 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1157 patch->mod->name, obj->mod->name);
1158 klp_unpatch_object(obj);
1159
1160 klp_post_unpatch_callback(obj);
1161
1162 klp_free_object_loaded(obj);
1163 break;
1164 }
1165 }
1166 }
1167
1168 int klp_module_coming(struct module *mod)
1169 {
1170 int ret;
1171 struct klp_patch *patch;
1172 struct klp_object *obj;
1173
1174 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1175 return -EINVAL;
1176
1177 if (!strcmp(mod->name, "vmlinux")) {
1178 pr_err("vmlinux.ko: invalid module name");
1179 return -EINVAL;
1180 }
1181
1182 mutex_lock(&klp_mutex);
1183 /*
1184 * Each module has to know that klp_module_coming()
1185 * has been called. We never know what module will
1186 * get patched by a new patch.
1187 */
1188 mod->klp_alive = true;
1189
1190 klp_for_each_patch(patch) {
1191 klp_for_each_object(patch, obj) {
1192 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1193 continue;
1194
1195 obj->mod = mod;
1196
1197 ret = klp_init_object_loaded(patch, obj);
1198 if (ret) {
1199 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1200 patch->mod->name, obj->mod->name, ret);
1201 goto err;
1202 }
1203
1204 pr_notice("applying patch '%s' to loading module '%s'\n",
1205 patch->mod->name, obj->mod->name);
1206
1207 ret = klp_pre_patch_callback(obj);
1208 if (ret) {
1209 pr_warn("pre-patch callback failed for object '%s'\n",
1210 obj->name);
1211 goto err;
1212 }
1213
1214 ret = klp_patch_object(obj);
1215 if (ret) {
1216 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1217 patch->mod->name, obj->mod->name, ret);
1218
1219 klp_post_unpatch_callback(obj);
1220 goto err;
1221 }
1222
1223 if (patch != klp_transition_patch)
1224 klp_post_patch_callback(obj);
1225
1226 break;
1227 }
1228 }
1229
1230 mutex_unlock(&klp_mutex);
1231
1232 return 0;
1233
1234 err:
1235 /*
1236 * If a patch is unsuccessfully applied, return
1237 * error to the module loader.
1238 */
1239 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1240 patch->mod->name, obj->mod->name, obj->mod->name);
1241 mod->klp_alive = false;
1242 obj->mod = NULL;
1243 klp_cleanup_module_patches_limited(mod, patch);
1244 mutex_unlock(&klp_mutex);
1245
1246 return ret;
1247 }
1248
1249 void klp_module_going(struct module *mod)
1250 {
1251 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1252 mod->state != MODULE_STATE_COMING))
1253 return;
1254
1255 mutex_lock(&klp_mutex);
1256 /*
1257 * Each module has to know that klp_module_going()
1258 * has been called. We never know what module will
1259 * get patched by a new patch.
1260 */
1261 mod->klp_alive = false;
1262
1263 klp_cleanup_module_patches_limited(mod, NULL);
1264
1265 mutex_unlock(&klp_mutex);
1266 }
1267
1268 static int __init klp_init(void)
1269 {
1270 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1271 if (!klp_root_kobj)
1272 return -ENOMEM;
1273
1274 return 0;
1275 }
1276
1277 module_init(klp_init);