]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/locking/lockdep.c
locking/lockdep: Avoid potential access of invalid memory in lock_class
[mirror_ubuntu-jammy-kernel.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85 if (!debug_locks)
86 return false;
87
88 if (this_cpu_read(lockdep_recursion))
89 return false;
90
91 if (current->lockdep_recursion)
92 return false;
93
94 return true;
95 }
96
97 /*
98 * lockdep_lock: protects the lockdep graph, the hashes and the
99 * class/list/hash allocators.
100 *
101 * This is one of the rare exceptions where it's justified
102 * to use a raw spinlock - we really dont want the spinlock
103 * code to recurse back into the lockdep code...
104 */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112 __this_cpu_inc(lockdep_recursion);
113 arch_spin_lock(&__lock);
114 __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 return;
123
124 __owner = NULL;
125 arch_spin_unlock(&__lock);
126 __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131 return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139 lockdep_lock();
140 /*
141 * Make sure that if another CPU detected a bug while
142 * walking the graph we dont change it (while the other
143 * CPU is busy printing out stuff with the graph lock
144 * dropped already)
145 */
146 if (!debug_locks) {
147 lockdep_unlock();
148 return 0;
149 }
150 return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155 lockdep_unlock();
156 }
157
158 /*
159 * Turn lock debugging off and return with 0 if it was off already,
160 * and also release the graph lock:
161 */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 int ret = debug_locks_off();
165
166 lockdep_unlock();
167
168 return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176 * All data structures here are protected by the global debug_lock.
177 *
178 * nr_lock_classes is the number of elements of lock_classes[] that is
179 * in use.
180 */
181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191
192 inline struct lock_class *lockdep_hlock_class(struct held_lock *hlock)
193 {
194 unsigned int class_idx = hlock->class_idx;
195
196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197 barrier();
198
199 if (!test_bit(class_idx, lock_classes_in_use)) {
200 /*
201 * Someone passed in garbage, we give up.
202 */
203 DEBUG_LOCKS_WARN_ON(1);
204 return NULL;
205 }
206
207 /*
208 * At this point, if the passed hlock->class_idx is still garbage,
209 * we just have to live with it
210 */
211 return lock_classes + class_idx;
212 }
213 EXPORT_SYMBOL_GPL(lockdep_hlock_class);
214 #define hlock_class(hlock) lockdep_hlock_class(hlock)
215
216 #ifdef CONFIG_LOCK_STAT
217 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
218
219 static inline u64 lockstat_clock(void)
220 {
221 return local_clock();
222 }
223
224 static int lock_point(unsigned long points[], unsigned long ip)
225 {
226 int i;
227
228 for (i = 0; i < LOCKSTAT_POINTS; i++) {
229 if (points[i] == 0) {
230 points[i] = ip;
231 break;
232 }
233 if (points[i] == ip)
234 break;
235 }
236
237 return i;
238 }
239
240 static void lock_time_inc(struct lock_time *lt, u64 time)
241 {
242 if (time > lt->max)
243 lt->max = time;
244
245 if (time < lt->min || !lt->nr)
246 lt->min = time;
247
248 lt->total += time;
249 lt->nr++;
250 }
251
252 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
253 {
254 if (!src->nr)
255 return;
256
257 if (src->max > dst->max)
258 dst->max = src->max;
259
260 if (src->min < dst->min || !dst->nr)
261 dst->min = src->min;
262
263 dst->total += src->total;
264 dst->nr += src->nr;
265 }
266
267 struct lock_class_stats lock_stats(struct lock_class *class)
268 {
269 struct lock_class_stats stats;
270 int cpu, i;
271
272 memset(&stats, 0, sizeof(struct lock_class_stats));
273 for_each_possible_cpu(cpu) {
274 struct lock_class_stats *pcs =
275 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
276
277 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
278 stats.contention_point[i] += pcs->contention_point[i];
279
280 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
281 stats.contending_point[i] += pcs->contending_point[i];
282
283 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
284 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
285
286 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
287 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
288
289 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
290 stats.bounces[i] += pcs->bounces[i];
291 }
292
293 return stats;
294 }
295
296 void clear_lock_stats(struct lock_class *class)
297 {
298 int cpu;
299
300 for_each_possible_cpu(cpu) {
301 struct lock_class_stats *cpu_stats =
302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303
304 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
305 }
306 memset(class->contention_point, 0, sizeof(class->contention_point));
307 memset(class->contending_point, 0, sizeof(class->contending_point));
308 }
309
310 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
311 {
312 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
313 }
314
315 static void lock_release_holdtime(struct held_lock *hlock)
316 {
317 struct lock_class_stats *stats;
318 u64 holdtime;
319
320 if (!lock_stat)
321 return;
322
323 holdtime = lockstat_clock() - hlock->holdtime_stamp;
324
325 stats = get_lock_stats(hlock_class(hlock));
326 if (hlock->read)
327 lock_time_inc(&stats->read_holdtime, holdtime);
328 else
329 lock_time_inc(&stats->write_holdtime, holdtime);
330 }
331 #else
332 static inline void lock_release_holdtime(struct held_lock *hlock)
333 {
334 }
335 #endif
336
337 /*
338 * We keep a global list of all lock classes. The list is only accessed with
339 * the lockdep spinlock lock held. free_lock_classes is a list with free
340 * elements. These elements are linked together by the lock_entry member in
341 * struct lock_class.
342 */
343 LIST_HEAD(all_lock_classes);
344 static LIST_HEAD(free_lock_classes);
345
346 /**
347 * struct pending_free - information about data structures about to be freed
348 * @zapped: Head of a list with struct lock_class elements.
349 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
350 * are about to be freed.
351 */
352 struct pending_free {
353 struct list_head zapped;
354 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
355 };
356
357 /**
358 * struct delayed_free - data structures used for delayed freeing
359 *
360 * A data structure for delayed freeing of data structures that may be
361 * accessed by RCU readers at the time these were freed.
362 *
363 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
364 * @index: Index of @pf to which freed data structures are added.
365 * @scheduled: Whether or not an RCU callback has been scheduled.
366 * @pf: Array with information about data structures about to be freed.
367 */
368 static struct delayed_free {
369 struct rcu_head rcu_head;
370 int index;
371 int scheduled;
372 struct pending_free pf[2];
373 } delayed_free;
374
375 /*
376 * The lockdep classes are in a hash-table as well, for fast lookup:
377 */
378 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
379 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
380 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
381 #define classhashentry(key) (classhash_table + __classhashfn((key)))
382
383 static struct hlist_head classhash_table[CLASSHASH_SIZE];
384
385 /*
386 * We put the lock dependency chains into a hash-table as well, to cache
387 * their existence:
388 */
389 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
390 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
391 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
392 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
393
394 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
395
396 /*
397 * the id of held_lock
398 */
399 static inline u16 hlock_id(struct held_lock *hlock)
400 {
401 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
402
403 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
404 }
405
406 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
407 {
408 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
409 }
410
411 /*
412 * The hash key of the lock dependency chains is a hash itself too:
413 * it's a hash of all locks taken up to that lock, including that lock.
414 * It's a 64-bit hash, because it's important for the keys to be
415 * unique.
416 */
417 static inline u64 iterate_chain_key(u64 key, u32 idx)
418 {
419 u32 k0 = key, k1 = key >> 32;
420
421 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
422
423 return k0 | (u64)k1 << 32;
424 }
425
426 void lockdep_init_task(struct task_struct *task)
427 {
428 task->lockdep_depth = 0; /* no locks held yet */
429 task->curr_chain_key = INITIAL_CHAIN_KEY;
430 task->lockdep_recursion = 0;
431 }
432
433 static __always_inline void lockdep_recursion_inc(void)
434 {
435 __this_cpu_inc(lockdep_recursion);
436 }
437
438 static __always_inline void lockdep_recursion_finish(void)
439 {
440 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
441 __this_cpu_write(lockdep_recursion, 0);
442 }
443
444 void lockdep_set_selftest_task(struct task_struct *task)
445 {
446 lockdep_selftest_task_struct = task;
447 }
448
449 /*
450 * Debugging switches:
451 */
452
453 #define VERBOSE 0
454 #define VERY_VERBOSE 0
455
456 #if VERBOSE
457 # define HARDIRQ_VERBOSE 1
458 # define SOFTIRQ_VERBOSE 1
459 #else
460 # define HARDIRQ_VERBOSE 0
461 # define SOFTIRQ_VERBOSE 0
462 #endif
463
464 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
465 /*
466 * Quick filtering for interesting events:
467 */
468 static int class_filter(struct lock_class *class)
469 {
470 #if 0
471 /* Example */
472 if (class->name_version == 1 &&
473 !strcmp(class->name, "lockname"))
474 return 1;
475 if (class->name_version == 1 &&
476 !strcmp(class->name, "&struct->lockfield"))
477 return 1;
478 #endif
479 /* Filter everything else. 1 would be to allow everything else */
480 return 0;
481 }
482 #endif
483
484 static int verbose(struct lock_class *class)
485 {
486 #if VERBOSE
487 return class_filter(class);
488 #endif
489 return 0;
490 }
491
492 static void print_lockdep_off(const char *bug_msg)
493 {
494 printk(KERN_DEBUG "%s\n", bug_msg);
495 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
496 #ifdef CONFIG_LOCK_STAT
497 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
498 #endif
499 }
500
501 unsigned long nr_stack_trace_entries;
502
503 #ifdef CONFIG_PROVE_LOCKING
504 /**
505 * struct lock_trace - single stack backtrace
506 * @hash_entry: Entry in a stack_trace_hash[] list.
507 * @hash: jhash() of @entries.
508 * @nr_entries: Number of entries in @entries.
509 * @entries: Actual stack backtrace.
510 */
511 struct lock_trace {
512 struct hlist_node hash_entry;
513 u32 hash;
514 u32 nr_entries;
515 unsigned long entries[] __aligned(sizeof(unsigned long));
516 };
517 #define LOCK_TRACE_SIZE_IN_LONGS \
518 (sizeof(struct lock_trace) / sizeof(unsigned long))
519 /*
520 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
521 */
522 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
523 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
524
525 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
526 {
527 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
528 memcmp(t1->entries, t2->entries,
529 t1->nr_entries * sizeof(t1->entries[0])) == 0;
530 }
531
532 static struct lock_trace *save_trace(void)
533 {
534 struct lock_trace *trace, *t2;
535 struct hlist_head *hash_head;
536 u32 hash;
537 int max_entries;
538
539 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
540 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
541
542 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
543 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
544 LOCK_TRACE_SIZE_IN_LONGS;
545
546 if (max_entries <= 0) {
547 if (!debug_locks_off_graph_unlock())
548 return NULL;
549
550 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
551 dump_stack();
552
553 return NULL;
554 }
555 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
556
557 hash = jhash(trace->entries, trace->nr_entries *
558 sizeof(trace->entries[0]), 0);
559 trace->hash = hash;
560 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
561 hlist_for_each_entry(t2, hash_head, hash_entry) {
562 if (traces_identical(trace, t2))
563 return t2;
564 }
565 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
566 hlist_add_head(&trace->hash_entry, hash_head);
567
568 return trace;
569 }
570
571 /* Return the number of stack traces in the stack_trace[] array. */
572 u64 lockdep_stack_trace_count(void)
573 {
574 struct lock_trace *trace;
575 u64 c = 0;
576 int i;
577
578 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
579 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
580 c++;
581 }
582 }
583
584 return c;
585 }
586
587 /* Return the number of stack hash chains that have at least one stack trace. */
588 u64 lockdep_stack_hash_count(void)
589 {
590 u64 c = 0;
591 int i;
592
593 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
594 if (!hlist_empty(&stack_trace_hash[i]))
595 c++;
596
597 return c;
598 }
599 #endif
600
601 unsigned int nr_hardirq_chains;
602 unsigned int nr_softirq_chains;
603 unsigned int nr_process_chains;
604 unsigned int max_lockdep_depth;
605
606 #ifdef CONFIG_DEBUG_LOCKDEP
607 /*
608 * Various lockdep statistics:
609 */
610 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
611 #endif
612
613 #ifdef CONFIG_PROVE_LOCKING
614 /*
615 * Locking printouts:
616 */
617
618 #define __USAGE(__STATE) \
619 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
620 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
621 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
622 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
623
624 static const char *usage_str[] =
625 {
626 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
627 #include "lockdep_states.h"
628 #undef LOCKDEP_STATE
629 [LOCK_USED] = "INITIAL USE",
630 [LOCK_USED_READ] = "INITIAL READ USE",
631 /* abused as string storage for verify_lock_unused() */
632 [LOCK_USAGE_STATES] = "IN-NMI",
633 };
634 #endif
635
636 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
637 {
638 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
639 }
640
641 static inline unsigned long lock_flag(enum lock_usage_bit bit)
642 {
643 return 1UL << bit;
644 }
645
646 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
647 {
648 /*
649 * The usage character defaults to '.' (i.e., irqs disabled and not in
650 * irq context), which is the safest usage category.
651 */
652 char c = '.';
653
654 /*
655 * The order of the following usage checks matters, which will
656 * result in the outcome character as follows:
657 *
658 * - '+': irq is enabled and not in irq context
659 * - '-': in irq context and irq is disabled
660 * - '?': in irq context and irq is enabled
661 */
662 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
663 c = '+';
664 if (class->usage_mask & lock_flag(bit))
665 c = '?';
666 } else if (class->usage_mask & lock_flag(bit))
667 c = '-';
668
669 return c;
670 }
671
672 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
673 {
674 int i = 0;
675
676 #define LOCKDEP_STATE(__STATE) \
677 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
678 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
679 #include "lockdep_states.h"
680 #undef LOCKDEP_STATE
681
682 usage[i] = '\0';
683 }
684
685 static void __print_lock_name(struct lock_class *class)
686 {
687 char str[KSYM_NAME_LEN];
688 const char *name;
689
690 name = class->name;
691 if (!name) {
692 name = __get_key_name(class->key, str);
693 printk(KERN_CONT "%s", name);
694 } else {
695 printk(KERN_CONT "%s", name);
696 if (class->name_version > 1)
697 printk(KERN_CONT "#%d", class->name_version);
698 if (class->subclass)
699 printk(KERN_CONT "/%d", class->subclass);
700 }
701 }
702
703 static void print_lock_name(struct lock_class *class)
704 {
705 char usage[LOCK_USAGE_CHARS];
706
707 get_usage_chars(class, usage);
708
709 printk(KERN_CONT " (");
710 __print_lock_name(class);
711 printk(KERN_CONT "){%s}-{%d:%d}", usage,
712 class->wait_type_outer ?: class->wait_type_inner,
713 class->wait_type_inner);
714 }
715
716 static void print_lockdep_cache(struct lockdep_map *lock)
717 {
718 const char *name;
719 char str[KSYM_NAME_LEN];
720
721 name = lock->name;
722 if (!name)
723 name = __get_key_name(lock->key->subkeys, str);
724
725 printk(KERN_CONT "%s", name);
726 }
727
728 static void print_lock(struct held_lock *hlock)
729 {
730 /*
731 * We can be called locklessly through debug_show_all_locks() so be
732 * extra careful, the hlock might have been released and cleared.
733 *
734 * If this indeed happens, lets pretend it does not hurt to continue
735 * to print the lock unless the hlock class_idx does not point to a
736 * registered class. The rationale here is: since we don't attempt
737 * to distinguish whether we are in this situation, if it just
738 * happened we can't count on class_idx to tell either.
739 */
740 struct lock_class *lock = hlock_class(hlock);
741
742 if (!lock) {
743 printk(KERN_CONT "<RELEASED>\n");
744 return;
745 }
746
747 printk(KERN_CONT "%px", hlock->instance);
748 print_lock_name(lock);
749 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
750 }
751
752 static void lockdep_print_held_locks(struct task_struct *p)
753 {
754 int i, depth = READ_ONCE(p->lockdep_depth);
755
756 if (!depth)
757 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
758 else
759 printk("%d lock%s held by %s/%d:\n", depth,
760 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
761 /*
762 * It's not reliable to print a task's held locks if it's not sleeping
763 * and it's not the current task.
764 */
765 if (p != current && task_is_running(p))
766 return;
767 for (i = 0; i < depth; i++) {
768 printk(" #%d: ", i);
769 print_lock(p->held_locks + i);
770 }
771 }
772
773 static void print_kernel_ident(void)
774 {
775 printk("%s %.*s %s\n", init_utsname()->release,
776 (int)strcspn(init_utsname()->version, " "),
777 init_utsname()->version,
778 print_tainted());
779 }
780
781 static int very_verbose(struct lock_class *class)
782 {
783 #if VERY_VERBOSE
784 return class_filter(class);
785 #endif
786 return 0;
787 }
788
789 /*
790 * Is this the address of a static object:
791 */
792 #ifdef __KERNEL__
793 static int static_obj(const void *obj)
794 {
795 unsigned long start = (unsigned long) &_stext,
796 end = (unsigned long) &_end,
797 addr = (unsigned long) obj;
798
799 if (arch_is_kernel_initmem_freed(addr))
800 return 0;
801
802 /*
803 * static variable?
804 */
805 if ((addr >= start) && (addr < end))
806 return 1;
807
808 if (arch_is_kernel_data(addr))
809 return 1;
810
811 /*
812 * in-kernel percpu var?
813 */
814 if (is_kernel_percpu_address(addr))
815 return 1;
816
817 /*
818 * module static or percpu var?
819 */
820 return is_module_address(addr) || is_module_percpu_address(addr);
821 }
822 #endif
823
824 /*
825 * To make lock name printouts unique, we calculate a unique
826 * class->name_version generation counter. The caller must hold the graph
827 * lock.
828 */
829 static int count_matching_names(struct lock_class *new_class)
830 {
831 struct lock_class *class;
832 int count = 0;
833
834 if (!new_class->name)
835 return 0;
836
837 list_for_each_entry(class, &all_lock_classes, lock_entry) {
838 if (new_class->key - new_class->subclass == class->key)
839 return class->name_version;
840 if (class->name && !strcmp(class->name, new_class->name))
841 count = max(count, class->name_version);
842 }
843
844 return count + 1;
845 }
846
847 /* used from NMI context -- must be lockless */
848 static noinstr struct lock_class *
849 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
850 {
851 struct lockdep_subclass_key *key;
852 struct hlist_head *hash_head;
853 struct lock_class *class;
854
855 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
856 instrumentation_begin();
857 debug_locks_off();
858 printk(KERN_ERR
859 "BUG: looking up invalid subclass: %u\n", subclass);
860 printk(KERN_ERR
861 "turning off the locking correctness validator.\n");
862 dump_stack();
863 instrumentation_end();
864 return NULL;
865 }
866
867 /*
868 * If it is not initialised then it has never been locked,
869 * so it won't be present in the hash table.
870 */
871 if (unlikely(!lock->key))
872 return NULL;
873
874 /*
875 * NOTE: the class-key must be unique. For dynamic locks, a static
876 * lock_class_key variable is passed in through the mutex_init()
877 * (or spin_lock_init()) call - which acts as the key. For static
878 * locks we use the lock object itself as the key.
879 */
880 BUILD_BUG_ON(sizeof(struct lock_class_key) >
881 sizeof(struct lockdep_map));
882
883 key = lock->key->subkeys + subclass;
884
885 hash_head = classhashentry(key);
886
887 /*
888 * We do an RCU walk of the hash, see lockdep_free_key_range().
889 */
890 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
891 return NULL;
892
893 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
894 if (class->key == key) {
895 /*
896 * Huh! same key, different name? Did someone trample
897 * on some memory? We're most confused.
898 */
899 WARN_ON_ONCE(class->name != lock->name &&
900 lock->key != &__lockdep_no_validate__);
901 return class;
902 }
903 }
904
905 return NULL;
906 }
907
908 /*
909 * Static locks do not have their class-keys yet - for them the key is
910 * the lock object itself. If the lock is in the per cpu area, the
911 * canonical address of the lock (per cpu offset removed) is used.
912 */
913 static bool assign_lock_key(struct lockdep_map *lock)
914 {
915 unsigned long can_addr, addr = (unsigned long)lock;
916
917 #ifdef __KERNEL__
918 /*
919 * lockdep_free_key_range() assumes that struct lock_class_key
920 * objects do not overlap. Since we use the address of lock
921 * objects as class key for static objects, check whether the
922 * size of lock_class_key objects does not exceed the size of
923 * the smallest lock object.
924 */
925 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
926 #endif
927
928 if (__is_kernel_percpu_address(addr, &can_addr))
929 lock->key = (void *)can_addr;
930 else if (__is_module_percpu_address(addr, &can_addr))
931 lock->key = (void *)can_addr;
932 else if (static_obj(lock))
933 lock->key = (void *)lock;
934 else {
935 /* Debug-check: all keys must be persistent! */
936 debug_locks_off();
937 pr_err("INFO: trying to register non-static key.\n");
938 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
939 pr_err("you didn't initialize this object before use?\n");
940 pr_err("turning off the locking correctness validator.\n");
941 dump_stack();
942 return false;
943 }
944
945 return true;
946 }
947
948 #ifdef CONFIG_DEBUG_LOCKDEP
949
950 /* Check whether element @e occurs in list @h */
951 static bool in_list(struct list_head *e, struct list_head *h)
952 {
953 struct list_head *f;
954
955 list_for_each(f, h) {
956 if (e == f)
957 return true;
958 }
959
960 return false;
961 }
962
963 /*
964 * Check whether entry @e occurs in any of the locks_after or locks_before
965 * lists.
966 */
967 static bool in_any_class_list(struct list_head *e)
968 {
969 struct lock_class *class;
970 int i;
971
972 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
973 class = &lock_classes[i];
974 if (in_list(e, &class->locks_after) ||
975 in_list(e, &class->locks_before))
976 return true;
977 }
978 return false;
979 }
980
981 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
982 {
983 struct lock_list *e;
984
985 list_for_each_entry(e, h, entry) {
986 if (e->links_to != c) {
987 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
988 c->name ? : "(?)",
989 (unsigned long)(e - list_entries),
990 e->links_to && e->links_to->name ?
991 e->links_to->name : "(?)",
992 e->class && e->class->name ? e->class->name :
993 "(?)");
994 return false;
995 }
996 }
997 return true;
998 }
999
1000 #ifdef CONFIG_PROVE_LOCKING
1001 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1002 #endif
1003
1004 static bool check_lock_chain_key(struct lock_chain *chain)
1005 {
1006 #ifdef CONFIG_PROVE_LOCKING
1007 u64 chain_key = INITIAL_CHAIN_KEY;
1008 int i;
1009
1010 for (i = chain->base; i < chain->base + chain->depth; i++)
1011 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1012 /*
1013 * The 'unsigned long long' casts avoid that a compiler warning
1014 * is reported when building tools/lib/lockdep.
1015 */
1016 if (chain->chain_key != chain_key) {
1017 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1018 (unsigned long long)(chain - lock_chains),
1019 (unsigned long long)chain->chain_key,
1020 (unsigned long long)chain_key);
1021 return false;
1022 }
1023 #endif
1024 return true;
1025 }
1026
1027 static bool in_any_zapped_class_list(struct lock_class *class)
1028 {
1029 struct pending_free *pf;
1030 int i;
1031
1032 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1033 if (in_list(&class->lock_entry, &pf->zapped))
1034 return true;
1035 }
1036
1037 return false;
1038 }
1039
1040 static bool __check_data_structures(void)
1041 {
1042 struct lock_class *class;
1043 struct lock_chain *chain;
1044 struct hlist_head *head;
1045 struct lock_list *e;
1046 int i;
1047
1048 /* Check whether all classes occur in a lock list. */
1049 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1050 class = &lock_classes[i];
1051 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1052 !in_list(&class->lock_entry, &free_lock_classes) &&
1053 !in_any_zapped_class_list(class)) {
1054 printk(KERN_INFO "class %px/%s is not in any class list\n",
1055 class, class->name ? : "(?)");
1056 return false;
1057 }
1058 }
1059
1060 /* Check whether all classes have valid lock lists. */
1061 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1062 class = &lock_classes[i];
1063 if (!class_lock_list_valid(class, &class->locks_before))
1064 return false;
1065 if (!class_lock_list_valid(class, &class->locks_after))
1066 return false;
1067 }
1068
1069 /* Check the chain_key of all lock chains. */
1070 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1071 head = chainhash_table + i;
1072 hlist_for_each_entry_rcu(chain, head, entry) {
1073 if (!check_lock_chain_key(chain))
1074 return false;
1075 }
1076 }
1077
1078 /*
1079 * Check whether all list entries that are in use occur in a class
1080 * lock list.
1081 */
1082 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1083 e = list_entries + i;
1084 if (!in_any_class_list(&e->entry)) {
1085 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1086 (unsigned int)(e - list_entries),
1087 e->class->name ? : "(?)",
1088 e->links_to->name ? : "(?)");
1089 return false;
1090 }
1091 }
1092
1093 /*
1094 * Check whether all list entries that are not in use do not occur in
1095 * a class lock list.
1096 */
1097 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1098 e = list_entries + i;
1099 if (in_any_class_list(&e->entry)) {
1100 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1101 (unsigned int)(e - list_entries),
1102 e->class && e->class->name ? e->class->name :
1103 "(?)",
1104 e->links_to && e->links_to->name ?
1105 e->links_to->name : "(?)");
1106 return false;
1107 }
1108 }
1109
1110 return true;
1111 }
1112
1113 int check_consistency = 0;
1114 module_param(check_consistency, int, 0644);
1115
1116 static void check_data_structures(void)
1117 {
1118 static bool once = false;
1119
1120 if (check_consistency && !once) {
1121 if (!__check_data_structures()) {
1122 once = true;
1123 WARN_ON(once);
1124 }
1125 }
1126 }
1127
1128 #else /* CONFIG_DEBUG_LOCKDEP */
1129
1130 static inline void check_data_structures(void) { }
1131
1132 #endif /* CONFIG_DEBUG_LOCKDEP */
1133
1134 static void init_chain_block_buckets(void);
1135
1136 /*
1137 * Initialize the lock_classes[] array elements, the free_lock_classes list
1138 * and also the delayed_free structure.
1139 */
1140 static void init_data_structures_once(void)
1141 {
1142 static bool __read_mostly ds_initialized, rcu_head_initialized;
1143 int i;
1144
1145 if (likely(rcu_head_initialized))
1146 return;
1147
1148 if (system_state >= SYSTEM_SCHEDULING) {
1149 init_rcu_head(&delayed_free.rcu_head);
1150 rcu_head_initialized = true;
1151 }
1152
1153 if (ds_initialized)
1154 return;
1155
1156 ds_initialized = true;
1157
1158 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1159 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1160
1161 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1162 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1163 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1164 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1165 }
1166 init_chain_block_buckets();
1167 }
1168
1169 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1170 {
1171 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1172
1173 return lock_keys_hash + hash;
1174 }
1175
1176 /* Register a dynamically allocated key. */
1177 void lockdep_register_key(struct lock_class_key *key)
1178 {
1179 struct hlist_head *hash_head;
1180 struct lock_class_key *k;
1181 unsigned long flags;
1182
1183 if (WARN_ON_ONCE(static_obj(key)))
1184 return;
1185 hash_head = keyhashentry(key);
1186
1187 raw_local_irq_save(flags);
1188 if (!graph_lock())
1189 goto restore_irqs;
1190 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1191 if (WARN_ON_ONCE(k == key))
1192 goto out_unlock;
1193 }
1194 hlist_add_head_rcu(&key->hash_entry, hash_head);
1195 out_unlock:
1196 graph_unlock();
1197 restore_irqs:
1198 raw_local_irq_restore(flags);
1199 }
1200 EXPORT_SYMBOL_GPL(lockdep_register_key);
1201
1202 /* Check whether a key has been registered as a dynamic key. */
1203 static bool is_dynamic_key(const struct lock_class_key *key)
1204 {
1205 struct hlist_head *hash_head;
1206 struct lock_class_key *k;
1207 bool found = false;
1208
1209 if (WARN_ON_ONCE(static_obj(key)))
1210 return false;
1211
1212 /*
1213 * If lock debugging is disabled lock_keys_hash[] may contain
1214 * pointers to memory that has already been freed. Avoid triggering
1215 * a use-after-free in that case by returning early.
1216 */
1217 if (!debug_locks)
1218 return true;
1219
1220 hash_head = keyhashentry(key);
1221
1222 rcu_read_lock();
1223 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1224 if (k == key) {
1225 found = true;
1226 break;
1227 }
1228 }
1229 rcu_read_unlock();
1230
1231 return found;
1232 }
1233
1234 /*
1235 * Register a lock's class in the hash-table, if the class is not present
1236 * yet. Otherwise we look it up. We cache the result in the lock object
1237 * itself, so actual lookup of the hash should be once per lock object.
1238 */
1239 static struct lock_class *
1240 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1241 {
1242 struct lockdep_subclass_key *key;
1243 struct hlist_head *hash_head;
1244 struct lock_class *class;
1245
1246 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1247
1248 class = look_up_lock_class(lock, subclass);
1249 if (likely(class))
1250 goto out_set_class_cache;
1251
1252 if (!lock->key) {
1253 if (!assign_lock_key(lock))
1254 return NULL;
1255 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1256 return NULL;
1257 }
1258
1259 key = lock->key->subkeys + subclass;
1260 hash_head = classhashentry(key);
1261
1262 if (!graph_lock()) {
1263 return NULL;
1264 }
1265 /*
1266 * We have to do the hash-walk again, to avoid races
1267 * with another CPU:
1268 */
1269 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1270 if (class->key == key)
1271 goto out_unlock_set;
1272 }
1273
1274 init_data_structures_once();
1275
1276 /* Allocate a new lock class and add it to the hash. */
1277 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1278 lock_entry);
1279 if (!class) {
1280 if (!debug_locks_off_graph_unlock()) {
1281 return NULL;
1282 }
1283
1284 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1285 dump_stack();
1286 return NULL;
1287 }
1288 nr_lock_classes++;
1289 __set_bit(class - lock_classes, lock_classes_in_use);
1290 debug_atomic_inc(nr_unused_locks);
1291 class->key = key;
1292 class->name = lock->name;
1293 class->subclass = subclass;
1294 WARN_ON_ONCE(!list_empty(&class->locks_before));
1295 WARN_ON_ONCE(!list_empty(&class->locks_after));
1296 class->name_version = count_matching_names(class);
1297 class->wait_type_inner = lock->wait_type_inner;
1298 class->wait_type_outer = lock->wait_type_outer;
1299 class->lock_type = lock->lock_type;
1300 /*
1301 * We use RCU's safe list-add method to make
1302 * parallel walking of the hash-list safe:
1303 */
1304 hlist_add_head_rcu(&class->hash_entry, hash_head);
1305 /*
1306 * Remove the class from the free list and add it to the global list
1307 * of classes.
1308 */
1309 list_move_tail(&class->lock_entry, &all_lock_classes);
1310
1311 if (verbose(class)) {
1312 graph_unlock();
1313
1314 printk("\nnew class %px: %s", class->key, class->name);
1315 if (class->name_version > 1)
1316 printk(KERN_CONT "#%d", class->name_version);
1317 printk(KERN_CONT "\n");
1318 dump_stack();
1319
1320 if (!graph_lock()) {
1321 return NULL;
1322 }
1323 }
1324 out_unlock_set:
1325 graph_unlock();
1326
1327 out_set_class_cache:
1328 if (!subclass || force)
1329 lock->class_cache[0] = class;
1330 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1331 lock->class_cache[subclass] = class;
1332
1333 /*
1334 * Hash collision, did we smoke some? We found a class with a matching
1335 * hash but the subclass -- which is hashed in -- didn't match.
1336 */
1337 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1338 return NULL;
1339
1340 return class;
1341 }
1342
1343 #ifdef CONFIG_PROVE_LOCKING
1344 /*
1345 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1346 * with NULL on failure)
1347 */
1348 static struct lock_list *alloc_list_entry(void)
1349 {
1350 int idx = find_first_zero_bit(list_entries_in_use,
1351 ARRAY_SIZE(list_entries));
1352
1353 if (idx >= ARRAY_SIZE(list_entries)) {
1354 if (!debug_locks_off_graph_unlock())
1355 return NULL;
1356
1357 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1358 dump_stack();
1359 return NULL;
1360 }
1361 nr_list_entries++;
1362 __set_bit(idx, list_entries_in_use);
1363 return list_entries + idx;
1364 }
1365
1366 /*
1367 * Add a new dependency to the head of the list:
1368 */
1369 static int add_lock_to_list(struct lock_class *this,
1370 struct lock_class *links_to, struct list_head *head,
1371 unsigned long ip, u16 distance, u8 dep,
1372 const struct lock_trace *trace)
1373 {
1374 struct lock_list *entry;
1375 /*
1376 * Lock not present yet - get a new dependency struct and
1377 * add it to the list:
1378 */
1379 entry = alloc_list_entry();
1380 if (!entry)
1381 return 0;
1382
1383 entry->class = this;
1384 entry->links_to = links_to;
1385 entry->dep = dep;
1386 entry->distance = distance;
1387 entry->trace = trace;
1388 /*
1389 * Both allocation and removal are done under the graph lock; but
1390 * iteration is under RCU-sched; see look_up_lock_class() and
1391 * lockdep_free_key_range().
1392 */
1393 list_add_tail_rcu(&entry->entry, head);
1394
1395 return 1;
1396 }
1397
1398 /*
1399 * For good efficiency of modular, we use power of 2
1400 */
1401 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1402 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1403
1404 /*
1405 * The circular_queue and helpers are used to implement graph
1406 * breadth-first search (BFS) algorithm, by which we can determine
1407 * whether there is a path from a lock to another. In deadlock checks,
1408 * a path from the next lock to be acquired to a previous held lock
1409 * indicates that adding the <prev> -> <next> lock dependency will
1410 * produce a circle in the graph. Breadth-first search instead of
1411 * depth-first search is used in order to find the shortest (circular)
1412 * path.
1413 */
1414 struct circular_queue {
1415 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1416 unsigned int front, rear;
1417 };
1418
1419 static struct circular_queue lock_cq;
1420
1421 unsigned int max_bfs_queue_depth;
1422
1423 static unsigned int lockdep_dependency_gen_id;
1424
1425 static inline void __cq_init(struct circular_queue *cq)
1426 {
1427 cq->front = cq->rear = 0;
1428 lockdep_dependency_gen_id++;
1429 }
1430
1431 static inline int __cq_empty(struct circular_queue *cq)
1432 {
1433 return (cq->front == cq->rear);
1434 }
1435
1436 static inline int __cq_full(struct circular_queue *cq)
1437 {
1438 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1439 }
1440
1441 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1442 {
1443 if (__cq_full(cq))
1444 return -1;
1445
1446 cq->element[cq->rear] = elem;
1447 cq->rear = (cq->rear + 1) & CQ_MASK;
1448 return 0;
1449 }
1450
1451 /*
1452 * Dequeue an element from the circular_queue, return a lock_list if
1453 * the queue is not empty, or NULL if otherwise.
1454 */
1455 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1456 {
1457 struct lock_list * lock;
1458
1459 if (__cq_empty(cq))
1460 return NULL;
1461
1462 lock = cq->element[cq->front];
1463 cq->front = (cq->front + 1) & CQ_MASK;
1464
1465 return lock;
1466 }
1467
1468 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1469 {
1470 return (cq->rear - cq->front) & CQ_MASK;
1471 }
1472
1473 static inline void mark_lock_accessed(struct lock_list *lock)
1474 {
1475 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1476 }
1477
1478 static inline void visit_lock_entry(struct lock_list *lock,
1479 struct lock_list *parent)
1480 {
1481 lock->parent = parent;
1482 }
1483
1484 static inline unsigned long lock_accessed(struct lock_list *lock)
1485 {
1486 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1487 }
1488
1489 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1490 {
1491 return child->parent;
1492 }
1493
1494 static inline int get_lock_depth(struct lock_list *child)
1495 {
1496 int depth = 0;
1497 struct lock_list *parent;
1498
1499 while ((parent = get_lock_parent(child))) {
1500 child = parent;
1501 depth++;
1502 }
1503 return depth;
1504 }
1505
1506 /*
1507 * Return the forward or backward dependency list.
1508 *
1509 * @lock: the lock_list to get its class's dependency list
1510 * @offset: the offset to struct lock_class to determine whether it is
1511 * locks_after or locks_before
1512 */
1513 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1514 {
1515 void *lock_class = lock->class;
1516
1517 return lock_class + offset;
1518 }
1519 /*
1520 * Return values of a bfs search:
1521 *
1522 * BFS_E* indicates an error
1523 * BFS_R* indicates a result (match or not)
1524 *
1525 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1526 *
1527 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1528 *
1529 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1530 * *@target_entry.
1531 *
1532 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1533 * _unchanged_.
1534 */
1535 enum bfs_result {
1536 BFS_EINVALIDNODE = -2,
1537 BFS_EQUEUEFULL = -1,
1538 BFS_RMATCH = 0,
1539 BFS_RNOMATCH = 1,
1540 };
1541
1542 /*
1543 * bfs_result < 0 means error
1544 */
1545 static inline bool bfs_error(enum bfs_result res)
1546 {
1547 return res < 0;
1548 }
1549
1550 /*
1551 * DEP_*_BIT in lock_list::dep
1552 *
1553 * For dependency @prev -> @next:
1554 *
1555 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1556 * (->read == 2)
1557 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1558 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1559 * EN: @prev is exclusive locker and @next is non-recursive locker
1560 *
1561 * Note that we define the value of DEP_*_BITs so that:
1562 * bit0 is prev->read == 0
1563 * bit1 is next->read != 2
1564 */
1565 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1566 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1567 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1568 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1569
1570 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1571 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1572 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1573 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1574
1575 static inline unsigned int
1576 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1577 {
1578 return (prev->read == 0) + ((next->read != 2) << 1);
1579 }
1580
1581 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1582 {
1583 return 1U << __calc_dep_bit(prev, next);
1584 }
1585
1586 /*
1587 * calculate the dep_bit for backwards edges. We care about whether @prev is
1588 * shared and whether @next is recursive.
1589 */
1590 static inline unsigned int
1591 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1592 {
1593 return (next->read != 2) + ((prev->read == 0) << 1);
1594 }
1595
1596 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1597 {
1598 return 1U << __calc_dep_bitb(prev, next);
1599 }
1600
1601 /*
1602 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1603 * search.
1604 */
1605 static inline void __bfs_init_root(struct lock_list *lock,
1606 struct lock_class *class)
1607 {
1608 lock->class = class;
1609 lock->parent = NULL;
1610 lock->only_xr = 0;
1611 }
1612
1613 /*
1614 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1615 * root for a BFS search.
1616 *
1617 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1618 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1619 * and -(S*)->.
1620 */
1621 static inline void bfs_init_root(struct lock_list *lock,
1622 struct held_lock *hlock)
1623 {
1624 __bfs_init_root(lock, hlock_class(hlock));
1625 lock->only_xr = (hlock->read == 2);
1626 }
1627
1628 /*
1629 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1630 *
1631 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1632 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1633 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1634 */
1635 static inline void bfs_init_rootb(struct lock_list *lock,
1636 struct held_lock *hlock)
1637 {
1638 __bfs_init_root(lock, hlock_class(hlock));
1639 lock->only_xr = (hlock->read != 0);
1640 }
1641
1642 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1643 {
1644 if (!lock || !lock->parent)
1645 return NULL;
1646
1647 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1648 &lock->entry, struct lock_list, entry);
1649 }
1650
1651 /*
1652 * Breadth-First Search to find a strong path in the dependency graph.
1653 *
1654 * @source_entry: the source of the path we are searching for.
1655 * @data: data used for the second parameter of @match function
1656 * @match: match function for the search
1657 * @target_entry: pointer to the target of a matched path
1658 * @offset: the offset to struct lock_class to determine whether it is
1659 * locks_after or locks_before
1660 *
1661 * We may have multiple edges (considering different kinds of dependencies,
1662 * e.g. ER and SN) between two nodes in the dependency graph. But
1663 * only the strong dependency path in the graph is relevant to deadlocks. A
1664 * strong dependency path is a dependency path that doesn't have two adjacent
1665 * dependencies as -(*R)-> -(S*)->, please see:
1666 *
1667 * Documentation/locking/lockdep-design.rst
1668 *
1669 * for more explanation of the definition of strong dependency paths
1670 *
1671 * In __bfs(), we only traverse in the strong dependency path:
1672 *
1673 * In lock_list::only_xr, we record whether the previous dependency only
1674 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1675 * filter out any -(S*)-> in the current dependency and after that, the
1676 * ->only_xr is set according to whether we only have -(*R)-> left.
1677 */
1678 static enum bfs_result __bfs(struct lock_list *source_entry,
1679 void *data,
1680 bool (*match)(struct lock_list *entry, void *data),
1681 bool (*skip)(struct lock_list *entry, void *data),
1682 struct lock_list **target_entry,
1683 int offset)
1684 {
1685 struct circular_queue *cq = &lock_cq;
1686 struct lock_list *lock = NULL;
1687 struct lock_list *entry;
1688 struct list_head *head;
1689 unsigned int cq_depth;
1690 bool first;
1691
1692 lockdep_assert_locked();
1693
1694 __cq_init(cq);
1695 __cq_enqueue(cq, source_entry);
1696
1697 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1698 if (!lock->class)
1699 return BFS_EINVALIDNODE;
1700
1701 /*
1702 * Step 1: check whether we already finish on this one.
1703 *
1704 * If we have visited all the dependencies from this @lock to
1705 * others (iow, if we have visited all lock_list entries in
1706 * @lock->class->locks_{after,before}) we skip, otherwise go
1707 * and visit all the dependencies in the list and mark this
1708 * list accessed.
1709 */
1710 if (lock_accessed(lock))
1711 continue;
1712 else
1713 mark_lock_accessed(lock);
1714
1715 /*
1716 * Step 2: check whether prev dependency and this form a strong
1717 * dependency path.
1718 */
1719 if (lock->parent) { /* Parent exists, check prev dependency */
1720 u8 dep = lock->dep;
1721 bool prev_only_xr = lock->parent->only_xr;
1722
1723 /*
1724 * Mask out all -(S*)-> if we only have *R in previous
1725 * step, because -(*R)-> -(S*)-> don't make up a strong
1726 * dependency.
1727 */
1728 if (prev_only_xr)
1729 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1730
1731 /* If nothing left, we skip */
1732 if (!dep)
1733 continue;
1734
1735 /* If there are only -(*R)-> left, set that for the next step */
1736 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1737 }
1738
1739 /*
1740 * Step 3: we haven't visited this and there is a strong
1741 * dependency path to this, so check with @match.
1742 * If @skip is provide and returns true, we skip this
1743 * lock (and any path this lock is in).
1744 */
1745 if (skip && skip(lock, data))
1746 continue;
1747
1748 if (match(lock, data)) {
1749 *target_entry = lock;
1750 return BFS_RMATCH;
1751 }
1752
1753 /*
1754 * Step 4: if not match, expand the path by adding the
1755 * forward or backwards dependencies in the search
1756 *
1757 */
1758 first = true;
1759 head = get_dep_list(lock, offset);
1760 list_for_each_entry_rcu(entry, head, entry) {
1761 visit_lock_entry(entry, lock);
1762
1763 /*
1764 * Note we only enqueue the first of the list into the
1765 * queue, because we can always find a sibling
1766 * dependency from one (see __bfs_next()), as a result
1767 * the space of queue is saved.
1768 */
1769 if (!first)
1770 continue;
1771
1772 first = false;
1773
1774 if (__cq_enqueue(cq, entry))
1775 return BFS_EQUEUEFULL;
1776
1777 cq_depth = __cq_get_elem_count(cq);
1778 if (max_bfs_queue_depth < cq_depth)
1779 max_bfs_queue_depth = cq_depth;
1780 }
1781 }
1782
1783 return BFS_RNOMATCH;
1784 }
1785
1786 static inline enum bfs_result
1787 __bfs_forwards(struct lock_list *src_entry,
1788 void *data,
1789 bool (*match)(struct lock_list *entry, void *data),
1790 bool (*skip)(struct lock_list *entry, void *data),
1791 struct lock_list **target_entry)
1792 {
1793 return __bfs(src_entry, data, match, skip, target_entry,
1794 offsetof(struct lock_class, locks_after));
1795
1796 }
1797
1798 static inline enum bfs_result
1799 __bfs_backwards(struct lock_list *src_entry,
1800 void *data,
1801 bool (*match)(struct lock_list *entry, void *data),
1802 bool (*skip)(struct lock_list *entry, void *data),
1803 struct lock_list **target_entry)
1804 {
1805 return __bfs(src_entry, data, match, skip, target_entry,
1806 offsetof(struct lock_class, locks_before));
1807
1808 }
1809
1810 static void print_lock_trace(const struct lock_trace *trace,
1811 unsigned int spaces)
1812 {
1813 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1814 }
1815
1816 /*
1817 * Print a dependency chain entry (this is only done when a deadlock
1818 * has been detected):
1819 */
1820 static noinline void
1821 print_circular_bug_entry(struct lock_list *target, int depth)
1822 {
1823 if (debug_locks_silent)
1824 return;
1825 printk("\n-> #%u", depth);
1826 print_lock_name(target->class);
1827 printk(KERN_CONT ":\n");
1828 print_lock_trace(target->trace, 6);
1829 }
1830
1831 static void
1832 print_circular_lock_scenario(struct held_lock *src,
1833 struct held_lock *tgt,
1834 struct lock_list *prt)
1835 {
1836 struct lock_class *source = hlock_class(src);
1837 struct lock_class *target = hlock_class(tgt);
1838 struct lock_class *parent = prt->class;
1839
1840 /*
1841 * A direct locking problem where unsafe_class lock is taken
1842 * directly by safe_class lock, then all we need to show
1843 * is the deadlock scenario, as it is obvious that the
1844 * unsafe lock is taken under the safe lock.
1845 *
1846 * But if there is a chain instead, where the safe lock takes
1847 * an intermediate lock (middle_class) where this lock is
1848 * not the same as the safe lock, then the lock chain is
1849 * used to describe the problem. Otherwise we would need
1850 * to show a different CPU case for each link in the chain
1851 * from the safe_class lock to the unsafe_class lock.
1852 */
1853 if (parent != source) {
1854 printk("Chain exists of:\n ");
1855 __print_lock_name(source);
1856 printk(KERN_CONT " --> ");
1857 __print_lock_name(parent);
1858 printk(KERN_CONT " --> ");
1859 __print_lock_name(target);
1860 printk(KERN_CONT "\n\n");
1861 }
1862
1863 printk(" Possible unsafe locking scenario:\n\n");
1864 printk(" CPU0 CPU1\n");
1865 printk(" ---- ----\n");
1866 printk(" lock(");
1867 __print_lock_name(target);
1868 printk(KERN_CONT ");\n");
1869 printk(" lock(");
1870 __print_lock_name(parent);
1871 printk(KERN_CONT ");\n");
1872 printk(" lock(");
1873 __print_lock_name(target);
1874 printk(KERN_CONT ");\n");
1875 printk(" lock(");
1876 __print_lock_name(source);
1877 printk(KERN_CONT ");\n");
1878 printk("\n *** DEADLOCK ***\n\n");
1879 }
1880
1881 /*
1882 * When a circular dependency is detected, print the
1883 * header first:
1884 */
1885 static noinline void
1886 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1887 struct held_lock *check_src,
1888 struct held_lock *check_tgt)
1889 {
1890 struct task_struct *curr = current;
1891
1892 if (debug_locks_silent)
1893 return;
1894
1895 pr_warn("\n");
1896 pr_warn("======================================================\n");
1897 pr_warn("WARNING: possible circular locking dependency detected\n");
1898 print_kernel_ident();
1899 pr_warn("------------------------------------------------------\n");
1900 pr_warn("%s/%d is trying to acquire lock:\n",
1901 curr->comm, task_pid_nr(curr));
1902 print_lock(check_src);
1903
1904 pr_warn("\nbut task is already holding lock:\n");
1905
1906 print_lock(check_tgt);
1907 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1908 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1909
1910 print_circular_bug_entry(entry, depth);
1911 }
1912
1913 /*
1914 * We are about to add A -> B into the dependency graph, and in __bfs() a
1915 * strong dependency path A -> .. -> B is found: hlock_class equals
1916 * entry->class.
1917 *
1918 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1919 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1920 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1921 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1922 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1923 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1924 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1925 *
1926 * We need to make sure both the start and the end of A -> .. -> B is not
1927 * weaker than A -> B. For the start part, please see the comment in
1928 * check_redundant(). For the end part, we need:
1929 *
1930 * Either
1931 *
1932 * a) A -> B is -(*R)-> (everything is not weaker than that)
1933 *
1934 * or
1935 *
1936 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1937 *
1938 */
1939 static inline bool hlock_equal(struct lock_list *entry, void *data)
1940 {
1941 struct held_lock *hlock = (struct held_lock *)data;
1942
1943 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1944 (hlock->read == 2 || /* A -> B is -(*R)-> */
1945 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1946 }
1947
1948 /*
1949 * We are about to add B -> A into the dependency graph, and in __bfs() a
1950 * strong dependency path A -> .. -> B is found: hlock_class equals
1951 * entry->class.
1952 *
1953 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1954 * dependency cycle, that means:
1955 *
1956 * Either
1957 *
1958 * a) B -> A is -(E*)->
1959 *
1960 * or
1961 *
1962 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1963 *
1964 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1965 */
1966 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1967 {
1968 struct held_lock *hlock = (struct held_lock *)data;
1969
1970 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1971 (hlock->read == 0 || /* B -> A is -(E*)-> */
1972 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1973 }
1974
1975 static noinline void print_circular_bug(struct lock_list *this,
1976 struct lock_list *target,
1977 struct held_lock *check_src,
1978 struct held_lock *check_tgt)
1979 {
1980 struct task_struct *curr = current;
1981 struct lock_list *parent;
1982 struct lock_list *first_parent;
1983 int depth;
1984
1985 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1986 return;
1987
1988 this->trace = save_trace();
1989 if (!this->trace)
1990 return;
1991
1992 depth = get_lock_depth(target);
1993
1994 print_circular_bug_header(target, depth, check_src, check_tgt);
1995
1996 parent = get_lock_parent(target);
1997 first_parent = parent;
1998
1999 while (parent) {
2000 print_circular_bug_entry(parent, --depth);
2001 parent = get_lock_parent(parent);
2002 }
2003
2004 printk("\nother info that might help us debug this:\n\n");
2005 print_circular_lock_scenario(check_src, check_tgt,
2006 first_parent);
2007
2008 lockdep_print_held_locks(curr);
2009
2010 printk("\nstack backtrace:\n");
2011 dump_stack();
2012 }
2013
2014 static noinline void print_bfs_bug(int ret)
2015 {
2016 if (!debug_locks_off_graph_unlock())
2017 return;
2018
2019 /*
2020 * Breadth-first-search failed, graph got corrupted?
2021 */
2022 WARN(1, "lockdep bfs error:%d\n", ret);
2023 }
2024
2025 static bool noop_count(struct lock_list *entry, void *data)
2026 {
2027 (*(unsigned long *)data)++;
2028 return false;
2029 }
2030
2031 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2032 {
2033 unsigned long count = 0;
2034 struct lock_list *target_entry;
2035
2036 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2037
2038 return count;
2039 }
2040 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2041 {
2042 unsigned long ret, flags;
2043 struct lock_list this;
2044
2045 __bfs_init_root(&this, class);
2046
2047 raw_local_irq_save(flags);
2048 lockdep_lock();
2049 ret = __lockdep_count_forward_deps(&this);
2050 lockdep_unlock();
2051 raw_local_irq_restore(flags);
2052
2053 return ret;
2054 }
2055
2056 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2057 {
2058 unsigned long count = 0;
2059 struct lock_list *target_entry;
2060
2061 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2062
2063 return count;
2064 }
2065
2066 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2067 {
2068 unsigned long ret, flags;
2069 struct lock_list this;
2070
2071 __bfs_init_root(&this, class);
2072
2073 raw_local_irq_save(flags);
2074 lockdep_lock();
2075 ret = __lockdep_count_backward_deps(&this);
2076 lockdep_unlock();
2077 raw_local_irq_restore(flags);
2078
2079 return ret;
2080 }
2081
2082 /*
2083 * Check that the dependency graph starting at <src> can lead to
2084 * <target> or not.
2085 */
2086 static noinline enum bfs_result
2087 check_path(struct held_lock *target, struct lock_list *src_entry,
2088 bool (*match)(struct lock_list *entry, void *data),
2089 bool (*skip)(struct lock_list *entry, void *data),
2090 struct lock_list **target_entry)
2091 {
2092 enum bfs_result ret;
2093
2094 ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2095
2096 if (unlikely(bfs_error(ret)))
2097 print_bfs_bug(ret);
2098
2099 return ret;
2100 }
2101
2102 /*
2103 * Prove that the dependency graph starting at <src> can not
2104 * lead to <target>. If it can, there is a circle when adding
2105 * <target> -> <src> dependency.
2106 *
2107 * Print an error and return BFS_RMATCH if it does.
2108 */
2109 static noinline enum bfs_result
2110 check_noncircular(struct held_lock *src, struct held_lock *target,
2111 struct lock_trace **const trace)
2112 {
2113 enum bfs_result ret;
2114 struct lock_list *target_entry;
2115 struct lock_list src_entry;
2116
2117 bfs_init_root(&src_entry, src);
2118
2119 debug_atomic_inc(nr_cyclic_checks);
2120
2121 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2122
2123 if (unlikely(ret == BFS_RMATCH)) {
2124 if (!*trace) {
2125 /*
2126 * If save_trace fails here, the printing might
2127 * trigger a WARN but because of the !nr_entries it
2128 * should not do bad things.
2129 */
2130 *trace = save_trace();
2131 }
2132
2133 print_circular_bug(&src_entry, target_entry, src, target);
2134 }
2135
2136 return ret;
2137 }
2138
2139 #ifdef CONFIG_TRACE_IRQFLAGS
2140
2141 /*
2142 * Forwards and backwards subgraph searching, for the purposes of
2143 * proving that two subgraphs can be connected by a new dependency
2144 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2145 *
2146 * A irq safe->unsafe deadlock happens with the following conditions:
2147 *
2148 * 1) We have a strong dependency path A -> ... -> B
2149 *
2150 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2151 * irq can create a new dependency B -> A (consider the case that a holder
2152 * of B gets interrupted by an irq whose handler will try to acquire A).
2153 *
2154 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2155 * strong circle:
2156 *
2157 * For the usage bits of B:
2158 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2159 * ENABLED_IRQ usage suffices.
2160 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2161 * ENABLED_IRQ_*_READ usage suffices.
2162 *
2163 * For the usage bits of A:
2164 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2165 * USED_IN_IRQ usage suffices.
2166 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2167 * USED_IN_IRQ_*_READ usage suffices.
2168 */
2169
2170 /*
2171 * There is a strong dependency path in the dependency graph: A -> B, and now
2172 * we need to decide which usage bit of A should be accumulated to detect
2173 * safe->unsafe bugs.
2174 *
2175 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2176 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2177 *
2178 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2179 * path, any usage of A should be considered. Otherwise, we should only
2180 * consider _READ usage.
2181 */
2182 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2183 {
2184 if (!entry->only_xr)
2185 *(unsigned long *)mask |= entry->class->usage_mask;
2186 else /* Mask out _READ usage bits */
2187 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2188
2189 return false;
2190 }
2191
2192 /*
2193 * There is a strong dependency path in the dependency graph: A -> B, and now
2194 * we need to decide which usage bit of B conflicts with the usage bits of A,
2195 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2196 *
2197 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2198 * path, any usage of B should be considered. Otherwise, we should only
2199 * consider _READ usage.
2200 */
2201 static inline bool usage_match(struct lock_list *entry, void *mask)
2202 {
2203 if (!entry->only_xr)
2204 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2205 else /* Mask out _READ usage bits */
2206 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2207 }
2208
2209 static inline bool usage_skip(struct lock_list *entry, void *mask)
2210 {
2211 /*
2212 * Skip local_lock() for irq inversion detection.
2213 *
2214 * For !RT, local_lock() is not a real lock, so it won't carry any
2215 * dependency.
2216 *
2217 * For RT, an irq inversion happens when we have lock A and B, and on
2218 * some CPU we can have:
2219 *
2220 * lock(A);
2221 * <interrupted>
2222 * lock(B);
2223 *
2224 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2225 *
2226 * Now we prove local_lock() cannot exist in that dependency. First we
2227 * have the observation for any lock chain L1 -> ... -> Ln, for any
2228 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2229 * wait context check will complain. And since B is not a sleep lock,
2230 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2231 * local_lock() is 3, which is greater than 2, therefore there is no
2232 * way the local_lock() exists in the dependency B -> ... -> A.
2233 *
2234 * As a result, we will skip local_lock(), when we search for irq
2235 * inversion bugs.
2236 */
2237 if (entry->class->lock_type == LD_LOCK_PERCPU) {
2238 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2239 return false;
2240
2241 return true;
2242 }
2243
2244 return false;
2245 }
2246
2247 /*
2248 * Find a node in the forwards-direction dependency sub-graph starting
2249 * at @root->class that matches @bit.
2250 *
2251 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2252 * into *@target_entry.
2253 */
2254 static enum bfs_result
2255 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2256 struct lock_list **target_entry)
2257 {
2258 enum bfs_result result;
2259
2260 debug_atomic_inc(nr_find_usage_forwards_checks);
2261
2262 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2263
2264 return result;
2265 }
2266
2267 /*
2268 * Find a node in the backwards-direction dependency sub-graph starting
2269 * at @root->class that matches @bit.
2270 */
2271 static enum bfs_result
2272 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2273 struct lock_list **target_entry)
2274 {
2275 enum bfs_result result;
2276
2277 debug_atomic_inc(nr_find_usage_backwards_checks);
2278
2279 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2280
2281 return result;
2282 }
2283
2284 static void print_lock_class_header(struct lock_class *class, int depth)
2285 {
2286 int bit;
2287
2288 printk("%*s->", depth, "");
2289 print_lock_name(class);
2290 #ifdef CONFIG_DEBUG_LOCKDEP
2291 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2292 #endif
2293 printk(KERN_CONT " {\n");
2294
2295 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2296 if (class->usage_mask & (1 << bit)) {
2297 int len = depth;
2298
2299 len += printk("%*s %s", depth, "", usage_str[bit]);
2300 len += printk(KERN_CONT " at:\n");
2301 print_lock_trace(class->usage_traces[bit], len);
2302 }
2303 }
2304 printk("%*s }\n", depth, "");
2305
2306 printk("%*s ... key at: [<%px>] %pS\n",
2307 depth, "", class->key, class->key);
2308 }
2309
2310 /*
2311 * Dependency path printing:
2312 *
2313 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2314 * printing out each lock in the dependency path will help on understanding how
2315 * the deadlock could happen. Here are some details about dependency path
2316 * printing:
2317 *
2318 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2319 * for a lock dependency A -> B, there are two lock_lists:
2320 *
2321 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2322 * ->links_to is A. In this case, we can say the lock_list is
2323 * "A -> B" (forwards case).
2324 *
2325 * b) lock_list in the ->locks_before list of B, whose ->class is A
2326 * and ->links_to is B. In this case, we can say the lock_list is
2327 * "B <- A" (bacwards case).
2328 *
2329 * The ->trace of both a) and b) point to the call trace where B was
2330 * acquired with A held.
2331 *
2332 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2333 * represent a certain lock dependency, it only provides an initial entry
2334 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2335 * ->class is A, as a result BFS will search all dependencies starting with
2336 * A, e.g. A -> B or A -> C.
2337 *
2338 * The notation of a forwards helper lock_list is like "-> A", which means
2339 * we should search the forwards dependencies starting with "A", e.g A -> B
2340 * or A -> C.
2341 *
2342 * The notation of a bacwards helper lock_list is like "<- B", which means
2343 * we should search the backwards dependencies ending with "B", e.g.
2344 * B <- A or B <- C.
2345 */
2346
2347 /*
2348 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2349 *
2350 * We have a lock dependency path as follow:
2351 *
2352 * @root @leaf
2353 * | |
2354 * V V
2355 * ->parent ->parent
2356 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2357 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2358 *
2359 * , so it's natural that we start from @leaf and print every ->class and
2360 * ->trace until we reach the @root.
2361 */
2362 static void __used
2363 print_shortest_lock_dependencies(struct lock_list *leaf,
2364 struct lock_list *root)
2365 {
2366 struct lock_list *entry = leaf;
2367 int depth;
2368
2369 /*compute depth from generated tree by BFS*/
2370 depth = get_lock_depth(leaf);
2371
2372 do {
2373 print_lock_class_header(entry->class, depth);
2374 printk("%*s ... acquired at:\n", depth, "");
2375 print_lock_trace(entry->trace, 2);
2376 printk("\n");
2377
2378 if (depth == 0 && (entry != root)) {
2379 printk("lockdep:%s bad path found in chain graph\n", __func__);
2380 break;
2381 }
2382
2383 entry = get_lock_parent(entry);
2384 depth--;
2385 } while (entry && (depth >= 0));
2386 }
2387
2388 /*
2389 * printk the shortest lock dependencies from @leaf to @root.
2390 *
2391 * We have a lock dependency path (from a backwards search) as follow:
2392 *
2393 * @leaf @root
2394 * | |
2395 * V V
2396 * ->parent ->parent
2397 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2398 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2399 *
2400 * , so when we iterate from @leaf to @root, we actually print the lock
2401 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2402 *
2403 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2404 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2405 * trace of L1 in the dependency path, which is alright, because most of the
2406 * time we can figure out where L1 is held from the call trace of L2.
2407 */
2408 static void __used
2409 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2410 struct lock_list *root)
2411 {
2412 struct lock_list *entry = leaf;
2413 const struct lock_trace *trace = NULL;
2414 int depth;
2415
2416 /*compute depth from generated tree by BFS*/
2417 depth = get_lock_depth(leaf);
2418
2419 do {
2420 print_lock_class_header(entry->class, depth);
2421 if (trace) {
2422 printk("%*s ... acquired at:\n", depth, "");
2423 print_lock_trace(trace, 2);
2424 printk("\n");
2425 }
2426
2427 /*
2428 * Record the pointer to the trace for the next lock_list
2429 * entry, see the comments for the function.
2430 */
2431 trace = entry->trace;
2432
2433 if (depth == 0 && (entry != root)) {
2434 printk("lockdep:%s bad path found in chain graph\n", __func__);
2435 break;
2436 }
2437
2438 entry = get_lock_parent(entry);
2439 depth--;
2440 } while (entry && (depth >= 0));
2441 }
2442
2443 static void
2444 print_irq_lock_scenario(struct lock_list *safe_entry,
2445 struct lock_list *unsafe_entry,
2446 struct lock_class *prev_class,
2447 struct lock_class *next_class)
2448 {
2449 struct lock_class *safe_class = safe_entry->class;
2450 struct lock_class *unsafe_class = unsafe_entry->class;
2451 struct lock_class *middle_class = prev_class;
2452
2453 if (middle_class == safe_class)
2454 middle_class = next_class;
2455
2456 /*
2457 * A direct locking problem where unsafe_class lock is taken
2458 * directly by safe_class lock, then all we need to show
2459 * is the deadlock scenario, as it is obvious that the
2460 * unsafe lock is taken under the safe lock.
2461 *
2462 * But if there is a chain instead, where the safe lock takes
2463 * an intermediate lock (middle_class) where this lock is
2464 * not the same as the safe lock, then the lock chain is
2465 * used to describe the problem. Otherwise we would need
2466 * to show a different CPU case for each link in the chain
2467 * from the safe_class lock to the unsafe_class lock.
2468 */
2469 if (middle_class != unsafe_class) {
2470 printk("Chain exists of:\n ");
2471 __print_lock_name(safe_class);
2472 printk(KERN_CONT " --> ");
2473 __print_lock_name(middle_class);
2474 printk(KERN_CONT " --> ");
2475 __print_lock_name(unsafe_class);
2476 printk(KERN_CONT "\n\n");
2477 }
2478
2479 printk(" Possible interrupt unsafe locking scenario:\n\n");
2480 printk(" CPU0 CPU1\n");
2481 printk(" ---- ----\n");
2482 printk(" lock(");
2483 __print_lock_name(unsafe_class);
2484 printk(KERN_CONT ");\n");
2485 printk(" local_irq_disable();\n");
2486 printk(" lock(");
2487 __print_lock_name(safe_class);
2488 printk(KERN_CONT ");\n");
2489 printk(" lock(");
2490 __print_lock_name(middle_class);
2491 printk(KERN_CONT ");\n");
2492 printk(" <Interrupt>\n");
2493 printk(" lock(");
2494 __print_lock_name(safe_class);
2495 printk(KERN_CONT ");\n");
2496 printk("\n *** DEADLOCK ***\n\n");
2497 }
2498
2499 static void
2500 print_bad_irq_dependency(struct task_struct *curr,
2501 struct lock_list *prev_root,
2502 struct lock_list *next_root,
2503 struct lock_list *backwards_entry,
2504 struct lock_list *forwards_entry,
2505 struct held_lock *prev,
2506 struct held_lock *next,
2507 enum lock_usage_bit bit1,
2508 enum lock_usage_bit bit2,
2509 const char *irqclass)
2510 {
2511 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2512 return;
2513
2514 pr_warn("\n");
2515 pr_warn("=====================================================\n");
2516 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2517 irqclass, irqclass);
2518 print_kernel_ident();
2519 pr_warn("-----------------------------------------------------\n");
2520 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2521 curr->comm, task_pid_nr(curr),
2522 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2523 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2524 lockdep_hardirqs_enabled(),
2525 curr->softirqs_enabled);
2526 print_lock(next);
2527
2528 pr_warn("\nand this task is already holding:\n");
2529 print_lock(prev);
2530 pr_warn("which would create a new lock dependency:\n");
2531 print_lock_name(hlock_class(prev));
2532 pr_cont(" ->");
2533 print_lock_name(hlock_class(next));
2534 pr_cont("\n");
2535
2536 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2537 irqclass);
2538 print_lock_name(backwards_entry->class);
2539 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2540
2541 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2542
2543 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2544 print_lock_name(forwards_entry->class);
2545 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2546 pr_warn("...");
2547
2548 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2549
2550 pr_warn("\nother info that might help us debug this:\n\n");
2551 print_irq_lock_scenario(backwards_entry, forwards_entry,
2552 hlock_class(prev), hlock_class(next));
2553
2554 lockdep_print_held_locks(curr);
2555
2556 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2557 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2558
2559 pr_warn("\nthe dependencies between the lock to be acquired");
2560 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2561 next_root->trace = save_trace();
2562 if (!next_root->trace)
2563 return;
2564 print_shortest_lock_dependencies(forwards_entry, next_root);
2565
2566 pr_warn("\nstack backtrace:\n");
2567 dump_stack();
2568 }
2569
2570 static const char *state_names[] = {
2571 #define LOCKDEP_STATE(__STATE) \
2572 __stringify(__STATE),
2573 #include "lockdep_states.h"
2574 #undef LOCKDEP_STATE
2575 };
2576
2577 static const char *state_rnames[] = {
2578 #define LOCKDEP_STATE(__STATE) \
2579 __stringify(__STATE)"-READ",
2580 #include "lockdep_states.h"
2581 #undef LOCKDEP_STATE
2582 };
2583
2584 static inline const char *state_name(enum lock_usage_bit bit)
2585 {
2586 if (bit & LOCK_USAGE_READ_MASK)
2587 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2588 else
2589 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2590 }
2591
2592 /*
2593 * The bit number is encoded like:
2594 *
2595 * bit0: 0 exclusive, 1 read lock
2596 * bit1: 0 used in irq, 1 irq enabled
2597 * bit2-n: state
2598 */
2599 static int exclusive_bit(int new_bit)
2600 {
2601 int state = new_bit & LOCK_USAGE_STATE_MASK;
2602 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2603
2604 /*
2605 * keep state, bit flip the direction and strip read.
2606 */
2607 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2608 }
2609
2610 /*
2611 * Observe that when given a bitmask where each bitnr is encoded as above, a
2612 * right shift of the mask transforms the individual bitnrs as -1 and
2613 * conversely, a left shift transforms into +1 for the individual bitnrs.
2614 *
2615 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2616 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2617 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2618 *
2619 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2620 *
2621 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2622 * all bits set) and recompose with bitnr1 flipped.
2623 */
2624 static unsigned long invert_dir_mask(unsigned long mask)
2625 {
2626 unsigned long excl = 0;
2627
2628 /* Invert dir */
2629 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2630 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2631
2632 return excl;
2633 }
2634
2635 /*
2636 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2637 * usage may cause deadlock too, for example:
2638 *
2639 * P1 P2
2640 * <irq disabled>
2641 * write_lock(l1); <irq enabled>
2642 * read_lock(l2);
2643 * write_lock(l2);
2644 * <in irq>
2645 * read_lock(l1);
2646 *
2647 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2648 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2649 * deadlock.
2650 *
2651 * In fact, all of the following cases may cause deadlocks:
2652 *
2653 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2654 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2655 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2656 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2657 *
2658 * As a result, to calculate the "exclusive mask", first we invert the
2659 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2660 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2661 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2662 */
2663 static unsigned long exclusive_mask(unsigned long mask)
2664 {
2665 unsigned long excl = invert_dir_mask(mask);
2666
2667 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2668 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2669
2670 return excl;
2671 }
2672
2673 /*
2674 * Retrieve the _possible_ original mask to which @mask is
2675 * exclusive. Ie: this is the opposite of exclusive_mask().
2676 * Note that 2 possible original bits can match an exclusive
2677 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2678 * cleared. So both are returned for each exclusive bit.
2679 */
2680 static unsigned long original_mask(unsigned long mask)
2681 {
2682 unsigned long excl = invert_dir_mask(mask);
2683
2684 /* Include read in existing usages */
2685 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2686 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2687
2688 return excl;
2689 }
2690
2691 /*
2692 * Find the first pair of bit match between an original
2693 * usage mask and an exclusive usage mask.
2694 */
2695 static int find_exclusive_match(unsigned long mask,
2696 unsigned long excl_mask,
2697 enum lock_usage_bit *bitp,
2698 enum lock_usage_bit *excl_bitp)
2699 {
2700 int bit, excl, excl_read;
2701
2702 for_each_set_bit(bit, &mask, LOCK_USED) {
2703 /*
2704 * exclusive_bit() strips the read bit, however,
2705 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2706 * to search excl | LOCK_USAGE_READ_MASK as well.
2707 */
2708 excl = exclusive_bit(bit);
2709 excl_read = excl | LOCK_USAGE_READ_MASK;
2710 if (excl_mask & lock_flag(excl)) {
2711 *bitp = bit;
2712 *excl_bitp = excl;
2713 return 0;
2714 } else if (excl_mask & lock_flag(excl_read)) {
2715 *bitp = bit;
2716 *excl_bitp = excl_read;
2717 return 0;
2718 }
2719 }
2720 return -1;
2721 }
2722
2723 /*
2724 * Prove that the new dependency does not connect a hardirq-safe(-read)
2725 * lock with a hardirq-unsafe lock - to achieve this we search
2726 * the backwards-subgraph starting at <prev>, and the
2727 * forwards-subgraph starting at <next>:
2728 */
2729 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2730 struct held_lock *next)
2731 {
2732 unsigned long usage_mask = 0, forward_mask, backward_mask;
2733 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2734 struct lock_list *target_entry1;
2735 struct lock_list *target_entry;
2736 struct lock_list this, that;
2737 enum bfs_result ret;
2738
2739 /*
2740 * Step 1: gather all hard/soft IRQs usages backward in an
2741 * accumulated usage mask.
2742 */
2743 bfs_init_rootb(&this, prev);
2744
2745 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2746 if (bfs_error(ret)) {
2747 print_bfs_bug(ret);
2748 return 0;
2749 }
2750
2751 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2752 if (!usage_mask)
2753 return 1;
2754
2755 /*
2756 * Step 2: find exclusive uses forward that match the previous
2757 * backward accumulated mask.
2758 */
2759 forward_mask = exclusive_mask(usage_mask);
2760
2761 bfs_init_root(&that, next);
2762
2763 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2764 if (bfs_error(ret)) {
2765 print_bfs_bug(ret);
2766 return 0;
2767 }
2768 if (ret == BFS_RNOMATCH)
2769 return 1;
2770
2771 /*
2772 * Step 3: we found a bad match! Now retrieve a lock from the backward
2773 * list whose usage mask matches the exclusive usage mask from the
2774 * lock found on the forward list.
2775 *
2776 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2777 * the follow case:
2778 *
2779 * When trying to add A -> B to the graph, we find that there is a
2780 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2781 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2782 * invert bits of M's usage_mask, we will find another lock N that is
2783 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2784 * cause a inversion deadlock.
2785 */
2786 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2787
2788 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2789 if (bfs_error(ret)) {
2790 print_bfs_bug(ret);
2791 return 0;
2792 }
2793 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2794 return 1;
2795
2796 /*
2797 * Step 4: narrow down to a pair of incompatible usage bits
2798 * and report it.
2799 */
2800 ret = find_exclusive_match(target_entry->class->usage_mask,
2801 target_entry1->class->usage_mask,
2802 &backward_bit, &forward_bit);
2803 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2804 return 1;
2805
2806 print_bad_irq_dependency(curr, &this, &that,
2807 target_entry, target_entry1,
2808 prev, next,
2809 backward_bit, forward_bit,
2810 state_name(backward_bit));
2811
2812 return 0;
2813 }
2814
2815 #else
2816
2817 static inline int check_irq_usage(struct task_struct *curr,
2818 struct held_lock *prev, struct held_lock *next)
2819 {
2820 return 1;
2821 }
2822
2823 static inline bool usage_skip(struct lock_list *entry, void *mask)
2824 {
2825 return false;
2826 }
2827
2828 #endif /* CONFIG_TRACE_IRQFLAGS */
2829
2830 #ifdef CONFIG_LOCKDEP_SMALL
2831 /*
2832 * Check that the dependency graph starting at <src> can lead to
2833 * <target> or not. If it can, <src> -> <target> dependency is already
2834 * in the graph.
2835 *
2836 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2837 * any error appears in the bfs search.
2838 */
2839 static noinline enum bfs_result
2840 check_redundant(struct held_lock *src, struct held_lock *target)
2841 {
2842 enum bfs_result ret;
2843 struct lock_list *target_entry;
2844 struct lock_list src_entry;
2845
2846 bfs_init_root(&src_entry, src);
2847 /*
2848 * Special setup for check_redundant().
2849 *
2850 * To report redundant, we need to find a strong dependency path that
2851 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2852 * we need to let __bfs() only search for a path starting at a -(E*)->,
2853 * we achieve this by setting the initial node's ->only_xr to true in
2854 * that case. And if <prev> is S, we set initial ->only_xr to false
2855 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2856 */
2857 src_entry.only_xr = src->read == 0;
2858
2859 debug_atomic_inc(nr_redundant_checks);
2860
2861 /*
2862 * Note: we skip local_lock() for redundant check, because as the
2863 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2864 * the same.
2865 */
2866 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2867
2868 if (ret == BFS_RMATCH)
2869 debug_atomic_inc(nr_redundant);
2870
2871 return ret;
2872 }
2873
2874 #else
2875
2876 static inline enum bfs_result
2877 check_redundant(struct held_lock *src, struct held_lock *target)
2878 {
2879 return BFS_RNOMATCH;
2880 }
2881
2882 #endif
2883
2884 static void inc_chains(int irq_context)
2885 {
2886 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2887 nr_hardirq_chains++;
2888 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2889 nr_softirq_chains++;
2890 else
2891 nr_process_chains++;
2892 }
2893
2894 static void dec_chains(int irq_context)
2895 {
2896 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2897 nr_hardirq_chains--;
2898 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2899 nr_softirq_chains--;
2900 else
2901 nr_process_chains--;
2902 }
2903
2904 static void
2905 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2906 {
2907 struct lock_class *next = hlock_class(nxt);
2908 struct lock_class *prev = hlock_class(prv);
2909
2910 printk(" Possible unsafe locking scenario:\n\n");
2911 printk(" CPU0\n");
2912 printk(" ----\n");
2913 printk(" lock(");
2914 __print_lock_name(prev);
2915 printk(KERN_CONT ");\n");
2916 printk(" lock(");
2917 __print_lock_name(next);
2918 printk(KERN_CONT ");\n");
2919 printk("\n *** DEADLOCK ***\n\n");
2920 printk(" May be due to missing lock nesting notation\n\n");
2921 }
2922
2923 static void
2924 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2925 struct held_lock *next)
2926 {
2927 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2928 return;
2929
2930 pr_warn("\n");
2931 pr_warn("============================================\n");
2932 pr_warn("WARNING: possible recursive locking detected\n");
2933 print_kernel_ident();
2934 pr_warn("--------------------------------------------\n");
2935 pr_warn("%s/%d is trying to acquire lock:\n",
2936 curr->comm, task_pid_nr(curr));
2937 print_lock(next);
2938 pr_warn("\nbut task is already holding lock:\n");
2939 print_lock(prev);
2940
2941 pr_warn("\nother info that might help us debug this:\n");
2942 print_deadlock_scenario(next, prev);
2943 lockdep_print_held_locks(curr);
2944
2945 pr_warn("\nstack backtrace:\n");
2946 dump_stack();
2947 }
2948
2949 /*
2950 * Check whether we are holding such a class already.
2951 *
2952 * (Note that this has to be done separately, because the graph cannot
2953 * detect such classes of deadlocks.)
2954 *
2955 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2956 * lock class is held but nest_lock is also held, i.e. we rely on the
2957 * nest_lock to avoid the deadlock.
2958 */
2959 static int
2960 check_deadlock(struct task_struct *curr, struct held_lock *next)
2961 {
2962 struct held_lock *prev;
2963 struct held_lock *nest = NULL;
2964 int i;
2965
2966 for (i = 0; i < curr->lockdep_depth; i++) {
2967 prev = curr->held_locks + i;
2968
2969 if (prev->instance == next->nest_lock)
2970 nest = prev;
2971
2972 if (hlock_class(prev) != hlock_class(next))
2973 continue;
2974
2975 /*
2976 * Allow read-after-read recursion of the same
2977 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2978 */
2979 if ((next->read == 2) && prev->read)
2980 continue;
2981
2982 /*
2983 * We're holding the nest_lock, which serializes this lock's
2984 * nesting behaviour.
2985 */
2986 if (nest)
2987 return 2;
2988
2989 print_deadlock_bug(curr, prev, next);
2990 return 0;
2991 }
2992 return 1;
2993 }
2994
2995 /*
2996 * There was a chain-cache miss, and we are about to add a new dependency
2997 * to a previous lock. We validate the following rules:
2998 *
2999 * - would the adding of the <prev> -> <next> dependency create a
3000 * circular dependency in the graph? [== circular deadlock]
3001 *
3002 * - does the new prev->next dependency connect any hardirq-safe lock
3003 * (in the full backwards-subgraph starting at <prev>) with any
3004 * hardirq-unsafe lock (in the full forwards-subgraph starting at
3005 * <next>)? [== illegal lock inversion with hardirq contexts]
3006 *
3007 * - does the new prev->next dependency connect any softirq-safe lock
3008 * (in the full backwards-subgraph starting at <prev>) with any
3009 * softirq-unsafe lock (in the full forwards-subgraph starting at
3010 * <next>)? [== illegal lock inversion with softirq contexts]
3011 *
3012 * any of these scenarios could lead to a deadlock.
3013 *
3014 * Then if all the validations pass, we add the forwards and backwards
3015 * dependency.
3016 */
3017 static int
3018 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3019 struct held_lock *next, u16 distance,
3020 struct lock_trace **const trace)
3021 {
3022 struct lock_list *entry;
3023 enum bfs_result ret;
3024
3025 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3026 /*
3027 * The warning statements below may trigger a use-after-free
3028 * of the class name. It is better to trigger a use-after free
3029 * and to have the class name most of the time instead of not
3030 * having the class name available.
3031 */
3032 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3033 "Detected use-after-free of lock class %px/%s\n",
3034 hlock_class(prev),
3035 hlock_class(prev)->name);
3036 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3037 "Detected use-after-free of lock class %px/%s\n",
3038 hlock_class(next),
3039 hlock_class(next)->name);
3040 return 2;
3041 }
3042
3043 /*
3044 * Prove that the new <prev> -> <next> dependency would not
3045 * create a circular dependency in the graph. (We do this by
3046 * a breadth-first search into the graph starting at <next>,
3047 * and check whether we can reach <prev>.)
3048 *
3049 * The search is limited by the size of the circular queue (i.e.,
3050 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3051 * in the graph whose neighbours are to be checked.
3052 */
3053 ret = check_noncircular(next, prev, trace);
3054 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3055 return 0;
3056
3057 if (!check_irq_usage(curr, prev, next))
3058 return 0;
3059
3060 /*
3061 * Is the <prev> -> <next> dependency already present?
3062 *
3063 * (this may occur even though this is a new chain: consider
3064 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3065 * chains - the second one will be new, but L1 already has
3066 * L2 added to its dependency list, due to the first chain.)
3067 */
3068 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3069 if (entry->class == hlock_class(next)) {
3070 if (distance == 1)
3071 entry->distance = 1;
3072 entry->dep |= calc_dep(prev, next);
3073
3074 /*
3075 * Also, update the reverse dependency in @next's
3076 * ->locks_before list.
3077 *
3078 * Here we reuse @entry as the cursor, which is fine
3079 * because we won't go to the next iteration of the
3080 * outer loop:
3081 *
3082 * For normal cases, we return in the inner loop.
3083 *
3084 * If we fail to return, we have inconsistency, i.e.
3085 * <prev>::locks_after contains <next> while
3086 * <next>::locks_before doesn't contain <prev>. In
3087 * that case, we return after the inner and indicate
3088 * something is wrong.
3089 */
3090 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3091 if (entry->class == hlock_class(prev)) {
3092 if (distance == 1)
3093 entry->distance = 1;
3094 entry->dep |= calc_depb(prev, next);
3095 return 1;
3096 }
3097 }
3098
3099 /* <prev> is not found in <next>::locks_before */
3100 return 0;
3101 }
3102 }
3103
3104 /*
3105 * Is the <prev> -> <next> link redundant?
3106 */
3107 ret = check_redundant(prev, next);
3108 if (bfs_error(ret))
3109 return 0;
3110 else if (ret == BFS_RMATCH)
3111 return 2;
3112
3113 if (!*trace) {
3114 *trace = save_trace();
3115 if (!*trace)
3116 return 0;
3117 }
3118
3119 /*
3120 * Ok, all validations passed, add the new lock
3121 * to the previous lock's dependency list:
3122 */
3123 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3124 &hlock_class(prev)->locks_after,
3125 next->acquire_ip, distance,
3126 calc_dep(prev, next),
3127 *trace);
3128
3129 if (!ret)
3130 return 0;
3131
3132 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3133 &hlock_class(next)->locks_before,
3134 next->acquire_ip, distance,
3135 calc_depb(prev, next),
3136 *trace);
3137 if (!ret)
3138 return 0;
3139
3140 return 2;
3141 }
3142
3143 /*
3144 * Add the dependency to all directly-previous locks that are 'relevant'.
3145 * The ones that are relevant are (in increasing distance from curr):
3146 * all consecutive trylock entries and the final non-trylock entry - or
3147 * the end of this context's lock-chain - whichever comes first.
3148 */
3149 static int
3150 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3151 {
3152 struct lock_trace *trace = NULL;
3153 int depth = curr->lockdep_depth;
3154 struct held_lock *hlock;
3155
3156 /*
3157 * Debugging checks.
3158 *
3159 * Depth must not be zero for a non-head lock:
3160 */
3161 if (!depth)
3162 goto out_bug;
3163 /*
3164 * At least two relevant locks must exist for this
3165 * to be a head:
3166 */
3167 if (curr->held_locks[depth].irq_context !=
3168 curr->held_locks[depth-1].irq_context)
3169 goto out_bug;
3170
3171 for (;;) {
3172 u16 distance = curr->lockdep_depth - depth + 1;
3173 hlock = curr->held_locks + depth - 1;
3174
3175 if (hlock->check) {
3176 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3177 if (!ret)
3178 return 0;
3179
3180 /*
3181 * Stop after the first non-trylock entry,
3182 * as non-trylock entries have added their
3183 * own direct dependencies already, so this
3184 * lock is connected to them indirectly:
3185 */
3186 if (!hlock->trylock)
3187 break;
3188 }
3189
3190 depth--;
3191 /*
3192 * End of lock-stack?
3193 */
3194 if (!depth)
3195 break;
3196 /*
3197 * Stop the search if we cross into another context:
3198 */
3199 if (curr->held_locks[depth].irq_context !=
3200 curr->held_locks[depth-1].irq_context)
3201 break;
3202 }
3203 return 1;
3204 out_bug:
3205 if (!debug_locks_off_graph_unlock())
3206 return 0;
3207
3208 /*
3209 * Clearly we all shouldn't be here, but since we made it we
3210 * can reliable say we messed up our state. See the above two
3211 * gotos for reasons why we could possibly end up here.
3212 */
3213 WARN_ON(1);
3214
3215 return 0;
3216 }
3217
3218 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3219 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3220 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3221 unsigned long nr_zapped_lock_chains;
3222 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3223 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3224 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3225
3226 /*
3227 * The first 2 chain_hlocks entries in the chain block in the bucket
3228 * list contains the following meta data:
3229 *
3230 * entry[0]:
3231 * Bit 15 - always set to 1 (it is not a class index)
3232 * Bits 0-14 - upper 15 bits of the next block index
3233 * entry[1] - lower 16 bits of next block index
3234 *
3235 * A next block index of all 1 bits means it is the end of the list.
3236 *
3237 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3238 * the chain block size:
3239 *
3240 * entry[2] - upper 16 bits of the chain block size
3241 * entry[3] - lower 16 bits of the chain block size
3242 */
3243 #define MAX_CHAIN_BUCKETS 16
3244 #define CHAIN_BLK_FLAG (1U << 15)
3245 #define CHAIN_BLK_LIST_END 0xFFFFU
3246
3247 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3248
3249 static inline int size_to_bucket(int size)
3250 {
3251 if (size > MAX_CHAIN_BUCKETS)
3252 return 0;
3253
3254 return size - 1;
3255 }
3256
3257 /*
3258 * Iterate all the chain blocks in a bucket.
3259 */
3260 #define for_each_chain_block(bucket, prev, curr) \
3261 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3262 (curr) >= 0; \
3263 (prev) = (curr), (curr) = chain_block_next(curr))
3264
3265 /*
3266 * next block or -1
3267 */
3268 static inline int chain_block_next(int offset)
3269 {
3270 int next = chain_hlocks[offset];
3271
3272 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3273
3274 if (next == CHAIN_BLK_LIST_END)
3275 return -1;
3276
3277 next &= ~CHAIN_BLK_FLAG;
3278 next <<= 16;
3279 next |= chain_hlocks[offset + 1];
3280
3281 return next;
3282 }
3283
3284 /*
3285 * bucket-0 only
3286 */
3287 static inline int chain_block_size(int offset)
3288 {
3289 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3290 }
3291
3292 static inline void init_chain_block(int offset, int next, int bucket, int size)
3293 {
3294 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3295 chain_hlocks[offset + 1] = (u16)next;
3296
3297 if (size && !bucket) {
3298 chain_hlocks[offset + 2] = size >> 16;
3299 chain_hlocks[offset + 3] = (u16)size;
3300 }
3301 }
3302
3303 static inline void add_chain_block(int offset, int size)
3304 {
3305 int bucket = size_to_bucket(size);
3306 int next = chain_block_buckets[bucket];
3307 int prev, curr;
3308
3309 if (unlikely(size < 2)) {
3310 /*
3311 * We can't store single entries on the freelist. Leak them.
3312 *
3313 * One possible way out would be to uniquely mark them, other
3314 * than with CHAIN_BLK_FLAG, such that we can recover them when
3315 * the block before it is re-added.
3316 */
3317 if (size)
3318 nr_lost_chain_hlocks++;
3319 return;
3320 }
3321
3322 nr_free_chain_hlocks += size;
3323 if (!bucket) {
3324 nr_large_chain_blocks++;
3325
3326 /*
3327 * Variable sized, sort large to small.
3328 */
3329 for_each_chain_block(0, prev, curr) {
3330 if (size >= chain_block_size(curr))
3331 break;
3332 }
3333 init_chain_block(offset, curr, 0, size);
3334 if (prev < 0)
3335 chain_block_buckets[0] = offset;
3336 else
3337 init_chain_block(prev, offset, 0, 0);
3338 return;
3339 }
3340 /*
3341 * Fixed size, add to head.
3342 */
3343 init_chain_block(offset, next, bucket, size);
3344 chain_block_buckets[bucket] = offset;
3345 }
3346
3347 /*
3348 * Only the first block in the list can be deleted.
3349 *
3350 * For the variable size bucket[0], the first block (the largest one) is
3351 * returned, broken up and put back into the pool. So if a chain block of
3352 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3353 * queued up after the primordial chain block and never be used until the
3354 * hlock entries in the primordial chain block is almost used up. That
3355 * causes fragmentation and reduce allocation efficiency. That can be
3356 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3357 */
3358 static inline void del_chain_block(int bucket, int size, int next)
3359 {
3360 nr_free_chain_hlocks -= size;
3361 chain_block_buckets[bucket] = next;
3362
3363 if (!bucket)
3364 nr_large_chain_blocks--;
3365 }
3366
3367 static void init_chain_block_buckets(void)
3368 {
3369 int i;
3370
3371 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3372 chain_block_buckets[i] = -1;
3373
3374 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3375 }
3376
3377 /*
3378 * Return offset of a chain block of the right size or -1 if not found.
3379 *
3380 * Fairly simple worst-fit allocator with the addition of a number of size
3381 * specific free lists.
3382 */
3383 static int alloc_chain_hlocks(int req)
3384 {
3385 int bucket, curr, size;
3386
3387 /*
3388 * We rely on the MSB to act as an escape bit to denote freelist
3389 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3390 */
3391 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3392
3393 init_data_structures_once();
3394
3395 if (nr_free_chain_hlocks < req)
3396 return -1;
3397
3398 /*
3399 * We require a minimum of 2 (u16) entries to encode a freelist
3400 * 'pointer'.
3401 */
3402 req = max(req, 2);
3403 bucket = size_to_bucket(req);
3404 curr = chain_block_buckets[bucket];
3405
3406 if (bucket) {
3407 if (curr >= 0) {
3408 del_chain_block(bucket, req, chain_block_next(curr));
3409 return curr;
3410 }
3411 /* Try bucket 0 */
3412 curr = chain_block_buckets[0];
3413 }
3414
3415 /*
3416 * The variable sized freelist is sorted by size; the first entry is
3417 * the largest. Use it if it fits.
3418 */
3419 if (curr >= 0) {
3420 size = chain_block_size(curr);
3421 if (likely(size >= req)) {
3422 del_chain_block(0, size, chain_block_next(curr));
3423 add_chain_block(curr + req, size - req);
3424 return curr;
3425 }
3426 }
3427
3428 /*
3429 * Last resort, split a block in a larger sized bucket.
3430 */
3431 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3432 bucket = size_to_bucket(size);
3433 curr = chain_block_buckets[bucket];
3434 if (curr < 0)
3435 continue;
3436
3437 del_chain_block(bucket, size, chain_block_next(curr));
3438 add_chain_block(curr + req, size - req);
3439 return curr;
3440 }
3441
3442 return -1;
3443 }
3444
3445 static inline void free_chain_hlocks(int base, int size)
3446 {
3447 add_chain_block(base, max(size, 2));
3448 }
3449
3450 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3451 {
3452 u16 chain_hlock = chain_hlocks[chain->base + i];
3453 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3454
3455 return lock_classes + class_idx;
3456 }
3457
3458 /*
3459 * Returns the index of the first held_lock of the current chain
3460 */
3461 static inline int get_first_held_lock(struct task_struct *curr,
3462 struct held_lock *hlock)
3463 {
3464 int i;
3465 struct held_lock *hlock_curr;
3466
3467 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3468 hlock_curr = curr->held_locks + i;
3469 if (hlock_curr->irq_context != hlock->irq_context)
3470 break;
3471
3472 }
3473
3474 return ++i;
3475 }
3476
3477 #ifdef CONFIG_DEBUG_LOCKDEP
3478 /*
3479 * Returns the next chain_key iteration
3480 */
3481 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3482 {
3483 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3484
3485 printk(" hlock_id:%d -> chain_key:%016Lx",
3486 (unsigned int)hlock_id,
3487 (unsigned long long)new_chain_key);
3488 return new_chain_key;
3489 }
3490
3491 static void
3492 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3493 {
3494 struct held_lock *hlock;
3495 u64 chain_key = INITIAL_CHAIN_KEY;
3496 int depth = curr->lockdep_depth;
3497 int i = get_first_held_lock(curr, hlock_next);
3498
3499 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3500 hlock_next->irq_context);
3501 for (; i < depth; i++) {
3502 hlock = curr->held_locks + i;
3503 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3504
3505 print_lock(hlock);
3506 }
3507
3508 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3509 print_lock(hlock_next);
3510 }
3511
3512 static void print_chain_keys_chain(struct lock_chain *chain)
3513 {
3514 int i;
3515 u64 chain_key = INITIAL_CHAIN_KEY;
3516 u16 hlock_id;
3517
3518 printk("depth: %u\n", chain->depth);
3519 for (i = 0; i < chain->depth; i++) {
3520 hlock_id = chain_hlocks[chain->base + i];
3521 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3522
3523 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3524 printk("\n");
3525 }
3526 }
3527
3528 static void print_collision(struct task_struct *curr,
3529 struct held_lock *hlock_next,
3530 struct lock_chain *chain)
3531 {
3532 pr_warn("\n");
3533 pr_warn("============================\n");
3534 pr_warn("WARNING: chain_key collision\n");
3535 print_kernel_ident();
3536 pr_warn("----------------------------\n");
3537 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3538 pr_warn("Hash chain already cached but the contents don't match!\n");
3539
3540 pr_warn("Held locks:");
3541 print_chain_keys_held_locks(curr, hlock_next);
3542
3543 pr_warn("Locks in cached chain:");
3544 print_chain_keys_chain(chain);
3545
3546 pr_warn("\nstack backtrace:\n");
3547 dump_stack();
3548 }
3549 #endif
3550
3551 /*
3552 * Checks whether the chain and the current held locks are consistent
3553 * in depth and also in content. If they are not it most likely means
3554 * that there was a collision during the calculation of the chain_key.
3555 * Returns: 0 not passed, 1 passed
3556 */
3557 static int check_no_collision(struct task_struct *curr,
3558 struct held_lock *hlock,
3559 struct lock_chain *chain)
3560 {
3561 #ifdef CONFIG_DEBUG_LOCKDEP
3562 int i, j, id;
3563
3564 i = get_first_held_lock(curr, hlock);
3565
3566 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3567 print_collision(curr, hlock, chain);
3568 return 0;
3569 }
3570
3571 for (j = 0; j < chain->depth - 1; j++, i++) {
3572 id = hlock_id(&curr->held_locks[i]);
3573
3574 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3575 print_collision(curr, hlock, chain);
3576 return 0;
3577 }
3578 }
3579 #endif
3580 return 1;
3581 }
3582
3583 /*
3584 * Given an index that is >= -1, return the index of the next lock chain.
3585 * Return -2 if there is no next lock chain.
3586 */
3587 long lockdep_next_lockchain(long i)
3588 {
3589 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3590 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3591 }
3592
3593 unsigned long lock_chain_count(void)
3594 {
3595 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3596 }
3597
3598 /* Must be called with the graph lock held. */
3599 static struct lock_chain *alloc_lock_chain(void)
3600 {
3601 int idx = find_first_zero_bit(lock_chains_in_use,
3602 ARRAY_SIZE(lock_chains));
3603
3604 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3605 return NULL;
3606 __set_bit(idx, lock_chains_in_use);
3607 return lock_chains + idx;
3608 }
3609
3610 /*
3611 * Adds a dependency chain into chain hashtable. And must be called with
3612 * graph_lock held.
3613 *
3614 * Return 0 if fail, and graph_lock is released.
3615 * Return 1 if succeed, with graph_lock held.
3616 */
3617 static inline int add_chain_cache(struct task_struct *curr,
3618 struct held_lock *hlock,
3619 u64 chain_key)
3620 {
3621 struct hlist_head *hash_head = chainhashentry(chain_key);
3622 struct lock_chain *chain;
3623 int i, j;
3624
3625 /*
3626 * The caller must hold the graph lock, ensure we've got IRQs
3627 * disabled to make this an IRQ-safe lock.. for recursion reasons
3628 * lockdep won't complain about its own locking errors.
3629 */
3630 if (lockdep_assert_locked())
3631 return 0;
3632
3633 chain = alloc_lock_chain();
3634 if (!chain) {
3635 if (!debug_locks_off_graph_unlock())
3636 return 0;
3637
3638 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3639 dump_stack();
3640 return 0;
3641 }
3642 chain->chain_key = chain_key;
3643 chain->irq_context = hlock->irq_context;
3644 i = get_first_held_lock(curr, hlock);
3645 chain->depth = curr->lockdep_depth + 1 - i;
3646
3647 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3648 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3649 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3650
3651 j = alloc_chain_hlocks(chain->depth);
3652 if (j < 0) {
3653 if (!debug_locks_off_graph_unlock())
3654 return 0;
3655
3656 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3657 dump_stack();
3658 return 0;
3659 }
3660
3661 chain->base = j;
3662 for (j = 0; j < chain->depth - 1; j++, i++) {
3663 int lock_id = hlock_id(curr->held_locks + i);
3664
3665 chain_hlocks[chain->base + j] = lock_id;
3666 }
3667 chain_hlocks[chain->base + j] = hlock_id(hlock);
3668 hlist_add_head_rcu(&chain->entry, hash_head);
3669 debug_atomic_inc(chain_lookup_misses);
3670 inc_chains(chain->irq_context);
3671
3672 return 1;
3673 }
3674
3675 /*
3676 * Look up a dependency chain. Must be called with either the graph lock or
3677 * the RCU read lock held.
3678 */
3679 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3680 {
3681 struct hlist_head *hash_head = chainhashentry(chain_key);
3682 struct lock_chain *chain;
3683
3684 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3685 if (READ_ONCE(chain->chain_key) == chain_key) {
3686 debug_atomic_inc(chain_lookup_hits);
3687 return chain;
3688 }
3689 }
3690 return NULL;
3691 }
3692
3693 /*
3694 * If the key is not present yet in dependency chain cache then
3695 * add it and return 1 - in this case the new dependency chain is
3696 * validated. If the key is already hashed, return 0.
3697 * (On return with 1 graph_lock is held.)
3698 */
3699 static inline int lookup_chain_cache_add(struct task_struct *curr,
3700 struct held_lock *hlock,
3701 u64 chain_key)
3702 {
3703 struct lock_class *class = hlock_class(hlock);
3704 struct lock_chain *chain = lookup_chain_cache(chain_key);
3705
3706 if (chain) {
3707 cache_hit:
3708 if (!check_no_collision(curr, hlock, chain))
3709 return 0;
3710
3711 if (very_verbose(class)) {
3712 printk("\nhash chain already cached, key: "
3713 "%016Lx tail class: [%px] %s\n",
3714 (unsigned long long)chain_key,
3715 class->key, class->name);
3716 }
3717
3718 return 0;
3719 }
3720
3721 if (very_verbose(class)) {
3722 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3723 (unsigned long long)chain_key, class->key, class->name);
3724 }
3725
3726 if (!graph_lock())
3727 return 0;
3728
3729 /*
3730 * We have to walk the chain again locked - to avoid duplicates:
3731 */
3732 chain = lookup_chain_cache(chain_key);
3733 if (chain) {
3734 graph_unlock();
3735 goto cache_hit;
3736 }
3737
3738 if (!add_chain_cache(curr, hlock, chain_key))
3739 return 0;
3740
3741 return 1;
3742 }
3743
3744 static int validate_chain(struct task_struct *curr,
3745 struct held_lock *hlock,
3746 int chain_head, u64 chain_key)
3747 {
3748 /*
3749 * Trylock needs to maintain the stack of held locks, but it
3750 * does not add new dependencies, because trylock can be done
3751 * in any order.
3752 *
3753 * We look up the chain_key and do the O(N^2) check and update of
3754 * the dependencies only if this is a new dependency chain.
3755 * (If lookup_chain_cache_add() return with 1 it acquires
3756 * graph_lock for us)
3757 */
3758 if (!hlock->trylock && hlock->check &&
3759 lookup_chain_cache_add(curr, hlock, chain_key)) {
3760 /*
3761 * Check whether last held lock:
3762 *
3763 * - is irq-safe, if this lock is irq-unsafe
3764 * - is softirq-safe, if this lock is hardirq-unsafe
3765 *
3766 * And check whether the new lock's dependency graph
3767 * could lead back to the previous lock:
3768 *
3769 * - within the current held-lock stack
3770 * - across our accumulated lock dependency records
3771 *
3772 * any of these scenarios could lead to a deadlock.
3773 */
3774 /*
3775 * The simple case: does the current hold the same lock
3776 * already?
3777 */
3778 int ret = check_deadlock(curr, hlock);
3779
3780 if (!ret)
3781 return 0;
3782 /*
3783 * Add dependency only if this lock is not the head
3784 * of the chain, and if the new lock introduces no more
3785 * lock dependency (because we already hold a lock with the
3786 * same lock class) nor deadlock (because the nest_lock
3787 * serializes nesting locks), see the comments for
3788 * check_deadlock().
3789 */
3790 if (!chain_head && ret != 2) {
3791 if (!check_prevs_add(curr, hlock))
3792 return 0;
3793 }
3794
3795 graph_unlock();
3796 } else {
3797 /* after lookup_chain_cache_add(): */
3798 if (unlikely(!debug_locks))
3799 return 0;
3800 }
3801
3802 return 1;
3803 }
3804 #else
3805 static inline int validate_chain(struct task_struct *curr,
3806 struct held_lock *hlock,
3807 int chain_head, u64 chain_key)
3808 {
3809 return 1;
3810 }
3811
3812 static void init_chain_block_buckets(void) { }
3813 #endif /* CONFIG_PROVE_LOCKING */
3814
3815 /*
3816 * We are building curr_chain_key incrementally, so double-check
3817 * it from scratch, to make sure that it's done correctly:
3818 */
3819 static void check_chain_key(struct task_struct *curr)
3820 {
3821 #ifdef CONFIG_DEBUG_LOCKDEP
3822 struct held_lock *hlock, *prev_hlock = NULL;
3823 unsigned int i;
3824 u64 chain_key = INITIAL_CHAIN_KEY;
3825
3826 for (i = 0; i < curr->lockdep_depth; i++) {
3827 hlock = curr->held_locks + i;
3828 if (chain_key != hlock->prev_chain_key) {
3829 debug_locks_off();
3830 /*
3831 * We got mighty confused, our chain keys don't match
3832 * with what we expect, someone trample on our task state?
3833 */
3834 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3835 curr->lockdep_depth, i,
3836 (unsigned long long)chain_key,
3837 (unsigned long long)hlock->prev_chain_key);
3838 return;
3839 }
3840
3841 /*
3842 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3843 * it registered lock class index?
3844 */
3845 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3846 return;
3847
3848 if (prev_hlock && (prev_hlock->irq_context !=
3849 hlock->irq_context))
3850 chain_key = INITIAL_CHAIN_KEY;
3851 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3852 prev_hlock = hlock;
3853 }
3854 if (chain_key != curr->curr_chain_key) {
3855 debug_locks_off();
3856 /*
3857 * More smoking hash instead of calculating it, damn see these
3858 * numbers float.. I bet that a pink elephant stepped on my memory.
3859 */
3860 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3861 curr->lockdep_depth, i,
3862 (unsigned long long)chain_key,
3863 (unsigned long long)curr->curr_chain_key);
3864 }
3865 #endif
3866 }
3867
3868 #ifdef CONFIG_PROVE_LOCKING
3869 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3870 enum lock_usage_bit new_bit);
3871
3872 static void print_usage_bug_scenario(struct held_lock *lock)
3873 {
3874 struct lock_class *class = hlock_class(lock);
3875
3876 printk(" Possible unsafe locking scenario:\n\n");
3877 printk(" CPU0\n");
3878 printk(" ----\n");
3879 printk(" lock(");
3880 __print_lock_name(class);
3881 printk(KERN_CONT ");\n");
3882 printk(" <Interrupt>\n");
3883 printk(" lock(");
3884 __print_lock_name(class);
3885 printk(KERN_CONT ");\n");
3886 printk("\n *** DEADLOCK ***\n\n");
3887 }
3888
3889 static void
3890 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3891 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3892 {
3893 if (!debug_locks_off() || debug_locks_silent)
3894 return;
3895
3896 pr_warn("\n");
3897 pr_warn("================================\n");
3898 pr_warn("WARNING: inconsistent lock state\n");
3899 print_kernel_ident();
3900 pr_warn("--------------------------------\n");
3901
3902 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3903 usage_str[prev_bit], usage_str[new_bit]);
3904
3905 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3906 curr->comm, task_pid_nr(curr),
3907 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3908 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3909 lockdep_hardirqs_enabled(),
3910 lockdep_softirqs_enabled(curr));
3911 print_lock(this);
3912
3913 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3914 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3915
3916 print_irqtrace_events(curr);
3917 pr_warn("\nother info that might help us debug this:\n");
3918 print_usage_bug_scenario(this);
3919
3920 lockdep_print_held_locks(curr);
3921
3922 pr_warn("\nstack backtrace:\n");
3923 dump_stack();
3924 }
3925
3926 /*
3927 * Print out an error if an invalid bit is set:
3928 */
3929 static inline int
3930 valid_state(struct task_struct *curr, struct held_lock *this,
3931 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3932 {
3933 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3934 graph_unlock();
3935 print_usage_bug(curr, this, bad_bit, new_bit);
3936 return 0;
3937 }
3938 return 1;
3939 }
3940
3941
3942 /*
3943 * print irq inversion bug:
3944 */
3945 static void
3946 print_irq_inversion_bug(struct task_struct *curr,
3947 struct lock_list *root, struct lock_list *other,
3948 struct held_lock *this, int forwards,
3949 const char *irqclass)
3950 {
3951 struct lock_list *entry = other;
3952 struct lock_list *middle = NULL;
3953 int depth;
3954
3955 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3956 return;
3957
3958 pr_warn("\n");
3959 pr_warn("========================================================\n");
3960 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3961 print_kernel_ident();
3962 pr_warn("--------------------------------------------------------\n");
3963 pr_warn("%s/%d just changed the state of lock:\n",
3964 curr->comm, task_pid_nr(curr));
3965 print_lock(this);
3966 if (forwards)
3967 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3968 else
3969 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3970 print_lock_name(other->class);
3971 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3972
3973 pr_warn("\nother info that might help us debug this:\n");
3974
3975 /* Find a middle lock (if one exists) */
3976 depth = get_lock_depth(other);
3977 do {
3978 if (depth == 0 && (entry != root)) {
3979 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3980 break;
3981 }
3982 middle = entry;
3983 entry = get_lock_parent(entry);
3984 depth--;
3985 } while (entry && entry != root && (depth >= 0));
3986 if (forwards)
3987 print_irq_lock_scenario(root, other,
3988 middle ? middle->class : root->class, other->class);
3989 else
3990 print_irq_lock_scenario(other, root,
3991 middle ? middle->class : other->class, root->class);
3992
3993 lockdep_print_held_locks(curr);
3994
3995 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3996 root->trace = save_trace();
3997 if (!root->trace)
3998 return;
3999 print_shortest_lock_dependencies(other, root);
4000
4001 pr_warn("\nstack backtrace:\n");
4002 dump_stack();
4003 }
4004
4005 /*
4006 * Prove that in the forwards-direction subgraph starting at <this>
4007 * there is no lock matching <mask>:
4008 */
4009 static int
4010 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4011 enum lock_usage_bit bit)
4012 {
4013 enum bfs_result ret;
4014 struct lock_list root;
4015 struct lock_list *target_entry;
4016 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4017 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4018
4019 bfs_init_root(&root, this);
4020 ret = find_usage_forwards(&root, usage_mask, &target_entry);
4021 if (bfs_error(ret)) {
4022 print_bfs_bug(ret);
4023 return 0;
4024 }
4025 if (ret == BFS_RNOMATCH)
4026 return 1;
4027
4028 /* Check whether write or read usage is the match */
4029 if (target_entry->class->usage_mask & lock_flag(bit)) {
4030 print_irq_inversion_bug(curr, &root, target_entry,
4031 this, 1, state_name(bit));
4032 } else {
4033 print_irq_inversion_bug(curr, &root, target_entry,
4034 this, 1, state_name(read_bit));
4035 }
4036
4037 return 0;
4038 }
4039
4040 /*
4041 * Prove that in the backwards-direction subgraph starting at <this>
4042 * there is no lock matching <mask>:
4043 */
4044 static int
4045 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4046 enum lock_usage_bit bit)
4047 {
4048 enum bfs_result ret;
4049 struct lock_list root;
4050 struct lock_list *target_entry;
4051 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4052 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4053
4054 bfs_init_rootb(&root, this);
4055 ret = find_usage_backwards(&root, usage_mask, &target_entry);
4056 if (bfs_error(ret)) {
4057 print_bfs_bug(ret);
4058 return 0;
4059 }
4060 if (ret == BFS_RNOMATCH)
4061 return 1;
4062
4063 /* Check whether write or read usage is the match */
4064 if (target_entry->class->usage_mask & lock_flag(bit)) {
4065 print_irq_inversion_bug(curr, &root, target_entry,
4066 this, 0, state_name(bit));
4067 } else {
4068 print_irq_inversion_bug(curr, &root, target_entry,
4069 this, 0, state_name(read_bit));
4070 }
4071
4072 return 0;
4073 }
4074
4075 void print_irqtrace_events(struct task_struct *curr)
4076 {
4077 const struct irqtrace_events *trace = &curr->irqtrace;
4078
4079 printk("irq event stamp: %u\n", trace->irq_events);
4080 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4081 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4082 (void *)trace->hardirq_enable_ip);
4083 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4084 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4085 (void *)trace->hardirq_disable_ip);
4086 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4087 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4088 (void *)trace->softirq_enable_ip);
4089 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4090 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4091 (void *)trace->softirq_disable_ip);
4092 }
4093
4094 static int HARDIRQ_verbose(struct lock_class *class)
4095 {
4096 #if HARDIRQ_VERBOSE
4097 return class_filter(class);
4098 #endif
4099 return 0;
4100 }
4101
4102 static int SOFTIRQ_verbose(struct lock_class *class)
4103 {
4104 #if SOFTIRQ_VERBOSE
4105 return class_filter(class);
4106 #endif
4107 return 0;
4108 }
4109
4110 static int (*state_verbose_f[])(struct lock_class *class) = {
4111 #define LOCKDEP_STATE(__STATE) \
4112 __STATE##_verbose,
4113 #include "lockdep_states.h"
4114 #undef LOCKDEP_STATE
4115 };
4116
4117 static inline int state_verbose(enum lock_usage_bit bit,
4118 struct lock_class *class)
4119 {
4120 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4121 }
4122
4123 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4124 enum lock_usage_bit bit, const char *name);
4125
4126 static int
4127 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4128 enum lock_usage_bit new_bit)
4129 {
4130 int excl_bit = exclusive_bit(new_bit);
4131 int read = new_bit & LOCK_USAGE_READ_MASK;
4132 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4133
4134 /*
4135 * Validate that this particular lock does not have conflicting
4136 * usage states.
4137 */
4138 if (!valid_state(curr, this, new_bit, excl_bit))
4139 return 0;
4140
4141 /*
4142 * Check for read in write conflicts
4143 */
4144 if (!read && !valid_state(curr, this, new_bit,
4145 excl_bit + LOCK_USAGE_READ_MASK))
4146 return 0;
4147
4148
4149 /*
4150 * Validate that the lock dependencies don't have conflicting usage
4151 * states.
4152 */
4153 if (dir) {
4154 /*
4155 * mark ENABLED has to look backwards -- to ensure no dependee
4156 * has USED_IN state, which, again, would allow recursion deadlocks.
4157 */
4158 if (!check_usage_backwards(curr, this, excl_bit))
4159 return 0;
4160 } else {
4161 /*
4162 * mark USED_IN has to look forwards -- to ensure no dependency
4163 * has ENABLED state, which would allow recursion deadlocks.
4164 */
4165 if (!check_usage_forwards(curr, this, excl_bit))
4166 return 0;
4167 }
4168
4169 if (state_verbose(new_bit, hlock_class(this)))
4170 return 2;
4171
4172 return 1;
4173 }
4174
4175 /*
4176 * Mark all held locks with a usage bit:
4177 */
4178 static int
4179 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4180 {
4181 struct held_lock *hlock;
4182 int i;
4183
4184 for (i = 0; i < curr->lockdep_depth; i++) {
4185 enum lock_usage_bit hlock_bit = base_bit;
4186 hlock = curr->held_locks + i;
4187
4188 if (hlock->read)
4189 hlock_bit += LOCK_USAGE_READ_MASK;
4190
4191 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4192
4193 if (!hlock->check)
4194 continue;
4195
4196 if (!mark_lock(curr, hlock, hlock_bit))
4197 return 0;
4198 }
4199
4200 return 1;
4201 }
4202
4203 /*
4204 * Hardirqs will be enabled:
4205 */
4206 static void __trace_hardirqs_on_caller(void)
4207 {
4208 struct task_struct *curr = current;
4209
4210 /*
4211 * We are going to turn hardirqs on, so set the
4212 * usage bit for all held locks:
4213 */
4214 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4215 return;
4216 /*
4217 * If we have softirqs enabled, then set the usage
4218 * bit for all held locks. (disabled hardirqs prevented
4219 * this bit from being set before)
4220 */
4221 if (curr->softirqs_enabled)
4222 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4223 }
4224
4225 /**
4226 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4227 * @ip: Caller address
4228 *
4229 * Invoked before a possible transition to RCU idle from exit to user or
4230 * guest mode. This ensures that all RCU operations are done before RCU
4231 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4232 * invoked to set the final state.
4233 */
4234 void lockdep_hardirqs_on_prepare(unsigned long ip)
4235 {
4236 if (unlikely(!debug_locks))
4237 return;
4238
4239 /*
4240 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4241 */
4242 if (unlikely(in_nmi()))
4243 return;
4244
4245 if (unlikely(this_cpu_read(lockdep_recursion)))
4246 return;
4247
4248 if (unlikely(lockdep_hardirqs_enabled())) {
4249 /*
4250 * Neither irq nor preemption are disabled here
4251 * so this is racy by nature but losing one hit
4252 * in a stat is not a big deal.
4253 */
4254 __debug_atomic_inc(redundant_hardirqs_on);
4255 return;
4256 }
4257
4258 /*
4259 * We're enabling irqs and according to our state above irqs weren't
4260 * already enabled, yet we find the hardware thinks they are in fact
4261 * enabled.. someone messed up their IRQ state tracing.
4262 */
4263 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4264 return;
4265
4266 /*
4267 * See the fine text that goes along with this variable definition.
4268 */
4269 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4270 return;
4271
4272 /*
4273 * Can't allow enabling interrupts while in an interrupt handler,
4274 * that's general bad form and such. Recursion, limited stack etc..
4275 */
4276 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4277 return;
4278
4279 current->hardirq_chain_key = current->curr_chain_key;
4280
4281 lockdep_recursion_inc();
4282 __trace_hardirqs_on_caller();
4283 lockdep_recursion_finish();
4284 }
4285 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4286
4287 void noinstr lockdep_hardirqs_on(unsigned long ip)
4288 {
4289 struct irqtrace_events *trace = &current->irqtrace;
4290
4291 if (unlikely(!debug_locks))
4292 return;
4293
4294 /*
4295 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4296 * tracking state and hardware state are out of sync.
4297 *
4298 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4299 * and not rely on hardware state like normal interrupts.
4300 */
4301 if (unlikely(in_nmi())) {
4302 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4303 return;
4304
4305 /*
4306 * Skip:
4307 * - recursion check, because NMI can hit lockdep;
4308 * - hardware state check, because above;
4309 * - chain_key check, see lockdep_hardirqs_on_prepare().
4310 */
4311 goto skip_checks;
4312 }
4313
4314 if (unlikely(this_cpu_read(lockdep_recursion)))
4315 return;
4316
4317 if (lockdep_hardirqs_enabled()) {
4318 /*
4319 * Neither irq nor preemption are disabled here
4320 * so this is racy by nature but losing one hit
4321 * in a stat is not a big deal.
4322 */
4323 __debug_atomic_inc(redundant_hardirqs_on);
4324 return;
4325 }
4326
4327 /*
4328 * We're enabling irqs and according to our state above irqs weren't
4329 * already enabled, yet we find the hardware thinks they are in fact
4330 * enabled.. someone messed up their IRQ state tracing.
4331 */
4332 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4333 return;
4334
4335 /*
4336 * Ensure the lock stack remained unchanged between
4337 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4338 */
4339 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4340 current->curr_chain_key);
4341
4342 skip_checks:
4343 /* we'll do an OFF -> ON transition: */
4344 __this_cpu_write(hardirqs_enabled, 1);
4345 trace->hardirq_enable_ip = ip;
4346 trace->hardirq_enable_event = ++trace->irq_events;
4347 debug_atomic_inc(hardirqs_on_events);
4348 }
4349 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4350
4351 /*
4352 * Hardirqs were disabled:
4353 */
4354 void noinstr lockdep_hardirqs_off(unsigned long ip)
4355 {
4356 if (unlikely(!debug_locks))
4357 return;
4358
4359 /*
4360 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4361 * they will restore the software state. This ensures the software
4362 * state is consistent inside NMIs as well.
4363 */
4364 if (in_nmi()) {
4365 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4366 return;
4367 } else if (__this_cpu_read(lockdep_recursion))
4368 return;
4369
4370 /*
4371 * So we're supposed to get called after you mask local IRQs, but for
4372 * some reason the hardware doesn't quite think you did a proper job.
4373 */
4374 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4375 return;
4376
4377 if (lockdep_hardirqs_enabled()) {
4378 struct irqtrace_events *trace = &current->irqtrace;
4379
4380 /*
4381 * We have done an ON -> OFF transition:
4382 */
4383 __this_cpu_write(hardirqs_enabled, 0);
4384 trace->hardirq_disable_ip = ip;
4385 trace->hardirq_disable_event = ++trace->irq_events;
4386 debug_atomic_inc(hardirqs_off_events);
4387 } else {
4388 debug_atomic_inc(redundant_hardirqs_off);
4389 }
4390 }
4391 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4392
4393 /*
4394 * Softirqs will be enabled:
4395 */
4396 void lockdep_softirqs_on(unsigned long ip)
4397 {
4398 struct irqtrace_events *trace = &current->irqtrace;
4399
4400 if (unlikely(!lockdep_enabled()))
4401 return;
4402
4403 /*
4404 * We fancy IRQs being disabled here, see softirq.c, avoids
4405 * funny state and nesting things.
4406 */
4407 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4408 return;
4409
4410 if (current->softirqs_enabled) {
4411 debug_atomic_inc(redundant_softirqs_on);
4412 return;
4413 }
4414
4415 lockdep_recursion_inc();
4416 /*
4417 * We'll do an OFF -> ON transition:
4418 */
4419 current->softirqs_enabled = 1;
4420 trace->softirq_enable_ip = ip;
4421 trace->softirq_enable_event = ++trace->irq_events;
4422 debug_atomic_inc(softirqs_on_events);
4423 /*
4424 * We are going to turn softirqs on, so set the
4425 * usage bit for all held locks, if hardirqs are
4426 * enabled too:
4427 */
4428 if (lockdep_hardirqs_enabled())
4429 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4430 lockdep_recursion_finish();
4431 }
4432
4433 /*
4434 * Softirqs were disabled:
4435 */
4436 void lockdep_softirqs_off(unsigned long ip)
4437 {
4438 if (unlikely(!lockdep_enabled()))
4439 return;
4440
4441 /*
4442 * We fancy IRQs being disabled here, see softirq.c
4443 */
4444 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4445 return;
4446
4447 if (current->softirqs_enabled) {
4448 struct irqtrace_events *trace = &current->irqtrace;
4449
4450 /*
4451 * We have done an ON -> OFF transition:
4452 */
4453 current->softirqs_enabled = 0;
4454 trace->softirq_disable_ip = ip;
4455 trace->softirq_disable_event = ++trace->irq_events;
4456 debug_atomic_inc(softirqs_off_events);
4457 /*
4458 * Whoops, we wanted softirqs off, so why aren't they?
4459 */
4460 DEBUG_LOCKS_WARN_ON(!softirq_count());
4461 } else
4462 debug_atomic_inc(redundant_softirqs_off);
4463 }
4464
4465 static int
4466 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4467 {
4468 if (!check)
4469 goto lock_used;
4470
4471 /*
4472 * If non-trylock use in a hardirq or softirq context, then
4473 * mark the lock as used in these contexts:
4474 */
4475 if (!hlock->trylock) {
4476 if (hlock->read) {
4477 if (lockdep_hardirq_context())
4478 if (!mark_lock(curr, hlock,
4479 LOCK_USED_IN_HARDIRQ_READ))
4480 return 0;
4481 if (curr->softirq_context)
4482 if (!mark_lock(curr, hlock,
4483 LOCK_USED_IN_SOFTIRQ_READ))
4484 return 0;
4485 } else {
4486 if (lockdep_hardirq_context())
4487 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4488 return 0;
4489 if (curr->softirq_context)
4490 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4491 return 0;
4492 }
4493 }
4494 if (!hlock->hardirqs_off) {
4495 if (hlock->read) {
4496 if (!mark_lock(curr, hlock,
4497 LOCK_ENABLED_HARDIRQ_READ))
4498 return 0;
4499 if (curr->softirqs_enabled)
4500 if (!mark_lock(curr, hlock,
4501 LOCK_ENABLED_SOFTIRQ_READ))
4502 return 0;
4503 } else {
4504 if (!mark_lock(curr, hlock,
4505 LOCK_ENABLED_HARDIRQ))
4506 return 0;
4507 if (curr->softirqs_enabled)
4508 if (!mark_lock(curr, hlock,
4509 LOCK_ENABLED_SOFTIRQ))
4510 return 0;
4511 }
4512 }
4513
4514 lock_used:
4515 /* mark it as used: */
4516 if (!mark_lock(curr, hlock, LOCK_USED))
4517 return 0;
4518
4519 return 1;
4520 }
4521
4522 static inline unsigned int task_irq_context(struct task_struct *task)
4523 {
4524 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4525 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4526 }
4527
4528 static int separate_irq_context(struct task_struct *curr,
4529 struct held_lock *hlock)
4530 {
4531 unsigned int depth = curr->lockdep_depth;
4532
4533 /*
4534 * Keep track of points where we cross into an interrupt context:
4535 */
4536 if (depth) {
4537 struct held_lock *prev_hlock;
4538
4539 prev_hlock = curr->held_locks + depth-1;
4540 /*
4541 * If we cross into another context, reset the
4542 * hash key (this also prevents the checking and the
4543 * adding of the dependency to 'prev'):
4544 */
4545 if (prev_hlock->irq_context != hlock->irq_context)
4546 return 1;
4547 }
4548 return 0;
4549 }
4550
4551 /*
4552 * Mark a lock with a usage bit, and validate the state transition:
4553 */
4554 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4555 enum lock_usage_bit new_bit)
4556 {
4557 unsigned int new_mask, ret = 1;
4558
4559 if (new_bit >= LOCK_USAGE_STATES) {
4560 DEBUG_LOCKS_WARN_ON(1);
4561 return 0;
4562 }
4563
4564 if (new_bit == LOCK_USED && this->read)
4565 new_bit = LOCK_USED_READ;
4566
4567 new_mask = 1 << new_bit;
4568
4569 /*
4570 * If already set then do not dirty the cacheline,
4571 * nor do any checks:
4572 */
4573 if (likely(hlock_class(this)->usage_mask & new_mask))
4574 return 1;
4575
4576 if (!graph_lock())
4577 return 0;
4578 /*
4579 * Make sure we didn't race:
4580 */
4581 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4582 goto unlock;
4583
4584 if (!hlock_class(this)->usage_mask)
4585 debug_atomic_dec(nr_unused_locks);
4586
4587 hlock_class(this)->usage_mask |= new_mask;
4588
4589 if (new_bit < LOCK_TRACE_STATES) {
4590 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4591 return 0;
4592 }
4593
4594 if (new_bit < LOCK_USED) {
4595 ret = mark_lock_irq(curr, this, new_bit);
4596 if (!ret)
4597 return 0;
4598 }
4599
4600 unlock:
4601 graph_unlock();
4602
4603 /*
4604 * We must printk outside of the graph_lock:
4605 */
4606 if (ret == 2) {
4607 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4608 print_lock(this);
4609 print_irqtrace_events(curr);
4610 dump_stack();
4611 }
4612
4613 return ret;
4614 }
4615
4616 static inline short task_wait_context(struct task_struct *curr)
4617 {
4618 /*
4619 * Set appropriate wait type for the context; for IRQs we have to take
4620 * into account force_irqthread as that is implied by PREEMPT_RT.
4621 */
4622 if (lockdep_hardirq_context()) {
4623 /*
4624 * Check if force_irqthreads will run us threaded.
4625 */
4626 if (curr->hardirq_threaded || curr->irq_config)
4627 return LD_WAIT_CONFIG;
4628
4629 return LD_WAIT_SPIN;
4630 } else if (curr->softirq_context) {
4631 /*
4632 * Softirqs are always threaded.
4633 */
4634 return LD_WAIT_CONFIG;
4635 }
4636
4637 return LD_WAIT_MAX;
4638 }
4639
4640 static int
4641 print_lock_invalid_wait_context(struct task_struct *curr,
4642 struct held_lock *hlock)
4643 {
4644 short curr_inner;
4645
4646 if (!debug_locks_off())
4647 return 0;
4648 if (debug_locks_silent)
4649 return 0;
4650
4651 pr_warn("\n");
4652 pr_warn("=============================\n");
4653 pr_warn("[ BUG: Invalid wait context ]\n");
4654 print_kernel_ident();
4655 pr_warn("-----------------------------\n");
4656
4657 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4658 print_lock(hlock);
4659
4660 pr_warn("other info that might help us debug this:\n");
4661
4662 curr_inner = task_wait_context(curr);
4663 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4664
4665 lockdep_print_held_locks(curr);
4666
4667 pr_warn("stack backtrace:\n");
4668 dump_stack();
4669
4670 return 0;
4671 }
4672
4673 /*
4674 * Verify the wait_type context.
4675 *
4676 * This check validates we takes locks in the right wait-type order; that is it
4677 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4678 * acquire spinlocks inside raw_spinlocks and the sort.
4679 *
4680 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4681 * can be taken from (pretty much) any context but also has constraints.
4682 * However when taken in a stricter environment the RCU lock does not loosen
4683 * the constraints.
4684 *
4685 * Therefore we must look for the strictest environment in the lock stack and
4686 * compare that to the lock we're trying to acquire.
4687 */
4688 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4689 {
4690 u8 next_inner = hlock_class(next)->wait_type_inner;
4691 u8 next_outer = hlock_class(next)->wait_type_outer;
4692 u8 curr_inner;
4693 int depth;
4694
4695 if (!next_inner || next->trylock)
4696 return 0;
4697
4698 if (!next_outer)
4699 next_outer = next_inner;
4700
4701 /*
4702 * Find start of current irq_context..
4703 */
4704 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4705 struct held_lock *prev = curr->held_locks + depth;
4706 if (prev->irq_context != next->irq_context)
4707 break;
4708 }
4709 depth++;
4710
4711 curr_inner = task_wait_context(curr);
4712
4713 for (; depth < curr->lockdep_depth; depth++) {
4714 struct held_lock *prev = curr->held_locks + depth;
4715 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4716
4717 if (prev_inner) {
4718 /*
4719 * We can have a bigger inner than a previous one
4720 * when outer is smaller than inner, as with RCU.
4721 *
4722 * Also due to trylocks.
4723 */
4724 curr_inner = min(curr_inner, prev_inner);
4725 }
4726 }
4727
4728 if (next_outer > curr_inner)
4729 return print_lock_invalid_wait_context(curr, next);
4730
4731 return 0;
4732 }
4733
4734 #else /* CONFIG_PROVE_LOCKING */
4735
4736 static inline int
4737 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4738 {
4739 return 1;
4740 }
4741
4742 static inline unsigned int task_irq_context(struct task_struct *task)
4743 {
4744 return 0;
4745 }
4746
4747 static inline int separate_irq_context(struct task_struct *curr,
4748 struct held_lock *hlock)
4749 {
4750 return 0;
4751 }
4752
4753 static inline int check_wait_context(struct task_struct *curr,
4754 struct held_lock *next)
4755 {
4756 return 0;
4757 }
4758
4759 #endif /* CONFIG_PROVE_LOCKING */
4760
4761 /*
4762 * Initialize a lock instance's lock-class mapping info:
4763 */
4764 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4765 struct lock_class_key *key, int subclass,
4766 u8 inner, u8 outer, u8 lock_type)
4767 {
4768 int i;
4769
4770 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4771 lock->class_cache[i] = NULL;
4772
4773 #ifdef CONFIG_LOCK_STAT
4774 lock->cpu = raw_smp_processor_id();
4775 #endif
4776
4777 /*
4778 * Can't be having no nameless bastards around this place!
4779 */
4780 if (DEBUG_LOCKS_WARN_ON(!name)) {
4781 lock->name = "NULL";
4782 return;
4783 }
4784
4785 lock->name = name;
4786
4787 lock->wait_type_outer = outer;
4788 lock->wait_type_inner = inner;
4789 lock->lock_type = lock_type;
4790
4791 /*
4792 * No key, no joy, we need to hash something.
4793 */
4794 if (DEBUG_LOCKS_WARN_ON(!key))
4795 return;
4796 /*
4797 * Sanity check, the lock-class key must either have been allocated
4798 * statically or must have been registered as a dynamic key.
4799 */
4800 if (!static_obj(key) && !is_dynamic_key(key)) {
4801 if (debug_locks)
4802 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4803 DEBUG_LOCKS_WARN_ON(1);
4804 return;
4805 }
4806 lock->key = key;
4807
4808 if (unlikely(!debug_locks))
4809 return;
4810
4811 if (subclass) {
4812 unsigned long flags;
4813
4814 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4815 return;
4816
4817 raw_local_irq_save(flags);
4818 lockdep_recursion_inc();
4819 register_lock_class(lock, subclass, 1);
4820 lockdep_recursion_finish();
4821 raw_local_irq_restore(flags);
4822 }
4823 }
4824 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4825
4826 struct lock_class_key __lockdep_no_validate__;
4827 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4828
4829 static void
4830 print_lock_nested_lock_not_held(struct task_struct *curr,
4831 struct held_lock *hlock,
4832 unsigned long ip)
4833 {
4834 if (!debug_locks_off())
4835 return;
4836 if (debug_locks_silent)
4837 return;
4838
4839 pr_warn("\n");
4840 pr_warn("==================================\n");
4841 pr_warn("WARNING: Nested lock was not taken\n");
4842 print_kernel_ident();
4843 pr_warn("----------------------------------\n");
4844
4845 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4846 print_lock(hlock);
4847
4848 pr_warn("\nbut this task is not holding:\n");
4849 pr_warn("%s\n", hlock->nest_lock->name);
4850
4851 pr_warn("\nstack backtrace:\n");
4852 dump_stack();
4853
4854 pr_warn("\nother info that might help us debug this:\n");
4855 lockdep_print_held_locks(curr);
4856
4857 pr_warn("\nstack backtrace:\n");
4858 dump_stack();
4859 }
4860
4861 static int __lock_is_held(const struct lockdep_map *lock, int read);
4862
4863 /*
4864 * This gets called for every mutex_lock*()/spin_lock*() operation.
4865 * We maintain the dependency maps and validate the locking attempt:
4866 *
4867 * The callers must make sure that IRQs are disabled before calling it,
4868 * otherwise we could get an interrupt which would want to take locks,
4869 * which would end up in lockdep again.
4870 */
4871 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4872 int trylock, int read, int check, int hardirqs_off,
4873 struct lockdep_map *nest_lock, unsigned long ip,
4874 int references, int pin_count)
4875 {
4876 struct task_struct *curr = current;
4877 struct lock_class *class = NULL;
4878 struct held_lock *hlock;
4879 unsigned int depth;
4880 int chain_head = 0;
4881 int class_idx;
4882 u64 chain_key;
4883
4884 if (unlikely(!debug_locks))
4885 return 0;
4886
4887 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4888 check = 0;
4889
4890 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4891 class = lock->class_cache[subclass];
4892 /*
4893 * Not cached?
4894 */
4895 if (unlikely(!class)) {
4896 class = register_lock_class(lock, subclass, 0);
4897 if (!class)
4898 return 0;
4899 }
4900
4901 debug_class_ops_inc(class);
4902
4903 if (very_verbose(class)) {
4904 printk("\nacquire class [%px] %s", class->key, class->name);
4905 if (class->name_version > 1)
4906 printk(KERN_CONT "#%d", class->name_version);
4907 printk(KERN_CONT "\n");
4908 dump_stack();
4909 }
4910
4911 /*
4912 * Add the lock to the list of currently held locks.
4913 * (we dont increase the depth just yet, up until the
4914 * dependency checks are done)
4915 */
4916 depth = curr->lockdep_depth;
4917 /*
4918 * Ran out of static storage for our per-task lock stack again have we?
4919 */
4920 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4921 return 0;
4922
4923 class_idx = class - lock_classes;
4924
4925 if (depth) { /* we're holding locks */
4926 hlock = curr->held_locks + depth - 1;
4927 if (hlock->class_idx == class_idx && nest_lock) {
4928 if (!references)
4929 references++;
4930
4931 if (!hlock->references)
4932 hlock->references++;
4933
4934 hlock->references += references;
4935
4936 /* Overflow */
4937 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4938 return 0;
4939
4940 return 2;
4941 }
4942 }
4943
4944 hlock = curr->held_locks + depth;
4945 /*
4946 * Plain impossible, we just registered it and checked it weren't no
4947 * NULL like.. I bet this mushroom I ate was good!
4948 */
4949 if (DEBUG_LOCKS_WARN_ON(!class))
4950 return 0;
4951 hlock->class_idx = class_idx;
4952 hlock->acquire_ip = ip;
4953 hlock->instance = lock;
4954 hlock->nest_lock = nest_lock;
4955 hlock->irq_context = task_irq_context(curr);
4956 hlock->trylock = trylock;
4957 hlock->read = read;
4958 hlock->check = check;
4959 hlock->hardirqs_off = !!hardirqs_off;
4960 hlock->references = references;
4961 #ifdef CONFIG_LOCK_STAT
4962 hlock->waittime_stamp = 0;
4963 hlock->holdtime_stamp = lockstat_clock();
4964 #endif
4965 hlock->pin_count = pin_count;
4966
4967 if (check_wait_context(curr, hlock))
4968 return 0;
4969
4970 /* Initialize the lock usage bit */
4971 if (!mark_usage(curr, hlock, check))
4972 return 0;
4973
4974 /*
4975 * Calculate the chain hash: it's the combined hash of all the
4976 * lock keys along the dependency chain. We save the hash value
4977 * at every step so that we can get the current hash easily
4978 * after unlock. The chain hash is then used to cache dependency
4979 * results.
4980 *
4981 * The 'key ID' is what is the most compact key value to drive
4982 * the hash, not class->key.
4983 */
4984 /*
4985 * Whoops, we did it again.. class_idx is invalid.
4986 */
4987 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4988 return 0;
4989
4990 chain_key = curr->curr_chain_key;
4991 if (!depth) {
4992 /*
4993 * How can we have a chain hash when we ain't got no keys?!
4994 */
4995 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4996 return 0;
4997 chain_head = 1;
4998 }
4999
5000 hlock->prev_chain_key = chain_key;
5001 if (separate_irq_context(curr, hlock)) {
5002 chain_key = INITIAL_CHAIN_KEY;
5003 chain_head = 1;
5004 }
5005 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5006
5007 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5008 print_lock_nested_lock_not_held(curr, hlock, ip);
5009 return 0;
5010 }
5011
5012 if (!debug_locks_silent) {
5013 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5014 WARN_ON_ONCE(!hlock_class(hlock)->key);
5015 }
5016
5017 if (!validate_chain(curr, hlock, chain_head, chain_key))
5018 return 0;
5019
5020 curr->curr_chain_key = chain_key;
5021 curr->lockdep_depth++;
5022 check_chain_key(curr);
5023 #ifdef CONFIG_DEBUG_LOCKDEP
5024 if (unlikely(!debug_locks))
5025 return 0;
5026 #endif
5027 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5028 debug_locks_off();
5029 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5030 printk(KERN_DEBUG "depth: %i max: %lu!\n",
5031 curr->lockdep_depth, MAX_LOCK_DEPTH);
5032
5033 lockdep_print_held_locks(current);
5034 debug_show_all_locks();
5035 dump_stack();
5036
5037 return 0;
5038 }
5039
5040 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5041 max_lockdep_depth = curr->lockdep_depth;
5042
5043 return 1;
5044 }
5045
5046 static void print_unlock_imbalance_bug(struct task_struct *curr,
5047 struct lockdep_map *lock,
5048 unsigned long ip)
5049 {
5050 if (!debug_locks_off())
5051 return;
5052 if (debug_locks_silent)
5053 return;
5054
5055 pr_warn("\n");
5056 pr_warn("=====================================\n");
5057 pr_warn("WARNING: bad unlock balance detected!\n");
5058 print_kernel_ident();
5059 pr_warn("-------------------------------------\n");
5060 pr_warn("%s/%d is trying to release lock (",
5061 curr->comm, task_pid_nr(curr));
5062 print_lockdep_cache(lock);
5063 pr_cont(") at:\n");
5064 print_ip_sym(KERN_WARNING, ip);
5065 pr_warn("but there are no more locks to release!\n");
5066 pr_warn("\nother info that might help us debug this:\n");
5067 lockdep_print_held_locks(curr);
5068
5069 pr_warn("\nstack backtrace:\n");
5070 dump_stack();
5071 }
5072
5073 static noinstr int match_held_lock(const struct held_lock *hlock,
5074 const struct lockdep_map *lock)
5075 {
5076 if (hlock->instance == lock)
5077 return 1;
5078
5079 if (hlock->references) {
5080 const struct lock_class *class = lock->class_cache[0];
5081
5082 if (!class)
5083 class = look_up_lock_class(lock, 0);
5084
5085 /*
5086 * If look_up_lock_class() failed to find a class, we're trying
5087 * to test if we hold a lock that has never yet been acquired.
5088 * Clearly if the lock hasn't been acquired _ever_, we're not
5089 * holding it either, so report failure.
5090 */
5091 if (!class)
5092 return 0;
5093
5094 /*
5095 * References, but not a lock we're actually ref-counting?
5096 * State got messed up, follow the sites that change ->references
5097 * and try to make sense of it.
5098 */
5099 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5100 return 0;
5101
5102 if (hlock->class_idx == class - lock_classes)
5103 return 1;
5104 }
5105
5106 return 0;
5107 }
5108
5109 /* @depth must not be zero */
5110 static struct held_lock *find_held_lock(struct task_struct *curr,
5111 struct lockdep_map *lock,
5112 unsigned int depth, int *idx)
5113 {
5114 struct held_lock *ret, *hlock, *prev_hlock;
5115 int i;
5116
5117 i = depth - 1;
5118 hlock = curr->held_locks + i;
5119 ret = hlock;
5120 if (match_held_lock(hlock, lock))
5121 goto out;
5122
5123 ret = NULL;
5124 for (i--, prev_hlock = hlock--;
5125 i >= 0;
5126 i--, prev_hlock = hlock--) {
5127 /*
5128 * We must not cross into another context:
5129 */
5130 if (prev_hlock->irq_context != hlock->irq_context) {
5131 ret = NULL;
5132 break;
5133 }
5134 if (match_held_lock(hlock, lock)) {
5135 ret = hlock;
5136 break;
5137 }
5138 }
5139
5140 out:
5141 *idx = i;
5142 return ret;
5143 }
5144
5145 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5146 int idx, unsigned int *merged)
5147 {
5148 struct held_lock *hlock;
5149 int first_idx = idx;
5150
5151 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5152 return 0;
5153
5154 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5155 switch (__lock_acquire(hlock->instance,
5156 hlock_class(hlock)->subclass,
5157 hlock->trylock,
5158 hlock->read, hlock->check,
5159 hlock->hardirqs_off,
5160 hlock->nest_lock, hlock->acquire_ip,
5161 hlock->references, hlock->pin_count)) {
5162 case 0:
5163 return 1;
5164 case 1:
5165 break;
5166 case 2:
5167 *merged += (idx == first_idx);
5168 break;
5169 default:
5170 WARN_ON(1);
5171 return 0;
5172 }
5173 }
5174 return 0;
5175 }
5176
5177 static int
5178 __lock_set_class(struct lockdep_map *lock, const char *name,
5179 struct lock_class_key *key, unsigned int subclass,
5180 unsigned long ip)
5181 {
5182 struct task_struct *curr = current;
5183 unsigned int depth, merged = 0;
5184 struct held_lock *hlock;
5185 struct lock_class *class;
5186 int i;
5187
5188 if (unlikely(!debug_locks))
5189 return 0;
5190
5191 depth = curr->lockdep_depth;
5192 /*
5193 * This function is about (re)setting the class of a held lock,
5194 * yet we're not actually holding any locks. Naughty user!
5195 */
5196 if (DEBUG_LOCKS_WARN_ON(!depth))
5197 return 0;
5198
5199 hlock = find_held_lock(curr, lock, depth, &i);
5200 if (!hlock) {
5201 print_unlock_imbalance_bug(curr, lock, ip);
5202 return 0;
5203 }
5204
5205 lockdep_init_map_waits(lock, name, key, 0,
5206 lock->wait_type_inner,
5207 lock->wait_type_outer);
5208 class = register_lock_class(lock, subclass, 0);
5209 hlock->class_idx = class - lock_classes;
5210
5211 curr->lockdep_depth = i;
5212 curr->curr_chain_key = hlock->prev_chain_key;
5213
5214 if (reacquire_held_locks(curr, depth, i, &merged))
5215 return 0;
5216
5217 /*
5218 * I took it apart and put it back together again, except now I have
5219 * these 'spare' parts.. where shall I put them.
5220 */
5221 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5222 return 0;
5223 return 1;
5224 }
5225
5226 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5227 {
5228 struct task_struct *curr = current;
5229 unsigned int depth, merged = 0;
5230 struct held_lock *hlock;
5231 int i;
5232
5233 if (unlikely(!debug_locks))
5234 return 0;
5235
5236 depth = curr->lockdep_depth;
5237 /*
5238 * This function is about (re)setting the class of a held lock,
5239 * yet we're not actually holding any locks. Naughty user!
5240 */
5241 if (DEBUG_LOCKS_WARN_ON(!depth))
5242 return 0;
5243
5244 hlock = find_held_lock(curr, lock, depth, &i);
5245 if (!hlock) {
5246 print_unlock_imbalance_bug(curr, lock, ip);
5247 return 0;
5248 }
5249
5250 curr->lockdep_depth = i;
5251 curr->curr_chain_key = hlock->prev_chain_key;
5252
5253 WARN(hlock->read, "downgrading a read lock");
5254 hlock->read = 1;
5255 hlock->acquire_ip = ip;
5256
5257 if (reacquire_held_locks(curr, depth, i, &merged))
5258 return 0;
5259
5260 /* Merging can't happen with unchanged classes.. */
5261 if (DEBUG_LOCKS_WARN_ON(merged))
5262 return 0;
5263
5264 /*
5265 * I took it apart and put it back together again, except now I have
5266 * these 'spare' parts.. where shall I put them.
5267 */
5268 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5269 return 0;
5270
5271 return 1;
5272 }
5273
5274 /*
5275 * Remove the lock from the list of currently held locks - this gets
5276 * called on mutex_unlock()/spin_unlock*() (or on a failed
5277 * mutex_lock_interruptible()).
5278 */
5279 static int
5280 __lock_release(struct lockdep_map *lock, unsigned long ip)
5281 {
5282 struct task_struct *curr = current;
5283 unsigned int depth, merged = 1;
5284 struct held_lock *hlock;
5285 int i;
5286
5287 if (unlikely(!debug_locks))
5288 return 0;
5289
5290 depth = curr->lockdep_depth;
5291 /*
5292 * So we're all set to release this lock.. wait what lock? We don't
5293 * own any locks, you've been drinking again?
5294 */
5295 if (depth <= 0) {
5296 print_unlock_imbalance_bug(curr, lock, ip);
5297 return 0;
5298 }
5299
5300 /*
5301 * Check whether the lock exists in the current stack
5302 * of held locks:
5303 */
5304 hlock = find_held_lock(curr, lock, depth, &i);
5305 if (!hlock) {
5306 print_unlock_imbalance_bug(curr, lock, ip);
5307 return 0;
5308 }
5309
5310 if (hlock->instance == lock)
5311 lock_release_holdtime(hlock);
5312
5313 WARN(hlock->pin_count, "releasing a pinned lock\n");
5314
5315 if (hlock->references) {
5316 hlock->references--;
5317 if (hlock->references) {
5318 /*
5319 * We had, and after removing one, still have
5320 * references, the current lock stack is still
5321 * valid. We're done!
5322 */
5323 return 1;
5324 }
5325 }
5326
5327 /*
5328 * We have the right lock to unlock, 'hlock' points to it.
5329 * Now we remove it from the stack, and add back the other
5330 * entries (if any), recalculating the hash along the way:
5331 */
5332
5333 curr->lockdep_depth = i;
5334 curr->curr_chain_key = hlock->prev_chain_key;
5335
5336 /*
5337 * The most likely case is when the unlock is on the innermost
5338 * lock. In this case, we are done!
5339 */
5340 if (i == depth-1)
5341 return 1;
5342
5343 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5344 return 0;
5345
5346 /*
5347 * We had N bottles of beer on the wall, we drank one, but now
5348 * there's not N-1 bottles of beer left on the wall...
5349 * Pouring two of the bottles together is acceptable.
5350 */
5351 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5352
5353 /*
5354 * Since reacquire_held_locks() would have called check_chain_key()
5355 * indirectly via __lock_acquire(), we don't need to do it again
5356 * on return.
5357 */
5358 return 0;
5359 }
5360
5361 static __always_inline
5362 int __lock_is_held(const struct lockdep_map *lock, int read)
5363 {
5364 struct task_struct *curr = current;
5365 int i;
5366
5367 for (i = 0; i < curr->lockdep_depth; i++) {
5368 struct held_lock *hlock = curr->held_locks + i;
5369
5370 if (match_held_lock(hlock, lock)) {
5371 if (read == -1 || !!hlock->read == read)
5372 return LOCK_STATE_HELD;
5373
5374 return LOCK_STATE_NOT_HELD;
5375 }
5376 }
5377
5378 return LOCK_STATE_NOT_HELD;
5379 }
5380
5381 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5382 {
5383 struct pin_cookie cookie = NIL_COOKIE;
5384 struct task_struct *curr = current;
5385 int i;
5386
5387 if (unlikely(!debug_locks))
5388 return cookie;
5389
5390 for (i = 0; i < curr->lockdep_depth; i++) {
5391 struct held_lock *hlock = curr->held_locks + i;
5392
5393 if (match_held_lock(hlock, lock)) {
5394 /*
5395 * Grab 16bits of randomness; this is sufficient to not
5396 * be guessable and still allows some pin nesting in
5397 * our u32 pin_count.
5398 */
5399 cookie.val = 1 + (prandom_u32() >> 16);
5400 hlock->pin_count += cookie.val;
5401 return cookie;
5402 }
5403 }
5404
5405 WARN(1, "pinning an unheld lock\n");
5406 return cookie;
5407 }
5408
5409 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5410 {
5411 struct task_struct *curr = current;
5412 int i;
5413
5414 if (unlikely(!debug_locks))
5415 return;
5416
5417 for (i = 0; i < curr->lockdep_depth; i++) {
5418 struct held_lock *hlock = curr->held_locks + i;
5419
5420 if (match_held_lock(hlock, lock)) {
5421 hlock->pin_count += cookie.val;
5422 return;
5423 }
5424 }
5425
5426 WARN(1, "pinning an unheld lock\n");
5427 }
5428
5429 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5430 {
5431 struct task_struct *curr = current;
5432 int i;
5433
5434 if (unlikely(!debug_locks))
5435 return;
5436
5437 for (i = 0; i < curr->lockdep_depth; i++) {
5438 struct held_lock *hlock = curr->held_locks + i;
5439
5440 if (match_held_lock(hlock, lock)) {
5441 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5442 return;
5443
5444 hlock->pin_count -= cookie.val;
5445
5446 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5447 hlock->pin_count = 0;
5448
5449 return;
5450 }
5451 }
5452
5453 WARN(1, "unpinning an unheld lock\n");
5454 }
5455
5456 /*
5457 * Check whether we follow the irq-flags state precisely:
5458 */
5459 static noinstr void check_flags(unsigned long flags)
5460 {
5461 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5462 if (!debug_locks)
5463 return;
5464
5465 /* Get the warning out.. */
5466 instrumentation_begin();
5467
5468 if (irqs_disabled_flags(flags)) {
5469 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5470 printk("possible reason: unannotated irqs-off.\n");
5471 }
5472 } else {
5473 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5474 printk("possible reason: unannotated irqs-on.\n");
5475 }
5476 }
5477
5478 /*
5479 * We dont accurately track softirq state in e.g.
5480 * hardirq contexts (such as on 4KSTACKS), so only
5481 * check if not in hardirq contexts:
5482 */
5483 if (!hardirq_count()) {
5484 if (softirq_count()) {
5485 /* like the above, but with softirqs */
5486 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5487 } else {
5488 /* lick the above, does it taste good? */
5489 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5490 }
5491 }
5492
5493 if (!debug_locks)
5494 print_irqtrace_events(current);
5495
5496 instrumentation_end();
5497 #endif
5498 }
5499
5500 void lock_set_class(struct lockdep_map *lock, const char *name,
5501 struct lock_class_key *key, unsigned int subclass,
5502 unsigned long ip)
5503 {
5504 unsigned long flags;
5505
5506 if (unlikely(!lockdep_enabled()))
5507 return;
5508
5509 raw_local_irq_save(flags);
5510 lockdep_recursion_inc();
5511 check_flags(flags);
5512 if (__lock_set_class(lock, name, key, subclass, ip))
5513 check_chain_key(current);
5514 lockdep_recursion_finish();
5515 raw_local_irq_restore(flags);
5516 }
5517 EXPORT_SYMBOL_GPL(lock_set_class);
5518
5519 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5520 {
5521 unsigned long flags;
5522
5523 if (unlikely(!lockdep_enabled()))
5524 return;
5525
5526 raw_local_irq_save(flags);
5527 lockdep_recursion_inc();
5528 check_flags(flags);
5529 if (__lock_downgrade(lock, ip))
5530 check_chain_key(current);
5531 lockdep_recursion_finish();
5532 raw_local_irq_restore(flags);
5533 }
5534 EXPORT_SYMBOL_GPL(lock_downgrade);
5535
5536 /* NMI context !!! */
5537 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5538 {
5539 #ifdef CONFIG_PROVE_LOCKING
5540 struct lock_class *class = look_up_lock_class(lock, subclass);
5541 unsigned long mask = LOCKF_USED;
5542
5543 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5544 if (!class)
5545 return;
5546
5547 /*
5548 * READ locks only conflict with USED, such that if we only ever use
5549 * READ locks, there is no deadlock possible -- RCU.
5550 */
5551 if (!hlock->read)
5552 mask |= LOCKF_USED_READ;
5553
5554 if (!(class->usage_mask & mask))
5555 return;
5556
5557 hlock->class_idx = class - lock_classes;
5558
5559 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5560 #endif
5561 }
5562
5563 static bool lockdep_nmi(void)
5564 {
5565 if (raw_cpu_read(lockdep_recursion))
5566 return false;
5567
5568 if (!in_nmi())
5569 return false;
5570
5571 return true;
5572 }
5573
5574 /*
5575 * read_lock() is recursive if:
5576 * 1. We force lockdep think this way in selftests or
5577 * 2. The implementation is not queued read/write lock or
5578 * 3. The locker is at an in_interrupt() context.
5579 */
5580 bool read_lock_is_recursive(void)
5581 {
5582 return force_read_lock_recursive ||
5583 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5584 in_interrupt();
5585 }
5586 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5587
5588 /*
5589 * We are not always called with irqs disabled - do that here,
5590 * and also avoid lockdep recursion:
5591 */
5592 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5593 int trylock, int read, int check,
5594 struct lockdep_map *nest_lock, unsigned long ip)
5595 {
5596 unsigned long flags;
5597
5598 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5599
5600 if (!debug_locks)
5601 return;
5602
5603 if (unlikely(!lockdep_enabled())) {
5604 /* XXX allow trylock from NMI ?!? */
5605 if (lockdep_nmi() && !trylock) {
5606 struct held_lock hlock;
5607
5608 hlock.acquire_ip = ip;
5609 hlock.instance = lock;
5610 hlock.nest_lock = nest_lock;
5611 hlock.irq_context = 2; // XXX
5612 hlock.trylock = trylock;
5613 hlock.read = read;
5614 hlock.check = check;
5615 hlock.hardirqs_off = true;
5616 hlock.references = 0;
5617
5618 verify_lock_unused(lock, &hlock, subclass);
5619 }
5620 return;
5621 }
5622
5623 raw_local_irq_save(flags);
5624 check_flags(flags);
5625
5626 lockdep_recursion_inc();
5627 __lock_acquire(lock, subclass, trylock, read, check,
5628 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5629 lockdep_recursion_finish();
5630 raw_local_irq_restore(flags);
5631 }
5632 EXPORT_SYMBOL_GPL(lock_acquire);
5633
5634 void lock_release(struct lockdep_map *lock, unsigned long ip)
5635 {
5636 unsigned long flags;
5637
5638 trace_lock_release(lock, ip);
5639
5640 if (unlikely(!lockdep_enabled()))
5641 return;
5642
5643 raw_local_irq_save(flags);
5644 check_flags(flags);
5645
5646 lockdep_recursion_inc();
5647 if (__lock_release(lock, ip))
5648 check_chain_key(current);
5649 lockdep_recursion_finish();
5650 raw_local_irq_restore(flags);
5651 }
5652 EXPORT_SYMBOL_GPL(lock_release);
5653
5654 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5655 {
5656 unsigned long flags;
5657 int ret = LOCK_STATE_NOT_HELD;
5658
5659 /*
5660 * Avoid false negative lockdep_assert_held() and
5661 * lockdep_assert_not_held().
5662 */
5663 if (unlikely(!lockdep_enabled()))
5664 return LOCK_STATE_UNKNOWN;
5665
5666 raw_local_irq_save(flags);
5667 check_flags(flags);
5668
5669 lockdep_recursion_inc();
5670 ret = __lock_is_held(lock, read);
5671 lockdep_recursion_finish();
5672 raw_local_irq_restore(flags);
5673
5674 return ret;
5675 }
5676 EXPORT_SYMBOL_GPL(lock_is_held_type);
5677 NOKPROBE_SYMBOL(lock_is_held_type);
5678
5679 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5680 {
5681 struct pin_cookie cookie = NIL_COOKIE;
5682 unsigned long flags;
5683
5684 if (unlikely(!lockdep_enabled()))
5685 return cookie;
5686
5687 raw_local_irq_save(flags);
5688 check_flags(flags);
5689
5690 lockdep_recursion_inc();
5691 cookie = __lock_pin_lock(lock);
5692 lockdep_recursion_finish();
5693 raw_local_irq_restore(flags);
5694
5695 return cookie;
5696 }
5697 EXPORT_SYMBOL_GPL(lock_pin_lock);
5698
5699 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5700 {
5701 unsigned long flags;
5702
5703 if (unlikely(!lockdep_enabled()))
5704 return;
5705
5706 raw_local_irq_save(flags);
5707 check_flags(flags);
5708
5709 lockdep_recursion_inc();
5710 __lock_repin_lock(lock, cookie);
5711 lockdep_recursion_finish();
5712 raw_local_irq_restore(flags);
5713 }
5714 EXPORT_SYMBOL_GPL(lock_repin_lock);
5715
5716 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5717 {
5718 unsigned long flags;
5719
5720 if (unlikely(!lockdep_enabled()))
5721 return;
5722
5723 raw_local_irq_save(flags);
5724 check_flags(flags);
5725
5726 lockdep_recursion_inc();
5727 __lock_unpin_lock(lock, cookie);
5728 lockdep_recursion_finish();
5729 raw_local_irq_restore(flags);
5730 }
5731 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5732
5733 #ifdef CONFIG_LOCK_STAT
5734 static void print_lock_contention_bug(struct task_struct *curr,
5735 struct lockdep_map *lock,
5736 unsigned long ip)
5737 {
5738 if (!debug_locks_off())
5739 return;
5740 if (debug_locks_silent)
5741 return;
5742
5743 pr_warn("\n");
5744 pr_warn("=================================\n");
5745 pr_warn("WARNING: bad contention detected!\n");
5746 print_kernel_ident();
5747 pr_warn("---------------------------------\n");
5748 pr_warn("%s/%d is trying to contend lock (",
5749 curr->comm, task_pid_nr(curr));
5750 print_lockdep_cache(lock);
5751 pr_cont(") at:\n");
5752 print_ip_sym(KERN_WARNING, ip);
5753 pr_warn("but there are no locks held!\n");
5754 pr_warn("\nother info that might help us debug this:\n");
5755 lockdep_print_held_locks(curr);
5756
5757 pr_warn("\nstack backtrace:\n");
5758 dump_stack();
5759 }
5760
5761 static void
5762 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5763 {
5764 struct task_struct *curr = current;
5765 struct held_lock *hlock;
5766 struct lock_class_stats *stats;
5767 unsigned int depth;
5768 int i, contention_point, contending_point;
5769
5770 depth = curr->lockdep_depth;
5771 /*
5772 * Whee, we contended on this lock, except it seems we're not
5773 * actually trying to acquire anything much at all..
5774 */
5775 if (DEBUG_LOCKS_WARN_ON(!depth))
5776 return;
5777
5778 hlock = find_held_lock(curr, lock, depth, &i);
5779 if (!hlock) {
5780 print_lock_contention_bug(curr, lock, ip);
5781 return;
5782 }
5783
5784 if (hlock->instance != lock)
5785 return;
5786
5787 hlock->waittime_stamp = lockstat_clock();
5788
5789 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5790 contending_point = lock_point(hlock_class(hlock)->contending_point,
5791 lock->ip);
5792
5793 stats = get_lock_stats(hlock_class(hlock));
5794 if (contention_point < LOCKSTAT_POINTS)
5795 stats->contention_point[contention_point]++;
5796 if (contending_point < LOCKSTAT_POINTS)
5797 stats->contending_point[contending_point]++;
5798 if (lock->cpu != smp_processor_id())
5799 stats->bounces[bounce_contended + !!hlock->read]++;
5800 }
5801
5802 static void
5803 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5804 {
5805 struct task_struct *curr = current;
5806 struct held_lock *hlock;
5807 struct lock_class_stats *stats;
5808 unsigned int depth;
5809 u64 now, waittime = 0;
5810 int i, cpu;
5811
5812 depth = curr->lockdep_depth;
5813 /*
5814 * Yay, we acquired ownership of this lock we didn't try to
5815 * acquire, how the heck did that happen?
5816 */
5817 if (DEBUG_LOCKS_WARN_ON(!depth))
5818 return;
5819
5820 hlock = find_held_lock(curr, lock, depth, &i);
5821 if (!hlock) {
5822 print_lock_contention_bug(curr, lock, _RET_IP_);
5823 return;
5824 }
5825
5826 if (hlock->instance != lock)
5827 return;
5828
5829 cpu = smp_processor_id();
5830 if (hlock->waittime_stamp) {
5831 now = lockstat_clock();
5832 waittime = now - hlock->waittime_stamp;
5833 hlock->holdtime_stamp = now;
5834 }
5835
5836 stats = get_lock_stats(hlock_class(hlock));
5837 if (waittime) {
5838 if (hlock->read)
5839 lock_time_inc(&stats->read_waittime, waittime);
5840 else
5841 lock_time_inc(&stats->write_waittime, waittime);
5842 }
5843 if (lock->cpu != cpu)
5844 stats->bounces[bounce_acquired + !!hlock->read]++;
5845
5846 lock->cpu = cpu;
5847 lock->ip = ip;
5848 }
5849
5850 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5851 {
5852 unsigned long flags;
5853
5854 trace_lock_contended(lock, ip);
5855
5856 if (unlikely(!lock_stat || !lockdep_enabled()))
5857 return;
5858
5859 raw_local_irq_save(flags);
5860 check_flags(flags);
5861 lockdep_recursion_inc();
5862 __lock_contended(lock, ip);
5863 lockdep_recursion_finish();
5864 raw_local_irq_restore(flags);
5865 }
5866 EXPORT_SYMBOL_GPL(lock_contended);
5867
5868 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5869 {
5870 unsigned long flags;
5871
5872 trace_lock_acquired(lock, ip);
5873
5874 if (unlikely(!lock_stat || !lockdep_enabled()))
5875 return;
5876
5877 raw_local_irq_save(flags);
5878 check_flags(flags);
5879 lockdep_recursion_inc();
5880 __lock_acquired(lock, ip);
5881 lockdep_recursion_finish();
5882 raw_local_irq_restore(flags);
5883 }
5884 EXPORT_SYMBOL_GPL(lock_acquired);
5885 #endif
5886
5887 /*
5888 * Used by the testsuite, sanitize the validator state
5889 * after a simulated failure:
5890 */
5891
5892 void lockdep_reset(void)
5893 {
5894 unsigned long flags;
5895 int i;
5896
5897 raw_local_irq_save(flags);
5898 lockdep_init_task(current);
5899 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5900 nr_hardirq_chains = 0;
5901 nr_softirq_chains = 0;
5902 nr_process_chains = 0;
5903 debug_locks = 1;
5904 for (i = 0; i < CHAINHASH_SIZE; i++)
5905 INIT_HLIST_HEAD(chainhash_table + i);
5906 raw_local_irq_restore(flags);
5907 }
5908
5909 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5910 static void remove_class_from_lock_chain(struct pending_free *pf,
5911 struct lock_chain *chain,
5912 struct lock_class *class)
5913 {
5914 #ifdef CONFIG_PROVE_LOCKING
5915 int i;
5916
5917 for (i = chain->base; i < chain->base + chain->depth; i++) {
5918 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5919 continue;
5920 /*
5921 * Each lock class occurs at most once in a lock chain so once
5922 * we found a match we can break out of this loop.
5923 */
5924 goto free_lock_chain;
5925 }
5926 /* Since the chain has not been modified, return. */
5927 return;
5928
5929 free_lock_chain:
5930 free_chain_hlocks(chain->base, chain->depth);
5931 /* Overwrite the chain key for concurrent RCU readers. */
5932 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5933 dec_chains(chain->irq_context);
5934
5935 /*
5936 * Note: calling hlist_del_rcu() from inside a
5937 * hlist_for_each_entry_rcu() loop is safe.
5938 */
5939 hlist_del_rcu(&chain->entry);
5940 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5941 nr_zapped_lock_chains++;
5942 #endif
5943 }
5944
5945 /* Must be called with the graph lock held. */
5946 static void remove_class_from_lock_chains(struct pending_free *pf,
5947 struct lock_class *class)
5948 {
5949 struct lock_chain *chain;
5950 struct hlist_head *head;
5951 int i;
5952
5953 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5954 head = chainhash_table + i;
5955 hlist_for_each_entry_rcu(chain, head, entry) {
5956 remove_class_from_lock_chain(pf, chain, class);
5957 }
5958 }
5959 }
5960
5961 /*
5962 * Remove all references to a lock class. The caller must hold the graph lock.
5963 */
5964 static void zap_class(struct pending_free *pf, struct lock_class *class)
5965 {
5966 struct lock_list *entry;
5967 int i;
5968
5969 WARN_ON_ONCE(!class->key);
5970
5971 /*
5972 * Remove all dependencies this lock is
5973 * involved in:
5974 */
5975 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5976 entry = list_entries + i;
5977 if (entry->class != class && entry->links_to != class)
5978 continue;
5979 __clear_bit(i, list_entries_in_use);
5980 nr_list_entries--;
5981 list_del_rcu(&entry->entry);
5982 }
5983 if (list_empty(&class->locks_after) &&
5984 list_empty(&class->locks_before)) {
5985 list_move_tail(&class->lock_entry, &pf->zapped);
5986 hlist_del_rcu(&class->hash_entry);
5987 WRITE_ONCE(class->key, NULL);
5988 WRITE_ONCE(class->name, NULL);
5989 nr_lock_classes--;
5990 __clear_bit(class - lock_classes, lock_classes_in_use);
5991 } else {
5992 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5993 class->name);
5994 }
5995
5996 remove_class_from_lock_chains(pf, class);
5997 nr_zapped_classes++;
5998 }
5999
6000 static void reinit_class(struct lock_class *class)
6001 {
6002 void *const p = class;
6003 const unsigned int offset = offsetof(struct lock_class, key);
6004
6005 WARN_ON_ONCE(!class->lock_entry.next);
6006 WARN_ON_ONCE(!list_empty(&class->locks_after));
6007 WARN_ON_ONCE(!list_empty(&class->locks_before));
6008 memset(p + offset, 0, sizeof(*class) - offset);
6009 WARN_ON_ONCE(!class->lock_entry.next);
6010 WARN_ON_ONCE(!list_empty(&class->locks_after));
6011 WARN_ON_ONCE(!list_empty(&class->locks_before));
6012 }
6013
6014 static inline int within(const void *addr, void *start, unsigned long size)
6015 {
6016 return addr >= start && addr < start + size;
6017 }
6018
6019 static bool inside_selftest(void)
6020 {
6021 return current == lockdep_selftest_task_struct;
6022 }
6023
6024 /* The caller must hold the graph lock. */
6025 static struct pending_free *get_pending_free(void)
6026 {
6027 return delayed_free.pf + delayed_free.index;
6028 }
6029
6030 static void free_zapped_rcu(struct rcu_head *cb);
6031
6032 /*
6033 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6034 * the graph lock held.
6035 */
6036 static void call_rcu_zapped(struct pending_free *pf)
6037 {
6038 WARN_ON_ONCE(inside_selftest());
6039
6040 if (list_empty(&pf->zapped))
6041 return;
6042
6043 if (delayed_free.scheduled)
6044 return;
6045
6046 delayed_free.scheduled = true;
6047
6048 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6049 delayed_free.index ^= 1;
6050
6051 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6052 }
6053
6054 /* The caller must hold the graph lock. May be called from RCU context. */
6055 static void __free_zapped_classes(struct pending_free *pf)
6056 {
6057 struct lock_class *class;
6058
6059 check_data_structures();
6060
6061 list_for_each_entry(class, &pf->zapped, lock_entry)
6062 reinit_class(class);
6063
6064 list_splice_init(&pf->zapped, &free_lock_classes);
6065
6066 #ifdef CONFIG_PROVE_LOCKING
6067 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6068 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6069 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6070 #endif
6071 }
6072
6073 static void free_zapped_rcu(struct rcu_head *ch)
6074 {
6075 struct pending_free *pf;
6076 unsigned long flags;
6077
6078 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6079 return;
6080
6081 raw_local_irq_save(flags);
6082 lockdep_lock();
6083
6084 /* closed head */
6085 pf = delayed_free.pf + (delayed_free.index ^ 1);
6086 __free_zapped_classes(pf);
6087 delayed_free.scheduled = false;
6088
6089 /*
6090 * If there's anything on the open list, close and start a new callback.
6091 */
6092 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6093
6094 lockdep_unlock();
6095 raw_local_irq_restore(flags);
6096 }
6097
6098 /*
6099 * Remove all lock classes from the class hash table and from the
6100 * all_lock_classes list whose key or name is in the address range [start,
6101 * start + size). Move these lock classes to the zapped_classes list. Must
6102 * be called with the graph lock held.
6103 */
6104 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6105 unsigned long size)
6106 {
6107 struct lock_class *class;
6108 struct hlist_head *head;
6109 int i;
6110
6111 /* Unhash all classes that were created by a module. */
6112 for (i = 0; i < CLASSHASH_SIZE; i++) {
6113 head = classhash_table + i;
6114 hlist_for_each_entry_rcu(class, head, hash_entry) {
6115 if (!within(class->key, start, size) &&
6116 !within(class->name, start, size))
6117 continue;
6118 zap_class(pf, class);
6119 }
6120 }
6121 }
6122
6123 /*
6124 * Used in module.c to remove lock classes from memory that is going to be
6125 * freed; and possibly re-used by other modules.
6126 *
6127 * We will have had one synchronize_rcu() before getting here, so we're
6128 * guaranteed nobody will look up these exact classes -- they're properly dead
6129 * but still allocated.
6130 */
6131 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6132 {
6133 struct pending_free *pf;
6134 unsigned long flags;
6135
6136 init_data_structures_once();
6137
6138 raw_local_irq_save(flags);
6139 lockdep_lock();
6140 pf = get_pending_free();
6141 __lockdep_free_key_range(pf, start, size);
6142 call_rcu_zapped(pf);
6143 lockdep_unlock();
6144 raw_local_irq_restore(flags);
6145
6146 /*
6147 * Wait for any possible iterators from look_up_lock_class() to pass
6148 * before continuing to free the memory they refer to.
6149 */
6150 synchronize_rcu();
6151 }
6152
6153 /*
6154 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6155 * Ignores debug_locks. Must only be used by the lockdep selftests.
6156 */
6157 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6158 {
6159 struct pending_free *pf = delayed_free.pf;
6160 unsigned long flags;
6161
6162 init_data_structures_once();
6163
6164 raw_local_irq_save(flags);
6165 lockdep_lock();
6166 __lockdep_free_key_range(pf, start, size);
6167 __free_zapped_classes(pf);
6168 lockdep_unlock();
6169 raw_local_irq_restore(flags);
6170 }
6171
6172 void lockdep_free_key_range(void *start, unsigned long size)
6173 {
6174 init_data_structures_once();
6175
6176 if (inside_selftest())
6177 lockdep_free_key_range_imm(start, size);
6178 else
6179 lockdep_free_key_range_reg(start, size);
6180 }
6181
6182 /*
6183 * Check whether any element of the @lock->class_cache[] array refers to a
6184 * registered lock class. The caller must hold either the graph lock or the
6185 * RCU read lock.
6186 */
6187 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6188 {
6189 struct lock_class *class;
6190 struct hlist_head *head;
6191 int i, j;
6192
6193 for (i = 0; i < CLASSHASH_SIZE; i++) {
6194 head = classhash_table + i;
6195 hlist_for_each_entry_rcu(class, head, hash_entry) {
6196 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6197 if (lock->class_cache[j] == class)
6198 return true;
6199 }
6200 }
6201 return false;
6202 }
6203
6204 /* The caller must hold the graph lock. Does not sleep. */
6205 static void __lockdep_reset_lock(struct pending_free *pf,
6206 struct lockdep_map *lock)
6207 {
6208 struct lock_class *class;
6209 int j;
6210
6211 /*
6212 * Remove all classes this lock might have:
6213 */
6214 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6215 /*
6216 * If the class exists we look it up and zap it:
6217 */
6218 class = look_up_lock_class(lock, j);
6219 if (class)
6220 zap_class(pf, class);
6221 }
6222 /*
6223 * Debug check: in the end all mapped classes should
6224 * be gone.
6225 */
6226 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6227 debug_locks_off();
6228 }
6229
6230 /*
6231 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6232 * released data structures from RCU context.
6233 */
6234 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6235 {
6236 struct pending_free *pf;
6237 unsigned long flags;
6238 int locked;
6239
6240 raw_local_irq_save(flags);
6241 locked = graph_lock();
6242 if (!locked)
6243 goto out_irq;
6244
6245 pf = get_pending_free();
6246 __lockdep_reset_lock(pf, lock);
6247 call_rcu_zapped(pf);
6248
6249 graph_unlock();
6250 out_irq:
6251 raw_local_irq_restore(flags);
6252 }
6253
6254 /*
6255 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6256 * lockdep selftests.
6257 */
6258 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6259 {
6260 struct pending_free *pf = delayed_free.pf;
6261 unsigned long flags;
6262
6263 raw_local_irq_save(flags);
6264 lockdep_lock();
6265 __lockdep_reset_lock(pf, lock);
6266 __free_zapped_classes(pf);
6267 lockdep_unlock();
6268 raw_local_irq_restore(flags);
6269 }
6270
6271 void lockdep_reset_lock(struct lockdep_map *lock)
6272 {
6273 init_data_structures_once();
6274
6275 if (inside_selftest())
6276 lockdep_reset_lock_imm(lock);
6277 else
6278 lockdep_reset_lock_reg(lock);
6279 }
6280
6281 /*
6282 * Unregister a dynamically allocated key.
6283 *
6284 * Unlike lockdep_register_key(), a search is always done to find a matching
6285 * key irrespective of debug_locks to avoid potential invalid access to freed
6286 * memory in lock_class entry.
6287 */
6288 void lockdep_unregister_key(struct lock_class_key *key)
6289 {
6290 struct hlist_head *hash_head = keyhashentry(key);
6291 struct lock_class_key *k;
6292 struct pending_free *pf;
6293 unsigned long flags;
6294 bool found = false;
6295
6296 might_sleep();
6297
6298 if (WARN_ON_ONCE(static_obj(key)))
6299 return;
6300
6301 raw_local_irq_save(flags);
6302 lockdep_lock();
6303
6304 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6305 if (k == key) {
6306 hlist_del_rcu(&k->hash_entry);
6307 found = true;
6308 break;
6309 }
6310 }
6311 WARN_ON_ONCE(!found && debug_locks);
6312 if (found) {
6313 pf = get_pending_free();
6314 __lockdep_free_key_range(pf, key, 1);
6315 call_rcu_zapped(pf);
6316 }
6317 lockdep_unlock();
6318 raw_local_irq_restore(flags);
6319
6320 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6321 synchronize_rcu();
6322 }
6323 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6324
6325 void __init lockdep_init(void)
6326 {
6327 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6328
6329 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6330 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6331 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6332 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6333 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6334 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6335 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6336
6337 printk(" memory used by lock dependency info: %zu kB\n",
6338 (sizeof(lock_classes) +
6339 sizeof(lock_classes_in_use) +
6340 sizeof(classhash_table) +
6341 sizeof(list_entries) +
6342 sizeof(list_entries_in_use) +
6343 sizeof(chainhash_table) +
6344 sizeof(delayed_free)
6345 #ifdef CONFIG_PROVE_LOCKING
6346 + sizeof(lock_cq)
6347 + sizeof(lock_chains)
6348 + sizeof(lock_chains_in_use)
6349 + sizeof(chain_hlocks)
6350 #endif
6351 ) / 1024
6352 );
6353
6354 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6355 printk(" memory used for stack traces: %zu kB\n",
6356 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6357 );
6358 #endif
6359
6360 printk(" per task-struct memory footprint: %zu bytes\n",
6361 sizeof(((struct task_struct *)NULL)->held_locks));
6362 }
6363
6364 static void
6365 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6366 const void *mem_to, struct held_lock *hlock)
6367 {
6368 if (!debug_locks_off())
6369 return;
6370 if (debug_locks_silent)
6371 return;
6372
6373 pr_warn("\n");
6374 pr_warn("=========================\n");
6375 pr_warn("WARNING: held lock freed!\n");
6376 print_kernel_ident();
6377 pr_warn("-------------------------\n");
6378 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6379 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6380 print_lock(hlock);
6381 lockdep_print_held_locks(curr);
6382
6383 pr_warn("\nstack backtrace:\n");
6384 dump_stack();
6385 }
6386
6387 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6388 const void* lock_from, unsigned long lock_len)
6389 {
6390 return lock_from + lock_len <= mem_from ||
6391 mem_from + mem_len <= lock_from;
6392 }
6393
6394 /*
6395 * Called when kernel memory is freed (or unmapped), or if a lock
6396 * is destroyed or reinitialized - this code checks whether there is
6397 * any held lock in the memory range of <from> to <to>:
6398 */
6399 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6400 {
6401 struct task_struct *curr = current;
6402 struct held_lock *hlock;
6403 unsigned long flags;
6404 int i;
6405
6406 if (unlikely(!debug_locks))
6407 return;
6408
6409 raw_local_irq_save(flags);
6410 for (i = 0; i < curr->lockdep_depth; i++) {
6411 hlock = curr->held_locks + i;
6412
6413 if (not_in_range(mem_from, mem_len, hlock->instance,
6414 sizeof(*hlock->instance)))
6415 continue;
6416
6417 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6418 break;
6419 }
6420 raw_local_irq_restore(flags);
6421 }
6422 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6423
6424 static void print_held_locks_bug(void)
6425 {
6426 if (!debug_locks_off())
6427 return;
6428 if (debug_locks_silent)
6429 return;
6430
6431 pr_warn("\n");
6432 pr_warn("====================================\n");
6433 pr_warn("WARNING: %s/%d still has locks held!\n",
6434 current->comm, task_pid_nr(current));
6435 print_kernel_ident();
6436 pr_warn("------------------------------------\n");
6437 lockdep_print_held_locks(current);
6438 pr_warn("\nstack backtrace:\n");
6439 dump_stack();
6440 }
6441
6442 void debug_check_no_locks_held(void)
6443 {
6444 if (unlikely(current->lockdep_depth > 0))
6445 print_held_locks_bug();
6446 }
6447 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6448
6449 #ifdef __KERNEL__
6450 void debug_show_all_locks(void)
6451 {
6452 struct task_struct *g, *p;
6453
6454 if (unlikely(!debug_locks)) {
6455 pr_warn("INFO: lockdep is turned off.\n");
6456 return;
6457 }
6458 pr_warn("\nShowing all locks held in the system:\n");
6459
6460 rcu_read_lock();
6461 for_each_process_thread(g, p) {
6462 if (!p->lockdep_depth)
6463 continue;
6464 lockdep_print_held_locks(p);
6465 touch_nmi_watchdog();
6466 touch_all_softlockup_watchdogs();
6467 }
6468 rcu_read_unlock();
6469
6470 pr_warn("\n");
6471 pr_warn("=============================================\n\n");
6472 }
6473 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6474 #endif
6475
6476 /*
6477 * Careful: only use this function if you are sure that
6478 * the task cannot run in parallel!
6479 */
6480 void debug_show_held_locks(struct task_struct *task)
6481 {
6482 if (unlikely(!debug_locks)) {
6483 printk("INFO: lockdep is turned off.\n");
6484 return;
6485 }
6486 lockdep_print_held_locks(task);
6487 }
6488 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6489
6490 asmlinkage __visible void lockdep_sys_exit(void)
6491 {
6492 struct task_struct *curr = current;
6493
6494 if (unlikely(curr->lockdep_depth)) {
6495 if (!debug_locks_off())
6496 return;
6497 pr_warn("\n");
6498 pr_warn("================================================\n");
6499 pr_warn("WARNING: lock held when returning to user space!\n");
6500 print_kernel_ident();
6501 pr_warn("------------------------------------------------\n");
6502 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6503 curr->comm, curr->pid);
6504 lockdep_print_held_locks(curr);
6505 }
6506
6507 /*
6508 * The lock history for each syscall should be independent. So wipe the
6509 * slate clean on return to userspace.
6510 */
6511 lockdep_invariant_state(false);
6512 }
6513
6514 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6515 {
6516 struct task_struct *curr = current;
6517 int dl = READ_ONCE(debug_locks);
6518
6519 /* Note: the following can be executed concurrently, so be careful. */
6520 pr_warn("\n");
6521 pr_warn("=============================\n");
6522 pr_warn("WARNING: suspicious RCU usage\n");
6523 print_kernel_ident();
6524 pr_warn("-----------------------------\n");
6525 pr_warn("%s:%d %s!\n", file, line, s);
6526 pr_warn("\nother info that might help us debug this:\n\n");
6527 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6528 !rcu_lockdep_current_cpu_online()
6529 ? "RCU used illegally from offline CPU!\n"
6530 : "",
6531 rcu_scheduler_active, dl,
6532 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6533
6534 /*
6535 * If a CPU is in the RCU-free window in idle (ie: in the section
6536 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6537 * considers that CPU to be in an "extended quiescent state",
6538 * which means that RCU will be completely ignoring that CPU.
6539 * Therefore, rcu_read_lock() and friends have absolutely no
6540 * effect on a CPU running in that state. In other words, even if
6541 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6542 * delete data structures out from under it. RCU really has no
6543 * choice here: we need to keep an RCU-free window in idle where
6544 * the CPU may possibly enter into low power mode. This way we can
6545 * notice an extended quiescent state to other CPUs that started a grace
6546 * period. Otherwise we would delay any grace period as long as we run
6547 * in the idle task.
6548 *
6549 * So complain bitterly if someone does call rcu_read_lock(),
6550 * rcu_read_lock_bh() and so on from extended quiescent states.
6551 */
6552 if (!rcu_is_watching())
6553 pr_warn("RCU used illegally from extended quiescent state!\n");
6554
6555 lockdep_print_held_locks(curr);
6556 pr_warn("\nstack backtrace:\n");
6557 dump_stack();
6558 }
6559 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);