]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/locking/mutex.c
sched/Documentation: Remove unneeded word
[mirror_ubuntu-bionic-kernel.git] / kernel / locking / mutex.c
1 /*
2 * kernel/locking/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/locking/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29
30 /*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define __mutex_slowpath_needs_to_unlock() 0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
55 mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 osq_lock_init(&lock->osq);
58 #endif
59
60 debug_mutex_init(lock, name, key);
61 }
62
63 EXPORT_SYMBOL(__mutex_init);
64
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73
74 /**
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
95 void __sched mutex_lock(struct mutex *lock)
96 {
97 might_sleep();
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 mutex_set_owner(lock);
104 }
105
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108
109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 /*
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
116 *
117 * This should never happen, always use ww_mutex_unlock.
118 */
119 DEBUG_LOCKS_WARN_ON(ww->ctx);
120
121 /*
122 * Not quite done after calling ww_acquire_done() ?
123 */
124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125
126 if (ww_ctx->contending_lock) {
127 /*
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
130 */
131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132
133 /*
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
136 */
137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 ww_ctx->contending_lock = NULL;
139 }
140
141 /*
142 * Naughty, using a different class will lead to undefined behavior!
143 */
144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 ww_ctx->acquired++;
147 }
148
149 /*
150 * after acquiring lock with fastpath or when we lost out in contested
151 * slowpath, set ctx and wake up any waiters so they can recheck.
152 *
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
155 */
156 static __always_inline void
157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 struct ww_acquire_ctx *ctx)
159 {
160 unsigned long flags;
161 struct mutex_waiter *cur;
162
163 ww_mutex_lock_acquired(lock, ctx);
164
165 lock->ctx = ctx;
166
167 /*
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
173 */
174 smp_mb(); /* ^^^ */
175
176 /*
177 * Check if lock is contended, if not there is nobody to wake up
178 */
179 if (likely(atomic_read(&lock->base.count) == 0))
180 return;
181
182 /*
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
185 */
186 spin_lock_mutex(&lock->base.wait_lock, flags);
187 list_for_each_entry(cur, &lock->base.wait_list, list) {
188 debug_mutex_wake_waiter(&lock->base, cur);
189 wake_up_process(cur->task);
190 }
191 spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193
194
195 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
196 /*
197 * In order to avoid a stampede of mutex spinners from acquiring the mutex
198 * more or less simultaneously, the spinners need to acquire a MCS lock
199 * first before spinning on the owner field.
200 *
201 */
202
203 /*
204 * Mutex spinning code migrated from kernel/sched/core.c
205 */
206
207 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
208 {
209 if (lock->owner != owner)
210 return false;
211
212 /*
213 * Ensure we emit the owner->on_cpu, dereference _after_ checking
214 * lock->owner still matches owner, if that fails, owner might
215 * point to free()d memory, if it still matches, the rcu_read_lock()
216 * ensures the memory stays valid.
217 */
218 barrier();
219
220 return owner->on_cpu;
221 }
222
223 /*
224 * Look out! "owner" is an entirely speculative pointer
225 * access and not reliable.
226 */
227 static noinline
228 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
229 {
230 rcu_read_lock();
231 while (owner_running(lock, owner)) {
232 if (need_resched())
233 break;
234
235 cpu_relax_lowlatency();
236 }
237 rcu_read_unlock();
238
239 /*
240 * We break out the loop above on need_resched() and when the
241 * owner changed, which is a sign for heavy contention. Return
242 * success only when lock->owner is NULL.
243 */
244 return lock->owner == NULL;
245 }
246
247 /*
248 * Initial check for entering the mutex spinning loop
249 */
250 static inline int mutex_can_spin_on_owner(struct mutex *lock)
251 {
252 struct task_struct *owner;
253 int retval = 1;
254
255 if (need_resched())
256 return 0;
257
258 rcu_read_lock();
259 owner = ACCESS_ONCE(lock->owner);
260 if (owner)
261 retval = owner->on_cpu;
262 rcu_read_unlock();
263 /*
264 * if lock->owner is not set, the mutex owner may have just acquired
265 * it and not set the owner yet or the mutex has been released.
266 */
267 return retval;
268 }
269
270 /*
271 * Atomically try to take the lock when it is available
272 */
273 static inline bool mutex_try_to_acquire(struct mutex *lock)
274 {
275 return !mutex_is_locked(lock) &&
276 (atomic_cmpxchg(&lock->count, 1, 0) == 1);
277 }
278
279 /*
280 * Optimistic spinning.
281 *
282 * We try to spin for acquisition when we find that the lock owner
283 * is currently running on a (different) CPU and while we don't
284 * need to reschedule. The rationale is that if the lock owner is
285 * running, it is likely to release the lock soon.
286 *
287 * Since this needs the lock owner, and this mutex implementation
288 * doesn't track the owner atomically in the lock field, we need to
289 * track it non-atomically.
290 *
291 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
292 * to serialize everything.
293 *
294 * The mutex spinners are queued up using MCS lock so that only one
295 * spinner can compete for the mutex. However, if mutex spinning isn't
296 * going to happen, there is no point in going through the lock/unlock
297 * overhead.
298 *
299 * Returns true when the lock was taken, otherwise false, indicating
300 * that we need to jump to the slowpath and sleep.
301 */
302 static bool mutex_optimistic_spin(struct mutex *lock,
303 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
304 {
305 struct task_struct *task = current;
306
307 if (!mutex_can_spin_on_owner(lock))
308 goto done;
309
310 if (!osq_lock(&lock->osq))
311 goto done;
312
313 while (true) {
314 struct task_struct *owner;
315
316 if (use_ww_ctx && ww_ctx->acquired > 0) {
317 struct ww_mutex *ww;
318
319 ww = container_of(lock, struct ww_mutex, base);
320 /*
321 * If ww->ctx is set the contents are undefined, only
322 * by acquiring wait_lock there is a guarantee that
323 * they are not invalid when reading.
324 *
325 * As such, when deadlock detection needs to be
326 * performed the optimistic spinning cannot be done.
327 */
328 if (ACCESS_ONCE(ww->ctx))
329 break;
330 }
331
332 /*
333 * If there's an owner, wait for it to either
334 * release the lock or go to sleep.
335 */
336 owner = ACCESS_ONCE(lock->owner);
337 if (owner && !mutex_spin_on_owner(lock, owner))
338 break;
339
340 /* Try to acquire the mutex if it is unlocked. */
341 if (mutex_try_to_acquire(lock)) {
342 lock_acquired(&lock->dep_map, ip);
343
344 if (use_ww_ctx) {
345 struct ww_mutex *ww;
346 ww = container_of(lock, struct ww_mutex, base);
347
348 ww_mutex_set_context_fastpath(ww, ww_ctx);
349 }
350
351 mutex_set_owner(lock);
352 osq_unlock(&lock->osq);
353 return true;
354 }
355
356 /*
357 * When there's no owner, we might have preempted between the
358 * owner acquiring the lock and setting the owner field. If
359 * we're an RT task that will live-lock because we won't let
360 * the owner complete.
361 */
362 if (!owner && (need_resched() || rt_task(task)))
363 break;
364
365 /*
366 * The cpu_relax() call is a compiler barrier which forces
367 * everything in this loop to be re-loaded. We don't need
368 * memory barriers as we'll eventually observe the right
369 * values at the cost of a few extra spins.
370 */
371 cpu_relax_lowlatency();
372 }
373
374 osq_unlock(&lock->osq);
375 done:
376 /*
377 * If we fell out of the spin path because of need_resched(),
378 * reschedule now, before we try-lock the mutex. This avoids getting
379 * scheduled out right after we obtained the mutex.
380 */
381 if (need_resched()) {
382 /*
383 * We _should_ have TASK_RUNNING here, but just in case
384 * we do not, make it so, otherwise we might get stuck.
385 */
386 __set_current_state(TASK_RUNNING);
387 schedule_preempt_disabled();
388 }
389
390 return false;
391 }
392 #else
393 static bool mutex_optimistic_spin(struct mutex *lock,
394 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
395 {
396 return false;
397 }
398 #endif
399
400 __visible __used noinline
401 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
402
403 /**
404 * mutex_unlock - release the mutex
405 * @lock: the mutex to be released
406 *
407 * Unlock a mutex that has been locked by this task previously.
408 *
409 * This function must not be used in interrupt context. Unlocking
410 * of a not locked mutex is not allowed.
411 *
412 * This function is similar to (but not equivalent to) up().
413 */
414 void __sched mutex_unlock(struct mutex *lock)
415 {
416 /*
417 * The unlocking fastpath is the 0->1 transition from 'locked'
418 * into 'unlocked' state:
419 */
420 #ifndef CONFIG_DEBUG_MUTEXES
421 /*
422 * When debugging is enabled we must not clear the owner before time,
423 * the slow path will always be taken, and that clears the owner field
424 * after verifying that it was indeed current.
425 */
426 mutex_clear_owner(lock);
427 #endif
428 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
429 }
430
431 EXPORT_SYMBOL(mutex_unlock);
432
433 /**
434 * ww_mutex_unlock - release the w/w mutex
435 * @lock: the mutex to be released
436 *
437 * Unlock a mutex that has been locked by this task previously with any of the
438 * ww_mutex_lock* functions (with or without an acquire context). It is
439 * forbidden to release the locks after releasing the acquire context.
440 *
441 * This function must not be used in interrupt context. Unlocking
442 * of a unlocked mutex is not allowed.
443 */
444 void __sched ww_mutex_unlock(struct ww_mutex *lock)
445 {
446 /*
447 * The unlocking fastpath is the 0->1 transition from 'locked'
448 * into 'unlocked' state:
449 */
450 if (lock->ctx) {
451 #ifdef CONFIG_DEBUG_MUTEXES
452 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
453 #endif
454 if (lock->ctx->acquired > 0)
455 lock->ctx->acquired--;
456 lock->ctx = NULL;
457 }
458
459 #ifndef CONFIG_DEBUG_MUTEXES
460 /*
461 * When debugging is enabled we must not clear the owner before time,
462 * the slow path will always be taken, and that clears the owner field
463 * after verifying that it was indeed current.
464 */
465 mutex_clear_owner(&lock->base);
466 #endif
467 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
468 }
469 EXPORT_SYMBOL(ww_mutex_unlock);
470
471 static inline int __sched
472 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
473 {
474 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
475 struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
476
477 if (!hold_ctx)
478 return 0;
479
480 if (unlikely(ctx == hold_ctx))
481 return -EALREADY;
482
483 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
484 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
485 #ifdef CONFIG_DEBUG_MUTEXES
486 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
487 ctx->contending_lock = ww;
488 #endif
489 return -EDEADLK;
490 }
491
492 return 0;
493 }
494
495 /*
496 * Lock a mutex (possibly interruptible), slowpath:
497 */
498 static __always_inline int __sched
499 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
500 struct lockdep_map *nest_lock, unsigned long ip,
501 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
502 {
503 struct task_struct *task = current;
504 struct mutex_waiter waiter;
505 unsigned long flags;
506 int ret;
507
508 preempt_disable();
509 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
510
511 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
512 /* got the lock, yay! */
513 preempt_enable();
514 return 0;
515 }
516
517 spin_lock_mutex(&lock->wait_lock, flags);
518
519 /*
520 * Once more, try to acquire the lock. Only try-lock the mutex if
521 * it is unlocked to reduce unnecessary xchg() operations.
522 */
523 if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
524 goto skip_wait;
525
526 debug_mutex_lock_common(lock, &waiter);
527 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
528
529 /* add waiting tasks to the end of the waitqueue (FIFO): */
530 list_add_tail(&waiter.list, &lock->wait_list);
531 waiter.task = task;
532
533 lock_contended(&lock->dep_map, ip);
534
535 for (;;) {
536 /*
537 * Lets try to take the lock again - this is needed even if
538 * we get here for the first time (shortly after failing to
539 * acquire the lock), to make sure that we get a wakeup once
540 * it's unlocked. Later on, if we sleep, this is the
541 * operation that gives us the lock. We xchg it to -1, so
542 * that when we release the lock, we properly wake up the
543 * other waiters. We only attempt the xchg if the count is
544 * non-negative in order to avoid unnecessary xchg operations:
545 */
546 if (atomic_read(&lock->count) >= 0 &&
547 (atomic_xchg(&lock->count, -1) == 1))
548 break;
549
550 /*
551 * got a signal? (This code gets eliminated in the
552 * TASK_UNINTERRUPTIBLE case.)
553 */
554 if (unlikely(signal_pending_state(state, task))) {
555 ret = -EINTR;
556 goto err;
557 }
558
559 if (use_ww_ctx && ww_ctx->acquired > 0) {
560 ret = __mutex_lock_check_stamp(lock, ww_ctx);
561 if (ret)
562 goto err;
563 }
564
565 __set_task_state(task, state);
566
567 /* didn't get the lock, go to sleep: */
568 spin_unlock_mutex(&lock->wait_lock, flags);
569 schedule_preempt_disabled();
570 spin_lock_mutex(&lock->wait_lock, flags);
571 }
572 mutex_remove_waiter(lock, &waiter, current_thread_info());
573 /* set it to 0 if there are no waiters left: */
574 if (likely(list_empty(&lock->wait_list)))
575 atomic_set(&lock->count, 0);
576 debug_mutex_free_waiter(&waiter);
577
578 skip_wait:
579 /* got the lock - cleanup and rejoice! */
580 lock_acquired(&lock->dep_map, ip);
581 mutex_set_owner(lock);
582
583 if (use_ww_ctx) {
584 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
585 struct mutex_waiter *cur;
586
587 /*
588 * This branch gets optimized out for the common case,
589 * and is only important for ww_mutex_lock.
590 */
591 ww_mutex_lock_acquired(ww, ww_ctx);
592 ww->ctx = ww_ctx;
593
594 /*
595 * Give any possible sleeping processes the chance to wake up,
596 * so they can recheck if they have to back off.
597 */
598 list_for_each_entry(cur, &lock->wait_list, list) {
599 debug_mutex_wake_waiter(lock, cur);
600 wake_up_process(cur->task);
601 }
602 }
603
604 spin_unlock_mutex(&lock->wait_lock, flags);
605 preempt_enable();
606 return 0;
607
608 err:
609 mutex_remove_waiter(lock, &waiter, task_thread_info(task));
610 spin_unlock_mutex(&lock->wait_lock, flags);
611 debug_mutex_free_waiter(&waiter);
612 mutex_release(&lock->dep_map, 1, ip);
613 preempt_enable();
614 return ret;
615 }
616
617 #ifdef CONFIG_DEBUG_LOCK_ALLOC
618 void __sched
619 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
620 {
621 might_sleep();
622 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
623 subclass, NULL, _RET_IP_, NULL, 0);
624 }
625
626 EXPORT_SYMBOL_GPL(mutex_lock_nested);
627
628 void __sched
629 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
630 {
631 might_sleep();
632 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
633 0, nest, _RET_IP_, NULL, 0);
634 }
635
636 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
637
638 int __sched
639 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
640 {
641 might_sleep();
642 return __mutex_lock_common(lock, TASK_KILLABLE,
643 subclass, NULL, _RET_IP_, NULL, 0);
644 }
645 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
646
647 int __sched
648 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
649 {
650 might_sleep();
651 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
652 subclass, NULL, _RET_IP_, NULL, 0);
653 }
654
655 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
656
657 static inline int
658 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
659 {
660 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
661 unsigned tmp;
662
663 if (ctx->deadlock_inject_countdown-- == 0) {
664 tmp = ctx->deadlock_inject_interval;
665 if (tmp > UINT_MAX/4)
666 tmp = UINT_MAX;
667 else
668 tmp = tmp*2 + tmp + tmp/2;
669
670 ctx->deadlock_inject_interval = tmp;
671 ctx->deadlock_inject_countdown = tmp;
672 ctx->contending_lock = lock;
673
674 ww_mutex_unlock(lock);
675
676 return -EDEADLK;
677 }
678 #endif
679
680 return 0;
681 }
682
683 int __sched
684 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
685 {
686 int ret;
687
688 might_sleep();
689 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
690 0, &ctx->dep_map, _RET_IP_, ctx, 1);
691 if (!ret && ctx->acquired > 1)
692 return ww_mutex_deadlock_injection(lock, ctx);
693
694 return ret;
695 }
696 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
697
698 int __sched
699 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
700 {
701 int ret;
702
703 might_sleep();
704 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
705 0, &ctx->dep_map, _RET_IP_, ctx, 1);
706
707 if (!ret && ctx->acquired > 1)
708 return ww_mutex_deadlock_injection(lock, ctx);
709
710 return ret;
711 }
712 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
713
714 #endif
715
716 /*
717 * Release the lock, slowpath:
718 */
719 static inline void
720 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
721 {
722 unsigned long flags;
723
724 /*
725 * As a performance measurement, release the lock before doing other
726 * wakeup related duties to follow. This allows other tasks to acquire
727 * the lock sooner, while still handling cleanups in past unlock calls.
728 * This can be done as we do not enforce strict equivalence between the
729 * mutex counter and wait_list.
730 *
731 *
732 * Some architectures leave the lock unlocked in the fastpath failure
733 * case, others need to leave it locked. In the later case we have to
734 * unlock it here - as the lock counter is currently 0 or negative.
735 */
736 if (__mutex_slowpath_needs_to_unlock())
737 atomic_set(&lock->count, 1);
738
739 spin_lock_mutex(&lock->wait_lock, flags);
740 mutex_release(&lock->dep_map, nested, _RET_IP_);
741 debug_mutex_unlock(lock);
742
743 if (!list_empty(&lock->wait_list)) {
744 /* get the first entry from the wait-list: */
745 struct mutex_waiter *waiter =
746 list_entry(lock->wait_list.next,
747 struct mutex_waiter, list);
748
749 debug_mutex_wake_waiter(lock, waiter);
750
751 wake_up_process(waiter->task);
752 }
753
754 spin_unlock_mutex(&lock->wait_lock, flags);
755 }
756
757 /*
758 * Release the lock, slowpath:
759 */
760 __visible void
761 __mutex_unlock_slowpath(atomic_t *lock_count)
762 {
763 struct mutex *lock = container_of(lock_count, struct mutex, count);
764
765 __mutex_unlock_common_slowpath(lock, 1);
766 }
767
768 #ifndef CONFIG_DEBUG_LOCK_ALLOC
769 /*
770 * Here come the less common (and hence less performance-critical) APIs:
771 * mutex_lock_interruptible() and mutex_trylock().
772 */
773 static noinline int __sched
774 __mutex_lock_killable_slowpath(struct mutex *lock);
775
776 static noinline int __sched
777 __mutex_lock_interruptible_slowpath(struct mutex *lock);
778
779 /**
780 * mutex_lock_interruptible - acquire the mutex, interruptible
781 * @lock: the mutex to be acquired
782 *
783 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
784 * been acquired or sleep until the mutex becomes available. If a
785 * signal arrives while waiting for the lock then this function
786 * returns -EINTR.
787 *
788 * This function is similar to (but not equivalent to) down_interruptible().
789 */
790 int __sched mutex_lock_interruptible(struct mutex *lock)
791 {
792 int ret;
793
794 might_sleep();
795 ret = __mutex_fastpath_lock_retval(&lock->count);
796 if (likely(!ret)) {
797 mutex_set_owner(lock);
798 return 0;
799 } else
800 return __mutex_lock_interruptible_slowpath(lock);
801 }
802
803 EXPORT_SYMBOL(mutex_lock_interruptible);
804
805 int __sched mutex_lock_killable(struct mutex *lock)
806 {
807 int ret;
808
809 might_sleep();
810 ret = __mutex_fastpath_lock_retval(&lock->count);
811 if (likely(!ret)) {
812 mutex_set_owner(lock);
813 return 0;
814 } else
815 return __mutex_lock_killable_slowpath(lock);
816 }
817 EXPORT_SYMBOL(mutex_lock_killable);
818
819 __visible void __sched
820 __mutex_lock_slowpath(atomic_t *lock_count)
821 {
822 struct mutex *lock = container_of(lock_count, struct mutex, count);
823
824 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
825 NULL, _RET_IP_, NULL, 0);
826 }
827
828 static noinline int __sched
829 __mutex_lock_killable_slowpath(struct mutex *lock)
830 {
831 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
832 NULL, _RET_IP_, NULL, 0);
833 }
834
835 static noinline int __sched
836 __mutex_lock_interruptible_slowpath(struct mutex *lock)
837 {
838 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
839 NULL, _RET_IP_, NULL, 0);
840 }
841
842 static noinline int __sched
843 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
844 {
845 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
846 NULL, _RET_IP_, ctx, 1);
847 }
848
849 static noinline int __sched
850 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
851 struct ww_acquire_ctx *ctx)
852 {
853 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
854 NULL, _RET_IP_, ctx, 1);
855 }
856
857 #endif
858
859 /*
860 * Spinlock based trylock, we take the spinlock and check whether we
861 * can get the lock:
862 */
863 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
864 {
865 struct mutex *lock = container_of(lock_count, struct mutex, count);
866 unsigned long flags;
867 int prev;
868
869 /* No need to trylock if the mutex is locked. */
870 if (mutex_is_locked(lock))
871 return 0;
872
873 spin_lock_mutex(&lock->wait_lock, flags);
874
875 prev = atomic_xchg(&lock->count, -1);
876 if (likely(prev == 1)) {
877 mutex_set_owner(lock);
878 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
879 }
880
881 /* Set it back to 0 if there are no waiters: */
882 if (likely(list_empty(&lock->wait_list)))
883 atomic_set(&lock->count, 0);
884
885 spin_unlock_mutex(&lock->wait_lock, flags);
886
887 return prev == 1;
888 }
889
890 /**
891 * mutex_trylock - try to acquire the mutex, without waiting
892 * @lock: the mutex to be acquired
893 *
894 * Try to acquire the mutex atomically. Returns 1 if the mutex
895 * has been acquired successfully, and 0 on contention.
896 *
897 * NOTE: this function follows the spin_trylock() convention, so
898 * it is negated from the down_trylock() return values! Be careful
899 * about this when converting semaphore users to mutexes.
900 *
901 * This function must not be used in interrupt context. The
902 * mutex must be released by the same task that acquired it.
903 */
904 int __sched mutex_trylock(struct mutex *lock)
905 {
906 int ret;
907
908 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
909 if (ret)
910 mutex_set_owner(lock);
911
912 return ret;
913 }
914 EXPORT_SYMBOL(mutex_trylock);
915
916 #ifndef CONFIG_DEBUG_LOCK_ALLOC
917 int __sched
918 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
919 {
920 int ret;
921
922 might_sleep();
923
924 ret = __mutex_fastpath_lock_retval(&lock->base.count);
925
926 if (likely(!ret)) {
927 ww_mutex_set_context_fastpath(lock, ctx);
928 mutex_set_owner(&lock->base);
929 } else
930 ret = __ww_mutex_lock_slowpath(lock, ctx);
931 return ret;
932 }
933 EXPORT_SYMBOL(__ww_mutex_lock);
934
935 int __sched
936 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
937 {
938 int ret;
939
940 might_sleep();
941
942 ret = __mutex_fastpath_lock_retval(&lock->base.count);
943
944 if (likely(!ret)) {
945 ww_mutex_set_context_fastpath(lock, ctx);
946 mutex_set_owner(&lock->base);
947 } else
948 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
949 return ret;
950 }
951 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
952
953 #endif
954
955 /**
956 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
957 * @cnt: the atomic which we are to dec
958 * @lock: the mutex to return holding if we dec to 0
959 *
960 * return true and hold lock if we dec to 0, return false otherwise
961 */
962 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
963 {
964 /* dec if we can't possibly hit 0 */
965 if (atomic_add_unless(cnt, -1, 1))
966 return 0;
967 /* we might hit 0, so take the lock */
968 mutex_lock(lock);
969 if (!atomic_dec_and_test(cnt)) {
970 /* when we actually did the dec, we didn't hit 0 */
971 mutex_unlock(lock);
972 return 0;
973 }
974 /* we hit 0, and we hold the lock */
975 return 1;
976 }
977 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);