]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/locking/qspinlock.c
Merge tag 'fixes_for_v5.15-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / kernel / locking / qspinlock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Queued spinlock
4 *
5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7 * (C) Copyright 2015 Intel Corp.
8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
9 *
10 * Authors: Waiman Long <longman@redhat.com>
11 * Peter Zijlstra <peterz@infradead.org>
12 */
13
14 #ifndef _GEN_PV_LOCK_SLOWPATH
15
16 #include <linux/smp.h>
17 #include <linux/bug.h>
18 #include <linux/cpumask.h>
19 #include <linux/percpu.h>
20 #include <linux/hardirq.h>
21 #include <linux/mutex.h>
22 #include <linux/prefetch.h>
23 #include <asm/byteorder.h>
24 #include <asm/qspinlock.h>
25
26 /*
27 * Include queued spinlock statistics code
28 */
29 #include "qspinlock_stat.h"
30
31 /*
32 * The basic principle of a queue-based spinlock can best be understood
33 * by studying a classic queue-based spinlock implementation called the
34 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
35 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
36 * Scott") is available at
37 *
38 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
39 *
40 * This queued spinlock implementation is based on the MCS lock, however to
41 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
42 * existing API, we must modify it somehow.
43 *
44 * In particular; where the traditional MCS lock consists of a tail pointer
45 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
46 * unlock the next pending (next->locked), we compress both these: {tail,
47 * next->locked} into a single u32 value.
48 *
49 * Since a spinlock disables recursion of its own context and there is a limit
50 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
51 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
52 * we can encode the tail by combining the 2-bit nesting level with the cpu
53 * number. With one byte for the lock value and 3 bytes for the tail, only a
54 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
55 * we extend it to a full byte to achieve better performance for architectures
56 * that support atomic byte write.
57 *
58 * We also change the first spinner to spin on the lock bit instead of its
59 * node; whereby avoiding the need to carry a node from lock to unlock, and
60 * preserving existing lock API. This also makes the unlock code simpler and
61 * faster.
62 *
63 * N.B. The current implementation only supports architectures that allow
64 * atomic operations on smaller 8-bit and 16-bit data types.
65 *
66 */
67
68 #include "mcs_spinlock.h"
69 #define MAX_NODES 4
70
71 /*
72 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
73 * size and four of them will fit nicely in one 64-byte cacheline. For
74 * pvqspinlock, however, we need more space for extra data. To accommodate
75 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
76 * two of them can fit in a cacheline in this case. That is OK as it is rare
77 * to have more than 2 levels of slowpath nesting in actual use. We don't
78 * want to penalize pvqspinlocks to optimize for a rare case in native
79 * qspinlocks.
80 */
81 struct qnode {
82 struct mcs_spinlock mcs;
83 #ifdef CONFIG_PARAVIRT_SPINLOCKS
84 long reserved[2];
85 #endif
86 };
87
88 /*
89 * The pending bit spinning loop count.
90 * This heuristic is used to limit the number of lockword accesses
91 * made by atomic_cond_read_relaxed when waiting for the lock to
92 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
93 * indefinitely because there's no guarantee that we'll make forward
94 * progress.
95 */
96 #ifndef _Q_PENDING_LOOPS
97 #define _Q_PENDING_LOOPS 1
98 #endif
99
100 /*
101 * Per-CPU queue node structures; we can never have more than 4 nested
102 * contexts: task, softirq, hardirq, nmi.
103 *
104 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
105 *
106 * PV doubles the storage and uses the second cacheline for PV state.
107 */
108 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
109
110 /*
111 * We must be able to distinguish between no-tail and the tail at 0:0,
112 * therefore increment the cpu number by one.
113 */
114
115 static inline __pure u32 encode_tail(int cpu, int idx)
116 {
117 u32 tail;
118
119 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
120 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
121
122 return tail;
123 }
124
125 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
126 {
127 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
128 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
129
130 return per_cpu_ptr(&qnodes[idx].mcs, cpu);
131 }
132
133 static inline __pure
134 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
135 {
136 return &((struct qnode *)base + idx)->mcs;
137 }
138
139 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
140
141 #if _Q_PENDING_BITS == 8
142 /**
143 * clear_pending - clear the pending bit.
144 * @lock: Pointer to queued spinlock structure
145 *
146 * *,1,* -> *,0,*
147 */
148 static __always_inline void clear_pending(struct qspinlock *lock)
149 {
150 WRITE_ONCE(lock->pending, 0);
151 }
152
153 /**
154 * clear_pending_set_locked - take ownership and clear the pending bit.
155 * @lock: Pointer to queued spinlock structure
156 *
157 * *,1,0 -> *,0,1
158 *
159 * Lock stealing is not allowed if this function is used.
160 */
161 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
162 {
163 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
164 }
165
166 /*
167 * xchg_tail - Put in the new queue tail code word & retrieve previous one
168 * @lock : Pointer to queued spinlock structure
169 * @tail : The new queue tail code word
170 * Return: The previous queue tail code word
171 *
172 * xchg(lock, tail), which heads an address dependency
173 *
174 * p,*,* -> n,*,* ; prev = xchg(lock, node)
175 */
176 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177 {
178 /*
179 * We can use relaxed semantics since the caller ensures that the
180 * MCS node is properly initialized before updating the tail.
181 */
182 return (u32)xchg_relaxed(&lock->tail,
183 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
184 }
185
186 #else /* _Q_PENDING_BITS == 8 */
187
188 /**
189 * clear_pending - clear the pending bit.
190 * @lock: Pointer to queued spinlock structure
191 *
192 * *,1,* -> *,0,*
193 */
194 static __always_inline void clear_pending(struct qspinlock *lock)
195 {
196 atomic_andnot(_Q_PENDING_VAL, &lock->val);
197 }
198
199 /**
200 * clear_pending_set_locked - take ownership and clear the pending bit.
201 * @lock: Pointer to queued spinlock structure
202 *
203 * *,1,0 -> *,0,1
204 */
205 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
206 {
207 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
208 }
209
210 /**
211 * xchg_tail - Put in the new queue tail code word & retrieve previous one
212 * @lock : Pointer to queued spinlock structure
213 * @tail : The new queue tail code word
214 * Return: The previous queue tail code word
215 *
216 * xchg(lock, tail)
217 *
218 * p,*,* -> n,*,* ; prev = xchg(lock, node)
219 */
220 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
221 {
222 u32 old, new, val = atomic_read(&lock->val);
223
224 for (;;) {
225 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
226 /*
227 * We can use relaxed semantics since the caller ensures that
228 * the MCS node is properly initialized before updating the
229 * tail.
230 */
231 old = atomic_cmpxchg_relaxed(&lock->val, val, new);
232 if (old == val)
233 break;
234
235 val = old;
236 }
237 return old;
238 }
239 #endif /* _Q_PENDING_BITS == 8 */
240
241 /**
242 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
243 * @lock : Pointer to queued spinlock structure
244 * Return: The previous lock value
245 *
246 * *,*,* -> *,1,*
247 */
248 #ifndef queued_fetch_set_pending_acquire
249 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
250 {
251 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
252 }
253 #endif
254
255 /**
256 * set_locked - Set the lock bit and own the lock
257 * @lock: Pointer to queued spinlock structure
258 *
259 * *,*,0 -> *,0,1
260 */
261 static __always_inline void set_locked(struct qspinlock *lock)
262 {
263 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
264 }
265
266
267 /*
268 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
269 * all the PV callbacks.
270 */
271
272 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
273 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
274 struct mcs_spinlock *prev) { }
275 static __always_inline void __pv_kick_node(struct qspinlock *lock,
276 struct mcs_spinlock *node) { }
277 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
278 struct mcs_spinlock *node)
279 { return 0; }
280
281 #define pv_enabled() false
282
283 #define pv_init_node __pv_init_node
284 #define pv_wait_node __pv_wait_node
285 #define pv_kick_node __pv_kick_node
286 #define pv_wait_head_or_lock __pv_wait_head_or_lock
287
288 #ifdef CONFIG_PARAVIRT_SPINLOCKS
289 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
290 #endif
291
292 #endif /* _GEN_PV_LOCK_SLOWPATH */
293
294 /**
295 * queued_spin_lock_slowpath - acquire the queued spinlock
296 * @lock: Pointer to queued spinlock structure
297 * @val: Current value of the queued spinlock 32-bit word
298 *
299 * (queue tail, pending bit, lock value)
300 *
301 * fast : slow : unlock
302 * : :
303 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
304 * : | ^--------.------. / :
305 * : v \ \ | :
306 * pending : (0,1,1) +--> (0,1,0) \ | :
307 * : | ^--' | | :
308 * : v | | :
309 * uncontended : (n,x,y) +--> (n,0,0) --' | :
310 * queue : | ^--' | :
311 * : v | :
312 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
313 * queue : ^--' :
314 */
315 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
316 {
317 struct mcs_spinlock *prev, *next, *node;
318 u32 old, tail;
319 int idx;
320
321 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
322
323 if (pv_enabled())
324 goto pv_queue;
325
326 if (virt_spin_lock(lock))
327 return;
328
329 /*
330 * Wait for in-progress pending->locked hand-overs with a bounded
331 * number of spins so that we guarantee forward progress.
332 *
333 * 0,1,0 -> 0,0,1
334 */
335 if (val == _Q_PENDING_VAL) {
336 int cnt = _Q_PENDING_LOOPS;
337 val = atomic_cond_read_relaxed(&lock->val,
338 (VAL != _Q_PENDING_VAL) || !cnt--);
339 }
340
341 /*
342 * If we observe any contention; queue.
343 */
344 if (val & ~_Q_LOCKED_MASK)
345 goto queue;
346
347 /*
348 * trylock || pending
349 *
350 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
351 */
352 val = queued_fetch_set_pending_acquire(lock);
353
354 /*
355 * If we observe contention, there is a concurrent locker.
356 *
357 * Undo and queue; our setting of PENDING might have made the
358 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
359 * on @next to become !NULL.
360 */
361 if (unlikely(val & ~_Q_LOCKED_MASK)) {
362
363 /* Undo PENDING if we set it. */
364 if (!(val & _Q_PENDING_MASK))
365 clear_pending(lock);
366
367 goto queue;
368 }
369
370 /*
371 * We're pending, wait for the owner to go away.
372 *
373 * 0,1,1 -> 0,1,0
374 *
375 * this wait loop must be a load-acquire such that we match the
376 * store-release that clears the locked bit and create lock
377 * sequentiality; this is because not all
378 * clear_pending_set_locked() implementations imply full
379 * barriers.
380 */
381 if (val & _Q_LOCKED_MASK)
382 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
383
384 /*
385 * take ownership and clear the pending bit.
386 *
387 * 0,1,0 -> 0,0,1
388 */
389 clear_pending_set_locked(lock);
390 lockevent_inc(lock_pending);
391 return;
392
393 /*
394 * End of pending bit optimistic spinning and beginning of MCS
395 * queuing.
396 */
397 queue:
398 lockevent_inc(lock_slowpath);
399 pv_queue:
400 node = this_cpu_ptr(&qnodes[0].mcs);
401 idx = node->count++;
402 tail = encode_tail(smp_processor_id(), idx);
403
404 /*
405 * 4 nodes are allocated based on the assumption that there will
406 * not be nested NMIs taking spinlocks. That may not be true in
407 * some architectures even though the chance of needing more than
408 * 4 nodes will still be extremely unlikely. When that happens,
409 * we fall back to spinning on the lock directly without using
410 * any MCS node. This is not the most elegant solution, but is
411 * simple enough.
412 */
413 if (unlikely(idx >= MAX_NODES)) {
414 lockevent_inc(lock_no_node);
415 while (!queued_spin_trylock(lock))
416 cpu_relax();
417 goto release;
418 }
419
420 node = grab_mcs_node(node, idx);
421
422 /*
423 * Keep counts of non-zero index values:
424 */
425 lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426
427 /*
428 * Ensure that we increment the head node->count before initialising
429 * the actual node. If the compiler is kind enough to reorder these
430 * stores, then an IRQ could overwrite our assignments.
431 */
432 barrier();
433
434 node->locked = 0;
435 node->next = NULL;
436 pv_init_node(node);
437
438 /*
439 * We touched a (possibly) cold cacheline in the per-cpu queue node;
440 * attempt the trylock once more in the hope someone let go while we
441 * weren't watching.
442 */
443 if (queued_spin_trylock(lock))
444 goto release;
445
446 /*
447 * Ensure that the initialisation of @node is complete before we
448 * publish the updated tail via xchg_tail() and potentially link
449 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450 */
451 smp_wmb();
452
453 /*
454 * Publish the updated tail.
455 * We have already touched the queueing cacheline; don't bother with
456 * pending stuff.
457 *
458 * p,*,* -> n,*,*
459 */
460 old = xchg_tail(lock, tail);
461 next = NULL;
462
463 /*
464 * if there was a previous node; link it and wait until reaching the
465 * head of the waitqueue.
466 */
467 if (old & _Q_TAIL_MASK) {
468 prev = decode_tail(old);
469
470 /* Link @node into the waitqueue. */
471 WRITE_ONCE(prev->next, node);
472
473 pv_wait_node(node, prev);
474 arch_mcs_spin_lock_contended(&node->locked);
475
476 /*
477 * While waiting for the MCS lock, the next pointer may have
478 * been set by another lock waiter. We optimistically load
479 * the next pointer & prefetch the cacheline for writing
480 * to reduce latency in the upcoming MCS unlock operation.
481 */
482 next = READ_ONCE(node->next);
483 if (next)
484 prefetchw(next);
485 }
486
487 /*
488 * we're at the head of the waitqueue, wait for the owner & pending to
489 * go away.
490 *
491 * *,x,y -> *,0,0
492 *
493 * this wait loop must use a load-acquire such that we match the
494 * store-release that clears the locked bit and create lock
495 * sequentiality; this is because the set_locked() function below
496 * does not imply a full barrier.
497 *
498 * The PV pv_wait_head_or_lock function, if active, will acquire
499 * the lock and return a non-zero value. So we have to skip the
500 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501 * been designated yet, there is no way for the locked value to become
502 * _Q_SLOW_VAL. So both the set_locked() and the
503 * atomic_cmpxchg_relaxed() calls will be safe.
504 *
505 * If PV isn't active, 0 will be returned instead.
506 *
507 */
508 if ((val = pv_wait_head_or_lock(lock, node)))
509 goto locked;
510
511 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512
513 locked:
514 /*
515 * claim the lock:
516 *
517 * n,0,0 -> 0,0,1 : lock, uncontended
518 * *,*,0 -> *,*,1 : lock, contended
519 *
520 * If the queue head is the only one in the queue (lock value == tail)
521 * and nobody is pending, clear the tail code and grab the lock.
522 * Otherwise, we only need to grab the lock.
523 */
524
525 /*
526 * In the PV case we might already have _Q_LOCKED_VAL set, because
527 * of lock stealing; therefore we must also allow:
528 *
529 * n,0,1 -> 0,0,1
530 *
531 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532 * above wait condition, therefore any concurrent setting of
533 * PENDING will make the uncontended transition fail.
534 */
535 if ((val & _Q_TAIL_MASK) == tail) {
536 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537 goto release; /* No contention */
538 }
539
540 /*
541 * Either somebody is queued behind us or _Q_PENDING_VAL got set
542 * which will then detect the remaining tail and queue behind us
543 * ensuring we'll see a @next.
544 */
545 set_locked(lock);
546
547 /*
548 * contended path; wait for next if not observed yet, release.
549 */
550 if (!next)
551 next = smp_cond_load_relaxed(&node->next, (VAL));
552
553 arch_mcs_spin_unlock_contended(&next->locked);
554 pv_kick_node(lock, next);
555
556 release:
557 /*
558 * release the node
559 */
560 __this_cpu_dec(qnodes[0].mcs.count);
561 }
562 EXPORT_SYMBOL(queued_spin_lock_slowpath);
563
564 /*
565 * Generate the paravirt code for queued_spin_unlock_slowpath().
566 */
567 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
568 #define _GEN_PV_LOCK_SLOWPATH
569
570 #undef pv_enabled
571 #define pv_enabled() true
572
573 #undef pv_init_node
574 #undef pv_wait_node
575 #undef pv_kick_node
576 #undef pv_wait_head_or_lock
577
578 #undef queued_spin_lock_slowpath
579 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
580
581 #include "qspinlock_paravirt.h"
582 #include "qspinlock.c"
583
584 bool nopvspin __initdata;
585 static __init int parse_nopvspin(char *arg)
586 {
587 nopvspin = true;
588 return 0;
589 }
590 early_param("nopvspin", parse_nopvspin);
591 #endif