]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/locking/qspinlock.c
Merge tag 'iio-fixes-for-5.2a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-jammy-kernel.git] / kernel / locking / qspinlock.c
1 /*
2 * Queued spinlock
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
16 * (C) Copyright 2015 Intel Corp.
17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18 *
19 * Authors: Waiman Long <longman@redhat.com>
20 * Peter Zijlstra <peterz@infradead.org>
21 */
22
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <linux/prefetch.h>
32 #include <asm/byteorder.h>
33 #include <asm/qspinlock.h>
34
35 /*
36 * Include queued spinlock statistics code
37 */
38 #include "qspinlock_stat.h"
39
40 /*
41 * The basic principle of a queue-based spinlock can best be understood
42 * by studying a classic queue-based spinlock implementation called the
43 * MCS lock. The paper below provides a good description for this kind
44 * of lock.
45 *
46 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
47 *
48 * This queued spinlock implementation is based on the MCS lock, however to make
49 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
50 * API, we must modify it somehow.
51 *
52 * In particular; where the traditional MCS lock consists of a tail pointer
53 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
54 * unlock the next pending (next->locked), we compress both these: {tail,
55 * next->locked} into a single u32 value.
56 *
57 * Since a spinlock disables recursion of its own context and there is a limit
58 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
59 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
60 * we can encode the tail by combining the 2-bit nesting level with the cpu
61 * number. With one byte for the lock value and 3 bytes for the tail, only a
62 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
63 * we extend it to a full byte to achieve better performance for architectures
64 * that support atomic byte write.
65 *
66 * We also change the first spinner to spin on the lock bit instead of its
67 * node; whereby avoiding the need to carry a node from lock to unlock, and
68 * preserving existing lock API. This also makes the unlock code simpler and
69 * faster.
70 *
71 * N.B. The current implementation only supports architectures that allow
72 * atomic operations on smaller 8-bit and 16-bit data types.
73 *
74 */
75
76 #include "mcs_spinlock.h"
77 #define MAX_NODES 4
78
79 /*
80 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
81 * size and four of them will fit nicely in one 64-byte cacheline. For
82 * pvqspinlock, however, we need more space for extra data. To accommodate
83 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
84 * two of them can fit in a cacheline in this case. That is OK as it is rare
85 * to have more than 2 levels of slowpath nesting in actual use. We don't
86 * want to penalize pvqspinlocks to optimize for a rare case in native
87 * qspinlocks.
88 */
89 struct qnode {
90 struct mcs_spinlock mcs;
91 #ifdef CONFIG_PARAVIRT_SPINLOCKS
92 long reserved[2];
93 #endif
94 };
95
96 /*
97 * The pending bit spinning loop count.
98 * This heuristic is used to limit the number of lockword accesses
99 * made by atomic_cond_read_relaxed when waiting for the lock to
100 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
101 * indefinitely because there's no guarantee that we'll make forward
102 * progress.
103 */
104 #ifndef _Q_PENDING_LOOPS
105 #define _Q_PENDING_LOOPS 1
106 #endif
107
108 /*
109 * Per-CPU queue node structures; we can never have more than 4 nested
110 * contexts: task, softirq, hardirq, nmi.
111 *
112 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
113 *
114 * PV doubles the storage and uses the second cacheline for PV state.
115 */
116 static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
117
118 /*
119 * We must be able to distinguish between no-tail and the tail at 0:0,
120 * therefore increment the cpu number by one.
121 */
122
123 static inline __pure u32 encode_tail(int cpu, int idx)
124 {
125 u32 tail;
126
127 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
128 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
129
130 return tail;
131 }
132
133 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
134 {
135 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
136 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
137
138 return per_cpu_ptr(&qnodes[idx].mcs, cpu);
139 }
140
141 static inline __pure
142 struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
143 {
144 return &((struct qnode *)base + idx)->mcs;
145 }
146
147 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
148
149 #if _Q_PENDING_BITS == 8
150 /**
151 * clear_pending - clear the pending bit.
152 * @lock: Pointer to queued spinlock structure
153 *
154 * *,1,* -> *,0,*
155 */
156 static __always_inline void clear_pending(struct qspinlock *lock)
157 {
158 WRITE_ONCE(lock->pending, 0);
159 }
160
161 /**
162 * clear_pending_set_locked - take ownership and clear the pending bit.
163 * @lock: Pointer to queued spinlock structure
164 *
165 * *,1,0 -> *,0,1
166 *
167 * Lock stealing is not allowed if this function is used.
168 */
169 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
170 {
171 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
172 }
173
174 /*
175 * xchg_tail - Put in the new queue tail code word & retrieve previous one
176 * @lock : Pointer to queued spinlock structure
177 * @tail : The new queue tail code word
178 * Return: The previous queue tail code word
179 *
180 * xchg(lock, tail), which heads an address dependency
181 *
182 * p,*,* -> n,*,* ; prev = xchg(lock, node)
183 */
184 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
185 {
186 /*
187 * We can use relaxed semantics since the caller ensures that the
188 * MCS node is properly initialized before updating the tail.
189 */
190 return (u32)xchg_relaxed(&lock->tail,
191 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
192 }
193
194 #else /* _Q_PENDING_BITS == 8 */
195
196 /**
197 * clear_pending - clear the pending bit.
198 * @lock: Pointer to queued spinlock structure
199 *
200 * *,1,* -> *,0,*
201 */
202 static __always_inline void clear_pending(struct qspinlock *lock)
203 {
204 atomic_andnot(_Q_PENDING_VAL, &lock->val);
205 }
206
207 /**
208 * clear_pending_set_locked - take ownership and clear the pending bit.
209 * @lock: Pointer to queued spinlock structure
210 *
211 * *,1,0 -> *,0,1
212 */
213 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
214 {
215 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
216 }
217
218 /**
219 * xchg_tail - Put in the new queue tail code word & retrieve previous one
220 * @lock : Pointer to queued spinlock structure
221 * @tail : The new queue tail code word
222 * Return: The previous queue tail code word
223 *
224 * xchg(lock, tail)
225 *
226 * p,*,* -> n,*,* ; prev = xchg(lock, node)
227 */
228 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
229 {
230 u32 old, new, val = atomic_read(&lock->val);
231
232 for (;;) {
233 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
234 /*
235 * We can use relaxed semantics since the caller ensures that
236 * the MCS node is properly initialized before updating the
237 * tail.
238 */
239 old = atomic_cmpxchg_relaxed(&lock->val, val, new);
240 if (old == val)
241 break;
242
243 val = old;
244 }
245 return old;
246 }
247 #endif /* _Q_PENDING_BITS == 8 */
248
249 /**
250 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
251 * @lock : Pointer to queued spinlock structure
252 * Return: The previous lock value
253 *
254 * *,*,* -> *,1,*
255 */
256 #ifndef queued_fetch_set_pending_acquire
257 static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
258 {
259 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
260 }
261 #endif
262
263 /**
264 * set_locked - Set the lock bit and own the lock
265 * @lock: Pointer to queued spinlock structure
266 *
267 * *,*,0 -> *,0,1
268 */
269 static __always_inline void set_locked(struct qspinlock *lock)
270 {
271 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
272 }
273
274
275 /*
276 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
277 * all the PV callbacks.
278 */
279
280 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
281 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
282 struct mcs_spinlock *prev) { }
283 static __always_inline void __pv_kick_node(struct qspinlock *lock,
284 struct mcs_spinlock *node) { }
285 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
286 struct mcs_spinlock *node)
287 { return 0; }
288
289 #define pv_enabled() false
290
291 #define pv_init_node __pv_init_node
292 #define pv_wait_node __pv_wait_node
293 #define pv_kick_node __pv_kick_node
294 #define pv_wait_head_or_lock __pv_wait_head_or_lock
295
296 #ifdef CONFIG_PARAVIRT_SPINLOCKS
297 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
298 #endif
299
300 #endif /* _GEN_PV_LOCK_SLOWPATH */
301
302 /**
303 * queued_spin_lock_slowpath - acquire the queued spinlock
304 * @lock: Pointer to queued spinlock structure
305 * @val: Current value of the queued spinlock 32-bit word
306 *
307 * (queue tail, pending bit, lock value)
308 *
309 * fast : slow : unlock
310 * : :
311 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
312 * : | ^--------.------. / :
313 * : v \ \ | :
314 * pending : (0,1,1) +--> (0,1,0) \ | :
315 * : | ^--' | | :
316 * : v | | :
317 * uncontended : (n,x,y) +--> (n,0,0) --' | :
318 * queue : | ^--' | :
319 * : v | :
320 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
321 * queue : ^--' :
322 */
323 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
324 {
325 struct mcs_spinlock *prev, *next, *node;
326 u32 old, tail;
327 int idx;
328
329 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
330
331 if (pv_enabled())
332 goto pv_queue;
333
334 if (virt_spin_lock(lock))
335 return;
336
337 /*
338 * Wait for in-progress pending->locked hand-overs with a bounded
339 * number of spins so that we guarantee forward progress.
340 *
341 * 0,1,0 -> 0,0,1
342 */
343 if (val == _Q_PENDING_VAL) {
344 int cnt = _Q_PENDING_LOOPS;
345 val = atomic_cond_read_relaxed(&lock->val,
346 (VAL != _Q_PENDING_VAL) || !cnt--);
347 }
348
349 /*
350 * If we observe any contention; queue.
351 */
352 if (val & ~_Q_LOCKED_MASK)
353 goto queue;
354
355 /*
356 * trylock || pending
357 *
358 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
359 */
360 val = queued_fetch_set_pending_acquire(lock);
361
362 /*
363 * If we observe contention, there is a concurrent locker.
364 *
365 * Undo and queue; our setting of PENDING might have made the
366 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
367 * on @next to become !NULL.
368 */
369 if (unlikely(val & ~_Q_LOCKED_MASK)) {
370
371 /* Undo PENDING if we set it. */
372 if (!(val & _Q_PENDING_MASK))
373 clear_pending(lock);
374
375 goto queue;
376 }
377
378 /*
379 * We're pending, wait for the owner to go away.
380 *
381 * 0,1,1 -> 0,1,0
382 *
383 * this wait loop must be a load-acquire such that we match the
384 * store-release that clears the locked bit and create lock
385 * sequentiality; this is because not all
386 * clear_pending_set_locked() implementations imply full
387 * barriers.
388 */
389 if (val & _Q_LOCKED_MASK)
390 atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_MASK));
391
392 /*
393 * take ownership and clear the pending bit.
394 *
395 * 0,1,0 -> 0,0,1
396 */
397 clear_pending_set_locked(lock);
398 lockevent_inc(lock_pending);
399 return;
400
401 /*
402 * End of pending bit optimistic spinning and beginning of MCS
403 * queuing.
404 */
405 queue:
406 lockevent_inc(lock_slowpath);
407 pv_queue:
408 node = this_cpu_ptr(&qnodes[0].mcs);
409 idx = node->count++;
410 tail = encode_tail(smp_processor_id(), idx);
411
412 /*
413 * 4 nodes are allocated based on the assumption that there will
414 * not be nested NMIs taking spinlocks. That may not be true in
415 * some architectures even though the chance of needing more than
416 * 4 nodes will still be extremely unlikely. When that happens,
417 * we fall back to spinning on the lock directly without using
418 * any MCS node. This is not the most elegant solution, but is
419 * simple enough.
420 */
421 if (unlikely(idx >= MAX_NODES)) {
422 lockevent_inc(lock_no_node);
423 while (!queued_spin_trylock(lock))
424 cpu_relax();
425 goto release;
426 }
427
428 node = grab_mcs_node(node, idx);
429
430 /*
431 * Keep counts of non-zero index values:
432 */
433 lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
434
435 /*
436 * Ensure that we increment the head node->count before initialising
437 * the actual node. If the compiler is kind enough to reorder these
438 * stores, then an IRQ could overwrite our assignments.
439 */
440 barrier();
441
442 node->locked = 0;
443 node->next = NULL;
444 pv_init_node(node);
445
446 /*
447 * We touched a (possibly) cold cacheline in the per-cpu queue node;
448 * attempt the trylock once more in the hope someone let go while we
449 * weren't watching.
450 */
451 if (queued_spin_trylock(lock))
452 goto release;
453
454 /*
455 * Ensure that the initialisation of @node is complete before we
456 * publish the updated tail via xchg_tail() and potentially link
457 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
458 */
459 smp_wmb();
460
461 /*
462 * Publish the updated tail.
463 * We have already touched the queueing cacheline; don't bother with
464 * pending stuff.
465 *
466 * p,*,* -> n,*,*
467 */
468 old = xchg_tail(lock, tail);
469 next = NULL;
470
471 /*
472 * if there was a previous node; link it and wait until reaching the
473 * head of the waitqueue.
474 */
475 if (old & _Q_TAIL_MASK) {
476 prev = decode_tail(old);
477
478 /* Link @node into the waitqueue. */
479 WRITE_ONCE(prev->next, node);
480
481 pv_wait_node(node, prev);
482 arch_mcs_spin_lock_contended(&node->locked);
483
484 /*
485 * While waiting for the MCS lock, the next pointer may have
486 * been set by another lock waiter. We optimistically load
487 * the next pointer & prefetch the cacheline for writing
488 * to reduce latency in the upcoming MCS unlock operation.
489 */
490 next = READ_ONCE(node->next);
491 if (next)
492 prefetchw(next);
493 }
494
495 /*
496 * we're at the head of the waitqueue, wait for the owner & pending to
497 * go away.
498 *
499 * *,x,y -> *,0,0
500 *
501 * this wait loop must use a load-acquire such that we match the
502 * store-release that clears the locked bit and create lock
503 * sequentiality; this is because the set_locked() function below
504 * does not imply a full barrier.
505 *
506 * The PV pv_wait_head_or_lock function, if active, will acquire
507 * the lock and return a non-zero value. So we have to skip the
508 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
509 * been designated yet, there is no way for the locked value to become
510 * _Q_SLOW_VAL. So both the set_locked() and the
511 * atomic_cmpxchg_relaxed() calls will be safe.
512 *
513 * If PV isn't active, 0 will be returned instead.
514 *
515 */
516 if ((val = pv_wait_head_or_lock(lock, node)))
517 goto locked;
518
519 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
520
521 locked:
522 /*
523 * claim the lock:
524 *
525 * n,0,0 -> 0,0,1 : lock, uncontended
526 * *,*,0 -> *,*,1 : lock, contended
527 *
528 * If the queue head is the only one in the queue (lock value == tail)
529 * and nobody is pending, clear the tail code and grab the lock.
530 * Otherwise, we only need to grab the lock.
531 */
532
533 /*
534 * In the PV case we might already have _Q_LOCKED_VAL set, because
535 * of lock stealing; therefore we must also allow:
536 *
537 * n,0,1 -> 0,0,1
538 *
539 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
540 * above wait condition, therefore any concurrent setting of
541 * PENDING will make the uncontended transition fail.
542 */
543 if ((val & _Q_TAIL_MASK) == tail) {
544 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
545 goto release; /* No contention */
546 }
547
548 /*
549 * Either somebody is queued behind us or _Q_PENDING_VAL got set
550 * which will then detect the remaining tail and queue behind us
551 * ensuring we'll see a @next.
552 */
553 set_locked(lock);
554
555 /*
556 * contended path; wait for next if not observed yet, release.
557 */
558 if (!next)
559 next = smp_cond_load_relaxed(&node->next, (VAL));
560
561 arch_mcs_spin_unlock_contended(&next->locked);
562 pv_kick_node(lock, next);
563
564 release:
565 /*
566 * release the node
567 */
568 __this_cpu_dec(qnodes[0].mcs.count);
569 }
570 EXPORT_SYMBOL(queued_spin_lock_slowpath);
571
572 /*
573 * Generate the paravirt code for queued_spin_unlock_slowpath().
574 */
575 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
576 #define _GEN_PV_LOCK_SLOWPATH
577
578 #undef pv_enabled
579 #define pv_enabled() true
580
581 #undef pv_init_node
582 #undef pv_wait_node
583 #undef pv_kick_node
584 #undef pv_wait_head_or_lock
585
586 #undef queued_spin_lock_slowpath
587 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
588
589 #include "qspinlock_paravirt.h"
590 #include "qspinlock.c"
591
592 #endif