]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/locking/qspinlock.c
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / locking / qspinlock.c
1 /*
2 * Queued spinlock
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15 * (C) Copyright 2013-2014 Red Hat, Inc.
16 * (C) Copyright 2015 Intel Corp.
17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18 *
19 * Authors: Waiman Long <waiman.long@hpe.com>
20 * Peter Zijlstra <peterz@infradead.org>
21 */
22
23 #ifndef _GEN_PV_LOCK_SLOWPATH
24
25 #include <linux/smp.h>
26 #include <linux/bug.h>
27 #include <linux/cpumask.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <linux/mutex.h>
31 #include <linux/prefetch.h>
32 #include <asm/byteorder.h>
33 #include <asm/qspinlock.h>
34
35 /*
36 * The basic principle of a queue-based spinlock can best be understood
37 * by studying a classic queue-based spinlock implementation called the
38 * MCS lock. The paper below provides a good description for this kind
39 * of lock.
40 *
41 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
42 *
43 * This queued spinlock implementation is based on the MCS lock, however to make
44 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
45 * API, we must modify it somehow.
46 *
47 * In particular; where the traditional MCS lock consists of a tail pointer
48 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
49 * unlock the next pending (next->locked), we compress both these: {tail,
50 * next->locked} into a single u32 value.
51 *
52 * Since a spinlock disables recursion of its own context and there is a limit
53 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
54 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
55 * we can encode the tail by combining the 2-bit nesting level with the cpu
56 * number. With one byte for the lock value and 3 bytes for the tail, only a
57 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
58 * we extend it to a full byte to achieve better performance for architectures
59 * that support atomic byte write.
60 *
61 * We also change the first spinner to spin on the lock bit instead of its
62 * node; whereby avoiding the need to carry a node from lock to unlock, and
63 * preserving existing lock API. This also makes the unlock code simpler and
64 * faster.
65 *
66 * N.B. The current implementation only supports architectures that allow
67 * atomic operations on smaller 8-bit and 16-bit data types.
68 *
69 */
70
71 #include "mcs_spinlock.h"
72
73 #ifdef CONFIG_PARAVIRT_SPINLOCKS
74 #define MAX_NODES 8
75 #else
76 #define MAX_NODES 4
77 #endif
78
79 /*
80 * Per-CPU queue node structures; we can never have more than 4 nested
81 * contexts: task, softirq, hardirq, nmi.
82 *
83 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
84 *
85 * PV doubles the storage and uses the second cacheline for PV state.
86 */
87 static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
88
89 /*
90 * We must be able to distinguish between no-tail and the tail at 0:0,
91 * therefore increment the cpu number by one.
92 */
93
94 static inline __pure u32 encode_tail(int cpu, int idx)
95 {
96 u32 tail;
97
98 #ifdef CONFIG_DEBUG_SPINLOCK
99 BUG_ON(idx > 3);
100 #endif
101 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
102 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
103
104 return tail;
105 }
106
107 static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
108 {
109 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
110 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
111
112 return per_cpu_ptr(&mcs_nodes[idx], cpu);
113 }
114
115 #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
116
117 /*
118 * By using the whole 2nd least significant byte for the pending bit, we
119 * can allow better optimization of the lock acquisition for the pending
120 * bit holder.
121 *
122 * This internal structure is also used by the set_locked function which
123 * is not restricted to _Q_PENDING_BITS == 8.
124 */
125 struct __qspinlock {
126 union {
127 atomic_t val;
128 #ifdef __LITTLE_ENDIAN
129 struct {
130 u8 locked;
131 u8 pending;
132 };
133 struct {
134 u16 locked_pending;
135 u16 tail;
136 };
137 #else
138 struct {
139 u16 tail;
140 u16 locked_pending;
141 };
142 struct {
143 u8 reserved[2];
144 u8 pending;
145 u8 locked;
146 };
147 #endif
148 };
149 };
150
151 #if _Q_PENDING_BITS == 8
152 /**
153 * clear_pending_set_locked - take ownership and clear the pending bit.
154 * @lock: Pointer to queued spinlock structure
155 *
156 * *,1,0 -> *,0,1
157 *
158 * Lock stealing is not allowed if this function is used.
159 */
160 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
161 {
162 struct __qspinlock *l = (void *)lock;
163
164 WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
165 }
166
167 /*
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
172 *
173 * xchg(lock, tail)
174 *
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
176 */
177 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178 {
179 struct __qspinlock *l = (void *)lock;
180
181 /*
182 * Use release semantics to make sure that the MCS node is properly
183 * initialized before changing the tail code.
184 */
185 return (u32)xchg_release(&l->tail,
186 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
187 }
188
189 #else /* _Q_PENDING_BITS == 8 */
190
191 /**
192 * clear_pending_set_locked - take ownership and clear the pending bit.
193 * @lock: Pointer to queued spinlock structure
194 *
195 * *,1,0 -> *,0,1
196 */
197 static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
198 {
199 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
200 }
201
202 /**
203 * xchg_tail - Put in the new queue tail code word & retrieve previous one
204 * @lock : Pointer to queued spinlock structure
205 * @tail : The new queue tail code word
206 * Return: The previous queue tail code word
207 *
208 * xchg(lock, tail)
209 *
210 * p,*,* -> n,*,* ; prev = xchg(lock, node)
211 */
212 static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
213 {
214 u32 old, new, val = atomic_read(&lock->val);
215
216 for (;;) {
217 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
218 /*
219 * Use release semantics to make sure that the MCS node is
220 * properly initialized before changing the tail code.
221 */
222 old = atomic_cmpxchg_release(&lock->val, val, new);
223 if (old == val)
224 break;
225
226 val = old;
227 }
228 return old;
229 }
230 #endif /* _Q_PENDING_BITS == 8 */
231
232 /**
233 * set_locked - Set the lock bit and own the lock
234 * @lock: Pointer to queued spinlock structure
235 *
236 * *,*,0 -> *,0,1
237 */
238 static __always_inline void set_locked(struct qspinlock *lock)
239 {
240 struct __qspinlock *l = (void *)lock;
241
242 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
243 }
244
245
246 /*
247 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
248 * all the PV callbacks.
249 */
250
251 static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
252 static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
253 struct mcs_spinlock *prev) { }
254 static __always_inline void __pv_kick_node(struct qspinlock *lock,
255 struct mcs_spinlock *node) { }
256 static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
257 struct mcs_spinlock *node)
258 { return 0; }
259
260 #define pv_enabled() false
261
262 #define pv_init_node __pv_init_node
263 #define pv_wait_node __pv_wait_node
264 #define pv_kick_node __pv_kick_node
265 #define pv_wait_head_or_lock __pv_wait_head_or_lock
266
267 #ifdef CONFIG_PARAVIRT_SPINLOCKS
268 #define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
269 #endif
270
271 /*
272 * Various notes on spin_is_locked() and spin_unlock_wait(), which are
273 * 'interesting' functions:
274 *
275 * PROBLEM: some architectures have an interesting issue with atomic ACQUIRE
276 * operations in that the ACQUIRE applies to the LOAD _not_ the STORE (ARM64,
277 * PPC). Also qspinlock has a similar issue per construction, the setting of
278 * the locked byte can be unordered acquiring the lock proper.
279 *
280 * This gets to be 'interesting' in the following cases, where the /should/s
281 * end up false because of this issue.
282 *
283 *
284 * CASE 1:
285 *
286 * So the spin_is_locked() correctness issue comes from something like:
287 *
288 * CPU0 CPU1
289 *
290 * global_lock(); local_lock(i)
291 * spin_lock(&G) spin_lock(&L[i])
292 * for (i) if (!spin_is_locked(&G)) {
293 * spin_unlock_wait(&L[i]); smp_acquire__after_ctrl_dep();
294 * return;
295 * }
296 * // deal with fail
297 *
298 * Where it is important CPU1 sees G locked or CPU0 sees L[i] locked such
299 * that there is exclusion between the two critical sections.
300 *
301 * The load from spin_is_locked(&G) /should/ be constrained by the ACQUIRE from
302 * spin_lock(&L[i]), and similarly the load(s) from spin_unlock_wait(&L[i])
303 * /should/ be constrained by the ACQUIRE from spin_lock(&G).
304 *
305 * Similarly, later stuff is constrained by the ACQUIRE from CTRL+RMB.
306 *
307 *
308 * CASE 2:
309 *
310 * For spin_unlock_wait() there is a second correctness issue, namely:
311 *
312 * CPU0 CPU1
313 *
314 * flag = set;
315 * smp_mb(); spin_lock(&l)
316 * spin_unlock_wait(&l); if (!flag)
317 * // add to lockless list
318 * spin_unlock(&l);
319 * // iterate lockless list
320 *
321 * Which wants to ensure that CPU1 will stop adding bits to the list and CPU0
322 * will observe the last entry on the list (if spin_unlock_wait() had ACQUIRE
323 * semantics etc..)
324 *
325 * Where flag /should/ be ordered against the locked store of l.
326 */
327
328 /*
329 * queued_spin_lock_slowpath() can (load-)ACQUIRE the lock before
330 * issuing an _unordered_ store to set _Q_LOCKED_VAL.
331 *
332 * This means that the store can be delayed, but no later than the
333 * store-release from the unlock. This means that simply observing
334 * _Q_LOCKED_VAL is not sufficient to determine if the lock is acquired.
335 *
336 * There are two paths that can issue the unordered store:
337 *
338 * (1) clear_pending_set_locked(): *,1,0 -> *,0,1
339 *
340 * (2) set_locked(): t,0,0 -> t,0,1 ; t != 0
341 * atomic_cmpxchg_relaxed(): t,0,0 -> 0,0,1
342 *
343 * However, in both cases we have other !0 state we've set before to queue
344 * ourseves:
345 *
346 * For (1) we have the atomic_cmpxchg_acquire() that set _Q_PENDING_VAL, our
347 * load is constrained by that ACQUIRE to not pass before that, and thus must
348 * observe the store.
349 *
350 * For (2) we have a more intersting scenario. We enqueue ourselves using
351 * xchg_tail(), which ends up being a RELEASE. This in itself is not
352 * sufficient, however that is followed by an smp_cond_acquire() on the same
353 * word, giving a RELEASE->ACQUIRE ordering. This again constrains our load and
354 * guarantees we must observe that store.
355 *
356 * Therefore both cases have other !0 state that is observable before the
357 * unordered locked byte store comes through. This means we can use that to
358 * wait for the lock store, and then wait for an unlock.
359 */
360 #ifndef queued_spin_unlock_wait
361 void queued_spin_unlock_wait(struct qspinlock *lock)
362 {
363 u32 val;
364
365 for (;;) {
366 val = atomic_read(&lock->val);
367
368 if (!val) /* not locked, we're done */
369 goto done;
370
371 if (val & _Q_LOCKED_MASK) /* locked, go wait for unlock */
372 break;
373
374 /* not locked, but pending, wait until we observe the lock */
375 cpu_relax();
376 }
377
378 /* any unlock is good */
379 while (atomic_read(&lock->val) & _Q_LOCKED_MASK)
380 cpu_relax();
381
382 done:
383 smp_acquire__after_ctrl_dep();
384 }
385 EXPORT_SYMBOL(queued_spin_unlock_wait);
386 #endif
387
388 #endif /* _GEN_PV_LOCK_SLOWPATH */
389
390 /**
391 * queued_spin_lock_slowpath - acquire the queued spinlock
392 * @lock: Pointer to queued spinlock structure
393 * @val: Current value of the queued spinlock 32-bit word
394 *
395 * (queue tail, pending bit, lock value)
396 *
397 * fast : slow : unlock
398 * : :
399 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
400 * : | ^--------.------. / :
401 * : v \ \ | :
402 * pending : (0,1,1) +--> (0,1,0) \ | :
403 * : | ^--' | | :
404 * : v | | :
405 * uncontended : (n,x,y) +--> (n,0,0) --' | :
406 * queue : | ^--' | :
407 * : v | :
408 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
409 * queue : ^--' :
410 */
411 void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
412 {
413 struct mcs_spinlock *prev, *next, *node;
414 u32 new, old, tail;
415 int idx;
416
417 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
418
419 if (pv_enabled())
420 goto queue;
421
422 if (virt_spin_lock(lock))
423 return;
424
425 /*
426 * wait for in-progress pending->locked hand-overs
427 *
428 * 0,1,0 -> 0,0,1
429 */
430 if (val == _Q_PENDING_VAL) {
431 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
432 cpu_relax();
433 }
434
435 /*
436 * trylock || pending
437 *
438 * 0,0,0 -> 0,0,1 ; trylock
439 * 0,0,1 -> 0,1,1 ; pending
440 */
441 for (;;) {
442 /*
443 * If we observe any contention; queue.
444 */
445 if (val & ~_Q_LOCKED_MASK)
446 goto queue;
447
448 new = _Q_LOCKED_VAL;
449 if (val == new)
450 new |= _Q_PENDING_VAL;
451
452 /*
453 * Acquire semantic is required here as the function may
454 * return immediately if the lock was free.
455 */
456 old = atomic_cmpxchg_acquire(&lock->val, val, new);
457 if (old == val)
458 break;
459
460 val = old;
461 }
462
463 /*
464 * we won the trylock
465 */
466 if (new == _Q_LOCKED_VAL)
467 return;
468
469 /*
470 * we're pending, wait for the owner to go away.
471 *
472 * *,1,1 -> *,1,0
473 *
474 * this wait loop must be a load-acquire such that we match the
475 * store-release that clears the locked bit and create lock
476 * sequentiality; this is because not all clear_pending_set_locked()
477 * implementations imply full barriers.
478 */
479 smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
480
481 /*
482 * take ownership and clear the pending bit.
483 *
484 * *,1,0 -> *,0,1
485 */
486 clear_pending_set_locked(lock);
487 return;
488
489 /*
490 * End of pending bit optimistic spinning and beginning of MCS
491 * queuing.
492 */
493 queue:
494 node = this_cpu_ptr(&mcs_nodes[0]);
495 idx = node->count++;
496 tail = encode_tail(smp_processor_id(), idx);
497
498 node += idx;
499 node->locked = 0;
500 node->next = NULL;
501 pv_init_node(node);
502
503 /*
504 * We touched a (possibly) cold cacheline in the per-cpu queue node;
505 * attempt the trylock once more in the hope someone let go while we
506 * weren't watching.
507 */
508 if (queued_spin_trylock(lock))
509 goto release;
510
511 /*
512 * We have already touched the queueing cacheline; don't bother with
513 * pending stuff.
514 *
515 * p,*,* -> n,*,*
516 *
517 * RELEASE, such that the stores to @node must be complete.
518 */
519 old = xchg_tail(lock, tail);
520 next = NULL;
521
522 /*
523 * if there was a previous node; link it and wait until reaching the
524 * head of the waitqueue.
525 */
526 if (old & _Q_TAIL_MASK) {
527 prev = decode_tail(old);
528 /*
529 * The above xchg_tail() is also a load of @lock which generates,
530 * through decode_tail(), a pointer.
531 *
532 * The address dependency matches the RELEASE of xchg_tail()
533 * such that the access to @prev must happen after.
534 */
535 smp_read_barrier_depends();
536
537 WRITE_ONCE(prev->next, node);
538
539 pv_wait_node(node, prev);
540 arch_mcs_spin_lock_contended(&node->locked);
541
542 /*
543 * While waiting for the MCS lock, the next pointer may have
544 * been set by another lock waiter. We optimistically load
545 * the next pointer & prefetch the cacheline for writing
546 * to reduce latency in the upcoming MCS unlock operation.
547 */
548 next = READ_ONCE(node->next);
549 if (next)
550 prefetchw(next);
551 }
552
553 /*
554 * we're at the head of the waitqueue, wait for the owner & pending to
555 * go away.
556 *
557 * *,x,y -> *,0,0
558 *
559 * this wait loop must use a load-acquire such that we match the
560 * store-release that clears the locked bit and create lock
561 * sequentiality; this is because the set_locked() function below
562 * does not imply a full barrier.
563 *
564 * The PV pv_wait_head_or_lock function, if active, will acquire
565 * the lock and return a non-zero value. So we have to skip the
566 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
567 * designated yet, there is no way for the locked value to become
568 * _Q_SLOW_VAL. So both the set_locked() and the
569 * atomic_cmpxchg_relaxed() calls will be safe.
570 *
571 * If PV isn't active, 0 will be returned instead.
572 *
573 */
574 if ((val = pv_wait_head_or_lock(lock, node)))
575 goto locked;
576
577 val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
578
579 locked:
580 /*
581 * claim the lock:
582 *
583 * n,0,0 -> 0,0,1 : lock, uncontended
584 * *,0,0 -> *,0,1 : lock, contended
585 *
586 * If the queue head is the only one in the queue (lock value == tail),
587 * clear the tail code and grab the lock. Otherwise, we only need
588 * to grab the lock.
589 */
590 for (;;) {
591 /* In the PV case we might already have _Q_LOCKED_VAL set */
592 if ((val & _Q_TAIL_MASK) != tail) {
593 set_locked(lock);
594 break;
595 }
596 /*
597 * The smp_cond_load_acquire() call above has provided the
598 * necessary acquire semantics required for locking. At most
599 * two iterations of this loop may be ran.
600 */
601 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
602 if (old == val)
603 goto release; /* No contention */
604
605 val = old;
606 }
607
608 /*
609 * contended path; wait for next if not observed yet, release.
610 */
611 if (!next) {
612 while (!(next = READ_ONCE(node->next)))
613 cpu_relax();
614 }
615
616 arch_mcs_spin_unlock_contended(&next->locked);
617 pv_kick_node(lock, next);
618
619 release:
620 /*
621 * release the node
622 */
623 __this_cpu_dec(mcs_nodes[0].count);
624 }
625 EXPORT_SYMBOL(queued_spin_lock_slowpath);
626
627 /*
628 * Generate the paravirt code for queued_spin_unlock_slowpath().
629 */
630 #if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
631 #define _GEN_PV_LOCK_SLOWPATH
632
633 #undef pv_enabled
634 #define pv_enabled() true
635
636 #undef pv_init_node
637 #undef pv_wait_node
638 #undef pv_kick_node
639 #undef pv_wait_head_or_lock
640
641 #undef queued_spin_lock_slowpath
642 #define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
643
644 #include "qspinlock_paravirt.h"
645 #include "qspinlock.c"
646
647 #endif