]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/locking/qspinlock_paravirt.h
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / kernel / locking / qspinlock_paravirt.h
1 #ifndef _GEN_PV_LOCK_SLOWPATH
2 #error "do not include this file"
3 #endif
4
5 #include <linux/hash.h>
6 #include <linux/bootmem.h>
7 #include <linux/debug_locks.h>
8
9 /*
10 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
11 * of spinning them.
12 *
13 * This relies on the architecture to provide two paravirt hypercalls:
14 *
15 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
16 * pv_kick(cpu) -- wakes a suspended vcpu
17 *
18 * Using these we implement __pv_queued_spin_lock_slowpath() and
19 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
20 * native_queued_spin_unlock().
21 */
22
23 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
24
25 /*
26 * Queue Node Adaptive Spinning
27 *
28 * A queue node vCPU will stop spinning if the vCPU in the previous node is
29 * not running. The one lock stealing attempt allowed at slowpath entry
30 * mitigates the slight slowdown for non-overcommitted guest with this
31 * aggressive wait-early mechanism.
32 *
33 * The status of the previous node will be checked at fixed interval
34 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
35 * pound on the cacheline of the previous node too heavily.
36 */
37 #define PV_PREV_CHECK_MASK 0xff
38
39 /*
40 * Queue node uses: vcpu_running & vcpu_halted.
41 * Queue head uses: vcpu_running & vcpu_hashed.
42 */
43 enum vcpu_state {
44 vcpu_running = 0,
45 vcpu_halted, /* Used only in pv_wait_node */
46 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */
47 };
48
49 struct pv_node {
50 struct mcs_spinlock mcs;
51 struct mcs_spinlock __res[3];
52
53 int cpu;
54 u8 state;
55 };
56
57 /*
58 * Include queued spinlock statistics code
59 */
60 #include "qspinlock_stat.h"
61
62 /*
63 * By replacing the regular queued_spin_trylock() with the function below,
64 * it will be called once when a lock waiter enter the PV slowpath before
65 * being queued. By allowing one lock stealing attempt here when the pending
66 * bit is off, it helps to reduce the performance impact of lock waiter
67 * preemption without the drawback of lock starvation.
68 */
69 #define queued_spin_trylock(l) pv_queued_spin_steal_lock(l)
70 static inline bool pv_queued_spin_steal_lock(struct qspinlock *lock)
71 {
72 struct __qspinlock *l = (void *)lock;
73
74 if (!(atomic_read(&lock->val) & _Q_LOCKED_PENDING_MASK) &&
75 (cmpxchg_acquire(&l->locked, 0, _Q_LOCKED_VAL) == 0)) {
76 qstat_inc(qstat_pv_lock_stealing, true);
77 return true;
78 }
79
80 return false;
81 }
82
83 /*
84 * The pending bit is used by the queue head vCPU to indicate that it
85 * is actively spinning on the lock and no lock stealing is allowed.
86 */
87 #if _Q_PENDING_BITS == 8
88 static __always_inline void set_pending(struct qspinlock *lock)
89 {
90 struct __qspinlock *l = (void *)lock;
91
92 WRITE_ONCE(l->pending, 1);
93 }
94
95 static __always_inline void clear_pending(struct qspinlock *lock)
96 {
97 struct __qspinlock *l = (void *)lock;
98
99 WRITE_ONCE(l->pending, 0);
100 }
101
102 /*
103 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
104 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
105 * lock just to be sure that it will get it.
106 */
107 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
108 {
109 struct __qspinlock *l = (void *)lock;
110
111 return !READ_ONCE(l->locked) &&
112 (cmpxchg_acquire(&l->locked_pending, _Q_PENDING_VAL,
113 _Q_LOCKED_VAL) == _Q_PENDING_VAL);
114 }
115 #else /* _Q_PENDING_BITS == 8 */
116 static __always_inline void set_pending(struct qspinlock *lock)
117 {
118 atomic_or(_Q_PENDING_VAL, &lock->val);
119 }
120
121 static __always_inline void clear_pending(struct qspinlock *lock)
122 {
123 atomic_andnot(_Q_PENDING_VAL, &lock->val);
124 }
125
126 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
127 {
128 int val = atomic_read(&lock->val);
129
130 for (;;) {
131 int old, new;
132
133 if (val & _Q_LOCKED_MASK)
134 break;
135
136 /*
137 * Try to clear pending bit & set locked bit
138 */
139 old = val;
140 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
141 val = atomic_cmpxchg_acquire(&lock->val, old, new);
142
143 if (val == old)
144 return 1;
145 }
146 return 0;
147 }
148 #endif /* _Q_PENDING_BITS == 8 */
149
150 /*
151 * Lock and MCS node addresses hash table for fast lookup
152 *
153 * Hashing is done on a per-cacheline basis to minimize the need to access
154 * more than one cacheline.
155 *
156 * Dynamically allocate a hash table big enough to hold at least 4X the
157 * number of possible cpus in the system. Allocation is done on page
158 * granularity. So the minimum number of hash buckets should be at least
159 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
160 *
161 * Since we should not be holding locks from NMI context (very rare indeed) the
162 * max load factor is 0.75, which is around the point where open addressing
163 * breaks down.
164 *
165 */
166 struct pv_hash_entry {
167 struct qspinlock *lock;
168 struct pv_node *node;
169 };
170
171 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
172 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
173
174 static struct pv_hash_entry *pv_lock_hash;
175 static unsigned int pv_lock_hash_bits __read_mostly;
176
177 /*
178 * Allocate memory for the PV qspinlock hash buckets
179 *
180 * This function should be called from the paravirt spinlock initialization
181 * routine.
182 */
183 void __init __pv_init_lock_hash(void)
184 {
185 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
186
187 if (pv_hash_size < PV_HE_MIN)
188 pv_hash_size = PV_HE_MIN;
189
190 /*
191 * Allocate space from bootmem which should be page-size aligned
192 * and hence cacheline aligned.
193 */
194 pv_lock_hash = alloc_large_system_hash("PV qspinlock",
195 sizeof(struct pv_hash_entry),
196 pv_hash_size, 0,
197 HASH_EARLY | HASH_ZERO,
198 &pv_lock_hash_bits, NULL,
199 pv_hash_size, pv_hash_size);
200 }
201
202 #define for_each_hash_entry(he, offset, hash) \
203 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
204 offset < (1 << pv_lock_hash_bits); \
205 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
206
207 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
208 {
209 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
210 struct pv_hash_entry *he;
211 int hopcnt = 0;
212
213 for_each_hash_entry(he, offset, hash) {
214 hopcnt++;
215 if (!cmpxchg(&he->lock, NULL, lock)) {
216 WRITE_ONCE(he->node, node);
217 qstat_hop(hopcnt);
218 return &he->lock;
219 }
220 }
221 /*
222 * Hard assume there is a free entry for us.
223 *
224 * This is guaranteed by ensuring every blocked lock only ever consumes
225 * a single entry, and since we only have 4 nesting levels per CPU
226 * and allocated 4*nr_possible_cpus(), this must be so.
227 *
228 * The single entry is guaranteed by having the lock owner unhash
229 * before it releases.
230 */
231 BUG();
232 }
233
234 static struct pv_node *pv_unhash(struct qspinlock *lock)
235 {
236 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
237 struct pv_hash_entry *he;
238 struct pv_node *node;
239
240 for_each_hash_entry(he, offset, hash) {
241 if (READ_ONCE(he->lock) == lock) {
242 node = READ_ONCE(he->node);
243 WRITE_ONCE(he->lock, NULL);
244 return node;
245 }
246 }
247 /*
248 * Hard assume we'll find an entry.
249 *
250 * This guarantees a limited lookup time and is itself guaranteed by
251 * having the lock owner do the unhash -- IFF the unlock sees the
252 * SLOW flag, there MUST be a hash entry.
253 */
254 BUG();
255 }
256
257 /*
258 * Return true if when it is time to check the previous node which is not
259 * in a running state.
260 */
261 static inline bool
262 pv_wait_early(struct pv_node *prev, int loop)
263 {
264 if ((loop & PV_PREV_CHECK_MASK) != 0)
265 return false;
266
267 return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu);
268 }
269
270 /*
271 * Initialize the PV part of the mcs_spinlock node.
272 */
273 static void pv_init_node(struct mcs_spinlock *node)
274 {
275 struct pv_node *pn = (struct pv_node *)node;
276
277 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
278
279 pn->cpu = smp_processor_id();
280 pn->state = vcpu_running;
281 }
282
283 /*
284 * Wait for node->locked to become true, halt the vcpu after a short spin.
285 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
286 * behalf.
287 */
288 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
289 {
290 struct pv_node *pn = (struct pv_node *)node;
291 struct pv_node *pp = (struct pv_node *)prev;
292 int loop;
293 bool wait_early;
294
295 for (;;) {
296 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
297 if (READ_ONCE(node->locked))
298 return;
299 if (pv_wait_early(pp, loop)) {
300 wait_early = true;
301 break;
302 }
303 cpu_relax();
304 }
305
306 /*
307 * Order pn->state vs pn->locked thusly:
308 *
309 * [S] pn->state = vcpu_halted [S] next->locked = 1
310 * MB MB
311 * [L] pn->locked [RmW] pn->state = vcpu_hashed
312 *
313 * Matches the cmpxchg() from pv_kick_node().
314 */
315 smp_store_mb(pn->state, vcpu_halted);
316
317 if (!READ_ONCE(node->locked)) {
318 qstat_inc(qstat_pv_wait_node, true);
319 qstat_inc(qstat_pv_wait_early, wait_early);
320 pv_wait(&pn->state, vcpu_halted);
321 }
322
323 /*
324 * If pv_kick_node() changed us to vcpu_hashed, retain that
325 * value so that pv_wait_head_or_lock() knows to not also try
326 * to hash this lock.
327 */
328 cmpxchg(&pn->state, vcpu_halted, vcpu_running);
329
330 /*
331 * If the locked flag is still not set after wakeup, it is a
332 * spurious wakeup and the vCPU should wait again. However,
333 * there is a pretty high overhead for CPU halting and kicking.
334 * So it is better to spin for a while in the hope that the
335 * MCS lock will be released soon.
336 */
337 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
338 }
339
340 /*
341 * By now our node->locked should be 1 and our caller will not actually
342 * spin-wait for it. We do however rely on our caller to do a
343 * load-acquire for us.
344 */
345 }
346
347 /*
348 * Called after setting next->locked = 1 when we're the lock owner.
349 *
350 * Instead of waking the waiters stuck in pv_wait_node() advance their state
351 * such that they're waiting in pv_wait_head_or_lock(), this avoids a
352 * wake/sleep cycle.
353 */
354 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
355 {
356 struct pv_node *pn = (struct pv_node *)node;
357 struct __qspinlock *l = (void *)lock;
358
359 /*
360 * If the vCPU is indeed halted, advance its state to match that of
361 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
362 * observe its next->locked value and advance itself.
363 *
364 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
365 *
366 * The write to next->locked in arch_mcs_spin_unlock_contended()
367 * must be ordered before the read of pn->state in the cmpxchg()
368 * below for the code to work correctly. To guarantee full ordering
369 * irrespective of the success or failure of the cmpxchg(),
370 * a relaxed version with explicit barrier is used. The control
371 * dependency will order the reading of pn->state before any
372 * subsequent writes.
373 */
374 smp_mb__before_atomic();
375 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
376 != vcpu_halted)
377 return;
378
379 /*
380 * Put the lock into the hash table and set the _Q_SLOW_VAL.
381 *
382 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
383 * the hash table later on at unlock time, no atomic instruction is
384 * needed.
385 */
386 WRITE_ONCE(l->locked, _Q_SLOW_VAL);
387 (void)pv_hash(lock, pn);
388 }
389
390 /*
391 * Wait for l->locked to become clear and acquire the lock;
392 * halt the vcpu after a short spin.
393 * __pv_queued_spin_unlock() will wake us.
394 *
395 * The current value of the lock will be returned for additional processing.
396 */
397 static u32
398 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
399 {
400 struct pv_node *pn = (struct pv_node *)node;
401 struct __qspinlock *l = (void *)lock;
402 struct qspinlock **lp = NULL;
403 int waitcnt = 0;
404 int loop;
405
406 /*
407 * If pv_kick_node() already advanced our state, we don't need to
408 * insert ourselves into the hash table anymore.
409 */
410 if (READ_ONCE(pn->state) == vcpu_hashed)
411 lp = (struct qspinlock **)1;
412
413 /*
414 * Tracking # of slowpath locking operations
415 */
416 qstat_inc(qstat_pv_lock_slowpath, true);
417
418 for (;; waitcnt++) {
419 /*
420 * Set correct vCPU state to be used by queue node wait-early
421 * mechanism.
422 */
423 WRITE_ONCE(pn->state, vcpu_running);
424
425 /*
426 * Set the pending bit in the active lock spinning loop to
427 * disable lock stealing before attempting to acquire the lock.
428 */
429 set_pending(lock);
430 for (loop = SPIN_THRESHOLD; loop; loop--) {
431 if (trylock_clear_pending(lock))
432 goto gotlock;
433 cpu_relax();
434 }
435 clear_pending(lock);
436
437
438 if (!lp) { /* ONCE */
439 lp = pv_hash(lock, pn);
440
441 /*
442 * We must hash before setting _Q_SLOW_VAL, such that
443 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
444 * we'll be sure to be able to observe our hash entry.
445 *
446 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL
447 * MB RMB
448 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash>
449 *
450 * Matches the smp_rmb() in __pv_queued_spin_unlock().
451 */
452 if (xchg(&l->locked, _Q_SLOW_VAL) == 0) {
453 /*
454 * The lock was free and now we own the lock.
455 * Change the lock value back to _Q_LOCKED_VAL
456 * and unhash the table.
457 */
458 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
459 WRITE_ONCE(*lp, NULL);
460 goto gotlock;
461 }
462 }
463 WRITE_ONCE(pn->state, vcpu_hashed);
464 qstat_inc(qstat_pv_wait_head, true);
465 qstat_inc(qstat_pv_wait_again, waitcnt);
466 pv_wait(&l->locked, _Q_SLOW_VAL);
467
468 /*
469 * Because of lock stealing, the queue head vCPU may not be
470 * able to acquire the lock before it has to wait again.
471 */
472 }
473
474 /*
475 * The cmpxchg() or xchg() call before coming here provides the
476 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
477 * here is to indicate to the compiler that the value will always
478 * be nozero to enable better code optimization.
479 */
480 gotlock:
481 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
482 }
483
484 /*
485 * PV versions of the unlock fastpath and slowpath functions to be used
486 * instead of queued_spin_unlock().
487 */
488 __visible void
489 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
490 {
491 struct __qspinlock *l = (void *)lock;
492 struct pv_node *node;
493
494 if (unlikely(locked != _Q_SLOW_VAL)) {
495 WARN(!debug_locks_silent,
496 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
497 (unsigned long)lock, atomic_read(&lock->val));
498 return;
499 }
500
501 /*
502 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
503 * so we need a barrier to order the read of the node data in
504 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
505 *
506 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
507 */
508 smp_rmb();
509
510 /*
511 * Since the above failed to release, this must be the SLOW path.
512 * Therefore start by looking up the blocked node and unhashing it.
513 */
514 node = pv_unhash(lock);
515
516 /*
517 * Now that we have a reference to the (likely) blocked pv_node,
518 * release the lock.
519 */
520 smp_store_release(&l->locked, 0);
521
522 /*
523 * At this point the memory pointed at by lock can be freed/reused,
524 * however we can still use the pv_node to kick the CPU.
525 * The other vCPU may not really be halted, but kicking an active
526 * vCPU is harmless other than the additional latency in completing
527 * the unlock.
528 */
529 qstat_inc(qstat_pv_kick_unlock, true);
530 pv_kick(node->cpu);
531 }
532
533 /*
534 * Include the architecture specific callee-save thunk of the
535 * __pv_queued_spin_unlock(). This thunk is put together with
536 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
537 * function close to each other sharing consecutive instruction cachelines.
538 * Alternatively, architecture specific version of __pv_queued_spin_unlock()
539 * can be defined.
540 */
541 #include <asm/qspinlock_paravirt.h>
542
543 #ifndef __pv_queued_spin_unlock
544 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
545 {
546 struct __qspinlock *l = (void *)lock;
547 u8 locked;
548
549 /*
550 * We must not unlock if SLOW, because in that case we must first
551 * unhash. Otherwise it would be possible to have multiple @lock
552 * entries, which would be BAD.
553 */
554 locked = cmpxchg_release(&l->locked, _Q_LOCKED_VAL, 0);
555 if (likely(locked == _Q_LOCKED_VAL))
556 return;
557
558 __pv_queued_spin_unlock_slowpath(lock, locked);
559 }
560 #endif /* __pv_queued_spin_unlock */