]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/locking/rtmutex.c
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / kernel / locking / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 unsigned long val = (unsigned long)owner;
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70 }
71
72 /*
73 * We can speed up the acquire/release, if there's no debugging state to be
74 * set up.
75 */
76 #ifndef CONFIG_DEBUG_RT_MUTEXES
77 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82 do {
83 owner = *p;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86
87 /*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 __releases(lock->wait_lock)
95 {
96 struct task_struct *owner = rt_mutex_owner(lock);
97
98 clear_rt_mutex_waiters(lock);
99 raw_spin_unlock(&lock->wait_lock);
100 /*
101 * If a new waiter comes in between the unlock and the cmpxchg
102 * we have two situations:
103 *
104 * unlock(wait_lock);
105 * lock(wait_lock);
106 * cmpxchg(p, owner, 0) == owner
107 * mark_rt_mutex_waiters(lock);
108 * acquire(lock);
109 * or:
110 *
111 * unlock(wait_lock);
112 * lock(wait_lock);
113 * mark_rt_mutex_waiters(lock);
114 *
115 * cmpxchg(p, owner, 0) != owner
116 * enqueue_waiter();
117 * unlock(wait_lock);
118 * lock(wait_lock);
119 * wake waiter();
120 * unlock(wait_lock);
121 * lock(wait_lock);
122 * acquire(lock);
123 */
124 return rt_mutex_cmpxchg(lock, owner, NULL);
125 }
126
127 #else
128 # define rt_mutex_cmpxchg(l,c,n) (0)
129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 {
131 lock->owner = (struct task_struct *)
132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133 }
134
135 /*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 __releases(lock->wait_lock)
140 {
141 lock->owner = NULL;
142 raw_spin_unlock(&lock->wait_lock);
143 return true;
144 }
145 #endif
146
147 static inline int
148 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 struct rt_mutex_waiter *right)
150 {
151 if (left->prio < right->prio)
152 return 1;
153
154 /*
155 * If both waiters have dl_prio(), we check the deadlines of the
156 * associated tasks.
157 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 * then right waiter has a dl_prio() too.
159 */
160 if (dl_prio(left->prio))
161 return (left->task->dl.deadline < right->task->dl.deadline);
162
163 return 0;
164 }
165
166 static void
167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168 {
169 struct rb_node **link = &lock->waiters.rb_node;
170 struct rb_node *parent = NULL;
171 struct rt_mutex_waiter *entry;
172 int leftmost = 1;
173
174 while (*link) {
175 parent = *link;
176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 if (rt_mutex_waiter_less(waiter, entry)) {
178 link = &parent->rb_left;
179 } else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 lock->waiters_leftmost = &waiter->tree_entry;
187
188 rb_link_node(&waiter->tree_entry, parent, link);
189 rb_insert_color(&waiter->tree_entry, &lock->waiters);
190 }
191
192 static void
193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194 {
195 if (RB_EMPTY_NODE(&waiter->tree_entry))
196 return;
197
198 if (lock->waiters_leftmost == &waiter->tree_entry)
199 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201 rb_erase(&waiter->tree_entry, &lock->waiters);
202 RB_CLEAR_NODE(&waiter->tree_entry);
203 }
204
205 static void
206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207 {
208 struct rb_node **link = &task->pi_waiters.rb_node;
209 struct rb_node *parent = NULL;
210 struct rt_mutex_waiter *entry;
211 int leftmost = 1;
212
213 while (*link) {
214 parent = *link;
215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 if (rt_mutex_waiter_less(waiter, entry)) {
217 link = &parent->rb_left;
218 } else {
219 link = &parent->rb_right;
220 leftmost = 0;
221 }
222 }
223
224 if (leftmost)
225 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227 rb_link_node(&waiter->pi_tree_entry, parent, link);
228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229 }
230
231 static void
232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233 {
234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 return;
236
237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 RB_CLEAR_NODE(&waiter->pi_tree_entry);
242 }
243
244 /*
245 * Calculate task priority from the waiter tree priority
246 *
247 * Return task->normal_prio when the waiter tree is empty or when
248 * the waiter is not allowed to do priority boosting
249 */
250 int rt_mutex_getprio(struct task_struct *task)
251 {
252 if (likely(!task_has_pi_waiters(task)))
253 return task->normal_prio;
254
255 return min(task_top_pi_waiter(task)->prio,
256 task->normal_prio);
257 }
258
259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260 {
261 if (likely(!task_has_pi_waiters(task)))
262 return NULL;
263
264 return task_top_pi_waiter(task)->task;
265 }
266
267 /*
268 * Called by sched_setscheduler() to get the priority which will be
269 * effective after the change.
270 */
271 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
272 {
273 if (!task_has_pi_waiters(task))
274 return newprio;
275
276 if (task_top_pi_waiter(task)->task->prio <= newprio)
277 return task_top_pi_waiter(task)->task->prio;
278 return newprio;
279 }
280
281 /*
282 * Adjust the priority of a task, after its pi_waiters got modified.
283 *
284 * This can be both boosting and unboosting. task->pi_lock must be held.
285 */
286 static void __rt_mutex_adjust_prio(struct task_struct *task)
287 {
288 int prio = rt_mutex_getprio(task);
289
290 if (task->prio != prio || dl_prio(prio))
291 rt_mutex_setprio(task, prio);
292 }
293
294 /*
295 * Adjust task priority (undo boosting). Called from the exit path of
296 * rt_mutex_slowunlock() and rt_mutex_slowlock().
297 *
298 * (Note: We do this outside of the protection of lock->wait_lock to
299 * allow the lock to be taken while or before we readjust the priority
300 * of task. We do not use the spin_xx_mutex() variants here as we are
301 * outside of the debug path.)
302 */
303 static void rt_mutex_adjust_prio(struct task_struct *task)
304 {
305 unsigned long flags;
306
307 raw_spin_lock_irqsave(&task->pi_lock, flags);
308 __rt_mutex_adjust_prio(task);
309 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
310 }
311
312 /*
313 * Deadlock detection is conditional:
314 *
315 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
316 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
317 *
318 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
319 * conducted independent of the detect argument.
320 *
321 * If the waiter argument is NULL this indicates the deboost path and
322 * deadlock detection is disabled independent of the detect argument
323 * and the config settings.
324 */
325 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
326 enum rtmutex_chainwalk chwalk)
327 {
328 /*
329 * This is just a wrapper function for the following call,
330 * because debug_rt_mutex_detect_deadlock() smells like a magic
331 * debug feature and I wanted to keep the cond function in the
332 * main source file along with the comments instead of having
333 * two of the same in the headers.
334 */
335 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
336 }
337
338 /*
339 * Max number of times we'll walk the boosting chain:
340 */
341 int max_lock_depth = 1024;
342
343 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
344 {
345 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
346 }
347
348 /*
349 * Adjust the priority chain. Also used for deadlock detection.
350 * Decreases task's usage by one - may thus free the task.
351 *
352 * @task: the task owning the mutex (owner) for which a chain walk is
353 * probably needed
354 * @chwalk: do we have to carry out deadlock detection?
355 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
356 * things for a task that has just got its priority adjusted, and
357 * is waiting on a mutex)
358 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
359 * we dropped its pi_lock. Is never dereferenced, only used for
360 * comparison to detect lock chain changes.
361 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
362 * its priority to the mutex owner (can be NULL in the case
363 * depicted above or if the top waiter is gone away and we are
364 * actually deboosting the owner)
365 * @top_task: the current top waiter
366 *
367 * Returns 0 or -EDEADLK.
368 *
369 * Chain walk basics and protection scope
370 *
371 * [R] refcount on task
372 * [P] task->pi_lock held
373 * [L] rtmutex->wait_lock held
374 *
375 * Step Description Protected by
376 * function arguments:
377 * @task [R]
378 * @orig_lock if != NULL @top_task is blocked on it
379 * @next_lock Unprotected. Cannot be
380 * dereferenced. Only used for
381 * comparison.
382 * @orig_waiter if != NULL @top_task is blocked on it
383 * @top_task current, or in case of proxy
384 * locking protected by calling
385 * code
386 * again:
387 * loop_sanity_check();
388 * retry:
389 * [1] lock(task->pi_lock); [R] acquire [P]
390 * [2] waiter = task->pi_blocked_on; [P]
391 * [3] check_exit_conditions_1(); [P]
392 * [4] lock = waiter->lock; [P]
393 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
394 * unlock(task->pi_lock); release [P]
395 * goto retry;
396 * }
397 * [6] check_exit_conditions_2(); [P] + [L]
398 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
399 * [8] unlock(task->pi_lock); release [P]
400 * put_task_struct(task); release [R]
401 * [9] check_exit_conditions_3(); [L]
402 * [10] task = owner(lock); [L]
403 * get_task_struct(task); [L] acquire [R]
404 * lock(task->pi_lock); [L] acquire [P]
405 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
406 * [12] check_exit_conditions_4(); [P] + [L]
407 * [13] unlock(task->pi_lock); release [P]
408 * unlock(lock->wait_lock); release [L]
409 * goto again;
410 */
411 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
412 enum rtmutex_chainwalk chwalk,
413 struct rt_mutex *orig_lock,
414 struct rt_mutex *next_lock,
415 struct rt_mutex_waiter *orig_waiter,
416 struct task_struct *top_task)
417 {
418 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
419 struct rt_mutex_waiter *prerequeue_top_waiter;
420 int ret = 0, depth = 0;
421 struct rt_mutex *lock;
422 bool detect_deadlock;
423 unsigned long flags;
424 bool requeue = true;
425
426 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
427
428 /*
429 * The (de)boosting is a step by step approach with a lot of
430 * pitfalls. We want this to be preemptible and we want hold a
431 * maximum of two locks per step. So we have to check
432 * carefully whether things change under us.
433 */
434 again:
435 /*
436 * We limit the lock chain length for each invocation.
437 */
438 if (++depth > max_lock_depth) {
439 static int prev_max;
440
441 /*
442 * Print this only once. If the admin changes the limit,
443 * print a new message when reaching the limit again.
444 */
445 if (prev_max != max_lock_depth) {
446 prev_max = max_lock_depth;
447 printk(KERN_WARNING "Maximum lock depth %d reached "
448 "task: %s (%d)\n", max_lock_depth,
449 top_task->comm, task_pid_nr(top_task));
450 }
451 put_task_struct(task);
452
453 return -EDEADLK;
454 }
455
456 /*
457 * We are fully preemptible here and only hold the refcount on
458 * @task. So everything can have changed under us since the
459 * caller or our own code below (goto retry/again) dropped all
460 * locks.
461 */
462 retry:
463 /*
464 * [1] Task cannot go away as we did a get_task() before !
465 */
466 raw_spin_lock_irqsave(&task->pi_lock, flags);
467
468 /*
469 * [2] Get the waiter on which @task is blocked on.
470 */
471 waiter = task->pi_blocked_on;
472
473 /*
474 * [3] check_exit_conditions_1() protected by task->pi_lock.
475 */
476
477 /*
478 * Check whether the end of the boosting chain has been
479 * reached or the state of the chain has changed while we
480 * dropped the locks.
481 */
482 if (!waiter)
483 goto out_unlock_pi;
484
485 /*
486 * Check the orig_waiter state. After we dropped the locks,
487 * the previous owner of the lock might have released the lock.
488 */
489 if (orig_waiter && !rt_mutex_owner(orig_lock))
490 goto out_unlock_pi;
491
492 /*
493 * We dropped all locks after taking a refcount on @task, so
494 * the task might have moved on in the lock chain or even left
495 * the chain completely and blocks now on an unrelated lock or
496 * on @orig_lock.
497 *
498 * We stored the lock on which @task was blocked in @next_lock,
499 * so we can detect the chain change.
500 */
501 if (next_lock != waiter->lock)
502 goto out_unlock_pi;
503
504 /*
505 * Drop out, when the task has no waiters. Note,
506 * top_waiter can be NULL, when we are in the deboosting
507 * mode!
508 */
509 if (top_waiter) {
510 if (!task_has_pi_waiters(task))
511 goto out_unlock_pi;
512 /*
513 * If deadlock detection is off, we stop here if we
514 * are not the top pi waiter of the task. If deadlock
515 * detection is enabled we continue, but stop the
516 * requeueing in the chain walk.
517 */
518 if (top_waiter != task_top_pi_waiter(task)) {
519 if (!detect_deadlock)
520 goto out_unlock_pi;
521 else
522 requeue = false;
523 }
524 }
525
526 /*
527 * If the waiter priority is the same as the task priority
528 * then there is no further priority adjustment necessary. If
529 * deadlock detection is off, we stop the chain walk. If its
530 * enabled we continue, but stop the requeueing in the chain
531 * walk.
532 */
533 if (waiter->prio == task->prio) {
534 if (!detect_deadlock)
535 goto out_unlock_pi;
536 else
537 requeue = false;
538 }
539
540 /*
541 * [4] Get the next lock
542 */
543 lock = waiter->lock;
544 /*
545 * [5] We need to trylock here as we are holding task->pi_lock,
546 * which is the reverse lock order versus the other rtmutex
547 * operations.
548 */
549 if (!raw_spin_trylock(&lock->wait_lock)) {
550 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
551 cpu_relax();
552 goto retry;
553 }
554
555 /*
556 * [6] check_exit_conditions_2() protected by task->pi_lock and
557 * lock->wait_lock.
558 *
559 * Deadlock detection. If the lock is the same as the original
560 * lock which caused us to walk the lock chain or if the
561 * current lock is owned by the task which initiated the chain
562 * walk, we detected a deadlock.
563 */
564 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
565 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
566 raw_spin_unlock(&lock->wait_lock);
567 ret = -EDEADLK;
568 goto out_unlock_pi;
569 }
570
571 /*
572 * If we just follow the lock chain for deadlock detection, no
573 * need to do all the requeue operations. To avoid a truckload
574 * of conditionals around the various places below, just do the
575 * minimum chain walk checks.
576 */
577 if (!requeue) {
578 /*
579 * No requeue[7] here. Just release @task [8]
580 */
581 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
582 put_task_struct(task);
583
584 /*
585 * [9] check_exit_conditions_3 protected by lock->wait_lock.
586 * If there is no owner of the lock, end of chain.
587 */
588 if (!rt_mutex_owner(lock)) {
589 raw_spin_unlock(&lock->wait_lock);
590 return 0;
591 }
592
593 /* [10] Grab the next task, i.e. owner of @lock */
594 task = rt_mutex_owner(lock);
595 get_task_struct(task);
596 raw_spin_lock_irqsave(&task->pi_lock, flags);
597
598 /*
599 * No requeue [11] here. We just do deadlock detection.
600 *
601 * [12] Store whether owner is blocked
602 * itself. Decision is made after dropping the locks
603 */
604 next_lock = task_blocked_on_lock(task);
605 /*
606 * Get the top waiter for the next iteration
607 */
608 top_waiter = rt_mutex_top_waiter(lock);
609
610 /* [13] Drop locks */
611 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
612 raw_spin_unlock(&lock->wait_lock);
613
614 /* If owner is not blocked, end of chain. */
615 if (!next_lock)
616 goto out_put_task;
617 goto again;
618 }
619
620 /*
621 * Store the current top waiter before doing the requeue
622 * operation on @lock. We need it for the boost/deboost
623 * decision below.
624 */
625 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
626
627 /* [7] Requeue the waiter in the lock waiter list. */
628 rt_mutex_dequeue(lock, waiter);
629 waiter->prio = task->prio;
630 rt_mutex_enqueue(lock, waiter);
631
632 /* [8] Release the task */
633 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
634 put_task_struct(task);
635
636 /*
637 * [9] check_exit_conditions_3 protected by lock->wait_lock.
638 *
639 * We must abort the chain walk if there is no lock owner even
640 * in the dead lock detection case, as we have nothing to
641 * follow here. This is the end of the chain we are walking.
642 */
643 if (!rt_mutex_owner(lock)) {
644 /*
645 * If the requeue [7] above changed the top waiter,
646 * then we need to wake the new top waiter up to try
647 * to get the lock.
648 */
649 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
650 wake_up_process(rt_mutex_top_waiter(lock)->task);
651 raw_spin_unlock(&lock->wait_lock);
652 return 0;
653 }
654
655 /* [10] Grab the next task, i.e. the owner of @lock */
656 task = rt_mutex_owner(lock);
657 get_task_struct(task);
658 raw_spin_lock_irqsave(&task->pi_lock, flags);
659
660 /* [11] requeue the pi waiters if necessary */
661 if (waiter == rt_mutex_top_waiter(lock)) {
662 /*
663 * The waiter became the new top (highest priority)
664 * waiter on the lock. Replace the previous top waiter
665 * in the owner tasks pi waiters list with this waiter
666 * and adjust the priority of the owner.
667 */
668 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
669 rt_mutex_enqueue_pi(task, waiter);
670 __rt_mutex_adjust_prio(task);
671
672 } else if (prerequeue_top_waiter == waiter) {
673 /*
674 * The waiter was the top waiter on the lock, but is
675 * no longer the top prority waiter. Replace waiter in
676 * the owner tasks pi waiters list with the new top
677 * (highest priority) waiter and adjust the priority
678 * of the owner.
679 * The new top waiter is stored in @waiter so that
680 * @waiter == @top_waiter evaluates to true below and
681 * we continue to deboost the rest of the chain.
682 */
683 rt_mutex_dequeue_pi(task, waiter);
684 waiter = rt_mutex_top_waiter(lock);
685 rt_mutex_enqueue_pi(task, waiter);
686 __rt_mutex_adjust_prio(task);
687 } else {
688 /*
689 * Nothing changed. No need to do any priority
690 * adjustment.
691 */
692 }
693
694 /*
695 * [12] check_exit_conditions_4() protected by task->pi_lock
696 * and lock->wait_lock. The actual decisions are made after we
697 * dropped the locks.
698 *
699 * Check whether the task which owns the current lock is pi
700 * blocked itself. If yes we store a pointer to the lock for
701 * the lock chain change detection above. After we dropped
702 * task->pi_lock next_lock cannot be dereferenced anymore.
703 */
704 next_lock = task_blocked_on_lock(task);
705 /*
706 * Store the top waiter of @lock for the end of chain walk
707 * decision below.
708 */
709 top_waiter = rt_mutex_top_waiter(lock);
710
711 /* [13] Drop the locks */
712 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
713 raw_spin_unlock(&lock->wait_lock);
714
715 /*
716 * Make the actual exit decisions [12], based on the stored
717 * values.
718 *
719 * We reached the end of the lock chain. Stop right here. No
720 * point to go back just to figure that out.
721 */
722 if (!next_lock)
723 goto out_put_task;
724
725 /*
726 * If the current waiter is not the top waiter on the lock,
727 * then we can stop the chain walk here if we are not in full
728 * deadlock detection mode.
729 */
730 if (!detect_deadlock && waiter != top_waiter)
731 goto out_put_task;
732
733 goto again;
734
735 out_unlock_pi:
736 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
737 out_put_task:
738 put_task_struct(task);
739
740 return ret;
741 }
742
743 /*
744 * Try to take an rt-mutex
745 *
746 * Must be called with lock->wait_lock held.
747 *
748 * @lock: The lock to be acquired.
749 * @task: The task which wants to acquire the lock
750 * @waiter: The waiter that is queued to the lock's wait list if the
751 * callsite called task_blocked_on_lock(), otherwise NULL
752 */
753 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
754 struct rt_mutex_waiter *waiter)
755 {
756 unsigned long flags;
757
758 /*
759 * Before testing whether we can acquire @lock, we set the
760 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
761 * other tasks which try to modify @lock into the slow path
762 * and they serialize on @lock->wait_lock.
763 *
764 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
765 * as explained at the top of this file if and only if:
766 *
767 * - There is a lock owner. The caller must fixup the
768 * transient state if it does a trylock or leaves the lock
769 * function due to a signal or timeout.
770 *
771 * - @task acquires the lock and there are no other
772 * waiters. This is undone in rt_mutex_set_owner(@task) at
773 * the end of this function.
774 */
775 mark_rt_mutex_waiters(lock);
776
777 /*
778 * If @lock has an owner, give up.
779 */
780 if (rt_mutex_owner(lock))
781 return 0;
782
783 /*
784 * If @waiter != NULL, @task has already enqueued the waiter
785 * into @lock waiter list. If @waiter == NULL then this is a
786 * trylock attempt.
787 */
788 if (waiter) {
789 /*
790 * If waiter is not the highest priority waiter of
791 * @lock, give up.
792 */
793 if (waiter != rt_mutex_top_waiter(lock))
794 return 0;
795
796 /*
797 * We can acquire the lock. Remove the waiter from the
798 * lock waiters list.
799 */
800 rt_mutex_dequeue(lock, waiter);
801
802 } else {
803 /*
804 * If the lock has waiters already we check whether @task is
805 * eligible to take over the lock.
806 *
807 * If there are no other waiters, @task can acquire
808 * the lock. @task->pi_blocked_on is NULL, so it does
809 * not need to be dequeued.
810 */
811 if (rt_mutex_has_waiters(lock)) {
812 /*
813 * If @task->prio is greater than or equal to
814 * the top waiter priority (kernel view),
815 * @task lost.
816 */
817 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
818 return 0;
819
820 /*
821 * The current top waiter stays enqueued. We
822 * don't have to change anything in the lock
823 * waiters order.
824 */
825 } else {
826 /*
827 * No waiters. Take the lock without the
828 * pi_lock dance.@task->pi_blocked_on is NULL
829 * and we have no waiters to enqueue in @task
830 * pi waiters list.
831 */
832 goto takeit;
833 }
834 }
835
836 /*
837 * Clear @task->pi_blocked_on. Requires protection by
838 * @task->pi_lock. Redundant operation for the @waiter == NULL
839 * case, but conditionals are more expensive than a redundant
840 * store.
841 */
842 raw_spin_lock_irqsave(&task->pi_lock, flags);
843 task->pi_blocked_on = NULL;
844 /*
845 * Finish the lock acquisition. @task is the new owner. If
846 * other waiters exist we have to insert the highest priority
847 * waiter into @task->pi_waiters list.
848 */
849 if (rt_mutex_has_waiters(lock))
850 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
851 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
852
853 takeit:
854 /* We got the lock. */
855 debug_rt_mutex_lock(lock);
856
857 /*
858 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
859 * are still waiters or clears it.
860 */
861 rt_mutex_set_owner(lock, task);
862
863 rt_mutex_deadlock_account_lock(lock, task);
864
865 return 1;
866 }
867
868 /*
869 * Task blocks on lock.
870 *
871 * Prepare waiter and propagate pi chain
872 *
873 * This must be called with lock->wait_lock held.
874 */
875 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
876 struct rt_mutex_waiter *waiter,
877 struct task_struct *task,
878 enum rtmutex_chainwalk chwalk)
879 {
880 struct task_struct *owner = rt_mutex_owner(lock);
881 struct rt_mutex_waiter *top_waiter = waiter;
882 struct rt_mutex *next_lock;
883 int chain_walk = 0, res;
884 unsigned long flags;
885
886 /*
887 * Early deadlock detection. We really don't want the task to
888 * enqueue on itself just to untangle the mess later. It's not
889 * only an optimization. We drop the locks, so another waiter
890 * can come in before the chain walk detects the deadlock. So
891 * the other will detect the deadlock and return -EDEADLOCK,
892 * which is wrong, as the other waiter is not in a deadlock
893 * situation.
894 */
895 if (owner == task)
896 return -EDEADLK;
897
898 raw_spin_lock_irqsave(&task->pi_lock, flags);
899 __rt_mutex_adjust_prio(task);
900 waiter->task = task;
901 waiter->lock = lock;
902 waiter->prio = task->prio;
903
904 /* Get the top priority waiter on the lock */
905 if (rt_mutex_has_waiters(lock))
906 top_waiter = rt_mutex_top_waiter(lock);
907 rt_mutex_enqueue(lock, waiter);
908
909 task->pi_blocked_on = waiter;
910
911 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
912
913 if (!owner)
914 return 0;
915
916 raw_spin_lock_irqsave(&owner->pi_lock, flags);
917 if (waiter == rt_mutex_top_waiter(lock)) {
918 rt_mutex_dequeue_pi(owner, top_waiter);
919 rt_mutex_enqueue_pi(owner, waiter);
920
921 __rt_mutex_adjust_prio(owner);
922 if (owner->pi_blocked_on)
923 chain_walk = 1;
924 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
925 chain_walk = 1;
926 }
927
928 /* Store the lock on which owner is blocked or NULL */
929 next_lock = task_blocked_on_lock(owner);
930
931 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
932 /*
933 * Even if full deadlock detection is on, if the owner is not
934 * blocked itself, we can avoid finding this out in the chain
935 * walk.
936 */
937 if (!chain_walk || !next_lock)
938 return 0;
939
940 /*
941 * The owner can't disappear while holding a lock,
942 * so the owner struct is protected by wait_lock.
943 * Gets dropped in rt_mutex_adjust_prio_chain()!
944 */
945 get_task_struct(owner);
946
947 raw_spin_unlock(&lock->wait_lock);
948
949 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
950 next_lock, waiter, task);
951
952 raw_spin_lock(&lock->wait_lock);
953
954 return res;
955 }
956
957 /*
958 * Wake up the next waiter on the lock.
959 *
960 * Remove the top waiter from the current tasks pi waiter list and
961 * wake it up.
962 *
963 * Called with lock->wait_lock held.
964 */
965 static void wakeup_next_waiter(struct rt_mutex *lock)
966 {
967 struct rt_mutex_waiter *waiter;
968 unsigned long flags;
969
970 raw_spin_lock_irqsave(&current->pi_lock, flags);
971
972 waiter = rt_mutex_top_waiter(lock);
973
974 /*
975 * Remove it from current->pi_waiters. We do not adjust a
976 * possible priority boost right now. We execute wakeup in the
977 * boosted mode and go back to normal after releasing
978 * lock->wait_lock.
979 */
980 rt_mutex_dequeue_pi(current, waiter);
981
982 /*
983 * As we are waking up the top waiter, and the waiter stays
984 * queued on the lock until it gets the lock, this lock
985 * obviously has waiters. Just set the bit here and this has
986 * the added benefit of forcing all new tasks into the
987 * slow path making sure no task of lower priority than
988 * the top waiter can steal this lock.
989 */
990 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
991
992 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
993
994 /*
995 * It's safe to dereference waiter as it cannot go away as
996 * long as we hold lock->wait_lock. The waiter task needs to
997 * acquire it in order to dequeue the waiter.
998 */
999 wake_up_process(waiter->task);
1000 }
1001
1002 /*
1003 * Remove a waiter from a lock and give up
1004 *
1005 * Must be called with lock->wait_lock held and
1006 * have just failed to try_to_take_rt_mutex().
1007 */
1008 static void remove_waiter(struct rt_mutex *lock,
1009 struct rt_mutex_waiter *waiter)
1010 {
1011 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1012 struct task_struct *owner = rt_mutex_owner(lock);
1013 struct rt_mutex *next_lock;
1014 unsigned long flags;
1015
1016 raw_spin_lock_irqsave(&current->pi_lock, flags);
1017 rt_mutex_dequeue(lock, waiter);
1018 current->pi_blocked_on = NULL;
1019 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1020
1021 /*
1022 * Only update priority if the waiter was the highest priority
1023 * waiter of the lock and there is an owner to update.
1024 */
1025 if (!owner || !is_top_waiter)
1026 return;
1027
1028 raw_spin_lock_irqsave(&owner->pi_lock, flags);
1029
1030 rt_mutex_dequeue_pi(owner, waiter);
1031
1032 if (rt_mutex_has_waiters(lock))
1033 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1034
1035 __rt_mutex_adjust_prio(owner);
1036
1037 /* Store the lock on which owner is blocked or NULL */
1038 next_lock = task_blocked_on_lock(owner);
1039
1040 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1041
1042 /*
1043 * Don't walk the chain, if the owner task is not blocked
1044 * itself.
1045 */
1046 if (!next_lock)
1047 return;
1048
1049 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1050 get_task_struct(owner);
1051
1052 raw_spin_unlock(&lock->wait_lock);
1053
1054 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1055 next_lock, NULL, current);
1056
1057 raw_spin_lock(&lock->wait_lock);
1058 }
1059
1060 /*
1061 * Recheck the pi chain, in case we got a priority setting
1062 *
1063 * Called from sched_setscheduler
1064 */
1065 void rt_mutex_adjust_pi(struct task_struct *task)
1066 {
1067 struct rt_mutex_waiter *waiter;
1068 struct rt_mutex *next_lock;
1069 unsigned long flags;
1070
1071 raw_spin_lock_irqsave(&task->pi_lock, flags);
1072
1073 waiter = task->pi_blocked_on;
1074 if (!waiter || (waiter->prio == task->prio &&
1075 !dl_prio(task->prio))) {
1076 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1077 return;
1078 }
1079 next_lock = waiter->lock;
1080 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1081
1082 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1083 get_task_struct(task);
1084
1085 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1086 next_lock, NULL, task);
1087 }
1088
1089 /**
1090 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1091 * @lock: the rt_mutex to take
1092 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1093 * or TASK_UNINTERRUPTIBLE)
1094 * @timeout: the pre-initialized and started timer, or NULL for none
1095 * @waiter: the pre-initialized rt_mutex_waiter
1096 *
1097 * lock->wait_lock must be held by the caller.
1098 */
1099 static int __sched
1100 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1101 struct hrtimer_sleeper *timeout,
1102 struct rt_mutex_waiter *waiter)
1103 {
1104 int ret = 0;
1105
1106 for (;;) {
1107 /* Try to acquire the lock: */
1108 if (try_to_take_rt_mutex(lock, current, waiter))
1109 break;
1110
1111 /*
1112 * TASK_INTERRUPTIBLE checks for signals and
1113 * timeout. Ignored otherwise.
1114 */
1115 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1116 /* Signal pending? */
1117 if (signal_pending(current))
1118 ret = -EINTR;
1119 if (timeout && !timeout->task)
1120 ret = -ETIMEDOUT;
1121 if (ret)
1122 break;
1123 }
1124
1125 raw_spin_unlock(&lock->wait_lock);
1126
1127 debug_rt_mutex_print_deadlock(waiter);
1128
1129 schedule_rt_mutex(lock);
1130
1131 raw_spin_lock(&lock->wait_lock);
1132 set_current_state(state);
1133 }
1134
1135 __set_current_state(TASK_RUNNING);
1136 return ret;
1137 }
1138
1139 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1140 struct rt_mutex_waiter *w)
1141 {
1142 /*
1143 * If the result is not -EDEADLOCK or the caller requested
1144 * deadlock detection, nothing to do here.
1145 */
1146 if (res != -EDEADLOCK || detect_deadlock)
1147 return;
1148
1149 /*
1150 * Yell lowdly and stop the task right here.
1151 */
1152 rt_mutex_print_deadlock(w);
1153 while (1) {
1154 set_current_state(TASK_INTERRUPTIBLE);
1155 schedule();
1156 }
1157 }
1158
1159 /*
1160 * Slow path lock function:
1161 */
1162 static int __sched
1163 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1164 struct hrtimer_sleeper *timeout,
1165 enum rtmutex_chainwalk chwalk)
1166 {
1167 struct rt_mutex_waiter waiter;
1168 int ret = 0;
1169
1170 debug_rt_mutex_init_waiter(&waiter);
1171 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1172 RB_CLEAR_NODE(&waiter.tree_entry);
1173
1174 raw_spin_lock(&lock->wait_lock);
1175
1176 /* Try to acquire the lock again: */
1177 if (try_to_take_rt_mutex(lock, current, NULL)) {
1178 raw_spin_unlock(&lock->wait_lock);
1179 return 0;
1180 }
1181
1182 set_current_state(state);
1183
1184 /* Setup the timer, when timeout != NULL */
1185 if (unlikely(timeout))
1186 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1187
1188 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1189
1190 if (likely(!ret))
1191 /* sleep on the mutex */
1192 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1193
1194 if (unlikely(ret)) {
1195 __set_current_state(TASK_RUNNING);
1196 if (rt_mutex_has_waiters(lock))
1197 remove_waiter(lock, &waiter);
1198 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1199 }
1200
1201 /*
1202 * try_to_take_rt_mutex() sets the waiter bit
1203 * unconditionally. We might have to fix that up.
1204 */
1205 fixup_rt_mutex_waiters(lock);
1206
1207 raw_spin_unlock(&lock->wait_lock);
1208
1209 /* Remove pending timer: */
1210 if (unlikely(timeout))
1211 hrtimer_cancel(&timeout->timer);
1212
1213 debug_rt_mutex_free_waiter(&waiter);
1214
1215 return ret;
1216 }
1217
1218 /*
1219 * Slow path try-lock function:
1220 */
1221 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1222 {
1223 int ret;
1224
1225 /*
1226 * If the lock already has an owner we fail to get the lock.
1227 * This can be done without taking the @lock->wait_lock as
1228 * it is only being read, and this is a trylock anyway.
1229 */
1230 if (rt_mutex_owner(lock))
1231 return 0;
1232
1233 /*
1234 * The mutex has currently no owner. Lock the wait lock and
1235 * try to acquire the lock.
1236 */
1237 raw_spin_lock(&lock->wait_lock);
1238
1239 ret = try_to_take_rt_mutex(lock, current, NULL);
1240
1241 /*
1242 * try_to_take_rt_mutex() sets the lock waiters bit
1243 * unconditionally. Clean this up.
1244 */
1245 fixup_rt_mutex_waiters(lock);
1246
1247 raw_spin_unlock(&lock->wait_lock);
1248
1249 return ret;
1250 }
1251
1252 /*
1253 * Slow path to release a rt-mutex:
1254 */
1255 static void __sched
1256 rt_mutex_slowunlock(struct rt_mutex *lock)
1257 {
1258 raw_spin_lock(&lock->wait_lock);
1259
1260 debug_rt_mutex_unlock(lock);
1261
1262 rt_mutex_deadlock_account_unlock(current);
1263
1264 /*
1265 * We must be careful here if the fast path is enabled. If we
1266 * have no waiters queued we cannot set owner to NULL here
1267 * because of:
1268 *
1269 * foo->lock->owner = NULL;
1270 * rtmutex_lock(foo->lock); <- fast path
1271 * free = atomic_dec_and_test(foo->refcnt);
1272 * rtmutex_unlock(foo->lock); <- fast path
1273 * if (free)
1274 * kfree(foo);
1275 * raw_spin_unlock(foo->lock->wait_lock);
1276 *
1277 * So for the fastpath enabled kernel:
1278 *
1279 * Nothing can set the waiters bit as long as we hold
1280 * lock->wait_lock. So we do the following sequence:
1281 *
1282 * owner = rt_mutex_owner(lock);
1283 * clear_rt_mutex_waiters(lock);
1284 * raw_spin_unlock(&lock->wait_lock);
1285 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1286 * return;
1287 * goto retry;
1288 *
1289 * The fastpath disabled variant is simple as all access to
1290 * lock->owner is serialized by lock->wait_lock:
1291 *
1292 * lock->owner = NULL;
1293 * raw_spin_unlock(&lock->wait_lock);
1294 */
1295 while (!rt_mutex_has_waiters(lock)) {
1296 /* Drops lock->wait_lock ! */
1297 if (unlock_rt_mutex_safe(lock) == true)
1298 return;
1299 /* Relock the rtmutex and try again */
1300 raw_spin_lock(&lock->wait_lock);
1301 }
1302
1303 /*
1304 * The wakeup next waiter path does not suffer from the above
1305 * race. See the comments there.
1306 */
1307 wakeup_next_waiter(lock);
1308
1309 raw_spin_unlock(&lock->wait_lock);
1310
1311 /* Undo pi boosting if necessary: */
1312 rt_mutex_adjust_prio(current);
1313 }
1314
1315 /*
1316 * debug aware fast / slowpath lock,trylock,unlock
1317 *
1318 * The atomic acquire/release ops are compiled away, when either the
1319 * architecture does not support cmpxchg or when debugging is enabled.
1320 */
1321 static inline int
1322 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1323 int (*slowfn)(struct rt_mutex *lock, int state,
1324 struct hrtimer_sleeper *timeout,
1325 enum rtmutex_chainwalk chwalk))
1326 {
1327 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1328 rt_mutex_deadlock_account_lock(lock, current);
1329 return 0;
1330 } else
1331 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1332 }
1333
1334 static inline int
1335 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1336 struct hrtimer_sleeper *timeout,
1337 enum rtmutex_chainwalk chwalk,
1338 int (*slowfn)(struct rt_mutex *lock, int state,
1339 struct hrtimer_sleeper *timeout,
1340 enum rtmutex_chainwalk chwalk))
1341 {
1342 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1343 likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1344 rt_mutex_deadlock_account_lock(lock, current);
1345 return 0;
1346 } else
1347 return slowfn(lock, state, timeout, chwalk);
1348 }
1349
1350 static inline int
1351 rt_mutex_fasttrylock(struct rt_mutex *lock,
1352 int (*slowfn)(struct rt_mutex *lock))
1353 {
1354 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1355 rt_mutex_deadlock_account_lock(lock, current);
1356 return 1;
1357 }
1358 return slowfn(lock);
1359 }
1360
1361 static inline void
1362 rt_mutex_fastunlock(struct rt_mutex *lock,
1363 void (*slowfn)(struct rt_mutex *lock))
1364 {
1365 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1366 rt_mutex_deadlock_account_unlock(current);
1367 else
1368 slowfn(lock);
1369 }
1370
1371 /**
1372 * rt_mutex_lock - lock a rt_mutex
1373 *
1374 * @lock: the rt_mutex to be locked
1375 */
1376 void __sched rt_mutex_lock(struct rt_mutex *lock)
1377 {
1378 might_sleep();
1379
1380 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1381 }
1382 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1383
1384 /**
1385 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1386 *
1387 * @lock: the rt_mutex to be locked
1388 *
1389 * Returns:
1390 * 0 on success
1391 * -EINTR when interrupted by a signal
1392 */
1393 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1394 {
1395 might_sleep();
1396
1397 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1398 }
1399 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1400
1401 /*
1402 * Futex variant with full deadlock detection.
1403 */
1404 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1405 struct hrtimer_sleeper *timeout)
1406 {
1407 might_sleep();
1408
1409 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1410 RT_MUTEX_FULL_CHAINWALK,
1411 rt_mutex_slowlock);
1412 }
1413
1414 /**
1415 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1416 * the timeout structure is provided
1417 * by the caller
1418 *
1419 * @lock: the rt_mutex to be locked
1420 * @timeout: timeout structure or NULL (no timeout)
1421 *
1422 * Returns:
1423 * 0 on success
1424 * -EINTR when interrupted by a signal
1425 * -ETIMEDOUT when the timeout expired
1426 */
1427 int
1428 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1429 {
1430 might_sleep();
1431
1432 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1433 RT_MUTEX_MIN_CHAINWALK,
1434 rt_mutex_slowlock);
1435 }
1436 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1437
1438 /**
1439 * rt_mutex_trylock - try to lock a rt_mutex
1440 *
1441 * @lock: the rt_mutex to be locked
1442 *
1443 * This function can only be called in thread context. It's safe to
1444 * call it from atomic regions, but not from hard interrupt or soft
1445 * interrupt context.
1446 *
1447 * Returns 1 on success and 0 on contention
1448 */
1449 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1450 {
1451 if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1452 return 0;
1453
1454 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1455 }
1456 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1457
1458 /**
1459 * rt_mutex_unlock - unlock a rt_mutex
1460 *
1461 * @lock: the rt_mutex to be unlocked
1462 */
1463 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1464 {
1465 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1466 }
1467 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1468
1469 /**
1470 * rt_mutex_destroy - mark a mutex unusable
1471 * @lock: the mutex to be destroyed
1472 *
1473 * This function marks the mutex uninitialized, and any subsequent
1474 * use of the mutex is forbidden. The mutex must not be locked when
1475 * this function is called.
1476 */
1477 void rt_mutex_destroy(struct rt_mutex *lock)
1478 {
1479 WARN_ON(rt_mutex_is_locked(lock));
1480 #ifdef CONFIG_DEBUG_RT_MUTEXES
1481 lock->magic = NULL;
1482 #endif
1483 }
1484
1485 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1486
1487 /**
1488 * __rt_mutex_init - initialize the rt lock
1489 *
1490 * @lock: the rt lock to be initialized
1491 *
1492 * Initialize the rt lock to unlocked state.
1493 *
1494 * Initializing of a locked rt lock is not allowed
1495 */
1496 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1497 {
1498 lock->owner = NULL;
1499 raw_spin_lock_init(&lock->wait_lock);
1500 lock->waiters = RB_ROOT;
1501 lock->waiters_leftmost = NULL;
1502
1503 debug_rt_mutex_init(lock, name);
1504 }
1505 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1506
1507 /**
1508 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1509 * proxy owner
1510 *
1511 * @lock: the rt_mutex to be locked
1512 * @proxy_owner:the task to set as owner
1513 *
1514 * No locking. Caller has to do serializing itself
1515 * Special API call for PI-futex support
1516 */
1517 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1518 struct task_struct *proxy_owner)
1519 {
1520 __rt_mutex_init(lock, NULL);
1521 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1522 rt_mutex_set_owner(lock, proxy_owner);
1523 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1524 }
1525
1526 /**
1527 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1528 *
1529 * @lock: the rt_mutex to be locked
1530 *
1531 * No locking. Caller has to do serializing itself
1532 * Special API call for PI-futex support
1533 */
1534 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1535 struct task_struct *proxy_owner)
1536 {
1537 debug_rt_mutex_proxy_unlock(lock);
1538 rt_mutex_set_owner(lock, NULL);
1539 rt_mutex_deadlock_account_unlock(proxy_owner);
1540 }
1541
1542 /**
1543 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1544 * @lock: the rt_mutex to take
1545 * @waiter: the pre-initialized rt_mutex_waiter
1546 * @task: the task to prepare
1547 *
1548 * Returns:
1549 * 0 - task blocked on lock
1550 * 1 - acquired the lock for task, caller should wake it up
1551 * <0 - error
1552 *
1553 * Special API call for FUTEX_REQUEUE_PI support.
1554 */
1555 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1556 struct rt_mutex_waiter *waiter,
1557 struct task_struct *task)
1558 {
1559 int ret;
1560
1561 raw_spin_lock(&lock->wait_lock);
1562
1563 if (try_to_take_rt_mutex(lock, task, NULL)) {
1564 raw_spin_unlock(&lock->wait_lock);
1565 return 1;
1566 }
1567
1568 /* We enforce deadlock detection for futexes */
1569 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1570 RT_MUTEX_FULL_CHAINWALK);
1571
1572 if (ret && !rt_mutex_owner(lock)) {
1573 /*
1574 * Reset the return value. We might have
1575 * returned with -EDEADLK and the owner
1576 * released the lock while we were walking the
1577 * pi chain. Let the waiter sort it out.
1578 */
1579 ret = 0;
1580 }
1581
1582 if (unlikely(ret))
1583 remove_waiter(lock, waiter);
1584
1585 raw_spin_unlock(&lock->wait_lock);
1586
1587 debug_rt_mutex_print_deadlock(waiter);
1588
1589 return ret;
1590 }
1591
1592 /**
1593 * rt_mutex_next_owner - return the next owner of the lock
1594 *
1595 * @lock: the rt lock query
1596 *
1597 * Returns the next owner of the lock or NULL
1598 *
1599 * Caller has to serialize against other accessors to the lock
1600 * itself.
1601 *
1602 * Special API call for PI-futex support
1603 */
1604 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1605 {
1606 if (!rt_mutex_has_waiters(lock))
1607 return NULL;
1608
1609 return rt_mutex_top_waiter(lock)->task;
1610 }
1611
1612 /**
1613 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1614 * @lock: the rt_mutex we were woken on
1615 * @to: the timeout, null if none. hrtimer should already have
1616 * been started.
1617 * @waiter: the pre-initialized rt_mutex_waiter
1618 *
1619 * Complete the lock acquisition started our behalf by another thread.
1620 *
1621 * Returns:
1622 * 0 - success
1623 * <0 - error, one of -EINTR, -ETIMEDOUT
1624 *
1625 * Special API call for PI-futex requeue support
1626 */
1627 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1628 struct hrtimer_sleeper *to,
1629 struct rt_mutex_waiter *waiter)
1630 {
1631 int ret;
1632
1633 raw_spin_lock(&lock->wait_lock);
1634
1635 set_current_state(TASK_INTERRUPTIBLE);
1636
1637 /* sleep on the mutex */
1638 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1639
1640 if (unlikely(ret))
1641 remove_waiter(lock, waiter);
1642
1643 /*
1644 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1645 * have to fix that up.
1646 */
1647 fixup_rt_mutex_waiters(lock);
1648
1649 raw_spin_unlock(&lock->wait_lock);
1650
1651 return ret;
1652 }