]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/locking/rtmutex.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / kernel / locking / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/sched/debug.h>
20 #include <linux/timer.h>
21
22 #include "rtmutex_common.h"
23
24 /*
25 * lock->owner state tracking:
26 *
27 * lock->owner holds the task_struct pointer of the owner. Bit 0
28 * is used to keep track of the "lock has waiters" state.
29 *
30 * owner bit0
31 * NULL 0 lock is free (fast acquire possible)
32 * NULL 1 lock is free and has waiters and the top waiter
33 * is going to take the lock*
34 * taskpointer 0 lock is held (fast release possible)
35 * taskpointer 1 lock is held and has waiters**
36 *
37 * The fast atomic compare exchange based acquire and release is only
38 * possible when bit 0 of lock->owner is 0.
39 *
40 * (*) It also can be a transitional state when grabbing the lock
41 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42 * we need to set the bit0 before looking at the lock, and the owner may be
43 * NULL in this small time, hence this can be a transitional state.
44 *
45 * (**) There is a small time when bit 0 is set but there are no
46 * waiters. This can happen when grabbing the lock in the slow path.
47 * To prevent a cmpxchg of the owner releasing the lock, we need to
48 * set this bit before looking at the lock.
49 */
50
51 static void
52 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
53 {
54 unsigned long val = (unsigned long)owner;
55
56 if (rt_mutex_has_waiters(lock))
57 val |= RT_MUTEX_HAS_WAITERS;
58
59 lock->owner = (struct task_struct *)val;
60 }
61
62 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
63 {
64 lock->owner = (struct task_struct *)
65 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66 }
67
68 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
69 {
70 unsigned long owner, *p = (unsigned long *) &lock->owner;
71
72 if (rt_mutex_has_waiters(lock))
73 return;
74
75 /*
76 * The rbtree has no waiters enqueued, now make sure that the
77 * lock->owner still has the waiters bit set, otherwise the
78 * following can happen:
79 *
80 * CPU 0 CPU 1 CPU2
81 * l->owner=T1
82 * rt_mutex_lock(l)
83 * lock(l->lock)
84 * l->owner = T1 | HAS_WAITERS;
85 * enqueue(T2)
86 * boost()
87 * unlock(l->lock)
88 * block()
89 *
90 * rt_mutex_lock(l)
91 * lock(l->lock)
92 * l->owner = T1 | HAS_WAITERS;
93 * enqueue(T3)
94 * boost()
95 * unlock(l->lock)
96 * block()
97 * signal(->T2) signal(->T3)
98 * lock(l->lock)
99 * dequeue(T2)
100 * deboost()
101 * unlock(l->lock)
102 * lock(l->lock)
103 * dequeue(T3)
104 * ==> wait list is empty
105 * deboost()
106 * unlock(l->lock)
107 * lock(l->lock)
108 * fixup_rt_mutex_waiters()
109 * if (wait_list_empty(l) {
110 * l->owner = owner
111 * owner = l->owner & ~HAS_WAITERS;
112 * ==> l->owner = T1
113 * }
114 * lock(l->lock)
115 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
116 * if (wait_list_empty(l) {
117 * owner = l->owner & ~HAS_WAITERS;
118 * cmpxchg(l->owner, T1, NULL)
119 * ===> Success (l->owner = NULL)
120 *
121 * l->owner = owner
122 * ==> l->owner = T1
123 * }
124 *
125 * With the check for the waiter bit in place T3 on CPU2 will not
126 * overwrite. All tasks fiddling with the waiters bit are
127 * serialized by l->lock, so nothing else can modify the waiters
128 * bit. If the bit is set then nothing can change l->owner either
129 * so the simple RMW is safe. The cmpxchg() will simply fail if it
130 * happens in the middle of the RMW because the waiters bit is
131 * still set.
132 */
133 owner = READ_ONCE(*p);
134 if (owner & RT_MUTEX_HAS_WAITERS)
135 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
136 }
137
138 /*
139 * We can speed up the acquire/release, if there's no debugging state to be
140 * set up.
141 */
142 #ifndef CONFIG_DEBUG_RT_MUTEXES
143 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147 /*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161
162 /*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171 {
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202
203 #else
204 # define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
205 # define rt_mutex_cmpxchg_acquire(l,c,n) (0)
206 # define rt_mutex_cmpxchg_release(l,c,n) (0)
207
208 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209 {
210 lock->owner = (struct task_struct *)
211 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212 }
213
214 /*
215 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216 */
217 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 unsigned long flags)
219 __releases(lock->wait_lock)
220 {
221 lock->owner = NULL;
222 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 return true;
224 }
225 #endif
226
227 /*
228 * Only use with rt_mutex_waiter_{less,equal}()
229 */
230 #define task_to_waiter(p) \
231 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
232
233 static inline int
234 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
235 struct rt_mutex_waiter *right)
236 {
237 if (left->prio < right->prio)
238 return 1;
239
240 /*
241 * If both waiters have dl_prio(), we check the deadlines of the
242 * associated tasks.
243 * If left waiter has a dl_prio(), and we didn't return 1 above,
244 * then right waiter has a dl_prio() too.
245 */
246 if (dl_prio(left->prio))
247 return dl_time_before(left->deadline, right->deadline);
248
249 return 0;
250 }
251
252 static inline int
253 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
254 struct rt_mutex_waiter *right)
255 {
256 if (left->prio != right->prio)
257 return 0;
258
259 /*
260 * If both waiters have dl_prio(), we check the deadlines of the
261 * associated tasks.
262 * If left waiter has a dl_prio(), and we didn't return 0 above,
263 * then right waiter has a dl_prio() too.
264 */
265 if (dl_prio(left->prio))
266 return left->deadline == right->deadline;
267
268 return 1;
269 }
270
271 static void
272 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273 {
274 struct rb_node **link = &lock->waiters.rb_node;
275 struct rb_node *parent = NULL;
276 struct rt_mutex_waiter *entry;
277 int leftmost = 1;
278
279 while (*link) {
280 parent = *link;
281 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
282 if (rt_mutex_waiter_less(waiter, entry)) {
283 link = &parent->rb_left;
284 } else {
285 link = &parent->rb_right;
286 leftmost = 0;
287 }
288 }
289
290 if (leftmost)
291 lock->waiters_leftmost = &waiter->tree_entry;
292
293 rb_link_node(&waiter->tree_entry, parent, link);
294 rb_insert_color(&waiter->tree_entry, &lock->waiters);
295 }
296
297 static void
298 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
299 {
300 if (RB_EMPTY_NODE(&waiter->tree_entry))
301 return;
302
303 if (lock->waiters_leftmost == &waiter->tree_entry)
304 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
305
306 rb_erase(&waiter->tree_entry, &lock->waiters);
307 RB_CLEAR_NODE(&waiter->tree_entry);
308 }
309
310 static void
311 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
312 {
313 struct rb_node **link = &task->pi_waiters.rb_node;
314 struct rb_node *parent = NULL;
315 struct rt_mutex_waiter *entry;
316 int leftmost = 1;
317
318 while (*link) {
319 parent = *link;
320 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
321 if (rt_mutex_waiter_less(waiter, entry)) {
322 link = &parent->rb_left;
323 } else {
324 link = &parent->rb_right;
325 leftmost = 0;
326 }
327 }
328
329 if (leftmost)
330 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
331
332 rb_link_node(&waiter->pi_tree_entry, parent, link);
333 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
334 }
335
336 static void
337 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
338 {
339 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
340 return;
341
342 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
343 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
344
345 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
346 RB_CLEAR_NODE(&waiter->pi_tree_entry);
347 }
348
349 static void rt_mutex_adjust_prio(struct task_struct *p)
350 {
351 struct task_struct *pi_task = NULL;
352
353 lockdep_assert_held(&p->pi_lock);
354
355 if (task_has_pi_waiters(p))
356 pi_task = task_top_pi_waiter(p)->task;
357
358 rt_mutex_setprio(p, pi_task);
359 }
360
361 /*
362 * Deadlock detection is conditional:
363 *
364 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
365 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
366 *
367 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
368 * conducted independent of the detect argument.
369 *
370 * If the waiter argument is NULL this indicates the deboost path and
371 * deadlock detection is disabled independent of the detect argument
372 * and the config settings.
373 */
374 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
375 enum rtmutex_chainwalk chwalk)
376 {
377 /*
378 * This is just a wrapper function for the following call,
379 * because debug_rt_mutex_detect_deadlock() smells like a magic
380 * debug feature and I wanted to keep the cond function in the
381 * main source file along with the comments instead of having
382 * two of the same in the headers.
383 */
384 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
385 }
386
387 /*
388 * Max number of times we'll walk the boosting chain:
389 */
390 int max_lock_depth = 1024;
391
392 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
393 {
394 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
395 }
396
397 /*
398 * Adjust the priority chain. Also used for deadlock detection.
399 * Decreases task's usage by one - may thus free the task.
400 *
401 * @task: the task owning the mutex (owner) for which a chain walk is
402 * probably needed
403 * @chwalk: do we have to carry out deadlock detection?
404 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
405 * things for a task that has just got its priority adjusted, and
406 * is waiting on a mutex)
407 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
408 * we dropped its pi_lock. Is never dereferenced, only used for
409 * comparison to detect lock chain changes.
410 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
411 * its priority to the mutex owner (can be NULL in the case
412 * depicted above or if the top waiter is gone away and we are
413 * actually deboosting the owner)
414 * @top_task: the current top waiter
415 *
416 * Returns 0 or -EDEADLK.
417 *
418 * Chain walk basics and protection scope
419 *
420 * [R] refcount on task
421 * [P] task->pi_lock held
422 * [L] rtmutex->wait_lock held
423 *
424 * Step Description Protected by
425 * function arguments:
426 * @task [R]
427 * @orig_lock if != NULL @top_task is blocked on it
428 * @next_lock Unprotected. Cannot be
429 * dereferenced. Only used for
430 * comparison.
431 * @orig_waiter if != NULL @top_task is blocked on it
432 * @top_task current, or in case of proxy
433 * locking protected by calling
434 * code
435 * again:
436 * loop_sanity_check();
437 * retry:
438 * [1] lock(task->pi_lock); [R] acquire [P]
439 * [2] waiter = task->pi_blocked_on; [P]
440 * [3] check_exit_conditions_1(); [P]
441 * [4] lock = waiter->lock; [P]
442 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
443 * unlock(task->pi_lock); release [P]
444 * goto retry;
445 * }
446 * [6] check_exit_conditions_2(); [P] + [L]
447 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
448 * [8] unlock(task->pi_lock); release [P]
449 * put_task_struct(task); release [R]
450 * [9] check_exit_conditions_3(); [L]
451 * [10] task = owner(lock); [L]
452 * get_task_struct(task); [L] acquire [R]
453 * lock(task->pi_lock); [L] acquire [P]
454 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
455 * [12] check_exit_conditions_4(); [P] + [L]
456 * [13] unlock(task->pi_lock); release [P]
457 * unlock(lock->wait_lock); release [L]
458 * goto again;
459 */
460 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
461 enum rtmutex_chainwalk chwalk,
462 struct rt_mutex *orig_lock,
463 struct rt_mutex *next_lock,
464 struct rt_mutex_waiter *orig_waiter,
465 struct task_struct *top_task)
466 {
467 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
468 struct rt_mutex_waiter *prerequeue_top_waiter;
469 int ret = 0, depth = 0;
470 struct rt_mutex *lock;
471 bool detect_deadlock;
472 bool requeue = true;
473
474 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
475
476 /*
477 * The (de)boosting is a step by step approach with a lot of
478 * pitfalls. We want this to be preemptible and we want hold a
479 * maximum of two locks per step. So we have to check
480 * carefully whether things change under us.
481 */
482 again:
483 /*
484 * We limit the lock chain length for each invocation.
485 */
486 if (++depth > max_lock_depth) {
487 static int prev_max;
488
489 /*
490 * Print this only once. If the admin changes the limit,
491 * print a new message when reaching the limit again.
492 */
493 if (prev_max != max_lock_depth) {
494 prev_max = max_lock_depth;
495 printk(KERN_WARNING "Maximum lock depth %d reached "
496 "task: %s (%d)\n", max_lock_depth,
497 top_task->comm, task_pid_nr(top_task));
498 }
499 put_task_struct(task);
500
501 return -EDEADLK;
502 }
503
504 /*
505 * We are fully preemptible here and only hold the refcount on
506 * @task. So everything can have changed under us since the
507 * caller or our own code below (goto retry/again) dropped all
508 * locks.
509 */
510 retry:
511 /*
512 * [1] Task cannot go away as we did a get_task() before !
513 */
514 raw_spin_lock_irq(&task->pi_lock);
515
516 /*
517 * [2] Get the waiter on which @task is blocked on.
518 */
519 waiter = task->pi_blocked_on;
520
521 /*
522 * [3] check_exit_conditions_1() protected by task->pi_lock.
523 */
524
525 /*
526 * Check whether the end of the boosting chain has been
527 * reached or the state of the chain has changed while we
528 * dropped the locks.
529 */
530 if (!waiter)
531 goto out_unlock_pi;
532
533 /*
534 * Check the orig_waiter state. After we dropped the locks,
535 * the previous owner of the lock might have released the lock.
536 */
537 if (orig_waiter && !rt_mutex_owner(orig_lock))
538 goto out_unlock_pi;
539
540 /*
541 * We dropped all locks after taking a refcount on @task, so
542 * the task might have moved on in the lock chain or even left
543 * the chain completely and blocks now on an unrelated lock or
544 * on @orig_lock.
545 *
546 * We stored the lock on which @task was blocked in @next_lock,
547 * so we can detect the chain change.
548 */
549 if (next_lock != waiter->lock)
550 goto out_unlock_pi;
551
552 /*
553 * Drop out, when the task has no waiters. Note,
554 * top_waiter can be NULL, when we are in the deboosting
555 * mode!
556 */
557 if (top_waiter) {
558 if (!task_has_pi_waiters(task))
559 goto out_unlock_pi;
560 /*
561 * If deadlock detection is off, we stop here if we
562 * are not the top pi waiter of the task. If deadlock
563 * detection is enabled we continue, but stop the
564 * requeueing in the chain walk.
565 */
566 if (top_waiter != task_top_pi_waiter(task)) {
567 if (!detect_deadlock)
568 goto out_unlock_pi;
569 else
570 requeue = false;
571 }
572 }
573
574 /*
575 * If the waiter priority is the same as the task priority
576 * then there is no further priority adjustment necessary. If
577 * deadlock detection is off, we stop the chain walk. If its
578 * enabled we continue, but stop the requeueing in the chain
579 * walk.
580 */
581 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
582 if (!detect_deadlock)
583 goto out_unlock_pi;
584 else
585 requeue = false;
586 }
587
588 /*
589 * [4] Get the next lock
590 */
591 lock = waiter->lock;
592 /*
593 * [5] We need to trylock here as we are holding task->pi_lock,
594 * which is the reverse lock order versus the other rtmutex
595 * operations.
596 */
597 if (!raw_spin_trylock(&lock->wait_lock)) {
598 raw_spin_unlock_irq(&task->pi_lock);
599 cpu_relax();
600 goto retry;
601 }
602
603 /*
604 * [6] check_exit_conditions_2() protected by task->pi_lock and
605 * lock->wait_lock.
606 *
607 * Deadlock detection. If the lock is the same as the original
608 * lock which caused us to walk the lock chain or if the
609 * current lock is owned by the task which initiated the chain
610 * walk, we detected a deadlock.
611 */
612 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
613 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
614 raw_spin_unlock(&lock->wait_lock);
615 ret = -EDEADLK;
616 goto out_unlock_pi;
617 }
618
619 /*
620 * If we just follow the lock chain for deadlock detection, no
621 * need to do all the requeue operations. To avoid a truckload
622 * of conditionals around the various places below, just do the
623 * minimum chain walk checks.
624 */
625 if (!requeue) {
626 /*
627 * No requeue[7] here. Just release @task [8]
628 */
629 raw_spin_unlock(&task->pi_lock);
630 put_task_struct(task);
631
632 /*
633 * [9] check_exit_conditions_3 protected by lock->wait_lock.
634 * If there is no owner of the lock, end of chain.
635 */
636 if (!rt_mutex_owner(lock)) {
637 raw_spin_unlock_irq(&lock->wait_lock);
638 return 0;
639 }
640
641 /* [10] Grab the next task, i.e. owner of @lock */
642 task = rt_mutex_owner(lock);
643 get_task_struct(task);
644 raw_spin_lock(&task->pi_lock);
645
646 /*
647 * No requeue [11] here. We just do deadlock detection.
648 *
649 * [12] Store whether owner is blocked
650 * itself. Decision is made after dropping the locks
651 */
652 next_lock = task_blocked_on_lock(task);
653 /*
654 * Get the top waiter for the next iteration
655 */
656 top_waiter = rt_mutex_top_waiter(lock);
657
658 /* [13] Drop locks */
659 raw_spin_unlock(&task->pi_lock);
660 raw_spin_unlock_irq(&lock->wait_lock);
661
662 /* If owner is not blocked, end of chain. */
663 if (!next_lock)
664 goto out_put_task;
665 goto again;
666 }
667
668 /*
669 * Store the current top waiter before doing the requeue
670 * operation on @lock. We need it for the boost/deboost
671 * decision below.
672 */
673 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
674
675 /* [7] Requeue the waiter in the lock waiter tree. */
676 rt_mutex_dequeue(lock, waiter);
677
678 /*
679 * Update the waiter prio fields now that we're dequeued.
680 *
681 * These values can have changed through either:
682 *
683 * sys_sched_set_scheduler() / sys_sched_setattr()
684 *
685 * or
686 *
687 * DL CBS enforcement advancing the effective deadline.
688 *
689 * Even though pi_waiters also uses these fields, and that tree is only
690 * updated in [11], we can do this here, since we hold [L], which
691 * serializes all pi_waiters access and rb_erase() does not care about
692 * the values of the node being removed.
693 */
694 waiter->prio = task->prio;
695 waiter->deadline = task->dl.deadline;
696
697 rt_mutex_enqueue(lock, waiter);
698
699 /* [8] Release the task */
700 raw_spin_unlock(&task->pi_lock);
701 put_task_struct(task);
702
703 /*
704 * [9] check_exit_conditions_3 protected by lock->wait_lock.
705 *
706 * We must abort the chain walk if there is no lock owner even
707 * in the dead lock detection case, as we have nothing to
708 * follow here. This is the end of the chain we are walking.
709 */
710 if (!rt_mutex_owner(lock)) {
711 /*
712 * If the requeue [7] above changed the top waiter,
713 * then we need to wake the new top waiter up to try
714 * to get the lock.
715 */
716 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
717 wake_up_process(rt_mutex_top_waiter(lock)->task);
718 raw_spin_unlock_irq(&lock->wait_lock);
719 return 0;
720 }
721
722 /* [10] Grab the next task, i.e. the owner of @lock */
723 task = rt_mutex_owner(lock);
724 get_task_struct(task);
725 raw_spin_lock(&task->pi_lock);
726
727 /* [11] requeue the pi waiters if necessary */
728 if (waiter == rt_mutex_top_waiter(lock)) {
729 /*
730 * The waiter became the new top (highest priority)
731 * waiter on the lock. Replace the previous top waiter
732 * in the owner tasks pi waiters tree with this waiter
733 * and adjust the priority of the owner.
734 */
735 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
736 rt_mutex_enqueue_pi(task, waiter);
737 rt_mutex_adjust_prio(task);
738
739 } else if (prerequeue_top_waiter == waiter) {
740 /*
741 * The waiter was the top waiter on the lock, but is
742 * no longer the top prority waiter. Replace waiter in
743 * the owner tasks pi waiters tree with the new top
744 * (highest priority) waiter and adjust the priority
745 * of the owner.
746 * The new top waiter is stored in @waiter so that
747 * @waiter == @top_waiter evaluates to true below and
748 * we continue to deboost the rest of the chain.
749 */
750 rt_mutex_dequeue_pi(task, waiter);
751 waiter = rt_mutex_top_waiter(lock);
752 rt_mutex_enqueue_pi(task, waiter);
753 rt_mutex_adjust_prio(task);
754 } else {
755 /*
756 * Nothing changed. No need to do any priority
757 * adjustment.
758 */
759 }
760
761 /*
762 * [12] check_exit_conditions_4() protected by task->pi_lock
763 * and lock->wait_lock. The actual decisions are made after we
764 * dropped the locks.
765 *
766 * Check whether the task which owns the current lock is pi
767 * blocked itself. If yes we store a pointer to the lock for
768 * the lock chain change detection above. After we dropped
769 * task->pi_lock next_lock cannot be dereferenced anymore.
770 */
771 next_lock = task_blocked_on_lock(task);
772 /*
773 * Store the top waiter of @lock for the end of chain walk
774 * decision below.
775 */
776 top_waiter = rt_mutex_top_waiter(lock);
777
778 /* [13] Drop the locks */
779 raw_spin_unlock(&task->pi_lock);
780 raw_spin_unlock_irq(&lock->wait_lock);
781
782 /*
783 * Make the actual exit decisions [12], based on the stored
784 * values.
785 *
786 * We reached the end of the lock chain. Stop right here. No
787 * point to go back just to figure that out.
788 */
789 if (!next_lock)
790 goto out_put_task;
791
792 /*
793 * If the current waiter is not the top waiter on the lock,
794 * then we can stop the chain walk here if we are not in full
795 * deadlock detection mode.
796 */
797 if (!detect_deadlock && waiter != top_waiter)
798 goto out_put_task;
799
800 goto again;
801
802 out_unlock_pi:
803 raw_spin_unlock_irq(&task->pi_lock);
804 out_put_task:
805 put_task_struct(task);
806
807 return ret;
808 }
809
810 /*
811 * Try to take an rt-mutex
812 *
813 * Must be called with lock->wait_lock held and interrupts disabled
814 *
815 * @lock: The lock to be acquired.
816 * @task: The task which wants to acquire the lock
817 * @waiter: The waiter that is queued to the lock's wait tree if the
818 * callsite called task_blocked_on_lock(), otherwise NULL
819 */
820 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
821 struct rt_mutex_waiter *waiter)
822 {
823 lockdep_assert_held(&lock->wait_lock);
824
825 /*
826 * Before testing whether we can acquire @lock, we set the
827 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
828 * other tasks which try to modify @lock into the slow path
829 * and they serialize on @lock->wait_lock.
830 *
831 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
832 * as explained at the top of this file if and only if:
833 *
834 * - There is a lock owner. The caller must fixup the
835 * transient state if it does a trylock or leaves the lock
836 * function due to a signal or timeout.
837 *
838 * - @task acquires the lock and there are no other
839 * waiters. This is undone in rt_mutex_set_owner(@task) at
840 * the end of this function.
841 */
842 mark_rt_mutex_waiters(lock);
843
844 /*
845 * If @lock has an owner, give up.
846 */
847 if (rt_mutex_owner(lock))
848 return 0;
849
850 /*
851 * If @waiter != NULL, @task has already enqueued the waiter
852 * into @lock waiter tree. If @waiter == NULL then this is a
853 * trylock attempt.
854 */
855 if (waiter) {
856 /*
857 * If waiter is not the highest priority waiter of
858 * @lock, give up.
859 */
860 if (waiter != rt_mutex_top_waiter(lock))
861 return 0;
862
863 /*
864 * We can acquire the lock. Remove the waiter from the
865 * lock waiters tree.
866 */
867 rt_mutex_dequeue(lock, waiter);
868
869 } else {
870 /*
871 * If the lock has waiters already we check whether @task is
872 * eligible to take over the lock.
873 *
874 * If there are no other waiters, @task can acquire
875 * the lock. @task->pi_blocked_on is NULL, so it does
876 * not need to be dequeued.
877 */
878 if (rt_mutex_has_waiters(lock)) {
879 /*
880 * If @task->prio is greater than or equal to
881 * the top waiter priority (kernel view),
882 * @task lost.
883 */
884 if (!rt_mutex_waiter_less(task_to_waiter(task),
885 rt_mutex_top_waiter(lock)))
886 return 0;
887
888 /*
889 * The current top waiter stays enqueued. We
890 * don't have to change anything in the lock
891 * waiters order.
892 */
893 } else {
894 /*
895 * No waiters. Take the lock without the
896 * pi_lock dance.@task->pi_blocked_on is NULL
897 * and we have no waiters to enqueue in @task
898 * pi waiters tree.
899 */
900 goto takeit;
901 }
902 }
903
904 /*
905 * Clear @task->pi_blocked_on. Requires protection by
906 * @task->pi_lock. Redundant operation for the @waiter == NULL
907 * case, but conditionals are more expensive than a redundant
908 * store.
909 */
910 raw_spin_lock(&task->pi_lock);
911 task->pi_blocked_on = NULL;
912 /*
913 * Finish the lock acquisition. @task is the new owner. If
914 * other waiters exist we have to insert the highest priority
915 * waiter into @task->pi_waiters tree.
916 */
917 if (rt_mutex_has_waiters(lock))
918 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
919 raw_spin_unlock(&task->pi_lock);
920
921 takeit:
922 /* We got the lock. */
923 debug_rt_mutex_lock(lock);
924
925 /*
926 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
927 * are still waiters or clears it.
928 */
929 rt_mutex_set_owner(lock, task);
930
931 return 1;
932 }
933
934 /*
935 * Task blocks on lock.
936 *
937 * Prepare waiter and propagate pi chain
938 *
939 * This must be called with lock->wait_lock held and interrupts disabled
940 */
941 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
942 struct rt_mutex_waiter *waiter,
943 struct task_struct *task,
944 enum rtmutex_chainwalk chwalk)
945 {
946 struct task_struct *owner = rt_mutex_owner(lock);
947 struct rt_mutex_waiter *top_waiter = waiter;
948 struct rt_mutex *next_lock;
949 int chain_walk = 0, res;
950
951 lockdep_assert_held(&lock->wait_lock);
952
953 /*
954 * Early deadlock detection. We really don't want the task to
955 * enqueue on itself just to untangle the mess later. It's not
956 * only an optimization. We drop the locks, so another waiter
957 * can come in before the chain walk detects the deadlock. So
958 * the other will detect the deadlock and return -EDEADLOCK,
959 * which is wrong, as the other waiter is not in a deadlock
960 * situation.
961 */
962 if (owner == task)
963 return -EDEADLK;
964
965 raw_spin_lock(&task->pi_lock);
966 rt_mutex_adjust_prio(task);
967 waiter->task = task;
968 waiter->lock = lock;
969 waiter->prio = task->prio;
970 waiter->deadline = task->dl.deadline;
971
972 /* Get the top priority waiter on the lock */
973 if (rt_mutex_has_waiters(lock))
974 top_waiter = rt_mutex_top_waiter(lock);
975 rt_mutex_enqueue(lock, waiter);
976
977 task->pi_blocked_on = waiter;
978
979 raw_spin_unlock(&task->pi_lock);
980
981 if (!owner)
982 return 0;
983
984 raw_spin_lock(&owner->pi_lock);
985 if (waiter == rt_mutex_top_waiter(lock)) {
986 rt_mutex_dequeue_pi(owner, top_waiter);
987 rt_mutex_enqueue_pi(owner, waiter);
988
989 rt_mutex_adjust_prio(owner);
990 if (owner->pi_blocked_on)
991 chain_walk = 1;
992 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
993 chain_walk = 1;
994 }
995
996 /* Store the lock on which owner is blocked or NULL */
997 next_lock = task_blocked_on_lock(owner);
998
999 raw_spin_unlock(&owner->pi_lock);
1000 /*
1001 * Even if full deadlock detection is on, if the owner is not
1002 * blocked itself, we can avoid finding this out in the chain
1003 * walk.
1004 */
1005 if (!chain_walk || !next_lock)
1006 return 0;
1007
1008 /*
1009 * The owner can't disappear while holding a lock,
1010 * so the owner struct is protected by wait_lock.
1011 * Gets dropped in rt_mutex_adjust_prio_chain()!
1012 */
1013 get_task_struct(owner);
1014
1015 raw_spin_unlock_irq(&lock->wait_lock);
1016
1017 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1018 next_lock, waiter, task);
1019
1020 raw_spin_lock_irq(&lock->wait_lock);
1021
1022 return res;
1023 }
1024
1025 /*
1026 * Remove the top waiter from the current tasks pi waiter tree and
1027 * queue it up.
1028 *
1029 * Called with lock->wait_lock held and interrupts disabled.
1030 */
1031 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1032 struct rt_mutex *lock)
1033 {
1034 struct rt_mutex_waiter *waiter;
1035
1036 raw_spin_lock(&current->pi_lock);
1037
1038 waiter = rt_mutex_top_waiter(lock);
1039
1040 /*
1041 * Remove it from current->pi_waiters and deboost.
1042 *
1043 * We must in fact deboost here in order to ensure we call
1044 * rt_mutex_setprio() to update p->pi_top_task before the
1045 * task unblocks.
1046 */
1047 rt_mutex_dequeue_pi(current, waiter);
1048 rt_mutex_adjust_prio(current);
1049
1050 /*
1051 * As we are waking up the top waiter, and the waiter stays
1052 * queued on the lock until it gets the lock, this lock
1053 * obviously has waiters. Just set the bit here and this has
1054 * the added benefit of forcing all new tasks into the
1055 * slow path making sure no task of lower priority than
1056 * the top waiter can steal this lock.
1057 */
1058 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1059
1060 /*
1061 * We deboosted before waking the top waiter task such that we don't
1062 * run two tasks with the 'same' priority (and ensure the
1063 * p->pi_top_task pointer points to a blocked task). This however can
1064 * lead to priority inversion if we would get preempted after the
1065 * deboost but before waking our donor task, hence the preempt_disable()
1066 * before unlock.
1067 *
1068 * Pairs with preempt_enable() in rt_mutex_postunlock();
1069 */
1070 preempt_disable();
1071 wake_q_add(wake_q, waiter->task);
1072 raw_spin_unlock(&current->pi_lock);
1073 }
1074
1075 /*
1076 * Remove a waiter from a lock and give up
1077 *
1078 * Must be called with lock->wait_lock held and interrupts disabled. I must
1079 * have just failed to try_to_take_rt_mutex().
1080 */
1081 static void remove_waiter(struct rt_mutex *lock,
1082 struct rt_mutex_waiter *waiter)
1083 {
1084 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1085 struct task_struct *owner = rt_mutex_owner(lock);
1086 struct rt_mutex *next_lock;
1087
1088 lockdep_assert_held(&lock->wait_lock);
1089
1090 raw_spin_lock(&current->pi_lock);
1091 rt_mutex_dequeue(lock, waiter);
1092 current->pi_blocked_on = NULL;
1093 raw_spin_unlock(&current->pi_lock);
1094
1095 /*
1096 * Only update priority if the waiter was the highest priority
1097 * waiter of the lock and there is an owner to update.
1098 */
1099 if (!owner || !is_top_waiter)
1100 return;
1101
1102 raw_spin_lock(&owner->pi_lock);
1103
1104 rt_mutex_dequeue_pi(owner, waiter);
1105
1106 if (rt_mutex_has_waiters(lock))
1107 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1108
1109 rt_mutex_adjust_prio(owner);
1110
1111 /* Store the lock on which owner is blocked or NULL */
1112 next_lock = task_blocked_on_lock(owner);
1113
1114 raw_spin_unlock(&owner->pi_lock);
1115
1116 /*
1117 * Don't walk the chain, if the owner task is not blocked
1118 * itself.
1119 */
1120 if (!next_lock)
1121 return;
1122
1123 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1124 get_task_struct(owner);
1125
1126 raw_spin_unlock_irq(&lock->wait_lock);
1127
1128 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1129 next_lock, NULL, current);
1130
1131 raw_spin_lock_irq(&lock->wait_lock);
1132 }
1133
1134 /*
1135 * Recheck the pi chain, in case we got a priority setting
1136 *
1137 * Called from sched_setscheduler
1138 */
1139 void rt_mutex_adjust_pi(struct task_struct *task)
1140 {
1141 struct rt_mutex_waiter *waiter;
1142 struct rt_mutex *next_lock;
1143 unsigned long flags;
1144
1145 raw_spin_lock_irqsave(&task->pi_lock, flags);
1146
1147 waiter = task->pi_blocked_on;
1148 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1149 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1150 return;
1151 }
1152 next_lock = waiter->lock;
1153 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1154
1155 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1156 get_task_struct(task);
1157
1158 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1159 next_lock, NULL, task);
1160 }
1161
1162 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1163 {
1164 debug_rt_mutex_init_waiter(waiter);
1165 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1166 RB_CLEAR_NODE(&waiter->tree_entry);
1167 waiter->task = NULL;
1168 }
1169
1170 /**
1171 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1172 * @lock: the rt_mutex to take
1173 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1174 * or TASK_UNINTERRUPTIBLE)
1175 * @timeout: the pre-initialized and started timer, or NULL for none
1176 * @waiter: the pre-initialized rt_mutex_waiter
1177 *
1178 * Must be called with lock->wait_lock held and interrupts disabled
1179 */
1180 static int __sched
1181 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1182 struct hrtimer_sleeper *timeout,
1183 struct rt_mutex_waiter *waiter)
1184 {
1185 int ret = 0;
1186
1187 for (;;) {
1188 /* Try to acquire the lock: */
1189 if (try_to_take_rt_mutex(lock, current, waiter))
1190 break;
1191
1192 /*
1193 * TASK_INTERRUPTIBLE checks for signals and
1194 * timeout. Ignored otherwise.
1195 */
1196 if (likely(state == TASK_INTERRUPTIBLE)) {
1197 /* Signal pending? */
1198 if (signal_pending(current))
1199 ret = -EINTR;
1200 if (timeout && !timeout->task)
1201 ret = -ETIMEDOUT;
1202 if (ret)
1203 break;
1204 }
1205
1206 raw_spin_unlock_irq(&lock->wait_lock);
1207
1208 debug_rt_mutex_print_deadlock(waiter);
1209
1210 schedule();
1211
1212 raw_spin_lock_irq(&lock->wait_lock);
1213 set_current_state(state);
1214 }
1215
1216 __set_current_state(TASK_RUNNING);
1217 return ret;
1218 }
1219
1220 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1221 struct rt_mutex_waiter *w)
1222 {
1223 /*
1224 * If the result is not -EDEADLOCK or the caller requested
1225 * deadlock detection, nothing to do here.
1226 */
1227 if (res != -EDEADLOCK || detect_deadlock)
1228 return;
1229
1230 /*
1231 * Yell lowdly and stop the task right here.
1232 */
1233 rt_mutex_print_deadlock(w);
1234 while (1) {
1235 set_current_state(TASK_INTERRUPTIBLE);
1236 schedule();
1237 }
1238 }
1239
1240 /*
1241 * Slow path lock function:
1242 */
1243 static int __sched
1244 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1245 struct hrtimer_sleeper *timeout,
1246 enum rtmutex_chainwalk chwalk)
1247 {
1248 struct rt_mutex_waiter waiter;
1249 unsigned long flags;
1250 int ret = 0;
1251
1252 rt_mutex_init_waiter(&waiter);
1253
1254 /*
1255 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1256 * be called in early boot if the cmpxchg() fast path is disabled
1257 * (debug, no architecture support). In this case we will acquire the
1258 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1259 * enable interrupts in that early boot case. So we need to use the
1260 * irqsave/restore variants.
1261 */
1262 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1263
1264 /* Try to acquire the lock again: */
1265 if (try_to_take_rt_mutex(lock, current, NULL)) {
1266 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1267 return 0;
1268 }
1269
1270 set_current_state(state);
1271
1272 /* Setup the timer, when timeout != NULL */
1273 if (unlikely(timeout))
1274 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1275
1276 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1277
1278 if (likely(!ret))
1279 /* sleep on the mutex */
1280 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1281
1282 if (unlikely(ret)) {
1283 __set_current_state(TASK_RUNNING);
1284 if (rt_mutex_has_waiters(lock))
1285 remove_waiter(lock, &waiter);
1286 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1287 }
1288
1289 /*
1290 * try_to_take_rt_mutex() sets the waiter bit
1291 * unconditionally. We might have to fix that up.
1292 */
1293 fixup_rt_mutex_waiters(lock);
1294
1295 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1296
1297 /* Remove pending timer: */
1298 if (unlikely(timeout))
1299 hrtimer_cancel(&timeout->timer);
1300
1301 debug_rt_mutex_free_waiter(&waiter);
1302
1303 return ret;
1304 }
1305
1306 /*
1307 * Slow path try-lock function:
1308 */
1309 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1310 {
1311 unsigned long flags;
1312 int ret;
1313
1314 /*
1315 * If the lock already has an owner we fail to get the lock.
1316 * This can be done without taking the @lock->wait_lock as
1317 * it is only being read, and this is a trylock anyway.
1318 */
1319 if (rt_mutex_owner(lock))
1320 return 0;
1321
1322 /*
1323 * The mutex has currently no owner. Lock the wait lock and try to
1324 * acquire the lock. We use irqsave here to support early boot calls.
1325 */
1326 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1327
1328 ret = try_to_take_rt_mutex(lock, current, NULL);
1329
1330 /*
1331 * try_to_take_rt_mutex() sets the lock waiters bit
1332 * unconditionally. Clean this up.
1333 */
1334 fixup_rt_mutex_waiters(lock);
1335
1336 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1337
1338 return ret;
1339 }
1340
1341 /*
1342 * Slow path to release a rt-mutex.
1343 *
1344 * Return whether the current task needs to call rt_mutex_postunlock().
1345 */
1346 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1347 struct wake_q_head *wake_q)
1348 {
1349 unsigned long flags;
1350
1351 /* irqsave required to support early boot calls */
1352 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1353
1354 debug_rt_mutex_unlock(lock);
1355
1356 /*
1357 * We must be careful here if the fast path is enabled. If we
1358 * have no waiters queued we cannot set owner to NULL here
1359 * because of:
1360 *
1361 * foo->lock->owner = NULL;
1362 * rtmutex_lock(foo->lock); <- fast path
1363 * free = atomic_dec_and_test(foo->refcnt);
1364 * rtmutex_unlock(foo->lock); <- fast path
1365 * if (free)
1366 * kfree(foo);
1367 * raw_spin_unlock(foo->lock->wait_lock);
1368 *
1369 * So for the fastpath enabled kernel:
1370 *
1371 * Nothing can set the waiters bit as long as we hold
1372 * lock->wait_lock. So we do the following sequence:
1373 *
1374 * owner = rt_mutex_owner(lock);
1375 * clear_rt_mutex_waiters(lock);
1376 * raw_spin_unlock(&lock->wait_lock);
1377 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1378 * return;
1379 * goto retry;
1380 *
1381 * The fastpath disabled variant is simple as all access to
1382 * lock->owner is serialized by lock->wait_lock:
1383 *
1384 * lock->owner = NULL;
1385 * raw_spin_unlock(&lock->wait_lock);
1386 */
1387 while (!rt_mutex_has_waiters(lock)) {
1388 /* Drops lock->wait_lock ! */
1389 if (unlock_rt_mutex_safe(lock, flags) == true)
1390 return false;
1391 /* Relock the rtmutex and try again */
1392 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1393 }
1394
1395 /*
1396 * The wakeup next waiter path does not suffer from the above
1397 * race. See the comments there.
1398 *
1399 * Queue the next waiter for wakeup once we release the wait_lock.
1400 */
1401 mark_wakeup_next_waiter(wake_q, lock);
1402 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1403
1404 return true; /* call rt_mutex_postunlock() */
1405 }
1406
1407 /*
1408 * debug aware fast / slowpath lock,trylock,unlock
1409 *
1410 * The atomic acquire/release ops are compiled away, when either the
1411 * architecture does not support cmpxchg or when debugging is enabled.
1412 */
1413 static inline int
1414 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1415 int (*slowfn)(struct rt_mutex *lock, int state,
1416 struct hrtimer_sleeper *timeout,
1417 enum rtmutex_chainwalk chwalk))
1418 {
1419 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1420 return 0;
1421
1422 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1423 }
1424
1425 static inline int
1426 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1427 struct hrtimer_sleeper *timeout,
1428 enum rtmutex_chainwalk chwalk,
1429 int (*slowfn)(struct rt_mutex *lock, int state,
1430 struct hrtimer_sleeper *timeout,
1431 enum rtmutex_chainwalk chwalk))
1432 {
1433 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1434 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435 return 0;
1436
1437 return slowfn(lock, state, timeout, chwalk);
1438 }
1439
1440 static inline int
1441 rt_mutex_fasttrylock(struct rt_mutex *lock,
1442 int (*slowfn)(struct rt_mutex *lock))
1443 {
1444 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1445 return 1;
1446
1447 return slowfn(lock);
1448 }
1449
1450 /*
1451 * Performs the wakeup of the the top-waiter and re-enables preemption.
1452 */
1453 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1454 {
1455 wake_up_q(wake_q);
1456
1457 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1458 preempt_enable();
1459 }
1460
1461 static inline void
1462 rt_mutex_fastunlock(struct rt_mutex *lock,
1463 bool (*slowfn)(struct rt_mutex *lock,
1464 struct wake_q_head *wqh))
1465 {
1466 DEFINE_WAKE_Q(wake_q);
1467
1468 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1469 return;
1470
1471 if (slowfn(lock, &wake_q))
1472 rt_mutex_postunlock(&wake_q);
1473 }
1474
1475 /**
1476 * rt_mutex_lock - lock a rt_mutex
1477 *
1478 * @lock: the rt_mutex to be locked
1479 */
1480 void __sched rt_mutex_lock(struct rt_mutex *lock)
1481 {
1482 might_sleep();
1483
1484 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1485 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1486 }
1487 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1488
1489 /**
1490 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1491 *
1492 * @lock: the rt_mutex to be locked
1493 *
1494 * Returns:
1495 * 0 on success
1496 * -EINTR when interrupted by a signal
1497 */
1498 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1499 {
1500 int ret;
1501
1502 might_sleep();
1503
1504 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1505 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1506 if (ret)
1507 mutex_release(&lock->dep_map, 1, _RET_IP_);
1508
1509 return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1512
1513 /*
1514 * Futex variant, must not use fastpath.
1515 */
1516 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1517 {
1518 return rt_mutex_slowtrylock(lock);
1519 }
1520
1521 /**
1522 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1523 * the timeout structure is provided
1524 * by the caller
1525 *
1526 * @lock: the rt_mutex to be locked
1527 * @timeout: timeout structure or NULL (no timeout)
1528 *
1529 * Returns:
1530 * 0 on success
1531 * -EINTR when interrupted by a signal
1532 * -ETIMEDOUT when the timeout expired
1533 */
1534 int
1535 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1536 {
1537 int ret;
1538
1539 might_sleep();
1540
1541 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1542 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1543 RT_MUTEX_MIN_CHAINWALK,
1544 rt_mutex_slowlock);
1545 if (ret)
1546 mutex_release(&lock->dep_map, 1, _RET_IP_);
1547
1548 return ret;
1549 }
1550 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1551
1552 /**
1553 * rt_mutex_trylock - try to lock a rt_mutex
1554 *
1555 * @lock: the rt_mutex to be locked
1556 *
1557 * This function can only be called in thread context. It's safe to
1558 * call it from atomic regions, but not from hard interrupt or soft
1559 * interrupt context.
1560 *
1561 * Returns 1 on success and 0 on contention
1562 */
1563 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1564 {
1565 int ret;
1566
1567 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1568 return 0;
1569
1570 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1571 if (ret)
1572 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1573
1574 return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1577
1578 /**
1579 * rt_mutex_unlock - unlock a rt_mutex
1580 *
1581 * @lock: the rt_mutex to be unlocked
1582 */
1583 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1584 {
1585 mutex_release(&lock->dep_map, 1, _RET_IP_);
1586 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1587 }
1588 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1589
1590 /**
1591 * Futex variant, that since futex variants do not use the fast-path, can be
1592 * simple and will not need to retry.
1593 */
1594 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1595 struct wake_q_head *wake_q)
1596 {
1597 lockdep_assert_held(&lock->wait_lock);
1598
1599 debug_rt_mutex_unlock(lock);
1600
1601 if (!rt_mutex_has_waiters(lock)) {
1602 lock->owner = NULL;
1603 return false; /* done */
1604 }
1605
1606 /*
1607 * We've already deboosted, mark_wakeup_next_waiter() will
1608 * retain preempt_disabled when we drop the wait_lock, to
1609 * avoid inversion prior to the wakeup. preempt_disable()
1610 * therein pairs with rt_mutex_postunlock().
1611 */
1612 mark_wakeup_next_waiter(wake_q, lock);
1613
1614 return true; /* call postunlock() */
1615 }
1616
1617 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1618 {
1619 DEFINE_WAKE_Q(wake_q);
1620 bool postunlock;
1621
1622 raw_spin_lock_irq(&lock->wait_lock);
1623 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1624 raw_spin_unlock_irq(&lock->wait_lock);
1625
1626 if (postunlock)
1627 rt_mutex_postunlock(&wake_q);
1628 }
1629
1630 /**
1631 * rt_mutex_destroy - mark a mutex unusable
1632 * @lock: the mutex to be destroyed
1633 *
1634 * This function marks the mutex uninitialized, and any subsequent
1635 * use of the mutex is forbidden. The mutex must not be locked when
1636 * this function is called.
1637 */
1638 void rt_mutex_destroy(struct rt_mutex *lock)
1639 {
1640 WARN_ON(rt_mutex_is_locked(lock));
1641 #ifdef CONFIG_DEBUG_RT_MUTEXES
1642 lock->magic = NULL;
1643 #endif
1644 }
1645 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1646
1647 /**
1648 * __rt_mutex_init - initialize the rt lock
1649 *
1650 * @lock: the rt lock to be initialized
1651 *
1652 * Initialize the rt lock to unlocked state.
1653 *
1654 * Initializing of a locked rt lock is not allowed
1655 */
1656 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1657 struct lock_class_key *key)
1658 {
1659 lock->owner = NULL;
1660 raw_spin_lock_init(&lock->wait_lock);
1661 lock->waiters = RB_ROOT;
1662 lock->waiters_leftmost = NULL;
1663
1664 if (name && key)
1665 debug_rt_mutex_init(lock, name, key);
1666 }
1667 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1668
1669 /**
1670 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1671 * proxy owner
1672 *
1673 * @lock: the rt_mutex to be locked
1674 * @proxy_owner:the task to set as owner
1675 *
1676 * No locking. Caller has to do serializing itself
1677 *
1678 * Special API call for PI-futex support. This initializes the rtmutex and
1679 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1680 * possible at this point because the pi_state which contains the rtmutex
1681 * is not yet visible to other tasks.
1682 */
1683 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1684 struct task_struct *proxy_owner)
1685 {
1686 __rt_mutex_init(lock, NULL, NULL);
1687 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1688 rt_mutex_set_owner(lock, proxy_owner);
1689 }
1690
1691 /**
1692 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1693 *
1694 * @lock: the rt_mutex to be locked
1695 *
1696 * No locking. Caller has to do serializing itself
1697 *
1698 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1699 * (debugging) state. Concurrent operations on this rt_mutex are not
1700 * possible because it belongs to the pi_state which is about to be freed
1701 * and it is not longer visible to other tasks.
1702 */
1703 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1704 struct task_struct *proxy_owner)
1705 {
1706 debug_rt_mutex_proxy_unlock(lock);
1707 rt_mutex_set_owner(lock, NULL);
1708 }
1709
1710 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1711 struct rt_mutex_waiter *waiter,
1712 struct task_struct *task)
1713 {
1714 int ret;
1715
1716 if (try_to_take_rt_mutex(lock, task, NULL))
1717 return 1;
1718
1719 /* We enforce deadlock detection for futexes */
1720 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1721 RT_MUTEX_FULL_CHAINWALK);
1722
1723 if (ret && !rt_mutex_owner(lock)) {
1724 /*
1725 * Reset the return value. We might have
1726 * returned with -EDEADLK and the owner
1727 * released the lock while we were walking the
1728 * pi chain. Let the waiter sort it out.
1729 */
1730 ret = 0;
1731 }
1732
1733 if (unlikely(ret))
1734 remove_waiter(lock, waiter);
1735
1736 debug_rt_mutex_print_deadlock(waiter);
1737
1738 return ret;
1739 }
1740
1741 /**
1742 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1743 * @lock: the rt_mutex to take
1744 * @waiter: the pre-initialized rt_mutex_waiter
1745 * @task: the task to prepare
1746 *
1747 * Returns:
1748 * 0 - task blocked on lock
1749 * 1 - acquired the lock for task, caller should wake it up
1750 * <0 - error
1751 *
1752 * Special API call for FUTEX_REQUEUE_PI support.
1753 */
1754 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1755 struct rt_mutex_waiter *waiter,
1756 struct task_struct *task)
1757 {
1758 int ret;
1759
1760 raw_spin_lock_irq(&lock->wait_lock);
1761 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1762 raw_spin_unlock_irq(&lock->wait_lock);
1763
1764 return ret;
1765 }
1766
1767 /**
1768 * rt_mutex_next_owner - return the next owner of the lock
1769 *
1770 * @lock: the rt lock query
1771 *
1772 * Returns the next owner of the lock or NULL
1773 *
1774 * Caller has to serialize against other accessors to the lock
1775 * itself.
1776 *
1777 * Special API call for PI-futex support
1778 */
1779 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1780 {
1781 if (!rt_mutex_has_waiters(lock))
1782 return NULL;
1783
1784 return rt_mutex_top_waiter(lock)->task;
1785 }
1786
1787 /**
1788 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1789 * @lock: the rt_mutex we were woken on
1790 * @to: the timeout, null if none. hrtimer should already have
1791 * been started.
1792 * @waiter: the pre-initialized rt_mutex_waiter
1793 *
1794 * Wait for the the lock acquisition started on our behalf by
1795 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1796 * rt_mutex_cleanup_proxy_lock().
1797 *
1798 * Returns:
1799 * 0 - success
1800 * <0 - error, one of -EINTR, -ETIMEDOUT
1801 *
1802 * Special API call for PI-futex support
1803 */
1804 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1805 struct hrtimer_sleeper *to,
1806 struct rt_mutex_waiter *waiter)
1807 {
1808 int ret;
1809
1810 raw_spin_lock_irq(&lock->wait_lock);
1811 /* sleep on the mutex */
1812 set_current_state(TASK_INTERRUPTIBLE);
1813 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1814 /*
1815 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1816 * have to fix that up.
1817 */
1818 fixup_rt_mutex_waiters(lock);
1819 raw_spin_unlock_irq(&lock->wait_lock);
1820
1821 return ret;
1822 }
1823
1824 /**
1825 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1826 * @lock: the rt_mutex we were woken on
1827 * @waiter: the pre-initialized rt_mutex_waiter
1828 *
1829 * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1830 *
1831 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1832 * in fact still be granted ownership until we're removed. Therefore we can
1833 * find we are in fact the owner and must disregard the
1834 * rt_mutex_wait_proxy_lock() failure.
1835 *
1836 * Returns:
1837 * true - did the cleanup, we done.
1838 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1839 * caller should disregards its return value.
1840 *
1841 * Special API call for PI-futex support
1842 */
1843 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1844 struct rt_mutex_waiter *waiter)
1845 {
1846 bool cleanup = false;
1847
1848 raw_spin_lock_irq(&lock->wait_lock);
1849 /*
1850 * Do an unconditional try-lock, this deals with the lock stealing
1851 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1852 * sets a NULL owner.
1853 *
1854 * We're not interested in the return value, because the subsequent
1855 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1856 * we will own the lock and it will have removed the waiter. If we
1857 * failed the trylock, we're still not owner and we need to remove
1858 * ourselves.
1859 */
1860 try_to_take_rt_mutex(lock, current, waiter);
1861 /*
1862 * Unless we're the owner; we're still enqueued on the wait_list.
1863 * So check if we became owner, if not, take us off the wait_list.
1864 */
1865 if (rt_mutex_owner(lock) != current) {
1866 remove_waiter(lock, waiter);
1867 cleanup = true;
1868 }
1869 /*
1870 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1871 * have to fix that up.
1872 */
1873 fixup_rt_mutex_waiters(lock);
1874
1875 raw_spin_unlock_irq(&lock->wait_lock);
1876
1877 return cleanup;
1878 }