]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/locking/rtmutex.c
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / kernel / locking / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 unsigned long val = (unsigned long)owner;
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70 }
71
72 /*
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
75 */
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80 unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82 do {
83 owner = *p;
84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86
87 /*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 __releases(lock->wait_lock)
95 {
96 struct task_struct *owner = rt_mutex_owner(lock);
97
98 clear_rt_mutex_waiters(lock);
99 raw_spin_unlock(&lock->wait_lock);
100 /*
101 * If a new waiter comes in between the unlock and the cmpxchg
102 * we have two situations:
103 *
104 * unlock(wait_lock);
105 * lock(wait_lock);
106 * cmpxchg(p, owner, 0) == owner
107 * mark_rt_mutex_waiters(lock);
108 * acquire(lock);
109 * or:
110 *
111 * unlock(wait_lock);
112 * lock(wait_lock);
113 * mark_rt_mutex_waiters(lock);
114 *
115 * cmpxchg(p, owner, 0) != owner
116 * enqueue_waiter();
117 * unlock(wait_lock);
118 * lock(wait_lock);
119 * wake waiter();
120 * unlock(wait_lock);
121 * lock(wait_lock);
122 * acquire(lock);
123 */
124 return rt_mutex_cmpxchg(lock, owner, NULL);
125 }
126
127 #else
128 # define rt_mutex_cmpxchg(l,c,n) (0)
129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 {
131 lock->owner = (struct task_struct *)
132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133 }
134
135 /*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 __releases(lock->wait_lock)
140 {
141 lock->owner = NULL;
142 raw_spin_unlock(&lock->wait_lock);
143 return true;
144 }
145 #endif
146
147 static inline int
148 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 struct rt_mutex_waiter *right)
150 {
151 if (left->prio < right->prio)
152 return 1;
153
154 /*
155 * If both waiters have dl_prio(), we check the deadlines of the
156 * associated tasks.
157 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 * then right waiter has a dl_prio() too.
159 */
160 if (dl_prio(left->prio))
161 return (left->task->dl.deadline < right->task->dl.deadline);
162
163 return 0;
164 }
165
166 static void
167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168 {
169 struct rb_node **link = &lock->waiters.rb_node;
170 struct rb_node *parent = NULL;
171 struct rt_mutex_waiter *entry;
172 int leftmost = 1;
173
174 while (*link) {
175 parent = *link;
176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 if (rt_mutex_waiter_less(waiter, entry)) {
178 link = &parent->rb_left;
179 } else {
180 link = &parent->rb_right;
181 leftmost = 0;
182 }
183 }
184
185 if (leftmost)
186 lock->waiters_leftmost = &waiter->tree_entry;
187
188 rb_link_node(&waiter->tree_entry, parent, link);
189 rb_insert_color(&waiter->tree_entry, &lock->waiters);
190 }
191
192 static void
193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194 {
195 if (RB_EMPTY_NODE(&waiter->tree_entry))
196 return;
197
198 if (lock->waiters_leftmost == &waiter->tree_entry)
199 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201 rb_erase(&waiter->tree_entry, &lock->waiters);
202 RB_CLEAR_NODE(&waiter->tree_entry);
203 }
204
205 static void
206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207 {
208 struct rb_node **link = &task->pi_waiters.rb_node;
209 struct rb_node *parent = NULL;
210 struct rt_mutex_waiter *entry;
211 int leftmost = 1;
212
213 while (*link) {
214 parent = *link;
215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 if (rt_mutex_waiter_less(waiter, entry)) {
217 link = &parent->rb_left;
218 } else {
219 link = &parent->rb_right;
220 leftmost = 0;
221 }
222 }
223
224 if (leftmost)
225 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227 rb_link_node(&waiter->pi_tree_entry, parent, link);
228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229 }
230
231 static void
232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233 {
234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 return;
236
237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 RB_CLEAR_NODE(&waiter->pi_tree_entry);
242 }
243
244 /*
245 * Calculate task priority from the waiter tree priority
246 *
247 * Return task->normal_prio when the waiter tree is empty or when
248 * the waiter is not allowed to do priority boosting
249 */
250 int rt_mutex_getprio(struct task_struct *task)
251 {
252 if (likely(!task_has_pi_waiters(task)))
253 return task->normal_prio;
254
255 return min(task_top_pi_waiter(task)->prio,
256 task->normal_prio);
257 }
258
259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260 {
261 if (likely(!task_has_pi_waiters(task)))
262 return NULL;
263
264 return task_top_pi_waiter(task)->task;
265 }
266
267 /*
268 * Called by sched_setscheduler() to check whether the priority change
269 * is overruled by a possible priority boosting.
270 */
271 int rt_mutex_check_prio(struct task_struct *task, int newprio)
272 {
273 if (!task_has_pi_waiters(task))
274 return 0;
275
276 return task_top_pi_waiter(task)->task->prio <= newprio;
277 }
278
279 /*
280 * Adjust the priority of a task, after its pi_waiters got modified.
281 *
282 * This can be both boosting and unboosting. task->pi_lock must be held.
283 */
284 static void __rt_mutex_adjust_prio(struct task_struct *task)
285 {
286 int prio = rt_mutex_getprio(task);
287
288 if (task->prio != prio || dl_prio(prio))
289 rt_mutex_setprio(task, prio);
290 }
291
292 /*
293 * Adjust task priority (undo boosting). Called from the exit path of
294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
295 *
296 * (Note: We do this outside of the protection of lock->wait_lock to
297 * allow the lock to be taken while or before we readjust the priority
298 * of task. We do not use the spin_xx_mutex() variants here as we are
299 * outside of the debug path.)
300 */
301 static void rt_mutex_adjust_prio(struct task_struct *task)
302 {
303 unsigned long flags;
304
305 raw_spin_lock_irqsave(&task->pi_lock, flags);
306 __rt_mutex_adjust_prio(task);
307 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
308 }
309
310 /*
311 * Deadlock detection is conditional:
312 *
313 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
314 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
315 *
316 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
317 * conducted independent of the detect argument.
318 *
319 * If the waiter argument is NULL this indicates the deboost path and
320 * deadlock detection is disabled independent of the detect argument
321 * and the config settings.
322 */
323 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
324 enum rtmutex_chainwalk chwalk)
325 {
326 /*
327 * This is just a wrapper function for the following call,
328 * because debug_rt_mutex_detect_deadlock() smells like a magic
329 * debug feature and I wanted to keep the cond function in the
330 * main source file along with the comments instead of having
331 * two of the same in the headers.
332 */
333 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
334 }
335
336 /*
337 * Max number of times we'll walk the boosting chain:
338 */
339 int max_lock_depth = 1024;
340
341 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
342 {
343 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
344 }
345
346 /*
347 * Adjust the priority chain. Also used for deadlock detection.
348 * Decreases task's usage by one - may thus free the task.
349 *
350 * @task: the task owning the mutex (owner) for which a chain walk is
351 * probably needed
352 * @deadlock_detect: do we have to carry out deadlock detection?
353 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
354 * things for a task that has just got its priority adjusted, and
355 * is waiting on a mutex)
356 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
357 * we dropped its pi_lock. Is never dereferenced, only used for
358 * comparison to detect lock chain changes.
359 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
360 * its priority to the mutex owner (can be NULL in the case
361 * depicted above or if the top waiter is gone away and we are
362 * actually deboosting the owner)
363 * @top_task: the current top waiter
364 *
365 * Returns 0 or -EDEADLK.
366 *
367 * Chain walk basics and protection scope
368 *
369 * [R] refcount on task
370 * [P] task->pi_lock held
371 * [L] rtmutex->wait_lock held
372 *
373 * Step Description Protected by
374 * function arguments:
375 * @task [R]
376 * @orig_lock if != NULL @top_task is blocked on it
377 * @next_lock Unprotected. Cannot be
378 * dereferenced. Only used for
379 * comparison.
380 * @orig_waiter if != NULL @top_task is blocked on it
381 * @top_task current, or in case of proxy
382 * locking protected by calling
383 * code
384 * again:
385 * loop_sanity_check();
386 * retry:
387 * [1] lock(task->pi_lock); [R] acquire [P]
388 * [2] waiter = task->pi_blocked_on; [P]
389 * [3] check_exit_conditions_1(); [P]
390 * [4] lock = waiter->lock; [P]
391 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
392 * unlock(task->pi_lock); release [P]
393 * goto retry;
394 * }
395 * [6] check_exit_conditions_2(); [P] + [L]
396 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
397 * [8] unlock(task->pi_lock); release [P]
398 * put_task_struct(task); release [R]
399 * [9] check_exit_conditions_3(); [L]
400 * [10] task = owner(lock); [L]
401 * get_task_struct(task); [L] acquire [R]
402 * lock(task->pi_lock); [L] acquire [P]
403 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
404 * [12] check_exit_conditions_4(); [P] + [L]
405 * [13] unlock(task->pi_lock); release [P]
406 * unlock(lock->wait_lock); release [L]
407 * goto again;
408 */
409 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
410 enum rtmutex_chainwalk chwalk,
411 struct rt_mutex *orig_lock,
412 struct rt_mutex *next_lock,
413 struct rt_mutex_waiter *orig_waiter,
414 struct task_struct *top_task)
415 {
416 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
417 struct rt_mutex_waiter *prerequeue_top_waiter;
418 int ret = 0, depth = 0;
419 struct rt_mutex *lock;
420 bool detect_deadlock;
421 unsigned long flags;
422 bool requeue = true;
423
424 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
425
426 /*
427 * The (de)boosting is a step by step approach with a lot of
428 * pitfalls. We want this to be preemptible and we want hold a
429 * maximum of two locks per step. So we have to check
430 * carefully whether things change under us.
431 */
432 again:
433 /*
434 * We limit the lock chain length for each invocation.
435 */
436 if (++depth > max_lock_depth) {
437 static int prev_max;
438
439 /*
440 * Print this only once. If the admin changes the limit,
441 * print a new message when reaching the limit again.
442 */
443 if (prev_max != max_lock_depth) {
444 prev_max = max_lock_depth;
445 printk(KERN_WARNING "Maximum lock depth %d reached "
446 "task: %s (%d)\n", max_lock_depth,
447 top_task->comm, task_pid_nr(top_task));
448 }
449 put_task_struct(task);
450
451 return -EDEADLK;
452 }
453
454 /*
455 * We are fully preemptible here and only hold the refcount on
456 * @task. So everything can have changed under us since the
457 * caller or our own code below (goto retry/again) dropped all
458 * locks.
459 */
460 retry:
461 /*
462 * [1] Task cannot go away as we did a get_task() before !
463 */
464 raw_spin_lock_irqsave(&task->pi_lock, flags);
465
466 /*
467 * [2] Get the waiter on which @task is blocked on.
468 */
469 waiter = task->pi_blocked_on;
470
471 /*
472 * [3] check_exit_conditions_1() protected by task->pi_lock.
473 */
474
475 /*
476 * Check whether the end of the boosting chain has been
477 * reached or the state of the chain has changed while we
478 * dropped the locks.
479 */
480 if (!waiter)
481 goto out_unlock_pi;
482
483 /*
484 * Check the orig_waiter state. After we dropped the locks,
485 * the previous owner of the lock might have released the lock.
486 */
487 if (orig_waiter && !rt_mutex_owner(orig_lock))
488 goto out_unlock_pi;
489
490 /*
491 * We dropped all locks after taking a refcount on @task, so
492 * the task might have moved on in the lock chain or even left
493 * the chain completely and blocks now on an unrelated lock or
494 * on @orig_lock.
495 *
496 * We stored the lock on which @task was blocked in @next_lock,
497 * so we can detect the chain change.
498 */
499 if (next_lock != waiter->lock)
500 goto out_unlock_pi;
501
502 /*
503 * Drop out, when the task has no waiters. Note,
504 * top_waiter can be NULL, when we are in the deboosting
505 * mode!
506 */
507 if (top_waiter) {
508 if (!task_has_pi_waiters(task))
509 goto out_unlock_pi;
510 /*
511 * If deadlock detection is off, we stop here if we
512 * are not the top pi waiter of the task. If deadlock
513 * detection is enabled we continue, but stop the
514 * requeueing in the chain walk.
515 */
516 if (top_waiter != task_top_pi_waiter(task)) {
517 if (!detect_deadlock)
518 goto out_unlock_pi;
519 else
520 requeue = false;
521 }
522 }
523
524 /*
525 * If the waiter priority is the same as the task priority
526 * then there is no further priority adjustment necessary. If
527 * deadlock detection is off, we stop the chain walk. If its
528 * enabled we continue, but stop the requeueing in the chain
529 * walk.
530 */
531 if (waiter->prio == task->prio) {
532 if (!detect_deadlock)
533 goto out_unlock_pi;
534 else
535 requeue = false;
536 }
537
538 /*
539 * [4] Get the next lock
540 */
541 lock = waiter->lock;
542 /*
543 * [5] We need to trylock here as we are holding task->pi_lock,
544 * which is the reverse lock order versus the other rtmutex
545 * operations.
546 */
547 if (!raw_spin_trylock(&lock->wait_lock)) {
548 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
549 cpu_relax();
550 goto retry;
551 }
552
553 /*
554 * [6] check_exit_conditions_2() protected by task->pi_lock and
555 * lock->wait_lock.
556 *
557 * Deadlock detection. If the lock is the same as the original
558 * lock which caused us to walk the lock chain or if the
559 * current lock is owned by the task which initiated the chain
560 * walk, we detected a deadlock.
561 */
562 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
563 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
564 raw_spin_unlock(&lock->wait_lock);
565 ret = -EDEADLK;
566 goto out_unlock_pi;
567 }
568
569 /*
570 * If we just follow the lock chain for deadlock detection, no
571 * need to do all the requeue operations. To avoid a truckload
572 * of conditionals around the various places below, just do the
573 * minimum chain walk checks.
574 */
575 if (!requeue) {
576 /*
577 * No requeue[7] here. Just release @task [8]
578 */
579 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
580 put_task_struct(task);
581
582 /*
583 * [9] check_exit_conditions_3 protected by lock->wait_lock.
584 * If there is no owner of the lock, end of chain.
585 */
586 if (!rt_mutex_owner(lock)) {
587 raw_spin_unlock(&lock->wait_lock);
588 return 0;
589 }
590
591 /* [10] Grab the next task, i.e. owner of @lock */
592 task = rt_mutex_owner(lock);
593 get_task_struct(task);
594 raw_spin_lock_irqsave(&task->pi_lock, flags);
595
596 /*
597 * No requeue [11] here. We just do deadlock detection.
598 *
599 * [12] Store whether owner is blocked
600 * itself. Decision is made after dropping the locks
601 */
602 next_lock = task_blocked_on_lock(task);
603 /*
604 * Get the top waiter for the next iteration
605 */
606 top_waiter = rt_mutex_top_waiter(lock);
607
608 /* [13] Drop locks */
609 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
610 raw_spin_unlock(&lock->wait_lock);
611
612 /* If owner is not blocked, end of chain. */
613 if (!next_lock)
614 goto out_put_task;
615 goto again;
616 }
617
618 /*
619 * Store the current top waiter before doing the requeue
620 * operation on @lock. We need it for the boost/deboost
621 * decision below.
622 */
623 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
624
625 /* [7] Requeue the waiter in the lock waiter list. */
626 rt_mutex_dequeue(lock, waiter);
627 waiter->prio = task->prio;
628 rt_mutex_enqueue(lock, waiter);
629
630 /* [8] Release the task */
631 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
632 put_task_struct(task);
633
634 /*
635 * [9] check_exit_conditions_3 protected by lock->wait_lock.
636 *
637 * We must abort the chain walk if there is no lock owner even
638 * in the dead lock detection case, as we have nothing to
639 * follow here. This is the end of the chain we are walking.
640 */
641 if (!rt_mutex_owner(lock)) {
642 /*
643 * If the requeue [7] above changed the top waiter,
644 * then we need to wake the new top waiter up to try
645 * to get the lock.
646 */
647 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
648 wake_up_process(rt_mutex_top_waiter(lock)->task);
649 raw_spin_unlock(&lock->wait_lock);
650 return 0;
651 }
652
653 /* [10] Grab the next task, i.e. the owner of @lock */
654 task = rt_mutex_owner(lock);
655 get_task_struct(task);
656 raw_spin_lock_irqsave(&task->pi_lock, flags);
657
658 /* [11] requeue the pi waiters if necessary */
659 if (waiter == rt_mutex_top_waiter(lock)) {
660 /*
661 * The waiter became the new top (highest priority)
662 * waiter on the lock. Replace the previous top waiter
663 * in the owner tasks pi waiters list with this waiter
664 * and adjust the priority of the owner.
665 */
666 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
667 rt_mutex_enqueue_pi(task, waiter);
668 __rt_mutex_adjust_prio(task);
669
670 } else if (prerequeue_top_waiter == waiter) {
671 /*
672 * The waiter was the top waiter on the lock, but is
673 * no longer the top prority waiter. Replace waiter in
674 * the owner tasks pi waiters list with the new top
675 * (highest priority) waiter and adjust the priority
676 * of the owner.
677 * The new top waiter is stored in @waiter so that
678 * @waiter == @top_waiter evaluates to true below and
679 * we continue to deboost the rest of the chain.
680 */
681 rt_mutex_dequeue_pi(task, waiter);
682 waiter = rt_mutex_top_waiter(lock);
683 rt_mutex_enqueue_pi(task, waiter);
684 __rt_mutex_adjust_prio(task);
685 } else {
686 /*
687 * Nothing changed. No need to do any priority
688 * adjustment.
689 */
690 }
691
692 /*
693 * [12] check_exit_conditions_4() protected by task->pi_lock
694 * and lock->wait_lock. The actual decisions are made after we
695 * dropped the locks.
696 *
697 * Check whether the task which owns the current lock is pi
698 * blocked itself. If yes we store a pointer to the lock for
699 * the lock chain change detection above. After we dropped
700 * task->pi_lock next_lock cannot be dereferenced anymore.
701 */
702 next_lock = task_blocked_on_lock(task);
703 /*
704 * Store the top waiter of @lock for the end of chain walk
705 * decision below.
706 */
707 top_waiter = rt_mutex_top_waiter(lock);
708
709 /* [13] Drop the locks */
710 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
711 raw_spin_unlock(&lock->wait_lock);
712
713 /*
714 * Make the actual exit decisions [12], based on the stored
715 * values.
716 *
717 * We reached the end of the lock chain. Stop right here. No
718 * point to go back just to figure that out.
719 */
720 if (!next_lock)
721 goto out_put_task;
722
723 /*
724 * If the current waiter is not the top waiter on the lock,
725 * then we can stop the chain walk here if we are not in full
726 * deadlock detection mode.
727 */
728 if (!detect_deadlock && waiter != top_waiter)
729 goto out_put_task;
730
731 goto again;
732
733 out_unlock_pi:
734 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
735 out_put_task:
736 put_task_struct(task);
737
738 return ret;
739 }
740
741 /*
742 * Try to take an rt-mutex
743 *
744 * Must be called with lock->wait_lock held.
745 *
746 * @lock: The lock to be acquired.
747 * @task: The task which wants to acquire the lock
748 * @waiter: The waiter that is queued to the lock's wait list if the
749 * callsite called task_blocked_on_lock(), otherwise NULL
750 */
751 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
752 struct rt_mutex_waiter *waiter)
753 {
754 unsigned long flags;
755
756 /*
757 * Before testing whether we can acquire @lock, we set the
758 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
759 * other tasks which try to modify @lock into the slow path
760 * and they serialize on @lock->wait_lock.
761 *
762 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
763 * as explained at the top of this file if and only if:
764 *
765 * - There is a lock owner. The caller must fixup the
766 * transient state if it does a trylock or leaves the lock
767 * function due to a signal or timeout.
768 *
769 * - @task acquires the lock and there are no other
770 * waiters. This is undone in rt_mutex_set_owner(@task) at
771 * the end of this function.
772 */
773 mark_rt_mutex_waiters(lock);
774
775 /*
776 * If @lock has an owner, give up.
777 */
778 if (rt_mutex_owner(lock))
779 return 0;
780
781 /*
782 * If @waiter != NULL, @task has already enqueued the waiter
783 * into @lock waiter list. If @waiter == NULL then this is a
784 * trylock attempt.
785 */
786 if (waiter) {
787 /*
788 * If waiter is not the highest priority waiter of
789 * @lock, give up.
790 */
791 if (waiter != rt_mutex_top_waiter(lock))
792 return 0;
793
794 /*
795 * We can acquire the lock. Remove the waiter from the
796 * lock waiters list.
797 */
798 rt_mutex_dequeue(lock, waiter);
799
800 } else {
801 /*
802 * If the lock has waiters already we check whether @task is
803 * eligible to take over the lock.
804 *
805 * If there are no other waiters, @task can acquire
806 * the lock. @task->pi_blocked_on is NULL, so it does
807 * not need to be dequeued.
808 */
809 if (rt_mutex_has_waiters(lock)) {
810 /*
811 * If @task->prio is greater than or equal to
812 * the top waiter priority (kernel view),
813 * @task lost.
814 */
815 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
816 return 0;
817
818 /*
819 * The current top waiter stays enqueued. We
820 * don't have to change anything in the lock
821 * waiters order.
822 */
823 } else {
824 /*
825 * No waiters. Take the lock without the
826 * pi_lock dance.@task->pi_blocked_on is NULL
827 * and we have no waiters to enqueue in @task
828 * pi waiters list.
829 */
830 goto takeit;
831 }
832 }
833
834 /*
835 * Clear @task->pi_blocked_on. Requires protection by
836 * @task->pi_lock. Redundant operation for the @waiter == NULL
837 * case, but conditionals are more expensive than a redundant
838 * store.
839 */
840 raw_spin_lock_irqsave(&task->pi_lock, flags);
841 task->pi_blocked_on = NULL;
842 /*
843 * Finish the lock acquisition. @task is the new owner. If
844 * other waiters exist we have to insert the highest priority
845 * waiter into @task->pi_waiters list.
846 */
847 if (rt_mutex_has_waiters(lock))
848 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
849 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
850
851 takeit:
852 /* We got the lock. */
853 debug_rt_mutex_lock(lock);
854
855 /*
856 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
857 * are still waiters or clears it.
858 */
859 rt_mutex_set_owner(lock, task);
860
861 rt_mutex_deadlock_account_lock(lock, task);
862
863 return 1;
864 }
865
866 /*
867 * Task blocks on lock.
868 *
869 * Prepare waiter and propagate pi chain
870 *
871 * This must be called with lock->wait_lock held.
872 */
873 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
874 struct rt_mutex_waiter *waiter,
875 struct task_struct *task,
876 enum rtmutex_chainwalk chwalk)
877 {
878 struct task_struct *owner = rt_mutex_owner(lock);
879 struct rt_mutex_waiter *top_waiter = waiter;
880 struct rt_mutex *next_lock;
881 int chain_walk = 0, res;
882 unsigned long flags;
883
884 /*
885 * Early deadlock detection. We really don't want the task to
886 * enqueue on itself just to untangle the mess later. It's not
887 * only an optimization. We drop the locks, so another waiter
888 * can come in before the chain walk detects the deadlock. So
889 * the other will detect the deadlock and return -EDEADLOCK,
890 * which is wrong, as the other waiter is not in a deadlock
891 * situation.
892 */
893 if (owner == task)
894 return -EDEADLK;
895
896 raw_spin_lock_irqsave(&task->pi_lock, flags);
897 __rt_mutex_adjust_prio(task);
898 waiter->task = task;
899 waiter->lock = lock;
900 waiter->prio = task->prio;
901
902 /* Get the top priority waiter on the lock */
903 if (rt_mutex_has_waiters(lock))
904 top_waiter = rt_mutex_top_waiter(lock);
905 rt_mutex_enqueue(lock, waiter);
906
907 task->pi_blocked_on = waiter;
908
909 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
910
911 if (!owner)
912 return 0;
913
914 raw_spin_lock_irqsave(&owner->pi_lock, flags);
915 if (waiter == rt_mutex_top_waiter(lock)) {
916 rt_mutex_dequeue_pi(owner, top_waiter);
917 rt_mutex_enqueue_pi(owner, waiter);
918
919 __rt_mutex_adjust_prio(owner);
920 if (owner->pi_blocked_on)
921 chain_walk = 1;
922 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
923 chain_walk = 1;
924 }
925
926 /* Store the lock on which owner is blocked or NULL */
927 next_lock = task_blocked_on_lock(owner);
928
929 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
930 /*
931 * Even if full deadlock detection is on, if the owner is not
932 * blocked itself, we can avoid finding this out in the chain
933 * walk.
934 */
935 if (!chain_walk || !next_lock)
936 return 0;
937
938 /*
939 * The owner can't disappear while holding a lock,
940 * so the owner struct is protected by wait_lock.
941 * Gets dropped in rt_mutex_adjust_prio_chain()!
942 */
943 get_task_struct(owner);
944
945 raw_spin_unlock(&lock->wait_lock);
946
947 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
948 next_lock, waiter, task);
949
950 raw_spin_lock(&lock->wait_lock);
951
952 return res;
953 }
954
955 /*
956 * Wake up the next waiter on the lock.
957 *
958 * Remove the top waiter from the current tasks pi waiter list and
959 * wake it up.
960 *
961 * Called with lock->wait_lock held.
962 */
963 static void wakeup_next_waiter(struct rt_mutex *lock)
964 {
965 struct rt_mutex_waiter *waiter;
966 unsigned long flags;
967
968 raw_spin_lock_irqsave(&current->pi_lock, flags);
969
970 waiter = rt_mutex_top_waiter(lock);
971
972 /*
973 * Remove it from current->pi_waiters. We do not adjust a
974 * possible priority boost right now. We execute wakeup in the
975 * boosted mode and go back to normal after releasing
976 * lock->wait_lock.
977 */
978 rt_mutex_dequeue_pi(current, waiter);
979
980 /*
981 * As we are waking up the top waiter, and the waiter stays
982 * queued on the lock until it gets the lock, this lock
983 * obviously has waiters. Just set the bit here and this has
984 * the added benefit of forcing all new tasks into the
985 * slow path making sure no task of lower priority than
986 * the top waiter can steal this lock.
987 */
988 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
989
990 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
991
992 /*
993 * It's safe to dereference waiter as it cannot go away as
994 * long as we hold lock->wait_lock. The waiter task needs to
995 * acquire it in order to dequeue the waiter.
996 */
997 wake_up_process(waiter->task);
998 }
999
1000 /*
1001 * Remove a waiter from a lock and give up
1002 *
1003 * Must be called with lock->wait_lock held and
1004 * have just failed to try_to_take_rt_mutex().
1005 */
1006 static void remove_waiter(struct rt_mutex *lock,
1007 struct rt_mutex_waiter *waiter)
1008 {
1009 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1010 struct task_struct *owner = rt_mutex_owner(lock);
1011 struct rt_mutex *next_lock;
1012 unsigned long flags;
1013
1014 raw_spin_lock_irqsave(&current->pi_lock, flags);
1015 rt_mutex_dequeue(lock, waiter);
1016 current->pi_blocked_on = NULL;
1017 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1018
1019 /*
1020 * Only update priority if the waiter was the highest priority
1021 * waiter of the lock and there is an owner to update.
1022 */
1023 if (!owner || !is_top_waiter)
1024 return;
1025
1026 raw_spin_lock_irqsave(&owner->pi_lock, flags);
1027
1028 rt_mutex_dequeue_pi(owner, waiter);
1029
1030 if (rt_mutex_has_waiters(lock))
1031 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1032
1033 __rt_mutex_adjust_prio(owner);
1034
1035 /* Store the lock on which owner is blocked or NULL */
1036 next_lock = task_blocked_on_lock(owner);
1037
1038 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1039
1040 /*
1041 * Don't walk the chain, if the owner task is not blocked
1042 * itself.
1043 */
1044 if (!next_lock)
1045 return;
1046
1047 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1048 get_task_struct(owner);
1049
1050 raw_spin_unlock(&lock->wait_lock);
1051
1052 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1053 next_lock, NULL, current);
1054
1055 raw_spin_lock(&lock->wait_lock);
1056 }
1057
1058 /*
1059 * Recheck the pi chain, in case we got a priority setting
1060 *
1061 * Called from sched_setscheduler
1062 */
1063 void rt_mutex_adjust_pi(struct task_struct *task)
1064 {
1065 struct rt_mutex_waiter *waiter;
1066 struct rt_mutex *next_lock;
1067 unsigned long flags;
1068
1069 raw_spin_lock_irqsave(&task->pi_lock, flags);
1070
1071 waiter = task->pi_blocked_on;
1072 if (!waiter || (waiter->prio == task->prio &&
1073 !dl_prio(task->prio))) {
1074 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1075 return;
1076 }
1077 next_lock = waiter->lock;
1078 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1079
1080 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1081 get_task_struct(task);
1082
1083 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1084 next_lock, NULL, task);
1085 }
1086
1087 /**
1088 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1089 * @lock: the rt_mutex to take
1090 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1091 * or TASK_UNINTERRUPTIBLE)
1092 * @timeout: the pre-initialized and started timer, or NULL for none
1093 * @waiter: the pre-initialized rt_mutex_waiter
1094 *
1095 * lock->wait_lock must be held by the caller.
1096 */
1097 static int __sched
1098 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1099 struct hrtimer_sleeper *timeout,
1100 struct rt_mutex_waiter *waiter)
1101 {
1102 int ret = 0;
1103
1104 for (;;) {
1105 /* Try to acquire the lock: */
1106 if (try_to_take_rt_mutex(lock, current, waiter))
1107 break;
1108
1109 /*
1110 * TASK_INTERRUPTIBLE checks for signals and
1111 * timeout. Ignored otherwise.
1112 */
1113 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1114 /* Signal pending? */
1115 if (signal_pending(current))
1116 ret = -EINTR;
1117 if (timeout && !timeout->task)
1118 ret = -ETIMEDOUT;
1119 if (ret)
1120 break;
1121 }
1122
1123 raw_spin_unlock(&lock->wait_lock);
1124
1125 debug_rt_mutex_print_deadlock(waiter);
1126
1127 schedule_rt_mutex(lock);
1128
1129 raw_spin_lock(&lock->wait_lock);
1130 set_current_state(state);
1131 }
1132
1133 return ret;
1134 }
1135
1136 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1137 struct rt_mutex_waiter *w)
1138 {
1139 /*
1140 * If the result is not -EDEADLOCK or the caller requested
1141 * deadlock detection, nothing to do here.
1142 */
1143 if (res != -EDEADLOCK || detect_deadlock)
1144 return;
1145
1146 /*
1147 * Yell lowdly and stop the task right here.
1148 */
1149 rt_mutex_print_deadlock(w);
1150 while (1) {
1151 set_current_state(TASK_INTERRUPTIBLE);
1152 schedule();
1153 }
1154 }
1155
1156 /*
1157 * Slow path lock function:
1158 */
1159 static int __sched
1160 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1161 struct hrtimer_sleeper *timeout,
1162 enum rtmutex_chainwalk chwalk)
1163 {
1164 struct rt_mutex_waiter waiter;
1165 int ret = 0;
1166
1167 debug_rt_mutex_init_waiter(&waiter);
1168 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1169 RB_CLEAR_NODE(&waiter.tree_entry);
1170
1171 raw_spin_lock(&lock->wait_lock);
1172
1173 /* Try to acquire the lock again: */
1174 if (try_to_take_rt_mutex(lock, current, NULL)) {
1175 raw_spin_unlock(&lock->wait_lock);
1176 return 0;
1177 }
1178
1179 set_current_state(state);
1180
1181 /* Setup the timer, when timeout != NULL */
1182 if (unlikely(timeout)) {
1183 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1184 if (!hrtimer_active(&timeout->timer))
1185 timeout->task = NULL;
1186 }
1187
1188 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1189
1190 if (likely(!ret))
1191 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1192
1193 set_current_state(TASK_RUNNING);
1194
1195 if (unlikely(ret)) {
1196 remove_waiter(lock, &waiter);
1197 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1198 }
1199
1200 /*
1201 * try_to_take_rt_mutex() sets the waiter bit
1202 * unconditionally. We might have to fix that up.
1203 */
1204 fixup_rt_mutex_waiters(lock);
1205
1206 raw_spin_unlock(&lock->wait_lock);
1207
1208 /* Remove pending timer: */
1209 if (unlikely(timeout))
1210 hrtimer_cancel(&timeout->timer);
1211
1212 debug_rt_mutex_free_waiter(&waiter);
1213
1214 return ret;
1215 }
1216
1217 /*
1218 * Slow path try-lock function:
1219 */
1220 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1221 {
1222 int ret;
1223
1224 /*
1225 * If the lock already has an owner we fail to get the lock.
1226 * This can be done without taking the @lock->wait_lock as
1227 * it is only being read, and this is a trylock anyway.
1228 */
1229 if (rt_mutex_owner(lock))
1230 return 0;
1231
1232 /*
1233 * The mutex has currently no owner. Lock the wait lock and
1234 * try to acquire the lock.
1235 */
1236 raw_spin_lock(&lock->wait_lock);
1237
1238 ret = try_to_take_rt_mutex(lock, current, NULL);
1239
1240 /*
1241 * try_to_take_rt_mutex() sets the lock waiters bit
1242 * unconditionally. Clean this up.
1243 */
1244 fixup_rt_mutex_waiters(lock);
1245
1246 raw_spin_unlock(&lock->wait_lock);
1247
1248 return ret;
1249 }
1250
1251 /*
1252 * Slow path to release a rt-mutex:
1253 */
1254 static void __sched
1255 rt_mutex_slowunlock(struct rt_mutex *lock)
1256 {
1257 raw_spin_lock(&lock->wait_lock);
1258
1259 debug_rt_mutex_unlock(lock);
1260
1261 rt_mutex_deadlock_account_unlock(current);
1262
1263 /*
1264 * We must be careful here if the fast path is enabled. If we
1265 * have no waiters queued we cannot set owner to NULL here
1266 * because of:
1267 *
1268 * foo->lock->owner = NULL;
1269 * rtmutex_lock(foo->lock); <- fast path
1270 * free = atomic_dec_and_test(foo->refcnt);
1271 * rtmutex_unlock(foo->lock); <- fast path
1272 * if (free)
1273 * kfree(foo);
1274 * raw_spin_unlock(foo->lock->wait_lock);
1275 *
1276 * So for the fastpath enabled kernel:
1277 *
1278 * Nothing can set the waiters bit as long as we hold
1279 * lock->wait_lock. So we do the following sequence:
1280 *
1281 * owner = rt_mutex_owner(lock);
1282 * clear_rt_mutex_waiters(lock);
1283 * raw_spin_unlock(&lock->wait_lock);
1284 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1285 * return;
1286 * goto retry;
1287 *
1288 * The fastpath disabled variant is simple as all access to
1289 * lock->owner is serialized by lock->wait_lock:
1290 *
1291 * lock->owner = NULL;
1292 * raw_spin_unlock(&lock->wait_lock);
1293 */
1294 while (!rt_mutex_has_waiters(lock)) {
1295 /* Drops lock->wait_lock ! */
1296 if (unlock_rt_mutex_safe(lock) == true)
1297 return;
1298 /* Relock the rtmutex and try again */
1299 raw_spin_lock(&lock->wait_lock);
1300 }
1301
1302 /*
1303 * The wakeup next waiter path does not suffer from the above
1304 * race. See the comments there.
1305 */
1306 wakeup_next_waiter(lock);
1307
1308 raw_spin_unlock(&lock->wait_lock);
1309
1310 /* Undo pi boosting if necessary: */
1311 rt_mutex_adjust_prio(current);
1312 }
1313
1314 /*
1315 * debug aware fast / slowpath lock,trylock,unlock
1316 *
1317 * The atomic acquire/release ops are compiled away, when either the
1318 * architecture does not support cmpxchg or when debugging is enabled.
1319 */
1320 static inline int
1321 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1322 int (*slowfn)(struct rt_mutex *lock, int state,
1323 struct hrtimer_sleeper *timeout,
1324 enum rtmutex_chainwalk chwalk))
1325 {
1326 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1327 rt_mutex_deadlock_account_lock(lock, current);
1328 return 0;
1329 } else
1330 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1331 }
1332
1333 static inline int
1334 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1335 struct hrtimer_sleeper *timeout,
1336 enum rtmutex_chainwalk chwalk,
1337 int (*slowfn)(struct rt_mutex *lock, int state,
1338 struct hrtimer_sleeper *timeout,
1339 enum rtmutex_chainwalk chwalk))
1340 {
1341 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1342 likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1343 rt_mutex_deadlock_account_lock(lock, current);
1344 return 0;
1345 } else
1346 return slowfn(lock, state, timeout, chwalk);
1347 }
1348
1349 static inline int
1350 rt_mutex_fasttrylock(struct rt_mutex *lock,
1351 int (*slowfn)(struct rt_mutex *lock))
1352 {
1353 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1354 rt_mutex_deadlock_account_lock(lock, current);
1355 return 1;
1356 }
1357 return slowfn(lock);
1358 }
1359
1360 static inline void
1361 rt_mutex_fastunlock(struct rt_mutex *lock,
1362 void (*slowfn)(struct rt_mutex *lock))
1363 {
1364 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1365 rt_mutex_deadlock_account_unlock(current);
1366 else
1367 slowfn(lock);
1368 }
1369
1370 /**
1371 * rt_mutex_lock - lock a rt_mutex
1372 *
1373 * @lock: the rt_mutex to be locked
1374 */
1375 void __sched rt_mutex_lock(struct rt_mutex *lock)
1376 {
1377 might_sleep();
1378
1379 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1380 }
1381 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1382
1383 /**
1384 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1385 *
1386 * @lock: the rt_mutex to be locked
1387 *
1388 * Returns:
1389 * 0 on success
1390 * -EINTR when interrupted by a signal
1391 */
1392 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1393 {
1394 might_sleep();
1395
1396 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1397 }
1398 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1399
1400 /*
1401 * Futex variant with full deadlock detection.
1402 */
1403 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1404 struct hrtimer_sleeper *timeout)
1405 {
1406 might_sleep();
1407
1408 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1409 RT_MUTEX_FULL_CHAINWALK,
1410 rt_mutex_slowlock);
1411 }
1412
1413 /**
1414 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1415 * the timeout structure is provided
1416 * by the caller
1417 *
1418 * @lock: the rt_mutex to be locked
1419 * @timeout: timeout structure or NULL (no timeout)
1420 *
1421 * Returns:
1422 * 0 on success
1423 * -EINTR when interrupted by a signal
1424 * -ETIMEDOUT when the timeout expired
1425 */
1426 int
1427 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1428 {
1429 might_sleep();
1430
1431 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1432 RT_MUTEX_MIN_CHAINWALK,
1433 rt_mutex_slowlock);
1434 }
1435 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1436
1437 /**
1438 * rt_mutex_trylock - try to lock a rt_mutex
1439 *
1440 * @lock: the rt_mutex to be locked
1441 *
1442 * Returns 1 on success and 0 on contention
1443 */
1444 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1445 {
1446 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1447 }
1448 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1449
1450 /**
1451 * rt_mutex_unlock - unlock a rt_mutex
1452 *
1453 * @lock: the rt_mutex to be unlocked
1454 */
1455 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1456 {
1457 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1458 }
1459 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1460
1461 /**
1462 * rt_mutex_destroy - mark a mutex unusable
1463 * @lock: the mutex to be destroyed
1464 *
1465 * This function marks the mutex uninitialized, and any subsequent
1466 * use of the mutex is forbidden. The mutex must not be locked when
1467 * this function is called.
1468 */
1469 void rt_mutex_destroy(struct rt_mutex *lock)
1470 {
1471 WARN_ON(rt_mutex_is_locked(lock));
1472 #ifdef CONFIG_DEBUG_RT_MUTEXES
1473 lock->magic = NULL;
1474 #endif
1475 }
1476
1477 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1478
1479 /**
1480 * __rt_mutex_init - initialize the rt lock
1481 *
1482 * @lock: the rt lock to be initialized
1483 *
1484 * Initialize the rt lock to unlocked state.
1485 *
1486 * Initializing of a locked rt lock is not allowed
1487 */
1488 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1489 {
1490 lock->owner = NULL;
1491 raw_spin_lock_init(&lock->wait_lock);
1492 lock->waiters = RB_ROOT;
1493 lock->waiters_leftmost = NULL;
1494
1495 debug_rt_mutex_init(lock, name);
1496 }
1497 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1498
1499 /**
1500 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1501 * proxy owner
1502 *
1503 * @lock: the rt_mutex to be locked
1504 * @proxy_owner:the task to set as owner
1505 *
1506 * No locking. Caller has to do serializing itself
1507 * Special API call for PI-futex support
1508 */
1509 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1510 struct task_struct *proxy_owner)
1511 {
1512 __rt_mutex_init(lock, NULL);
1513 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1514 rt_mutex_set_owner(lock, proxy_owner);
1515 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1516 }
1517
1518 /**
1519 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1520 *
1521 * @lock: the rt_mutex to be locked
1522 *
1523 * No locking. Caller has to do serializing itself
1524 * Special API call for PI-futex support
1525 */
1526 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1527 struct task_struct *proxy_owner)
1528 {
1529 debug_rt_mutex_proxy_unlock(lock);
1530 rt_mutex_set_owner(lock, NULL);
1531 rt_mutex_deadlock_account_unlock(proxy_owner);
1532 }
1533
1534 /**
1535 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1536 * @lock: the rt_mutex to take
1537 * @waiter: the pre-initialized rt_mutex_waiter
1538 * @task: the task to prepare
1539 *
1540 * Returns:
1541 * 0 - task blocked on lock
1542 * 1 - acquired the lock for task, caller should wake it up
1543 * <0 - error
1544 *
1545 * Special API call for FUTEX_REQUEUE_PI support.
1546 */
1547 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1548 struct rt_mutex_waiter *waiter,
1549 struct task_struct *task)
1550 {
1551 int ret;
1552
1553 raw_spin_lock(&lock->wait_lock);
1554
1555 if (try_to_take_rt_mutex(lock, task, NULL)) {
1556 raw_spin_unlock(&lock->wait_lock);
1557 return 1;
1558 }
1559
1560 /* We enforce deadlock detection for futexes */
1561 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1562 RT_MUTEX_FULL_CHAINWALK);
1563
1564 if (ret && !rt_mutex_owner(lock)) {
1565 /*
1566 * Reset the return value. We might have
1567 * returned with -EDEADLK and the owner
1568 * released the lock while we were walking the
1569 * pi chain. Let the waiter sort it out.
1570 */
1571 ret = 0;
1572 }
1573
1574 if (unlikely(ret))
1575 remove_waiter(lock, waiter);
1576
1577 raw_spin_unlock(&lock->wait_lock);
1578
1579 debug_rt_mutex_print_deadlock(waiter);
1580
1581 return ret;
1582 }
1583
1584 /**
1585 * rt_mutex_next_owner - return the next owner of the lock
1586 *
1587 * @lock: the rt lock query
1588 *
1589 * Returns the next owner of the lock or NULL
1590 *
1591 * Caller has to serialize against other accessors to the lock
1592 * itself.
1593 *
1594 * Special API call for PI-futex support
1595 */
1596 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1597 {
1598 if (!rt_mutex_has_waiters(lock))
1599 return NULL;
1600
1601 return rt_mutex_top_waiter(lock)->task;
1602 }
1603
1604 /**
1605 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1606 * @lock: the rt_mutex we were woken on
1607 * @to: the timeout, null if none. hrtimer should already have
1608 * been started.
1609 * @waiter: the pre-initialized rt_mutex_waiter
1610 *
1611 * Complete the lock acquisition started our behalf by another thread.
1612 *
1613 * Returns:
1614 * 0 - success
1615 * <0 - error, one of -EINTR, -ETIMEDOUT
1616 *
1617 * Special API call for PI-futex requeue support
1618 */
1619 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1620 struct hrtimer_sleeper *to,
1621 struct rt_mutex_waiter *waiter)
1622 {
1623 int ret;
1624
1625 raw_spin_lock(&lock->wait_lock);
1626
1627 set_current_state(TASK_INTERRUPTIBLE);
1628
1629 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1630
1631 set_current_state(TASK_RUNNING);
1632
1633 if (unlikely(ret))
1634 remove_waiter(lock, waiter);
1635
1636 /*
1637 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1638 * have to fix that up.
1639 */
1640 fixup_rt_mutex_waiters(lock);
1641
1642 raw_spin_unlock(&lock->wait_lock);
1643
1644 return ret;
1645 }