]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/locking/rtmutex.c
Merge branch 'for-linus-bugs' of git://git.kernel.org/pub/scm/linux/kernel/git/sage...
[mirror_ubuntu-bionic-kernel.git] / kernel / locking / rtmutex.c
1 /*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/timer.h>
18
19 #include "rtmutex_common.h"
20
21 /*
22 * lock->owner state tracking:
23 *
24 * lock->owner holds the task_struct pointer of the owner. Bit 0
25 * is used to keep track of the "lock has waiters" state.
26 *
27 * owner bit0
28 * NULL 0 lock is free (fast acquire possible)
29 * NULL 1 lock is free and has waiters and the top waiter
30 * is going to take the lock*
31 * taskpointer 0 lock is held (fast release possible)
32 * taskpointer 1 lock is held and has waiters**
33 *
34 * The fast atomic compare exchange based acquire and release is only
35 * possible when bit 0 of lock->owner is 0.
36 *
37 * (*) It also can be a transitional state when grabbing the lock
38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
39 * we need to set the bit0 before looking at the lock, and the owner may be
40 * NULL in this small time, hence this can be a transitional state.
41 *
42 * (**) There is a small time when bit 0 is set but there are no
43 * waiters. This can happen when grabbing the lock in the slow path.
44 * To prevent a cmpxchg of the owner releasing the lock, we need to
45 * set this bit before looking at the lock.
46 */
47
48 static void
49 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
50 {
51 unsigned long val = (unsigned long)owner;
52
53 if (rt_mutex_has_waiters(lock))
54 val |= RT_MUTEX_HAS_WAITERS;
55
56 lock->owner = (struct task_struct *)val;
57 }
58
59 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
60 {
61 lock->owner = (struct task_struct *)
62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
63 }
64
65 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
66 {
67 if (!rt_mutex_has_waiters(lock))
68 clear_rt_mutex_waiters(lock);
69 }
70
71 /*
72 * We can speed up the acquire/release, if the architecture
73 * supports cmpxchg and if there's no debugging state to be set up
74 */
75 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
76 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
77 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
78 {
79 unsigned long owner, *p = (unsigned long *) &lock->owner;
80
81 do {
82 owner = *p;
83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
84 }
85 #else
86 # define rt_mutex_cmpxchg(l,c,n) (0)
87 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
88 {
89 lock->owner = (struct task_struct *)
90 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
91 }
92 #endif
93
94 /*
95 * Calculate task priority from the waiter list priority
96 *
97 * Return task->normal_prio when the waiter list is empty or when
98 * the waiter is not allowed to do priority boosting
99 */
100 int rt_mutex_getprio(struct task_struct *task)
101 {
102 if (likely(!task_has_pi_waiters(task)))
103 return task->normal_prio;
104
105 return min(task_top_pi_waiter(task)->pi_list_entry.prio,
106 task->normal_prio);
107 }
108
109 /*
110 * Adjust the priority of a task, after its pi_waiters got modified.
111 *
112 * This can be both boosting and unboosting. task->pi_lock must be held.
113 */
114 static void __rt_mutex_adjust_prio(struct task_struct *task)
115 {
116 int prio = rt_mutex_getprio(task);
117
118 if (task->prio != prio)
119 rt_mutex_setprio(task, prio);
120 }
121
122 /*
123 * Adjust task priority (undo boosting). Called from the exit path of
124 * rt_mutex_slowunlock() and rt_mutex_slowlock().
125 *
126 * (Note: We do this outside of the protection of lock->wait_lock to
127 * allow the lock to be taken while or before we readjust the priority
128 * of task. We do not use the spin_xx_mutex() variants here as we are
129 * outside of the debug path.)
130 */
131 static void rt_mutex_adjust_prio(struct task_struct *task)
132 {
133 unsigned long flags;
134
135 raw_spin_lock_irqsave(&task->pi_lock, flags);
136 __rt_mutex_adjust_prio(task);
137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
138 }
139
140 /*
141 * Max number of times we'll walk the boosting chain:
142 */
143 int max_lock_depth = 1024;
144
145 /*
146 * Adjust the priority chain. Also used for deadlock detection.
147 * Decreases task's usage by one - may thus free the task.
148 *
149 * @task: the task owning the mutex (owner) for which a chain walk is probably
150 * needed
151 * @deadlock_detect: do we have to carry out deadlock detection?
152 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
153 * things for a task that has just got its priority adjusted, and
154 * is waiting on a mutex)
155 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
156 * its priority to the mutex owner (can be NULL in the case
157 * depicted above or if the top waiter is gone away and we are
158 * actually deboosting the owner)
159 * @top_task: the current top waiter
160 *
161 * Returns 0 or -EDEADLK.
162 */
163 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
164 int deadlock_detect,
165 struct rt_mutex *orig_lock,
166 struct rt_mutex_waiter *orig_waiter,
167 struct task_struct *top_task)
168 {
169 struct rt_mutex *lock;
170 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
171 int detect_deadlock, ret = 0, depth = 0;
172 unsigned long flags;
173
174 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
175 deadlock_detect);
176
177 /*
178 * The (de)boosting is a step by step approach with a lot of
179 * pitfalls. We want this to be preemptible and we want hold a
180 * maximum of two locks per step. So we have to check
181 * carefully whether things change under us.
182 */
183 again:
184 if (++depth > max_lock_depth) {
185 static int prev_max;
186
187 /*
188 * Print this only once. If the admin changes the limit,
189 * print a new message when reaching the limit again.
190 */
191 if (prev_max != max_lock_depth) {
192 prev_max = max_lock_depth;
193 printk(KERN_WARNING "Maximum lock depth %d reached "
194 "task: %s (%d)\n", max_lock_depth,
195 top_task->comm, task_pid_nr(top_task));
196 }
197 put_task_struct(task);
198
199 return deadlock_detect ? -EDEADLK : 0;
200 }
201 retry:
202 /*
203 * Task can not go away as we did a get_task() before !
204 */
205 raw_spin_lock_irqsave(&task->pi_lock, flags);
206
207 waiter = task->pi_blocked_on;
208 /*
209 * Check whether the end of the boosting chain has been
210 * reached or the state of the chain has changed while we
211 * dropped the locks.
212 */
213 if (!waiter)
214 goto out_unlock_pi;
215
216 /*
217 * Check the orig_waiter state. After we dropped the locks,
218 * the previous owner of the lock might have released the lock.
219 */
220 if (orig_waiter && !rt_mutex_owner(orig_lock))
221 goto out_unlock_pi;
222
223 /*
224 * Drop out, when the task has no waiters. Note,
225 * top_waiter can be NULL, when we are in the deboosting
226 * mode!
227 */
228 if (top_waiter && (!task_has_pi_waiters(task) ||
229 top_waiter != task_top_pi_waiter(task)))
230 goto out_unlock_pi;
231
232 /*
233 * When deadlock detection is off then we check, if further
234 * priority adjustment is necessary.
235 */
236 if (!detect_deadlock && waiter->list_entry.prio == task->prio)
237 goto out_unlock_pi;
238
239 lock = waiter->lock;
240 if (!raw_spin_trylock(&lock->wait_lock)) {
241 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
242 cpu_relax();
243 goto retry;
244 }
245
246 /* Deadlock detection */
247 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
248 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
249 raw_spin_unlock(&lock->wait_lock);
250 ret = deadlock_detect ? -EDEADLK : 0;
251 goto out_unlock_pi;
252 }
253
254 top_waiter = rt_mutex_top_waiter(lock);
255
256 /* Requeue the waiter */
257 plist_del(&waiter->list_entry, &lock->wait_list);
258 waiter->list_entry.prio = task->prio;
259 plist_add(&waiter->list_entry, &lock->wait_list);
260
261 /* Release the task */
262 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
263 if (!rt_mutex_owner(lock)) {
264 /*
265 * If the requeue above changed the top waiter, then we need
266 * to wake the new top waiter up to try to get the lock.
267 */
268
269 if (top_waiter != rt_mutex_top_waiter(lock))
270 wake_up_process(rt_mutex_top_waiter(lock)->task);
271 raw_spin_unlock(&lock->wait_lock);
272 goto out_put_task;
273 }
274 put_task_struct(task);
275
276 /* Grab the next task */
277 task = rt_mutex_owner(lock);
278 get_task_struct(task);
279 raw_spin_lock_irqsave(&task->pi_lock, flags);
280
281 if (waiter == rt_mutex_top_waiter(lock)) {
282 /* Boost the owner */
283 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
284 waiter->pi_list_entry.prio = waiter->list_entry.prio;
285 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
286 __rt_mutex_adjust_prio(task);
287
288 } else if (top_waiter == waiter) {
289 /* Deboost the owner */
290 plist_del(&waiter->pi_list_entry, &task->pi_waiters);
291 waiter = rt_mutex_top_waiter(lock);
292 waiter->pi_list_entry.prio = waiter->list_entry.prio;
293 plist_add(&waiter->pi_list_entry, &task->pi_waiters);
294 __rt_mutex_adjust_prio(task);
295 }
296
297 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
298
299 top_waiter = rt_mutex_top_waiter(lock);
300 raw_spin_unlock(&lock->wait_lock);
301
302 if (!detect_deadlock && waiter != top_waiter)
303 goto out_put_task;
304
305 goto again;
306
307 out_unlock_pi:
308 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
309 out_put_task:
310 put_task_struct(task);
311
312 return ret;
313 }
314
315 /*
316 * Try to take an rt-mutex
317 *
318 * Must be called with lock->wait_lock held.
319 *
320 * @lock: the lock to be acquired.
321 * @task: the task which wants to acquire the lock
322 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL)
323 */
324 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
325 struct rt_mutex_waiter *waiter)
326 {
327 /*
328 * We have to be careful here if the atomic speedups are
329 * enabled, such that, when
330 * - no other waiter is on the lock
331 * - the lock has been released since we did the cmpxchg
332 * the lock can be released or taken while we are doing the
333 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
334 *
335 * The atomic acquire/release aware variant of
336 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
337 * the WAITERS bit, the atomic release / acquire can not
338 * happen anymore and lock->wait_lock protects us from the
339 * non-atomic case.
340 *
341 * Note, that this might set lock->owner =
342 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
343 * any more. This is fixed up when we take the ownership.
344 * This is the transitional state explained at the top of this file.
345 */
346 mark_rt_mutex_waiters(lock);
347
348 if (rt_mutex_owner(lock))
349 return 0;
350
351 /*
352 * It will get the lock because of one of these conditions:
353 * 1) there is no waiter
354 * 2) higher priority than waiters
355 * 3) it is top waiter
356 */
357 if (rt_mutex_has_waiters(lock)) {
358 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) {
359 if (!waiter || waiter != rt_mutex_top_waiter(lock))
360 return 0;
361 }
362 }
363
364 if (waiter || rt_mutex_has_waiters(lock)) {
365 unsigned long flags;
366 struct rt_mutex_waiter *top;
367
368 raw_spin_lock_irqsave(&task->pi_lock, flags);
369
370 /* remove the queued waiter. */
371 if (waiter) {
372 plist_del(&waiter->list_entry, &lock->wait_list);
373 task->pi_blocked_on = NULL;
374 }
375
376 /*
377 * We have to enqueue the top waiter(if it exists) into
378 * task->pi_waiters list.
379 */
380 if (rt_mutex_has_waiters(lock)) {
381 top = rt_mutex_top_waiter(lock);
382 top->pi_list_entry.prio = top->list_entry.prio;
383 plist_add(&top->pi_list_entry, &task->pi_waiters);
384 }
385 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
386 }
387
388 /* We got the lock. */
389 debug_rt_mutex_lock(lock);
390
391 rt_mutex_set_owner(lock, task);
392
393 rt_mutex_deadlock_account_lock(lock, task);
394
395 return 1;
396 }
397
398 /*
399 * Task blocks on lock.
400 *
401 * Prepare waiter and propagate pi chain
402 *
403 * This must be called with lock->wait_lock held.
404 */
405 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
406 struct rt_mutex_waiter *waiter,
407 struct task_struct *task,
408 int detect_deadlock)
409 {
410 struct task_struct *owner = rt_mutex_owner(lock);
411 struct rt_mutex_waiter *top_waiter = waiter;
412 unsigned long flags;
413 int chain_walk = 0, res;
414
415 raw_spin_lock_irqsave(&task->pi_lock, flags);
416 __rt_mutex_adjust_prio(task);
417 waiter->task = task;
418 waiter->lock = lock;
419 plist_node_init(&waiter->list_entry, task->prio);
420 plist_node_init(&waiter->pi_list_entry, task->prio);
421
422 /* Get the top priority waiter on the lock */
423 if (rt_mutex_has_waiters(lock))
424 top_waiter = rt_mutex_top_waiter(lock);
425 plist_add(&waiter->list_entry, &lock->wait_list);
426
427 task->pi_blocked_on = waiter;
428
429 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
430
431 if (!owner)
432 return 0;
433
434 if (waiter == rt_mutex_top_waiter(lock)) {
435 raw_spin_lock_irqsave(&owner->pi_lock, flags);
436 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
437 plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
438
439 __rt_mutex_adjust_prio(owner);
440 if (owner->pi_blocked_on)
441 chain_walk = 1;
442 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
443 }
444 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
445 chain_walk = 1;
446
447 if (!chain_walk)
448 return 0;
449
450 /*
451 * The owner can't disappear while holding a lock,
452 * so the owner struct is protected by wait_lock.
453 * Gets dropped in rt_mutex_adjust_prio_chain()!
454 */
455 get_task_struct(owner);
456
457 raw_spin_unlock(&lock->wait_lock);
458
459 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
460 task);
461
462 raw_spin_lock(&lock->wait_lock);
463
464 return res;
465 }
466
467 /*
468 * Wake up the next waiter on the lock.
469 *
470 * Remove the top waiter from the current tasks waiter list and wake it up.
471 *
472 * Called with lock->wait_lock held.
473 */
474 static void wakeup_next_waiter(struct rt_mutex *lock)
475 {
476 struct rt_mutex_waiter *waiter;
477 unsigned long flags;
478
479 raw_spin_lock_irqsave(&current->pi_lock, flags);
480
481 waiter = rt_mutex_top_waiter(lock);
482
483 /*
484 * Remove it from current->pi_waiters. We do not adjust a
485 * possible priority boost right now. We execute wakeup in the
486 * boosted mode and go back to normal after releasing
487 * lock->wait_lock.
488 */
489 plist_del(&waiter->pi_list_entry, &current->pi_waiters);
490
491 rt_mutex_set_owner(lock, NULL);
492
493 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
494
495 wake_up_process(waiter->task);
496 }
497
498 /*
499 * Remove a waiter from a lock and give up
500 *
501 * Must be called with lock->wait_lock held and
502 * have just failed to try_to_take_rt_mutex().
503 */
504 static void remove_waiter(struct rt_mutex *lock,
505 struct rt_mutex_waiter *waiter)
506 {
507 int first = (waiter == rt_mutex_top_waiter(lock));
508 struct task_struct *owner = rt_mutex_owner(lock);
509 unsigned long flags;
510 int chain_walk = 0;
511
512 raw_spin_lock_irqsave(&current->pi_lock, flags);
513 plist_del(&waiter->list_entry, &lock->wait_list);
514 current->pi_blocked_on = NULL;
515 raw_spin_unlock_irqrestore(&current->pi_lock, flags);
516
517 if (!owner)
518 return;
519
520 if (first) {
521
522 raw_spin_lock_irqsave(&owner->pi_lock, flags);
523
524 plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
525
526 if (rt_mutex_has_waiters(lock)) {
527 struct rt_mutex_waiter *next;
528
529 next = rt_mutex_top_waiter(lock);
530 plist_add(&next->pi_list_entry, &owner->pi_waiters);
531 }
532 __rt_mutex_adjust_prio(owner);
533
534 if (owner->pi_blocked_on)
535 chain_walk = 1;
536
537 raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
538 }
539
540 WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
541
542 if (!chain_walk)
543 return;
544
545 /* gets dropped in rt_mutex_adjust_prio_chain()! */
546 get_task_struct(owner);
547
548 raw_spin_unlock(&lock->wait_lock);
549
550 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
551
552 raw_spin_lock(&lock->wait_lock);
553 }
554
555 /*
556 * Recheck the pi chain, in case we got a priority setting
557 *
558 * Called from sched_setscheduler
559 */
560 void rt_mutex_adjust_pi(struct task_struct *task)
561 {
562 struct rt_mutex_waiter *waiter;
563 unsigned long flags;
564
565 raw_spin_lock_irqsave(&task->pi_lock, flags);
566
567 waiter = task->pi_blocked_on;
568 if (!waiter || waiter->list_entry.prio == task->prio) {
569 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
570 return;
571 }
572
573 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
574
575 /* gets dropped in rt_mutex_adjust_prio_chain()! */
576 get_task_struct(task);
577 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
578 }
579
580 /**
581 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
582 * @lock: the rt_mutex to take
583 * @state: the state the task should block in (TASK_INTERRUPTIBLE
584 * or TASK_UNINTERRUPTIBLE)
585 * @timeout: the pre-initialized and started timer, or NULL for none
586 * @waiter: the pre-initialized rt_mutex_waiter
587 *
588 * lock->wait_lock must be held by the caller.
589 */
590 static int __sched
591 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
592 struct hrtimer_sleeper *timeout,
593 struct rt_mutex_waiter *waiter)
594 {
595 int ret = 0;
596
597 for (;;) {
598 /* Try to acquire the lock: */
599 if (try_to_take_rt_mutex(lock, current, waiter))
600 break;
601
602 /*
603 * TASK_INTERRUPTIBLE checks for signals and
604 * timeout. Ignored otherwise.
605 */
606 if (unlikely(state == TASK_INTERRUPTIBLE)) {
607 /* Signal pending? */
608 if (signal_pending(current))
609 ret = -EINTR;
610 if (timeout && !timeout->task)
611 ret = -ETIMEDOUT;
612 if (ret)
613 break;
614 }
615
616 raw_spin_unlock(&lock->wait_lock);
617
618 debug_rt_mutex_print_deadlock(waiter);
619
620 schedule_rt_mutex(lock);
621
622 raw_spin_lock(&lock->wait_lock);
623 set_current_state(state);
624 }
625
626 return ret;
627 }
628
629 /*
630 * Slow path lock function:
631 */
632 static int __sched
633 rt_mutex_slowlock(struct rt_mutex *lock, int state,
634 struct hrtimer_sleeper *timeout,
635 int detect_deadlock)
636 {
637 struct rt_mutex_waiter waiter;
638 int ret = 0;
639
640 debug_rt_mutex_init_waiter(&waiter);
641
642 raw_spin_lock(&lock->wait_lock);
643
644 /* Try to acquire the lock again: */
645 if (try_to_take_rt_mutex(lock, current, NULL)) {
646 raw_spin_unlock(&lock->wait_lock);
647 return 0;
648 }
649
650 set_current_state(state);
651
652 /* Setup the timer, when timeout != NULL */
653 if (unlikely(timeout)) {
654 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
655 if (!hrtimer_active(&timeout->timer))
656 timeout->task = NULL;
657 }
658
659 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock);
660
661 if (likely(!ret))
662 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
663
664 set_current_state(TASK_RUNNING);
665
666 if (unlikely(ret))
667 remove_waiter(lock, &waiter);
668
669 /*
670 * try_to_take_rt_mutex() sets the waiter bit
671 * unconditionally. We might have to fix that up.
672 */
673 fixup_rt_mutex_waiters(lock);
674
675 raw_spin_unlock(&lock->wait_lock);
676
677 /* Remove pending timer: */
678 if (unlikely(timeout))
679 hrtimer_cancel(&timeout->timer);
680
681 debug_rt_mutex_free_waiter(&waiter);
682
683 return ret;
684 }
685
686 /*
687 * Slow path try-lock function:
688 */
689 static inline int
690 rt_mutex_slowtrylock(struct rt_mutex *lock)
691 {
692 int ret = 0;
693
694 raw_spin_lock(&lock->wait_lock);
695
696 if (likely(rt_mutex_owner(lock) != current)) {
697
698 ret = try_to_take_rt_mutex(lock, current, NULL);
699 /*
700 * try_to_take_rt_mutex() sets the lock waiters
701 * bit unconditionally. Clean this up.
702 */
703 fixup_rt_mutex_waiters(lock);
704 }
705
706 raw_spin_unlock(&lock->wait_lock);
707
708 return ret;
709 }
710
711 /*
712 * Slow path to release a rt-mutex:
713 */
714 static void __sched
715 rt_mutex_slowunlock(struct rt_mutex *lock)
716 {
717 raw_spin_lock(&lock->wait_lock);
718
719 debug_rt_mutex_unlock(lock);
720
721 rt_mutex_deadlock_account_unlock(current);
722
723 if (!rt_mutex_has_waiters(lock)) {
724 lock->owner = NULL;
725 raw_spin_unlock(&lock->wait_lock);
726 return;
727 }
728
729 wakeup_next_waiter(lock);
730
731 raw_spin_unlock(&lock->wait_lock);
732
733 /* Undo pi boosting if necessary: */
734 rt_mutex_adjust_prio(current);
735 }
736
737 /*
738 * debug aware fast / slowpath lock,trylock,unlock
739 *
740 * The atomic acquire/release ops are compiled away, when either the
741 * architecture does not support cmpxchg or when debugging is enabled.
742 */
743 static inline int
744 rt_mutex_fastlock(struct rt_mutex *lock, int state,
745 int detect_deadlock,
746 int (*slowfn)(struct rt_mutex *lock, int state,
747 struct hrtimer_sleeper *timeout,
748 int detect_deadlock))
749 {
750 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
751 rt_mutex_deadlock_account_lock(lock, current);
752 return 0;
753 } else
754 return slowfn(lock, state, NULL, detect_deadlock);
755 }
756
757 static inline int
758 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
759 struct hrtimer_sleeper *timeout, int detect_deadlock,
760 int (*slowfn)(struct rt_mutex *lock, int state,
761 struct hrtimer_sleeper *timeout,
762 int detect_deadlock))
763 {
764 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
765 rt_mutex_deadlock_account_lock(lock, current);
766 return 0;
767 } else
768 return slowfn(lock, state, timeout, detect_deadlock);
769 }
770
771 static inline int
772 rt_mutex_fasttrylock(struct rt_mutex *lock,
773 int (*slowfn)(struct rt_mutex *lock))
774 {
775 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
776 rt_mutex_deadlock_account_lock(lock, current);
777 return 1;
778 }
779 return slowfn(lock);
780 }
781
782 static inline void
783 rt_mutex_fastunlock(struct rt_mutex *lock,
784 void (*slowfn)(struct rt_mutex *lock))
785 {
786 if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
787 rt_mutex_deadlock_account_unlock(current);
788 else
789 slowfn(lock);
790 }
791
792 /**
793 * rt_mutex_lock - lock a rt_mutex
794 *
795 * @lock: the rt_mutex to be locked
796 */
797 void __sched rt_mutex_lock(struct rt_mutex *lock)
798 {
799 might_sleep();
800
801 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
802 }
803 EXPORT_SYMBOL_GPL(rt_mutex_lock);
804
805 /**
806 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
807 *
808 * @lock: the rt_mutex to be locked
809 * @detect_deadlock: deadlock detection on/off
810 *
811 * Returns:
812 * 0 on success
813 * -EINTR when interrupted by a signal
814 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
815 */
816 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
817 int detect_deadlock)
818 {
819 might_sleep();
820
821 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
822 detect_deadlock, rt_mutex_slowlock);
823 }
824 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
825
826 /**
827 * rt_mutex_timed_lock - lock a rt_mutex interruptible
828 * the timeout structure is provided
829 * by the caller
830 *
831 * @lock: the rt_mutex to be locked
832 * @timeout: timeout structure or NULL (no timeout)
833 * @detect_deadlock: deadlock detection on/off
834 *
835 * Returns:
836 * 0 on success
837 * -EINTR when interrupted by a signal
838 * -ETIMEDOUT when the timeout expired
839 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
840 */
841 int
842 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
843 int detect_deadlock)
844 {
845 might_sleep();
846
847 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
848 detect_deadlock, rt_mutex_slowlock);
849 }
850 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
851
852 /**
853 * rt_mutex_trylock - try to lock a rt_mutex
854 *
855 * @lock: the rt_mutex to be locked
856 *
857 * Returns 1 on success and 0 on contention
858 */
859 int __sched rt_mutex_trylock(struct rt_mutex *lock)
860 {
861 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
862 }
863 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
864
865 /**
866 * rt_mutex_unlock - unlock a rt_mutex
867 *
868 * @lock: the rt_mutex to be unlocked
869 */
870 void __sched rt_mutex_unlock(struct rt_mutex *lock)
871 {
872 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
873 }
874 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
875
876 /**
877 * rt_mutex_destroy - mark a mutex unusable
878 * @lock: the mutex to be destroyed
879 *
880 * This function marks the mutex uninitialized, and any subsequent
881 * use of the mutex is forbidden. The mutex must not be locked when
882 * this function is called.
883 */
884 void rt_mutex_destroy(struct rt_mutex *lock)
885 {
886 WARN_ON(rt_mutex_is_locked(lock));
887 #ifdef CONFIG_DEBUG_RT_MUTEXES
888 lock->magic = NULL;
889 #endif
890 }
891
892 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
893
894 /**
895 * __rt_mutex_init - initialize the rt lock
896 *
897 * @lock: the rt lock to be initialized
898 *
899 * Initialize the rt lock to unlocked state.
900 *
901 * Initializing of a locked rt lock is not allowed
902 */
903 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
904 {
905 lock->owner = NULL;
906 raw_spin_lock_init(&lock->wait_lock);
907 plist_head_init(&lock->wait_list);
908
909 debug_rt_mutex_init(lock, name);
910 }
911 EXPORT_SYMBOL_GPL(__rt_mutex_init);
912
913 /**
914 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
915 * proxy owner
916 *
917 * @lock: the rt_mutex to be locked
918 * @proxy_owner:the task to set as owner
919 *
920 * No locking. Caller has to do serializing itself
921 * Special API call for PI-futex support
922 */
923 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
924 struct task_struct *proxy_owner)
925 {
926 __rt_mutex_init(lock, NULL);
927 debug_rt_mutex_proxy_lock(lock, proxy_owner);
928 rt_mutex_set_owner(lock, proxy_owner);
929 rt_mutex_deadlock_account_lock(lock, proxy_owner);
930 }
931
932 /**
933 * rt_mutex_proxy_unlock - release a lock on behalf of owner
934 *
935 * @lock: the rt_mutex to be locked
936 *
937 * No locking. Caller has to do serializing itself
938 * Special API call for PI-futex support
939 */
940 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
941 struct task_struct *proxy_owner)
942 {
943 debug_rt_mutex_proxy_unlock(lock);
944 rt_mutex_set_owner(lock, NULL);
945 rt_mutex_deadlock_account_unlock(proxy_owner);
946 }
947
948 /**
949 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
950 * @lock: the rt_mutex to take
951 * @waiter: the pre-initialized rt_mutex_waiter
952 * @task: the task to prepare
953 * @detect_deadlock: perform deadlock detection (1) or not (0)
954 *
955 * Returns:
956 * 0 - task blocked on lock
957 * 1 - acquired the lock for task, caller should wake it up
958 * <0 - error
959 *
960 * Special API call for FUTEX_REQUEUE_PI support.
961 */
962 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
963 struct rt_mutex_waiter *waiter,
964 struct task_struct *task, int detect_deadlock)
965 {
966 int ret;
967
968 raw_spin_lock(&lock->wait_lock);
969
970 if (try_to_take_rt_mutex(lock, task, NULL)) {
971 raw_spin_unlock(&lock->wait_lock);
972 return 1;
973 }
974
975 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
976
977 if (ret && !rt_mutex_owner(lock)) {
978 /*
979 * Reset the return value. We might have
980 * returned with -EDEADLK and the owner
981 * released the lock while we were walking the
982 * pi chain. Let the waiter sort it out.
983 */
984 ret = 0;
985 }
986
987 if (unlikely(ret))
988 remove_waiter(lock, waiter);
989
990 raw_spin_unlock(&lock->wait_lock);
991
992 debug_rt_mutex_print_deadlock(waiter);
993
994 return ret;
995 }
996
997 /**
998 * rt_mutex_next_owner - return the next owner of the lock
999 *
1000 * @lock: the rt lock query
1001 *
1002 * Returns the next owner of the lock or NULL
1003 *
1004 * Caller has to serialize against other accessors to the lock
1005 * itself.
1006 *
1007 * Special API call for PI-futex support
1008 */
1009 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1010 {
1011 if (!rt_mutex_has_waiters(lock))
1012 return NULL;
1013
1014 return rt_mutex_top_waiter(lock)->task;
1015 }
1016
1017 /**
1018 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1019 * @lock: the rt_mutex we were woken on
1020 * @to: the timeout, null if none. hrtimer should already have
1021 * been started.
1022 * @waiter: the pre-initialized rt_mutex_waiter
1023 * @detect_deadlock: perform deadlock detection (1) or not (0)
1024 *
1025 * Complete the lock acquisition started our behalf by another thread.
1026 *
1027 * Returns:
1028 * 0 - success
1029 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1030 *
1031 * Special API call for PI-futex requeue support
1032 */
1033 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1034 struct hrtimer_sleeper *to,
1035 struct rt_mutex_waiter *waiter,
1036 int detect_deadlock)
1037 {
1038 int ret;
1039
1040 raw_spin_lock(&lock->wait_lock);
1041
1042 set_current_state(TASK_INTERRUPTIBLE);
1043
1044 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1045
1046 set_current_state(TASK_RUNNING);
1047
1048 if (unlikely(ret))
1049 remove_waiter(lock, waiter);
1050
1051 /*
1052 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1053 * have to fix that up.
1054 */
1055 fixup_rt_mutex_waiters(lock);
1056
1057 raw_spin_unlock(&lock->wait_lock);
1058
1059 return ret;
1060 }