]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/locking/rtmutex.c
locking/rtmutex: Decrapify __rt_mutex_init()
[mirror_ubuntu-jammy-kernel.git] / kernel / locking / rtmutex.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22
23 #include "rtmutex_common.h"
24
25 /*
26 * lock->owner state tracking:
27 *
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
30 *
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
37 *
38 * The fast atomic compare exchange based acquire and release is only
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
45 *
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
50 */
51
52 static void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55 unsigned long val = (unsigned long)owner;
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
61 }
62
63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68
69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138
139 /*
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
142 */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147 /*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161
162 /*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171 {
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202
203 #else
204 # define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205 # define rt_mutex_cmpxchg_release(l,c,n) (0)
206
207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212
213 /*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
218 __releases(lock->wait_lock)
219 {
220 lock->owner = NULL;
221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 return true;
223 }
224 #endif
225
226 /*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229 #define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232 static inline int
233 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235 {
236 if (left->prio < right->prio)
237 return 1;
238
239 /*
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
244 */
245 if (dl_prio(left->prio))
246 return dl_time_before(left->deadline, right->deadline);
247
248 return 0;
249 }
250
251 static inline int
252 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254 {
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268 }
269
270 #define __node_2_waiter(node) \
271 rb_entry((node), struct rt_mutex_waiter, tree_entry)
272
273 static inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
274 {
275 return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
276 }
277
278 static void
279 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
280 {
281 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
282 }
283
284 static void
285 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
286 {
287 if (RB_EMPTY_NODE(&waiter->tree_entry))
288 return;
289
290 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
291 RB_CLEAR_NODE(&waiter->tree_entry);
292 }
293
294 #define __node_2_pi_waiter(node) \
295 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
296
297 static inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
298 {
299 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
300 }
301
302 static void
303 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
304 {
305 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
306 }
307
308 static void
309 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
310 {
311 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
312 return;
313
314 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
315 RB_CLEAR_NODE(&waiter->pi_tree_entry);
316 }
317
318 static void rt_mutex_adjust_prio(struct task_struct *p)
319 {
320 struct task_struct *pi_task = NULL;
321
322 lockdep_assert_held(&p->pi_lock);
323
324 if (task_has_pi_waiters(p))
325 pi_task = task_top_pi_waiter(p)->task;
326
327 rt_mutex_setprio(p, pi_task);
328 }
329
330 /*
331 * Deadlock detection is conditional:
332 *
333 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
334 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
335 *
336 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
337 * conducted independent of the detect argument.
338 *
339 * If the waiter argument is NULL this indicates the deboost path and
340 * deadlock detection is disabled independent of the detect argument
341 * and the config settings.
342 */
343 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344 enum rtmutex_chainwalk chwalk)
345 {
346 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEX))
347 return waiter != NULL;
348 return chwalk == RT_MUTEX_FULL_CHAINWALK;
349 }
350
351 /*
352 * Max number of times we'll walk the boosting chain:
353 */
354 int max_lock_depth = 1024;
355
356 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
357 {
358 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
359 }
360
361 /*
362 * Adjust the priority chain. Also used for deadlock detection.
363 * Decreases task's usage by one - may thus free the task.
364 *
365 * @task: the task owning the mutex (owner) for which a chain walk is
366 * probably needed
367 * @chwalk: do we have to carry out deadlock detection?
368 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
369 * things for a task that has just got its priority adjusted, and
370 * is waiting on a mutex)
371 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
372 * we dropped its pi_lock. Is never dereferenced, only used for
373 * comparison to detect lock chain changes.
374 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
375 * its priority to the mutex owner (can be NULL in the case
376 * depicted above or if the top waiter is gone away and we are
377 * actually deboosting the owner)
378 * @top_task: the current top waiter
379 *
380 * Returns 0 or -EDEADLK.
381 *
382 * Chain walk basics and protection scope
383 *
384 * [R] refcount on task
385 * [P] task->pi_lock held
386 * [L] rtmutex->wait_lock held
387 *
388 * Step Description Protected by
389 * function arguments:
390 * @task [R]
391 * @orig_lock if != NULL @top_task is blocked on it
392 * @next_lock Unprotected. Cannot be
393 * dereferenced. Only used for
394 * comparison.
395 * @orig_waiter if != NULL @top_task is blocked on it
396 * @top_task current, or in case of proxy
397 * locking protected by calling
398 * code
399 * again:
400 * loop_sanity_check();
401 * retry:
402 * [1] lock(task->pi_lock); [R] acquire [P]
403 * [2] waiter = task->pi_blocked_on; [P]
404 * [3] check_exit_conditions_1(); [P]
405 * [4] lock = waiter->lock; [P]
406 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
407 * unlock(task->pi_lock); release [P]
408 * goto retry;
409 * }
410 * [6] check_exit_conditions_2(); [P] + [L]
411 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
412 * [8] unlock(task->pi_lock); release [P]
413 * put_task_struct(task); release [R]
414 * [9] check_exit_conditions_3(); [L]
415 * [10] task = owner(lock); [L]
416 * get_task_struct(task); [L] acquire [R]
417 * lock(task->pi_lock); [L] acquire [P]
418 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
419 * [12] check_exit_conditions_4(); [P] + [L]
420 * [13] unlock(task->pi_lock); release [P]
421 * unlock(lock->wait_lock); release [L]
422 * goto again;
423 */
424 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
425 enum rtmutex_chainwalk chwalk,
426 struct rt_mutex *orig_lock,
427 struct rt_mutex *next_lock,
428 struct rt_mutex_waiter *orig_waiter,
429 struct task_struct *top_task)
430 {
431 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
432 struct rt_mutex_waiter *prerequeue_top_waiter;
433 int ret = 0, depth = 0;
434 struct rt_mutex *lock;
435 bool detect_deadlock;
436 bool requeue = true;
437
438 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
439
440 /*
441 * The (de)boosting is a step by step approach with a lot of
442 * pitfalls. We want this to be preemptible and we want hold a
443 * maximum of two locks per step. So we have to check
444 * carefully whether things change under us.
445 */
446 again:
447 /*
448 * We limit the lock chain length for each invocation.
449 */
450 if (++depth > max_lock_depth) {
451 static int prev_max;
452
453 /*
454 * Print this only once. If the admin changes the limit,
455 * print a new message when reaching the limit again.
456 */
457 if (prev_max != max_lock_depth) {
458 prev_max = max_lock_depth;
459 printk(KERN_WARNING "Maximum lock depth %d reached "
460 "task: %s (%d)\n", max_lock_depth,
461 top_task->comm, task_pid_nr(top_task));
462 }
463 put_task_struct(task);
464
465 return -EDEADLK;
466 }
467
468 /*
469 * We are fully preemptible here and only hold the refcount on
470 * @task. So everything can have changed under us since the
471 * caller or our own code below (goto retry/again) dropped all
472 * locks.
473 */
474 retry:
475 /*
476 * [1] Task cannot go away as we did a get_task() before !
477 */
478 raw_spin_lock_irq(&task->pi_lock);
479
480 /*
481 * [2] Get the waiter on which @task is blocked on.
482 */
483 waiter = task->pi_blocked_on;
484
485 /*
486 * [3] check_exit_conditions_1() protected by task->pi_lock.
487 */
488
489 /*
490 * Check whether the end of the boosting chain has been
491 * reached or the state of the chain has changed while we
492 * dropped the locks.
493 */
494 if (!waiter)
495 goto out_unlock_pi;
496
497 /*
498 * Check the orig_waiter state. After we dropped the locks,
499 * the previous owner of the lock might have released the lock.
500 */
501 if (orig_waiter && !rt_mutex_owner(orig_lock))
502 goto out_unlock_pi;
503
504 /*
505 * We dropped all locks after taking a refcount on @task, so
506 * the task might have moved on in the lock chain or even left
507 * the chain completely and blocks now on an unrelated lock or
508 * on @orig_lock.
509 *
510 * We stored the lock on which @task was blocked in @next_lock,
511 * so we can detect the chain change.
512 */
513 if (next_lock != waiter->lock)
514 goto out_unlock_pi;
515
516 /*
517 * Drop out, when the task has no waiters. Note,
518 * top_waiter can be NULL, when we are in the deboosting
519 * mode!
520 */
521 if (top_waiter) {
522 if (!task_has_pi_waiters(task))
523 goto out_unlock_pi;
524 /*
525 * If deadlock detection is off, we stop here if we
526 * are not the top pi waiter of the task. If deadlock
527 * detection is enabled we continue, but stop the
528 * requeueing in the chain walk.
529 */
530 if (top_waiter != task_top_pi_waiter(task)) {
531 if (!detect_deadlock)
532 goto out_unlock_pi;
533 else
534 requeue = false;
535 }
536 }
537
538 /*
539 * If the waiter priority is the same as the task priority
540 * then there is no further priority adjustment necessary. If
541 * deadlock detection is off, we stop the chain walk. If its
542 * enabled we continue, but stop the requeueing in the chain
543 * walk.
544 */
545 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
546 if (!detect_deadlock)
547 goto out_unlock_pi;
548 else
549 requeue = false;
550 }
551
552 /*
553 * [4] Get the next lock
554 */
555 lock = waiter->lock;
556 /*
557 * [5] We need to trylock here as we are holding task->pi_lock,
558 * which is the reverse lock order versus the other rtmutex
559 * operations.
560 */
561 if (!raw_spin_trylock(&lock->wait_lock)) {
562 raw_spin_unlock_irq(&task->pi_lock);
563 cpu_relax();
564 goto retry;
565 }
566
567 /*
568 * [6] check_exit_conditions_2() protected by task->pi_lock and
569 * lock->wait_lock.
570 *
571 * Deadlock detection. If the lock is the same as the original
572 * lock which caused us to walk the lock chain or if the
573 * current lock is owned by the task which initiated the chain
574 * walk, we detected a deadlock.
575 */
576 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
577 raw_spin_unlock(&lock->wait_lock);
578 ret = -EDEADLK;
579 goto out_unlock_pi;
580 }
581
582 /*
583 * If we just follow the lock chain for deadlock detection, no
584 * need to do all the requeue operations. To avoid a truckload
585 * of conditionals around the various places below, just do the
586 * minimum chain walk checks.
587 */
588 if (!requeue) {
589 /*
590 * No requeue[7] here. Just release @task [8]
591 */
592 raw_spin_unlock(&task->pi_lock);
593 put_task_struct(task);
594
595 /*
596 * [9] check_exit_conditions_3 protected by lock->wait_lock.
597 * If there is no owner of the lock, end of chain.
598 */
599 if (!rt_mutex_owner(lock)) {
600 raw_spin_unlock_irq(&lock->wait_lock);
601 return 0;
602 }
603
604 /* [10] Grab the next task, i.e. owner of @lock */
605 task = get_task_struct(rt_mutex_owner(lock));
606 raw_spin_lock(&task->pi_lock);
607
608 /*
609 * No requeue [11] here. We just do deadlock detection.
610 *
611 * [12] Store whether owner is blocked
612 * itself. Decision is made after dropping the locks
613 */
614 next_lock = task_blocked_on_lock(task);
615 /*
616 * Get the top waiter for the next iteration
617 */
618 top_waiter = rt_mutex_top_waiter(lock);
619
620 /* [13] Drop locks */
621 raw_spin_unlock(&task->pi_lock);
622 raw_spin_unlock_irq(&lock->wait_lock);
623
624 /* If owner is not blocked, end of chain. */
625 if (!next_lock)
626 goto out_put_task;
627 goto again;
628 }
629
630 /*
631 * Store the current top waiter before doing the requeue
632 * operation on @lock. We need it for the boost/deboost
633 * decision below.
634 */
635 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
636
637 /* [7] Requeue the waiter in the lock waiter tree. */
638 rt_mutex_dequeue(lock, waiter);
639
640 /*
641 * Update the waiter prio fields now that we're dequeued.
642 *
643 * These values can have changed through either:
644 *
645 * sys_sched_set_scheduler() / sys_sched_setattr()
646 *
647 * or
648 *
649 * DL CBS enforcement advancing the effective deadline.
650 *
651 * Even though pi_waiters also uses these fields, and that tree is only
652 * updated in [11], we can do this here, since we hold [L], which
653 * serializes all pi_waiters access and rb_erase() does not care about
654 * the values of the node being removed.
655 */
656 waiter->prio = task->prio;
657 waiter->deadline = task->dl.deadline;
658
659 rt_mutex_enqueue(lock, waiter);
660
661 /* [8] Release the task */
662 raw_spin_unlock(&task->pi_lock);
663 put_task_struct(task);
664
665 /*
666 * [9] check_exit_conditions_3 protected by lock->wait_lock.
667 *
668 * We must abort the chain walk if there is no lock owner even
669 * in the dead lock detection case, as we have nothing to
670 * follow here. This is the end of the chain we are walking.
671 */
672 if (!rt_mutex_owner(lock)) {
673 /*
674 * If the requeue [7] above changed the top waiter,
675 * then we need to wake the new top waiter up to try
676 * to get the lock.
677 */
678 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
679 wake_up_process(rt_mutex_top_waiter(lock)->task);
680 raw_spin_unlock_irq(&lock->wait_lock);
681 return 0;
682 }
683
684 /* [10] Grab the next task, i.e. the owner of @lock */
685 task = get_task_struct(rt_mutex_owner(lock));
686 raw_spin_lock(&task->pi_lock);
687
688 /* [11] requeue the pi waiters if necessary */
689 if (waiter == rt_mutex_top_waiter(lock)) {
690 /*
691 * The waiter became the new top (highest priority)
692 * waiter on the lock. Replace the previous top waiter
693 * in the owner tasks pi waiters tree with this waiter
694 * and adjust the priority of the owner.
695 */
696 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
697 rt_mutex_enqueue_pi(task, waiter);
698 rt_mutex_adjust_prio(task);
699
700 } else if (prerequeue_top_waiter == waiter) {
701 /*
702 * The waiter was the top waiter on the lock, but is
703 * no longer the top priority waiter. Replace waiter in
704 * the owner tasks pi waiters tree with the new top
705 * (highest priority) waiter and adjust the priority
706 * of the owner.
707 * The new top waiter is stored in @waiter so that
708 * @waiter == @top_waiter evaluates to true below and
709 * we continue to deboost the rest of the chain.
710 */
711 rt_mutex_dequeue_pi(task, waiter);
712 waiter = rt_mutex_top_waiter(lock);
713 rt_mutex_enqueue_pi(task, waiter);
714 rt_mutex_adjust_prio(task);
715 } else {
716 /*
717 * Nothing changed. No need to do any priority
718 * adjustment.
719 */
720 }
721
722 /*
723 * [12] check_exit_conditions_4() protected by task->pi_lock
724 * and lock->wait_lock. The actual decisions are made after we
725 * dropped the locks.
726 *
727 * Check whether the task which owns the current lock is pi
728 * blocked itself. If yes we store a pointer to the lock for
729 * the lock chain change detection above. After we dropped
730 * task->pi_lock next_lock cannot be dereferenced anymore.
731 */
732 next_lock = task_blocked_on_lock(task);
733 /*
734 * Store the top waiter of @lock for the end of chain walk
735 * decision below.
736 */
737 top_waiter = rt_mutex_top_waiter(lock);
738
739 /* [13] Drop the locks */
740 raw_spin_unlock(&task->pi_lock);
741 raw_spin_unlock_irq(&lock->wait_lock);
742
743 /*
744 * Make the actual exit decisions [12], based on the stored
745 * values.
746 *
747 * We reached the end of the lock chain. Stop right here. No
748 * point to go back just to figure that out.
749 */
750 if (!next_lock)
751 goto out_put_task;
752
753 /*
754 * If the current waiter is not the top waiter on the lock,
755 * then we can stop the chain walk here if we are not in full
756 * deadlock detection mode.
757 */
758 if (!detect_deadlock && waiter != top_waiter)
759 goto out_put_task;
760
761 goto again;
762
763 out_unlock_pi:
764 raw_spin_unlock_irq(&task->pi_lock);
765 out_put_task:
766 put_task_struct(task);
767
768 return ret;
769 }
770
771 /*
772 * Try to take an rt-mutex
773 *
774 * Must be called with lock->wait_lock held and interrupts disabled
775 *
776 * @lock: The lock to be acquired.
777 * @task: The task which wants to acquire the lock
778 * @waiter: The waiter that is queued to the lock's wait tree if the
779 * callsite called task_blocked_on_lock(), otherwise NULL
780 */
781 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
782 struct rt_mutex_waiter *waiter)
783 {
784 lockdep_assert_held(&lock->wait_lock);
785
786 /*
787 * Before testing whether we can acquire @lock, we set the
788 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
789 * other tasks which try to modify @lock into the slow path
790 * and they serialize on @lock->wait_lock.
791 *
792 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
793 * as explained at the top of this file if and only if:
794 *
795 * - There is a lock owner. The caller must fixup the
796 * transient state if it does a trylock or leaves the lock
797 * function due to a signal or timeout.
798 *
799 * - @task acquires the lock and there are no other
800 * waiters. This is undone in rt_mutex_set_owner(@task) at
801 * the end of this function.
802 */
803 mark_rt_mutex_waiters(lock);
804
805 /*
806 * If @lock has an owner, give up.
807 */
808 if (rt_mutex_owner(lock))
809 return 0;
810
811 /*
812 * If @waiter != NULL, @task has already enqueued the waiter
813 * into @lock waiter tree. If @waiter == NULL then this is a
814 * trylock attempt.
815 */
816 if (waiter) {
817 /*
818 * If waiter is not the highest priority waiter of
819 * @lock, give up.
820 */
821 if (waiter != rt_mutex_top_waiter(lock))
822 return 0;
823
824 /*
825 * We can acquire the lock. Remove the waiter from the
826 * lock waiters tree.
827 */
828 rt_mutex_dequeue(lock, waiter);
829
830 } else {
831 /*
832 * If the lock has waiters already we check whether @task is
833 * eligible to take over the lock.
834 *
835 * If there are no other waiters, @task can acquire
836 * the lock. @task->pi_blocked_on is NULL, so it does
837 * not need to be dequeued.
838 */
839 if (rt_mutex_has_waiters(lock)) {
840 /*
841 * If @task->prio is greater than or equal to
842 * the top waiter priority (kernel view),
843 * @task lost.
844 */
845 if (!rt_mutex_waiter_less(task_to_waiter(task),
846 rt_mutex_top_waiter(lock)))
847 return 0;
848
849 /*
850 * The current top waiter stays enqueued. We
851 * don't have to change anything in the lock
852 * waiters order.
853 */
854 } else {
855 /*
856 * No waiters. Take the lock without the
857 * pi_lock dance.@task->pi_blocked_on is NULL
858 * and we have no waiters to enqueue in @task
859 * pi waiters tree.
860 */
861 goto takeit;
862 }
863 }
864
865 /*
866 * Clear @task->pi_blocked_on. Requires protection by
867 * @task->pi_lock. Redundant operation for the @waiter == NULL
868 * case, but conditionals are more expensive than a redundant
869 * store.
870 */
871 raw_spin_lock(&task->pi_lock);
872 task->pi_blocked_on = NULL;
873 /*
874 * Finish the lock acquisition. @task is the new owner. If
875 * other waiters exist we have to insert the highest priority
876 * waiter into @task->pi_waiters tree.
877 */
878 if (rt_mutex_has_waiters(lock))
879 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
880 raw_spin_unlock(&task->pi_lock);
881
882 takeit:
883 /*
884 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
885 * are still waiters or clears it.
886 */
887 rt_mutex_set_owner(lock, task);
888
889 return 1;
890 }
891
892 /*
893 * Task blocks on lock.
894 *
895 * Prepare waiter and propagate pi chain
896 *
897 * This must be called with lock->wait_lock held and interrupts disabled
898 */
899 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
900 struct rt_mutex_waiter *waiter,
901 struct task_struct *task,
902 enum rtmutex_chainwalk chwalk)
903 {
904 struct task_struct *owner = rt_mutex_owner(lock);
905 struct rt_mutex_waiter *top_waiter = waiter;
906 struct rt_mutex *next_lock;
907 int chain_walk = 0, res;
908
909 lockdep_assert_held(&lock->wait_lock);
910
911 /*
912 * Early deadlock detection. We really don't want the task to
913 * enqueue on itself just to untangle the mess later. It's not
914 * only an optimization. We drop the locks, so another waiter
915 * can come in before the chain walk detects the deadlock. So
916 * the other will detect the deadlock and return -EDEADLOCK,
917 * which is wrong, as the other waiter is not in a deadlock
918 * situation.
919 */
920 if (owner == task)
921 return -EDEADLK;
922
923 raw_spin_lock(&task->pi_lock);
924 waiter->task = task;
925 waiter->lock = lock;
926 waiter->prio = task->prio;
927 waiter->deadline = task->dl.deadline;
928
929 /* Get the top priority waiter on the lock */
930 if (rt_mutex_has_waiters(lock))
931 top_waiter = rt_mutex_top_waiter(lock);
932 rt_mutex_enqueue(lock, waiter);
933
934 task->pi_blocked_on = waiter;
935
936 raw_spin_unlock(&task->pi_lock);
937
938 if (!owner)
939 return 0;
940
941 raw_spin_lock(&owner->pi_lock);
942 if (waiter == rt_mutex_top_waiter(lock)) {
943 rt_mutex_dequeue_pi(owner, top_waiter);
944 rt_mutex_enqueue_pi(owner, waiter);
945
946 rt_mutex_adjust_prio(owner);
947 if (owner->pi_blocked_on)
948 chain_walk = 1;
949 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
950 chain_walk = 1;
951 }
952
953 /* Store the lock on which owner is blocked or NULL */
954 next_lock = task_blocked_on_lock(owner);
955
956 raw_spin_unlock(&owner->pi_lock);
957 /*
958 * Even if full deadlock detection is on, if the owner is not
959 * blocked itself, we can avoid finding this out in the chain
960 * walk.
961 */
962 if (!chain_walk || !next_lock)
963 return 0;
964
965 /*
966 * The owner can't disappear while holding a lock,
967 * so the owner struct is protected by wait_lock.
968 * Gets dropped in rt_mutex_adjust_prio_chain()!
969 */
970 get_task_struct(owner);
971
972 raw_spin_unlock_irq(&lock->wait_lock);
973
974 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
975 next_lock, waiter, task);
976
977 raw_spin_lock_irq(&lock->wait_lock);
978
979 return res;
980 }
981
982 /*
983 * Remove the top waiter from the current tasks pi waiter tree and
984 * queue it up.
985 *
986 * Called with lock->wait_lock held and interrupts disabled.
987 */
988 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
989 struct rt_mutex *lock)
990 {
991 struct rt_mutex_waiter *waiter;
992
993 raw_spin_lock(&current->pi_lock);
994
995 waiter = rt_mutex_top_waiter(lock);
996
997 /*
998 * Remove it from current->pi_waiters and deboost.
999 *
1000 * We must in fact deboost here in order to ensure we call
1001 * rt_mutex_setprio() to update p->pi_top_task before the
1002 * task unblocks.
1003 */
1004 rt_mutex_dequeue_pi(current, waiter);
1005 rt_mutex_adjust_prio(current);
1006
1007 /*
1008 * As we are waking up the top waiter, and the waiter stays
1009 * queued on the lock until it gets the lock, this lock
1010 * obviously has waiters. Just set the bit here and this has
1011 * the added benefit of forcing all new tasks into the
1012 * slow path making sure no task of lower priority than
1013 * the top waiter can steal this lock.
1014 */
1015 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1016
1017 /*
1018 * We deboosted before waking the top waiter task such that we don't
1019 * run two tasks with the 'same' priority (and ensure the
1020 * p->pi_top_task pointer points to a blocked task). This however can
1021 * lead to priority inversion if we would get preempted after the
1022 * deboost but before waking our donor task, hence the preempt_disable()
1023 * before unlock.
1024 *
1025 * Pairs with preempt_enable() in rt_mutex_postunlock();
1026 */
1027 preempt_disable();
1028 wake_q_add(wake_q, waiter->task);
1029 raw_spin_unlock(&current->pi_lock);
1030 }
1031
1032 /*
1033 * Remove a waiter from a lock and give up
1034 *
1035 * Must be called with lock->wait_lock held and interrupts disabled. I must
1036 * have just failed to try_to_take_rt_mutex().
1037 */
1038 static void remove_waiter(struct rt_mutex *lock,
1039 struct rt_mutex_waiter *waiter)
1040 {
1041 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1042 struct task_struct *owner = rt_mutex_owner(lock);
1043 struct rt_mutex *next_lock;
1044
1045 lockdep_assert_held(&lock->wait_lock);
1046
1047 raw_spin_lock(&current->pi_lock);
1048 rt_mutex_dequeue(lock, waiter);
1049 current->pi_blocked_on = NULL;
1050 raw_spin_unlock(&current->pi_lock);
1051
1052 /*
1053 * Only update priority if the waiter was the highest priority
1054 * waiter of the lock and there is an owner to update.
1055 */
1056 if (!owner || !is_top_waiter)
1057 return;
1058
1059 raw_spin_lock(&owner->pi_lock);
1060
1061 rt_mutex_dequeue_pi(owner, waiter);
1062
1063 if (rt_mutex_has_waiters(lock))
1064 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1065
1066 rt_mutex_adjust_prio(owner);
1067
1068 /* Store the lock on which owner is blocked or NULL */
1069 next_lock = task_blocked_on_lock(owner);
1070
1071 raw_spin_unlock(&owner->pi_lock);
1072
1073 /*
1074 * Don't walk the chain, if the owner task is not blocked
1075 * itself.
1076 */
1077 if (!next_lock)
1078 return;
1079
1080 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1081 get_task_struct(owner);
1082
1083 raw_spin_unlock_irq(&lock->wait_lock);
1084
1085 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1086 next_lock, NULL, current);
1087
1088 raw_spin_lock_irq(&lock->wait_lock);
1089 }
1090
1091 /*
1092 * Recheck the pi chain, in case we got a priority setting
1093 *
1094 * Called from sched_setscheduler
1095 */
1096 void rt_mutex_adjust_pi(struct task_struct *task)
1097 {
1098 struct rt_mutex_waiter *waiter;
1099 struct rt_mutex *next_lock;
1100 unsigned long flags;
1101
1102 raw_spin_lock_irqsave(&task->pi_lock, flags);
1103
1104 waiter = task->pi_blocked_on;
1105 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1106 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1107 return;
1108 }
1109 next_lock = waiter->lock;
1110 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1111
1112 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1113 get_task_struct(task);
1114
1115 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1116 next_lock, NULL, task);
1117 }
1118
1119 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1120 {
1121 debug_rt_mutex_init_waiter(waiter);
1122 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1123 RB_CLEAR_NODE(&waiter->tree_entry);
1124 waiter->task = NULL;
1125 }
1126
1127 /**
1128 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1129 * @lock: the rt_mutex to take
1130 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1131 * or TASK_UNINTERRUPTIBLE)
1132 * @timeout: the pre-initialized and started timer, or NULL for none
1133 * @waiter: the pre-initialized rt_mutex_waiter
1134 *
1135 * Must be called with lock->wait_lock held and interrupts disabled
1136 */
1137 static int __sched
1138 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1139 struct hrtimer_sleeper *timeout,
1140 struct rt_mutex_waiter *waiter)
1141 {
1142 int ret = 0;
1143
1144 for (;;) {
1145 /* Try to acquire the lock: */
1146 if (try_to_take_rt_mutex(lock, current, waiter))
1147 break;
1148
1149 /*
1150 * TASK_INTERRUPTIBLE checks for signals and
1151 * timeout. Ignored otherwise.
1152 */
1153 if (likely(state == TASK_INTERRUPTIBLE)) {
1154 /* Signal pending? */
1155 if (signal_pending(current))
1156 ret = -EINTR;
1157 if (timeout && !timeout->task)
1158 ret = -ETIMEDOUT;
1159 if (ret)
1160 break;
1161 }
1162
1163 raw_spin_unlock_irq(&lock->wait_lock);
1164
1165 schedule();
1166
1167 raw_spin_lock_irq(&lock->wait_lock);
1168 set_current_state(state);
1169 }
1170
1171 __set_current_state(TASK_RUNNING);
1172 return ret;
1173 }
1174
1175 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1176 struct rt_mutex_waiter *w)
1177 {
1178 /*
1179 * If the result is not -EDEADLOCK or the caller requested
1180 * deadlock detection, nothing to do here.
1181 */
1182 if (res != -EDEADLOCK || detect_deadlock)
1183 return;
1184
1185 /*
1186 * Yell loudly and stop the task right here.
1187 */
1188 WARN(1, "rtmutex deadlock detected\n");
1189 while (1) {
1190 set_current_state(TASK_INTERRUPTIBLE);
1191 schedule();
1192 }
1193 }
1194
1195 /*
1196 * Slow path lock function:
1197 */
1198 static int __sched
1199 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1200 struct hrtimer_sleeper *timeout,
1201 enum rtmutex_chainwalk chwalk)
1202 {
1203 struct rt_mutex_waiter waiter;
1204 unsigned long flags;
1205 int ret = 0;
1206
1207 rt_mutex_init_waiter(&waiter);
1208
1209 /*
1210 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1211 * be called in early boot if the cmpxchg() fast path is disabled
1212 * (debug, no architecture support). In this case we will acquire the
1213 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1214 * enable interrupts in that early boot case. So we need to use the
1215 * irqsave/restore variants.
1216 */
1217 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1218
1219 /* Try to acquire the lock again: */
1220 if (try_to_take_rt_mutex(lock, current, NULL)) {
1221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1222 return 0;
1223 }
1224
1225 set_current_state(state);
1226
1227 /* Setup the timer, when timeout != NULL */
1228 if (unlikely(timeout))
1229 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1230
1231 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1232
1233 if (likely(!ret))
1234 /* sleep on the mutex */
1235 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1236
1237 if (unlikely(ret)) {
1238 __set_current_state(TASK_RUNNING);
1239 remove_waiter(lock, &waiter);
1240 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1241 }
1242
1243 /*
1244 * try_to_take_rt_mutex() sets the waiter bit
1245 * unconditionally. We might have to fix that up.
1246 */
1247 fixup_rt_mutex_waiters(lock);
1248
1249 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1250
1251 /* Remove pending timer: */
1252 if (unlikely(timeout))
1253 hrtimer_cancel(&timeout->timer);
1254
1255 debug_rt_mutex_free_waiter(&waiter);
1256
1257 return ret;
1258 }
1259
1260 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1261 {
1262 int ret = try_to_take_rt_mutex(lock, current, NULL);
1263
1264 /*
1265 * try_to_take_rt_mutex() sets the lock waiters bit
1266 * unconditionally. Clean this up.
1267 */
1268 fixup_rt_mutex_waiters(lock);
1269
1270 return ret;
1271 }
1272
1273 /*
1274 * Slow path try-lock function:
1275 */
1276 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1277 {
1278 unsigned long flags;
1279 int ret;
1280
1281 /*
1282 * If the lock already has an owner we fail to get the lock.
1283 * This can be done without taking the @lock->wait_lock as
1284 * it is only being read, and this is a trylock anyway.
1285 */
1286 if (rt_mutex_owner(lock))
1287 return 0;
1288
1289 /*
1290 * The mutex has currently no owner. Lock the wait lock and try to
1291 * acquire the lock. We use irqsave here to support early boot calls.
1292 */
1293 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1294
1295 ret = __rt_mutex_slowtrylock(lock);
1296
1297 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1298
1299 return ret;
1300 }
1301
1302 /*
1303 * Slow path to release a rt-mutex.
1304 *
1305 * Return whether the current task needs to call rt_mutex_postunlock().
1306 */
1307 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1308 struct wake_q_head *wake_q)
1309 {
1310 unsigned long flags;
1311
1312 /* irqsave required to support early boot calls */
1313 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1314
1315 debug_rt_mutex_unlock(lock);
1316
1317 /*
1318 * We must be careful here if the fast path is enabled. If we
1319 * have no waiters queued we cannot set owner to NULL here
1320 * because of:
1321 *
1322 * foo->lock->owner = NULL;
1323 * rtmutex_lock(foo->lock); <- fast path
1324 * free = atomic_dec_and_test(foo->refcnt);
1325 * rtmutex_unlock(foo->lock); <- fast path
1326 * if (free)
1327 * kfree(foo);
1328 * raw_spin_unlock(foo->lock->wait_lock);
1329 *
1330 * So for the fastpath enabled kernel:
1331 *
1332 * Nothing can set the waiters bit as long as we hold
1333 * lock->wait_lock. So we do the following sequence:
1334 *
1335 * owner = rt_mutex_owner(lock);
1336 * clear_rt_mutex_waiters(lock);
1337 * raw_spin_unlock(&lock->wait_lock);
1338 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1339 * return;
1340 * goto retry;
1341 *
1342 * The fastpath disabled variant is simple as all access to
1343 * lock->owner is serialized by lock->wait_lock:
1344 *
1345 * lock->owner = NULL;
1346 * raw_spin_unlock(&lock->wait_lock);
1347 */
1348 while (!rt_mutex_has_waiters(lock)) {
1349 /* Drops lock->wait_lock ! */
1350 if (unlock_rt_mutex_safe(lock, flags) == true)
1351 return false;
1352 /* Relock the rtmutex and try again */
1353 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1354 }
1355
1356 /*
1357 * The wakeup next waiter path does not suffer from the above
1358 * race. See the comments there.
1359 *
1360 * Queue the next waiter for wakeup once we release the wait_lock.
1361 */
1362 mark_wakeup_next_waiter(wake_q, lock);
1363 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1364
1365 return true; /* call rt_mutex_postunlock() */
1366 }
1367
1368 /*
1369 * debug aware fast / slowpath lock,trylock,unlock
1370 *
1371 * The atomic acquire/release ops are compiled away, when either the
1372 * architecture does not support cmpxchg or when debugging is enabled.
1373 */
1374 static inline int
1375 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1376 int (*slowfn)(struct rt_mutex *lock, int state,
1377 struct hrtimer_sleeper *timeout,
1378 enum rtmutex_chainwalk chwalk))
1379 {
1380 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1381 return 0;
1382
1383 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1384 }
1385
1386 static inline int
1387 rt_mutex_fasttrylock(struct rt_mutex *lock,
1388 int (*slowfn)(struct rt_mutex *lock))
1389 {
1390 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1391 return 1;
1392
1393 return slowfn(lock);
1394 }
1395
1396 /*
1397 * Performs the wakeup of the top-waiter and re-enables preemption.
1398 */
1399 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1400 {
1401 wake_up_q(wake_q);
1402
1403 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1404 preempt_enable();
1405 }
1406
1407 static inline void
1408 rt_mutex_fastunlock(struct rt_mutex *lock,
1409 bool (*slowfn)(struct rt_mutex *lock,
1410 struct wake_q_head *wqh))
1411 {
1412 DEFINE_WAKE_Q(wake_q);
1413
1414 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1415 return;
1416
1417 if (slowfn(lock, &wake_q))
1418 rt_mutex_postunlock(&wake_q);
1419 }
1420
1421 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1422 {
1423 might_sleep();
1424
1425 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1426 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1427 }
1428
1429 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1430 /**
1431 * rt_mutex_lock_nested - lock a rt_mutex
1432 *
1433 * @lock: the rt_mutex to be locked
1434 * @subclass: the lockdep subclass
1435 */
1436 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1437 {
1438 __rt_mutex_lock(lock, subclass);
1439 }
1440 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1441
1442 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1443
1444 /**
1445 * rt_mutex_lock - lock a rt_mutex
1446 *
1447 * @lock: the rt_mutex to be locked
1448 */
1449 void __sched rt_mutex_lock(struct rt_mutex *lock)
1450 {
1451 __rt_mutex_lock(lock, 0);
1452 }
1453 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1454 #endif
1455
1456 /**
1457 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1458 *
1459 * @lock: the rt_mutex to be locked
1460 *
1461 * Returns:
1462 * 0 on success
1463 * -EINTR when interrupted by a signal
1464 */
1465 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1466 {
1467 int ret;
1468
1469 might_sleep();
1470
1471 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1472 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1473 if (ret)
1474 mutex_release(&lock->dep_map, _RET_IP_);
1475
1476 return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1479
1480 /*
1481 * Futex variant, must not use fastpath.
1482 */
1483 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1484 {
1485 return rt_mutex_slowtrylock(lock);
1486 }
1487
1488 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1489 {
1490 return __rt_mutex_slowtrylock(lock);
1491 }
1492
1493 /**
1494 * rt_mutex_trylock - try to lock a rt_mutex
1495 *
1496 * @lock: the rt_mutex to be locked
1497 *
1498 * This function can only be called in thread context. It's safe to
1499 * call it from atomic regions, but not from hard interrupt or soft
1500 * interrupt context.
1501 *
1502 * Returns 1 on success and 0 on contention
1503 */
1504 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1505 {
1506 int ret;
1507
1508 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1509 return 0;
1510
1511 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1512 if (ret)
1513 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1514
1515 return ret;
1516 }
1517 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1518
1519 /**
1520 * rt_mutex_unlock - unlock a rt_mutex
1521 *
1522 * @lock: the rt_mutex to be unlocked
1523 */
1524 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1525 {
1526 mutex_release(&lock->dep_map, _RET_IP_);
1527 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1528 }
1529 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1530
1531 /**
1532 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1533 * do not use the fast-path, can be simple and will not need to retry.
1534 *
1535 * @lock: The rt_mutex to be unlocked
1536 * @wake_q: The wake queue head from which to get the next lock waiter
1537 */
1538 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1539 struct wake_q_head *wake_q)
1540 {
1541 lockdep_assert_held(&lock->wait_lock);
1542
1543 debug_rt_mutex_unlock(lock);
1544
1545 if (!rt_mutex_has_waiters(lock)) {
1546 lock->owner = NULL;
1547 return false; /* done */
1548 }
1549
1550 /*
1551 * We've already deboosted, mark_wakeup_next_waiter() will
1552 * retain preempt_disabled when we drop the wait_lock, to
1553 * avoid inversion prior to the wakeup. preempt_disable()
1554 * therein pairs with rt_mutex_postunlock().
1555 */
1556 mark_wakeup_next_waiter(wake_q, lock);
1557
1558 return true; /* call postunlock() */
1559 }
1560
1561 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1562 {
1563 DEFINE_WAKE_Q(wake_q);
1564 unsigned long flags;
1565 bool postunlock;
1566
1567 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1568 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1569 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1570
1571 if (postunlock)
1572 rt_mutex_postunlock(&wake_q);
1573 }
1574
1575 /**
1576 * __rt_mutex_init - initialize the rt_mutex
1577 *
1578 * @lock: The rt_mutex to be initialized
1579 * @name: The lock name used for debugging
1580 * @key: The lock class key used for debugging
1581 *
1582 * Initialize the rt_mutex to unlocked state.
1583 *
1584 * Initializing of a locked rt_mutex is not allowed
1585 */
1586 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1587 struct lock_class_key *key)
1588 {
1589 debug_check_no_locks_freed((void *)lock, sizeof(*lock));
1590 lockdep_init_map(&lock->dep_map, name, key, 0);
1591
1592 __rt_mutex_basic_init(lock);
1593 }
1594 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1595
1596 /**
1597 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1598 * proxy owner
1599 *
1600 * @lock: the rt_mutex to be locked
1601 * @proxy_owner:the task to set as owner
1602 *
1603 * No locking. Caller has to do serializing itself
1604 *
1605 * Special API call for PI-futex support. This initializes the rtmutex and
1606 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1607 * possible at this point because the pi_state which contains the rtmutex
1608 * is not yet visible to other tasks.
1609 */
1610 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1611 struct task_struct *proxy_owner)
1612 {
1613 __rt_mutex_basic_init(lock);
1614 rt_mutex_set_owner(lock, proxy_owner);
1615 }
1616
1617 /**
1618 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1619 *
1620 * @lock: the rt_mutex to be locked
1621 *
1622 * No locking. Caller has to do serializing itself
1623 *
1624 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1625 * (debugging) state. Concurrent operations on this rt_mutex are not
1626 * possible because it belongs to the pi_state which is about to be freed
1627 * and it is not longer visible to other tasks.
1628 */
1629 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1630 {
1631 debug_rt_mutex_proxy_unlock(lock);
1632 rt_mutex_set_owner(lock, NULL);
1633 }
1634
1635 /**
1636 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1637 * @lock: the rt_mutex to take
1638 * @waiter: the pre-initialized rt_mutex_waiter
1639 * @task: the task to prepare
1640 *
1641 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1642 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1643 *
1644 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1645 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1646 *
1647 * Returns:
1648 * 0 - task blocked on lock
1649 * 1 - acquired the lock for task, caller should wake it up
1650 * <0 - error
1651 *
1652 * Special API call for PI-futex support.
1653 */
1654 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1655 struct rt_mutex_waiter *waiter,
1656 struct task_struct *task)
1657 {
1658 int ret;
1659
1660 lockdep_assert_held(&lock->wait_lock);
1661
1662 if (try_to_take_rt_mutex(lock, task, NULL))
1663 return 1;
1664
1665 /* We enforce deadlock detection for futexes */
1666 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1667 RT_MUTEX_FULL_CHAINWALK);
1668
1669 if (ret && !rt_mutex_owner(lock)) {
1670 /*
1671 * Reset the return value. We might have
1672 * returned with -EDEADLK and the owner
1673 * released the lock while we were walking the
1674 * pi chain. Let the waiter sort it out.
1675 */
1676 ret = 0;
1677 }
1678
1679 return ret;
1680 }
1681
1682 /**
1683 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1684 * @lock: the rt_mutex to take
1685 * @waiter: the pre-initialized rt_mutex_waiter
1686 * @task: the task to prepare
1687 *
1688 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1689 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1690 *
1691 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1692 * on failure.
1693 *
1694 * Returns:
1695 * 0 - task blocked on lock
1696 * 1 - acquired the lock for task, caller should wake it up
1697 * <0 - error
1698 *
1699 * Special API call for PI-futex support.
1700 */
1701 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1702 struct rt_mutex_waiter *waiter,
1703 struct task_struct *task)
1704 {
1705 int ret;
1706
1707 raw_spin_lock_irq(&lock->wait_lock);
1708 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1709 if (unlikely(ret))
1710 remove_waiter(lock, waiter);
1711 raw_spin_unlock_irq(&lock->wait_lock);
1712
1713 return ret;
1714 }
1715
1716 /**
1717 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1718 * @lock: the rt_mutex we were woken on
1719 * @to: the timeout, null if none. hrtimer should already have
1720 * been started.
1721 * @waiter: the pre-initialized rt_mutex_waiter
1722 *
1723 * Wait for the lock acquisition started on our behalf by
1724 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1725 * rt_mutex_cleanup_proxy_lock().
1726 *
1727 * Returns:
1728 * 0 - success
1729 * <0 - error, one of -EINTR, -ETIMEDOUT
1730 *
1731 * Special API call for PI-futex support
1732 */
1733 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1734 struct hrtimer_sleeper *to,
1735 struct rt_mutex_waiter *waiter)
1736 {
1737 int ret;
1738
1739 raw_spin_lock_irq(&lock->wait_lock);
1740 /* sleep on the mutex */
1741 set_current_state(TASK_INTERRUPTIBLE);
1742 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1743 /*
1744 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1745 * have to fix that up.
1746 */
1747 fixup_rt_mutex_waiters(lock);
1748 raw_spin_unlock_irq(&lock->wait_lock);
1749
1750 return ret;
1751 }
1752
1753 /**
1754 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1755 * @lock: the rt_mutex we were woken on
1756 * @waiter: the pre-initialized rt_mutex_waiter
1757 *
1758 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1759 * rt_mutex_wait_proxy_lock().
1760 *
1761 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1762 * in fact still be granted ownership until we're removed. Therefore we can
1763 * find we are in fact the owner and must disregard the
1764 * rt_mutex_wait_proxy_lock() failure.
1765 *
1766 * Returns:
1767 * true - did the cleanup, we done.
1768 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1769 * caller should disregards its return value.
1770 *
1771 * Special API call for PI-futex support
1772 */
1773 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1774 struct rt_mutex_waiter *waiter)
1775 {
1776 bool cleanup = false;
1777
1778 raw_spin_lock_irq(&lock->wait_lock);
1779 /*
1780 * Do an unconditional try-lock, this deals with the lock stealing
1781 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1782 * sets a NULL owner.
1783 *
1784 * We're not interested in the return value, because the subsequent
1785 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1786 * we will own the lock and it will have removed the waiter. If we
1787 * failed the trylock, we're still not owner and we need to remove
1788 * ourselves.
1789 */
1790 try_to_take_rt_mutex(lock, current, waiter);
1791 /*
1792 * Unless we're the owner; we're still enqueued on the wait_list.
1793 * So check if we became owner, if not, take us off the wait_list.
1794 */
1795 if (rt_mutex_owner(lock) != current) {
1796 remove_waiter(lock, waiter);
1797 cleanup = true;
1798 }
1799 /*
1800 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1801 * have to fix that up.
1802 */
1803 fixup_rt_mutex_waiters(lock);
1804
1805 raw_spin_unlock_irq(&lock->wait_lock);
1806
1807 return cleanup;
1808 }
1809
1810 #ifdef CONFIG_DEBUG_RT_MUTEXES
1811 void rt_mutex_debug_task_free(struct task_struct *task)
1812 {
1813 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
1814 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
1815 }
1816 #endif