]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/locking/rwsem-xadd.c
UBUNTU: [Config] CONFIG_SENSORS_IR35221=m
[mirror_ubuntu-artful-kernel.git] / kernel / locking / rwsem-xadd.c
1 /* rwsem.c: R/W semaphores: contention handling functions
2 *
3 * Written by David Howells (dhowells@redhat.com).
4 * Derived from arch/i386/kernel/semaphore.c
5 *
6 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
7 * and Michel Lespinasse <walken@google.com>
8 *
9 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
10 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
11 */
12 #include <linux/rwsem.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/wake_q.h>
18 #include <linux/sched/debug.h>
19 #include <linux/osq_lock.h>
20
21 #include "rwsem.h"
22
23 /*
24 * Guide to the rw_semaphore's count field for common values.
25 * (32-bit case illustrated, similar for 64-bit)
26 *
27 * 0x0000000X (1) X readers active or attempting lock, no writer waiting
28 * X = #active_readers + #readers attempting to lock
29 * (X*ACTIVE_BIAS)
30 *
31 * 0x00000000 rwsem is unlocked, and no one is waiting for the lock or
32 * attempting to read lock or write lock.
33 *
34 * 0xffff000X (1) X readers active or attempting lock, with waiters for lock
35 * X = #active readers + # readers attempting lock
36 * (X*ACTIVE_BIAS + WAITING_BIAS)
37 * (2) 1 writer attempting lock, no waiters for lock
38 * X-1 = #active readers + #readers attempting lock
39 * ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
40 * (3) 1 writer active, no waiters for lock
41 * X-1 = #active readers + #readers attempting lock
42 * ((X-1)*ACTIVE_BIAS + ACTIVE_WRITE_BIAS)
43 *
44 * 0xffff0001 (1) 1 reader active or attempting lock, waiters for lock
45 * (WAITING_BIAS + ACTIVE_BIAS)
46 * (2) 1 writer active or attempting lock, no waiters for lock
47 * (ACTIVE_WRITE_BIAS)
48 *
49 * 0xffff0000 (1) There are writers or readers queued but none active
50 * or in the process of attempting lock.
51 * (WAITING_BIAS)
52 * Note: writer can attempt to steal lock for this count by adding
53 * ACTIVE_WRITE_BIAS in cmpxchg and checking the old count
54 *
55 * 0xfffe0001 (1) 1 writer active, or attempting lock. Waiters on queue.
56 * (ACTIVE_WRITE_BIAS + WAITING_BIAS)
57 *
58 * Note: Readers attempt to lock by adding ACTIVE_BIAS in down_read and checking
59 * the count becomes more than 0 for successful lock acquisition,
60 * i.e. the case where there are only readers or nobody has lock.
61 * (1st and 2nd case above).
62 *
63 * Writers attempt to lock by adding ACTIVE_WRITE_BIAS in down_write and
64 * checking the count becomes ACTIVE_WRITE_BIAS for successful lock
65 * acquisition (i.e. nobody else has lock or attempts lock). If
66 * unsuccessful, in rwsem_down_write_failed, we'll check to see if there
67 * are only waiters but none active (5th case above), and attempt to
68 * steal the lock.
69 *
70 */
71
72 /*
73 * Initialize an rwsem:
74 */
75 void __init_rwsem(struct rw_semaphore *sem, const char *name,
76 struct lock_class_key *key)
77 {
78 #ifdef CONFIG_DEBUG_LOCK_ALLOC
79 /*
80 * Make sure we are not reinitializing a held semaphore:
81 */
82 debug_check_no_locks_freed((void *)sem, sizeof(*sem));
83 lockdep_init_map(&sem->dep_map, name, key, 0);
84 #endif
85 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
86 raw_spin_lock_init(&sem->wait_lock);
87 INIT_LIST_HEAD(&sem->wait_list);
88 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
89 sem->owner = NULL;
90 osq_lock_init(&sem->osq);
91 #endif
92 }
93
94 EXPORT_SYMBOL(__init_rwsem);
95
96 enum rwsem_waiter_type {
97 RWSEM_WAITING_FOR_WRITE,
98 RWSEM_WAITING_FOR_READ
99 };
100
101 struct rwsem_waiter {
102 struct list_head list;
103 struct task_struct *task;
104 enum rwsem_waiter_type type;
105 };
106
107 enum rwsem_wake_type {
108 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */
109 RWSEM_WAKE_READERS, /* Wake readers only */
110 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */
111 };
112
113 /*
114 * handle the lock release when processes blocked on it that can now run
115 * - if we come here from up_xxxx(), then:
116 * - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
117 * - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
118 * - there must be someone on the queue
119 * - the wait_lock must be held by the caller
120 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
121 * to actually wakeup the blocked task(s) and drop the reference count,
122 * preferably when the wait_lock is released
123 * - woken process blocks are discarded from the list after having task zeroed
124 * - writers are only marked woken if downgrading is false
125 */
126 static void __rwsem_mark_wake(struct rw_semaphore *sem,
127 enum rwsem_wake_type wake_type,
128 struct wake_q_head *wake_q)
129 {
130 struct rwsem_waiter *waiter, *tmp;
131 long oldcount, woken = 0, adjustment = 0;
132
133 /*
134 * Take a peek at the queue head waiter such that we can determine
135 * the wakeup(s) to perform.
136 */
137 waiter = list_first_entry(&sem->wait_list, struct rwsem_waiter, list);
138
139 if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
140 if (wake_type == RWSEM_WAKE_ANY) {
141 /*
142 * Mark writer at the front of the queue for wakeup.
143 * Until the task is actually later awoken later by
144 * the caller, other writers are able to steal it.
145 * Readers, on the other hand, will block as they
146 * will notice the queued writer.
147 */
148 wake_q_add(wake_q, waiter->task);
149 }
150
151 return;
152 }
153
154 /*
155 * Writers might steal the lock before we grant it to the next reader.
156 * We prefer to do the first reader grant before counting readers
157 * so we can bail out early if a writer stole the lock.
158 */
159 if (wake_type != RWSEM_WAKE_READ_OWNED) {
160 adjustment = RWSEM_ACTIVE_READ_BIAS;
161 try_reader_grant:
162 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
163 if (unlikely(oldcount < RWSEM_WAITING_BIAS)) {
164 /*
165 * If the count is still less than RWSEM_WAITING_BIAS
166 * after removing the adjustment, it is assumed that
167 * a writer has stolen the lock. We have to undo our
168 * reader grant.
169 */
170 if (atomic_long_add_return(-adjustment, &sem->count) <
171 RWSEM_WAITING_BIAS)
172 return;
173
174 /* Last active locker left. Retry waking readers. */
175 goto try_reader_grant;
176 }
177 /*
178 * It is not really necessary to set it to reader-owned here,
179 * but it gives the spinners an early indication that the
180 * readers now have the lock.
181 */
182 rwsem_set_reader_owned(sem);
183 }
184
185 /*
186 * Grant an infinite number of read locks to the readers at the front
187 * of the queue. We know that woken will be at least 1 as we accounted
188 * for above. Note we increment the 'active part' of the count by the
189 * number of readers before waking any processes up.
190 */
191 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
192 struct task_struct *tsk;
193
194 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
195 break;
196
197 woken++;
198 tsk = waiter->task;
199
200 wake_q_add(wake_q, tsk);
201 list_del(&waiter->list);
202 /*
203 * Ensure that the last operation is setting the reader
204 * waiter to nil such that rwsem_down_read_failed() cannot
205 * race with do_exit() by always holding a reference count
206 * to the task to wakeup.
207 */
208 smp_store_release(&waiter->task, NULL);
209 }
210
211 adjustment = woken * RWSEM_ACTIVE_READ_BIAS - adjustment;
212 if (list_empty(&sem->wait_list)) {
213 /* hit end of list above */
214 adjustment -= RWSEM_WAITING_BIAS;
215 }
216
217 if (adjustment)
218 atomic_long_add(adjustment, &sem->count);
219 }
220
221 /*
222 * Wait for the read lock to be granted
223 */
224 __visible
225 struct rw_semaphore __sched *rwsem_down_read_failed(struct rw_semaphore *sem)
226 {
227 long count, adjustment = -RWSEM_ACTIVE_READ_BIAS;
228 struct rwsem_waiter waiter;
229 DEFINE_WAKE_Q(wake_q);
230
231 waiter.task = current;
232 waiter.type = RWSEM_WAITING_FOR_READ;
233
234 raw_spin_lock_irq(&sem->wait_lock);
235 if (list_empty(&sem->wait_list))
236 adjustment += RWSEM_WAITING_BIAS;
237 list_add_tail(&waiter.list, &sem->wait_list);
238
239 /* we're now waiting on the lock, but no longer actively locking */
240 count = atomic_long_add_return(adjustment, &sem->count);
241
242 /*
243 * If there are no active locks, wake the front queued process(es).
244 *
245 * If there are no writers and we are first in the queue,
246 * wake our own waiter to join the existing active readers !
247 */
248 if (count == RWSEM_WAITING_BIAS ||
249 (count > RWSEM_WAITING_BIAS &&
250 adjustment != -RWSEM_ACTIVE_READ_BIAS))
251 __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
252
253 raw_spin_unlock_irq(&sem->wait_lock);
254 wake_up_q(&wake_q);
255
256 /* wait to be given the lock */
257 while (true) {
258 set_current_state(TASK_UNINTERRUPTIBLE);
259 if (!waiter.task)
260 break;
261 schedule();
262 }
263
264 __set_current_state(TASK_RUNNING);
265 return sem;
266 }
267 EXPORT_SYMBOL(rwsem_down_read_failed);
268
269 /*
270 * This function must be called with the sem->wait_lock held to prevent
271 * race conditions between checking the rwsem wait list and setting the
272 * sem->count accordingly.
273 */
274 static inline bool rwsem_try_write_lock(long count, struct rw_semaphore *sem)
275 {
276 /*
277 * Avoid trying to acquire write lock if count isn't RWSEM_WAITING_BIAS.
278 */
279 if (count != RWSEM_WAITING_BIAS)
280 return false;
281
282 /*
283 * Acquire the lock by trying to set it to ACTIVE_WRITE_BIAS. If there
284 * are other tasks on the wait list, we need to add on WAITING_BIAS.
285 */
286 count = list_is_singular(&sem->wait_list) ?
287 RWSEM_ACTIVE_WRITE_BIAS :
288 RWSEM_ACTIVE_WRITE_BIAS + RWSEM_WAITING_BIAS;
289
290 if (atomic_long_cmpxchg_acquire(&sem->count, RWSEM_WAITING_BIAS, count)
291 == RWSEM_WAITING_BIAS) {
292 rwsem_set_owner(sem);
293 return true;
294 }
295
296 return false;
297 }
298
299 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
300 /*
301 * Try to acquire write lock before the writer has been put on wait queue.
302 */
303 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
304 {
305 long old, count = atomic_long_read(&sem->count);
306
307 while (true) {
308 if (!(count == 0 || count == RWSEM_WAITING_BIAS))
309 return false;
310
311 old = atomic_long_cmpxchg_acquire(&sem->count, count,
312 count + RWSEM_ACTIVE_WRITE_BIAS);
313 if (old == count) {
314 rwsem_set_owner(sem);
315 return true;
316 }
317
318 count = old;
319 }
320 }
321
322 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
323 {
324 struct task_struct *owner;
325 bool ret = true;
326
327 if (need_resched())
328 return false;
329
330 rcu_read_lock();
331 owner = READ_ONCE(sem->owner);
332 if (!rwsem_owner_is_writer(owner)) {
333 /*
334 * Don't spin if the rwsem is readers owned.
335 */
336 ret = !rwsem_owner_is_reader(owner);
337 goto done;
338 }
339
340 /*
341 * As lock holder preemption issue, we both skip spinning if task is not
342 * on cpu or its cpu is preempted
343 */
344 ret = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
345 done:
346 rcu_read_unlock();
347 return ret;
348 }
349
350 /*
351 * Return true only if we can still spin on the owner field of the rwsem.
352 */
353 static noinline bool rwsem_spin_on_owner(struct rw_semaphore *sem)
354 {
355 struct task_struct *owner = READ_ONCE(sem->owner);
356
357 if (!rwsem_owner_is_writer(owner))
358 goto out;
359
360 rcu_read_lock();
361 while (sem->owner == owner) {
362 /*
363 * Ensure we emit the owner->on_cpu, dereference _after_
364 * checking sem->owner still matches owner, if that fails,
365 * owner might point to free()d memory, if it still matches,
366 * the rcu_read_lock() ensures the memory stays valid.
367 */
368 barrier();
369
370 /*
371 * abort spinning when need_resched or owner is not running or
372 * owner's cpu is preempted.
373 */
374 if (!owner->on_cpu || need_resched() ||
375 vcpu_is_preempted(task_cpu(owner))) {
376 rcu_read_unlock();
377 return false;
378 }
379
380 cpu_relax();
381 }
382 rcu_read_unlock();
383 out:
384 /*
385 * If there is a new owner or the owner is not set, we continue
386 * spinning.
387 */
388 return !rwsem_owner_is_reader(READ_ONCE(sem->owner));
389 }
390
391 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
392 {
393 bool taken = false;
394
395 preempt_disable();
396
397 /* sem->wait_lock should not be held when doing optimistic spinning */
398 if (!rwsem_can_spin_on_owner(sem))
399 goto done;
400
401 if (!osq_lock(&sem->osq))
402 goto done;
403
404 /*
405 * Optimistically spin on the owner field and attempt to acquire the
406 * lock whenever the owner changes. Spinning will be stopped when:
407 * 1) the owning writer isn't running; or
408 * 2) readers own the lock as we can't determine if they are
409 * actively running or not.
410 */
411 while (rwsem_spin_on_owner(sem)) {
412 /*
413 * Try to acquire the lock
414 */
415 if (rwsem_try_write_lock_unqueued(sem)) {
416 taken = true;
417 break;
418 }
419
420 /*
421 * When there's no owner, we might have preempted between the
422 * owner acquiring the lock and setting the owner field. If
423 * we're an RT task that will live-lock because we won't let
424 * the owner complete.
425 */
426 if (!sem->owner && (need_resched() || rt_task(current)))
427 break;
428
429 /*
430 * The cpu_relax() call is a compiler barrier which forces
431 * everything in this loop to be re-loaded. We don't need
432 * memory barriers as we'll eventually observe the right
433 * values at the cost of a few extra spins.
434 */
435 cpu_relax();
436 }
437 osq_unlock(&sem->osq);
438 done:
439 preempt_enable();
440 return taken;
441 }
442
443 /*
444 * Return true if the rwsem has active spinner
445 */
446 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
447 {
448 return osq_is_locked(&sem->osq);
449 }
450
451 #else
452 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
453 {
454 return false;
455 }
456
457 static inline bool rwsem_has_spinner(struct rw_semaphore *sem)
458 {
459 return false;
460 }
461 #endif
462
463 /*
464 * Wait until we successfully acquire the write lock
465 */
466 static inline struct rw_semaphore *
467 __rwsem_down_write_failed_common(struct rw_semaphore *sem, int state)
468 {
469 long count;
470 bool waiting = true; /* any queued threads before us */
471 struct rwsem_waiter waiter;
472 struct rw_semaphore *ret = sem;
473 DEFINE_WAKE_Q(wake_q);
474
475 /* undo write bias from down_write operation, stop active locking */
476 count = atomic_long_sub_return(RWSEM_ACTIVE_WRITE_BIAS, &sem->count);
477
478 /* do optimistic spinning and steal lock if possible */
479 if (rwsem_optimistic_spin(sem))
480 return sem;
481
482 /*
483 * Optimistic spinning failed, proceed to the slowpath
484 * and block until we can acquire the sem.
485 */
486 waiter.task = current;
487 waiter.type = RWSEM_WAITING_FOR_WRITE;
488
489 raw_spin_lock_irq(&sem->wait_lock);
490
491 /* account for this before adding a new element to the list */
492 if (list_empty(&sem->wait_list))
493 waiting = false;
494
495 list_add_tail(&waiter.list, &sem->wait_list);
496
497 /* we're now waiting on the lock, but no longer actively locking */
498 if (waiting) {
499 count = atomic_long_read(&sem->count);
500
501 /*
502 * If there were already threads queued before us and there are
503 * no active writers, the lock must be read owned; so we try to
504 * wake any read locks that were queued ahead of us.
505 */
506 if (count > RWSEM_WAITING_BIAS) {
507 __rwsem_mark_wake(sem, RWSEM_WAKE_READERS, &wake_q);
508 /*
509 * The wakeup is normally called _after_ the wait_lock
510 * is released, but given that we are proactively waking
511 * readers we can deal with the wake_q overhead as it is
512 * similar to releasing and taking the wait_lock again
513 * for attempting rwsem_try_write_lock().
514 */
515 wake_up_q(&wake_q);
516
517 /*
518 * Reinitialize wake_q after use.
519 */
520 wake_q_init(&wake_q);
521 }
522
523 } else
524 count = atomic_long_add_return(RWSEM_WAITING_BIAS, &sem->count);
525
526 /* wait until we successfully acquire the lock */
527 set_current_state(state);
528 while (true) {
529 if (rwsem_try_write_lock(count, sem))
530 break;
531 raw_spin_unlock_irq(&sem->wait_lock);
532
533 /* Block until there are no active lockers. */
534 do {
535 if (signal_pending_state(state, current))
536 goto out_nolock;
537
538 schedule();
539 set_current_state(state);
540 } while ((count = atomic_long_read(&sem->count)) & RWSEM_ACTIVE_MASK);
541
542 raw_spin_lock_irq(&sem->wait_lock);
543 }
544 __set_current_state(TASK_RUNNING);
545 list_del(&waiter.list);
546 raw_spin_unlock_irq(&sem->wait_lock);
547
548 return ret;
549
550 out_nolock:
551 __set_current_state(TASK_RUNNING);
552 raw_spin_lock_irq(&sem->wait_lock);
553 list_del(&waiter.list);
554 if (list_empty(&sem->wait_list))
555 atomic_long_add(-RWSEM_WAITING_BIAS, &sem->count);
556 else
557 __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
558 raw_spin_unlock_irq(&sem->wait_lock);
559 wake_up_q(&wake_q);
560
561 return ERR_PTR(-EINTR);
562 }
563
564 __visible struct rw_semaphore * __sched
565 rwsem_down_write_failed(struct rw_semaphore *sem)
566 {
567 return __rwsem_down_write_failed_common(sem, TASK_UNINTERRUPTIBLE);
568 }
569 EXPORT_SYMBOL(rwsem_down_write_failed);
570
571 __visible struct rw_semaphore * __sched
572 rwsem_down_write_failed_killable(struct rw_semaphore *sem)
573 {
574 return __rwsem_down_write_failed_common(sem, TASK_KILLABLE);
575 }
576 EXPORT_SYMBOL(rwsem_down_write_failed_killable);
577
578 /*
579 * handle waking up a waiter on the semaphore
580 * - up_read/up_write has decremented the active part of count if we come here
581 */
582 __visible
583 struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
584 {
585 unsigned long flags;
586 DEFINE_WAKE_Q(wake_q);
587
588 /*
589 * If a spinner is present, it is not necessary to do the wakeup.
590 * Try to do wakeup only if the trylock succeeds to minimize
591 * spinlock contention which may introduce too much delay in the
592 * unlock operation.
593 *
594 * spinning writer up_write/up_read caller
595 * --------------- -----------------------
596 * [S] osq_unlock() [L] osq
597 * MB RMB
598 * [RmW] rwsem_try_write_lock() [RmW] spin_trylock(wait_lock)
599 *
600 * Here, it is important to make sure that there won't be a missed
601 * wakeup while the rwsem is free and the only spinning writer goes
602 * to sleep without taking the rwsem. Even when the spinning writer
603 * is just going to break out of the waiting loop, it will still do
604 * a trylock in rwsem_down_write_failed() before sleeping. IOW, if
605 * rwsem_has_spinner() is true, it will guarantee at least one
606 * trylock attempt on the rwsem later on.
607 */
608 if (rwsem_has_spinner(sem)) {
609 /*
610 * The smp_rmb() here is to make sure that the spinner
611 * state is consulted before reading the wait_lock.
612 */
613 smp_rmb();
614 if (!raw_spin_trylock_irqsave(&sem->wait_lock, flags))
615 return sem;
616 goto locked;
617 }
618 raw_spin_lock_irqsave(&sem->wait_lock, flags);
619 locked:
620
621 if (!list_empty(&sem->wait_list))
622 __rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
623
624 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
625 wake_up_q(&wake_q);
626
627 return sem;
628 }
629 EXPORT_SYMBOL(rwsem_wake);
630
631 /*
632 * downgrade a write lock into a read lock
633 * - caller incremented waiting part of count and discovered it still negative
634 * - just wake up any readers at the front of the queue
635 */
636 __visible
637 struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
638 {
639 unsigned long flags;
640 DEFINE_WAKE_Q(wake_q);
641
642 raw_spin_lock_irqsave(&sem->wait_lock, flags);
643
644 if (!list_empty(&sem->wait_list))
645 __rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
646
647 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
648 wake_up_q(&wake_q);
649
650 return sem;
651 }
652 EXPORT_SYMBOL(rwsem_downgrade_wake);