]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/locking/rwsem.c
e63f740c2cc840fc24bcac1d258bf37344393c73
[mirror_ubuntu-jammy-kernel.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3 *
4 * Written by David Howells (dhowells@redhat.com).
5 * Derived from asm-i386/semaphore.h
6 *
7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 * and Michel Lespinasse <walken@google.com>
9 *
10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12 *
13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 * Waiman Long <longman@redhat.com> and
15 * Peter Zijlstra <peterz@infradead.org>.
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30
31 #ifndef CONFIG_PREEMPT_RT
32 #include "lock_events.h"
33
34 /*
35 * The least significant 2 bits of the owner value has the following
36 * meanings when set.
37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
39 *
40 * When the rwsem is reader-owned and a spinning writer has timed out,
41 * the nonspinnable bit will be set to disable optimistic spinning.
42
43 * When a writer acquires a rwsem, it puts its task_struct pointer
44 * into the owner field. It is cleared after an unlock.
45 *
46 * When a reader acquires a rwsem, it will also puts its task_struct
47 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
48 * On unlock, the owner field will largely be left untouched. So
49 * for a free or reader-owned rwsem, the owner value may contain
50 * information about the last reader that acquires the rwsem.
51 *
52 * That information may be helpful in debugging cases where the system
53 * seems to hang on a reader owned rwsem especially if only one reader
54 * is involved. Ideally we would like to track all the readers that own
55 * a rwsem, but the overhead is simply too big.
56 *
57 * A fast path reader optimistic lock stealing is supported when the rwsem
58 * is previously owned by a writer and the following conditions are met:
59 * - OSQ is empty
60 * - rwsem is not currently writer owned
61 * - the handoff isn't set.
62 */
63 #define RWSEM_READER_OWNED (1UL << 0)
64 #define RWSEM_NONSPINNABLE (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
69 if (!debug_locks_silent && \
70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 #c, atomic_long_read(&(sem)->count), \
72 (unsigned long) sem->magic, \
73 atomic_long_read(&(sem)->owner), (long)current, \
74 list_empty(&(sem)->wait_list) ? "" : "not ")) \
75 debug_locks_off(); \
76 } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82 * On 64-bit architectures, the bit definitions of the count are:
83 *
84 * Bit 0 - writer locked bit
85 * Bit 1 - waiters present bit
86 * Bit 2 - lock handoff bit
87 * Bits 3-7 - reserved
88 * Bits 8-62 - 55-bit reader count
89 * Bit 63 - read fail bit
90 *
91 * On 32-bit architectures, the bit definitions of the count are:
92 *
93 * Bit 0 - writer locked bit
94 * Bit 1 - waiters present bit
95 * Bit 2 - lock handoff bit
96 * Bits 3-7 - reserved
97 * Bits 8-30 - 23-bit reader count
98 * Bit 31 - read fail bit
99 *
100 * It is not likely that the most significant bit (read fail bit) will ever
101 * be set. This guard bit is still checked anyway in the down_read() fastpath
102 * just in case we need to use up more of the reader bits for other purpose
103 * in the future.
104 *
105 * atomic_long_fetch_add() is used to obtain reader lock, whereas
106 * atomic_long_cmpxchg() will be used to obtain writer lock.
107 *
108 * There are three places where the lock handoff bit may be set or cleared.
109 * 1) rwsem_mark_wake() for readers -- set, clear
110 * 2) rwsem_try_write_lock() for writers -- set, clear
111 * 3) rwsem_del_waiter() -- clear
112 *
113 * For all the above cases, wait_lock will be held. A writer must also
114 * be the first one in the wait_list to be eligible for setting the handoff
115 * bit. So concurrent setting/clearing of handoff bit is not possible.
116 */
117 #define RWSEM_WRITER_LOCKED (1UL << 0)
118 #define RWSEM_FLAG_WAITERS (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF (1UL << 2)
120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT 8
123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131 * All writes to owner are protected by WRITE_ONCE() to make sure that
132 * store tearing can't happen as optimistic spinners may read and use
133 * the owner value concurrently without lock. Read from owner, however,
134 * may not need READ_ONCE() as long as the pointer value is only used
135 * for comparison and isn't being dereferenced.
136 */
137 static inline void rwsem_set_owner(struct rw_semaphore *sem)
138 {
139 atomic_long_set(&sem->owner, (long)current);
140 }
141
142 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
143 {
144 atomic_long_set(&sem->owner, 0);
145 }
146
147 /*
148 * Test the flags in the owner field.
149 */
150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
151 {
152 return atomic_long_read(&sem->owner) & flags;
153 }
154
155 /*
156 * The task_struct pointer of the last owning reader will be left in
157 * the owner field.
158 *
159 * Note that the owner value just indicates the task has owned the rwsem
160 * previously, it may not be the real owner or one of the real owners
161 * anymore when that field is examined, so take it with a grain of salt.
162 *
163 * The reader non-spinnable bit is preserved.
164 */
165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
166 struct task_struct *owner)
167 {
168 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
169 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
170
171 atomic_long_set(&sem->owner, val);
172 }
173
174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
175 {
176 __rwsem_set_reader_owned(sem, current);
177 }
178
179 /*
180 * Return true if the rwsem is owned by a reader.
181 */
182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
183 {
184 #ifdef CONFIG_DEBUG_RWSEMS
185 /*
186 * Check the count to see if it is write-locked.
187 */
188 long count = atomic_long_read(&sem->count);
189
190 if (count & RWSEM_WRITER_MASK)
191 return false;
192 #endif
193 return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
194 }
195
196 #ifdef CONFIG_DEBUG_RWSEMS
197 /*
198 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
199 * is a task pointer in owner of a reader-owned rwsem, it will be the
200 * real owner or one of the real owners. The only exception is when the
201 * unlock is done by up_read_non_owner().
202 */
203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
204 {
205 unsigned long val = atomic_long_read(&sem->owner);
206
207 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
208 if (atomic_long_try_cmpxchg(&sem->owner, &val,
209 val & RWSEM_OWNER_FLAGS_MASK))
210 return;
211 }
212 }
213 #else
214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
215 {
216 }
217 #endif
218
219 /*
220 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
221 * remains set. Otherwise, the operation will be aborted.
222 */
223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
224 {
225 unsigned long owner = atomic_long_read(&sem->owner);
226
227 do {
228 if (!(owner & RWSEM_READER_OWNED))
229 break;
230 if (owner & RWSEM_NONSPINNABLE)
231 break;
232 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
233 owner | RWSEM_NONSPINNABLE));
234 }
235
236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
237 {
238 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
239
240 if (WARN_ON_ONCE(*cntp < 0))
241 rwsem_set_nonspinnable(sem);
242
243 if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
244 rwsem_set_reader_owned(sem);
245 return true;
246 }
247
248 return false;
249 }
250
251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
252 {
253 long tmp = RWSEM_UNLOCKED_VALUE;
254
255 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
256 rwsem_set_owner(sem);
257 return true;
258 }
259
260 return false;
261 }
262
263 /*
264 * Return just the real task structure pointer of the owner
265 */
266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
267 {
268 return (struct task_struct *)
269 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
270 }
271
272 /*
273 * Return the real task structure pointer of the owner and the embedded
274 * flags in the owner. pflags must be non-NULL.
275 */
276 static inline struct task_struct *
277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
278 {
279 unsigned long owner = atomic_long_read(&sem->owner);
280
281 *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
282 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
283 }
284
285 /*
286 * Guide to the rw_semaphore's count field.
287 *
288 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
289 * by a writer.
290 *
291 * The lock is owned by readers when
292 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
293 * (2) some of the reader bits are set in count, and
294 * (3) the owner field has RWSEM_READ_OWNED bit set.
295 *
296 * Having some reader bits set is not enough to guarantee a readers owned
297 * lock as the readers may be in the process of backing out from the count
298 * and a writer has just released the lock. So another writer may steal
299 * the lock immediately after that.
300 */
301
302 /*
303 * Initialize an rwsem:
304 */
305 void __init_rwsem(struct rw_semaphore *sem, const char *name,
306 struct lock_class_key *key)
307 {
308 #ifdef CONFIG_DEBUG_LOCK_ALLOC
309 /*
310 * Make sure we are not reinitializing a held semaphore:
311 */
312 debug_check_no_locks_freed((void *)sem, sizeof(*sem));
313 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
314 #endif
315 #ifdef CONFIG_DEBUG_RWSEMS
316 sem->magic = sem;
317 #endif
318 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
319 raw_spin_lock_init(&sem->wait_lock);
320 INIT_LIST_HEAD(&sem->wait_list);
321 atomic_long_set(&sem->owner, 0L);
322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323 osq_lock_init(&sem->osq);
324 #endif
325 }
326 EXPORT_SYMBOL(__init_rwsem);
327
328 enum rwsem_waiter_type {
329 RWSEM_WAITING_FOR_WRITE,
330 RWSEM_WAITING_FOR_READ
331 };
332
333 struct rwsem_waiter {
334 struct list_head list;
335 struct task_struct *task;
336 enum rwsem_waiter_type type;
337 unsigned long timeout;
338
339 /* Writer only, not initialized in reader */
340 bool handoff_set;
341 };
342 #define rwsem_first_waiter(sem) \
343 list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
344
345 enum rwsem_wake_type {
346 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */
347 RWSEM_WAKE_READERS, /* Wake readers only */
348 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */
349 };
350
351 /*
352 * The typical HZ value is either 250 or 1000. So set the minimum waiting
353 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
354 * queue before initiating the handoff protocol.
355 */
356 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
357
358 /*
359 * Magic number to batch-wakeup waiting readers, even when writers are
360 * also present in the queue. This both limits the amount of work the
361 * waking thread must do and also prevents any potential counter overflow,
362 * however unlikely.
363 */
364 #define MAX_READERS_WAKEUP 0x100
365
366 static inline void
367 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
368 {
369 lockdep_assert_held(&sem->wait_lock);
370 list_add_tail(&waiter->list, &sem->wait_list);
371 /* caller will set RWSEM_FLAG_WAITERS */
372 }
373
374 /*
375 * Remove a waiter from the wait_list and clear flags.
376 *
377 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
378 * this function. Modify with care.
379 */
380 static inline void
381 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
382 {
383 lockdep_assert_held(&sem->wait_lock);
384 list_del(&waiter->list);
385 if (likely(!list_empty(&sem->wait_list)))
386 return;
387
388 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
389 }
390
391 /*
392 * handle the lock release when processes blocked on it that can now run
393 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
394 * have been set.
395 * - there must be someone on the queue
396 * - the wait_lock must be held by the caller
397 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
398 * to actually wakeup the blocked task(s) and drop the reference count,
399 * preferably when the wait_lock is released
400 * - woken process blocks are discarded from the list after having task zeroed
401 * - writers are only marked woken if downgrading is false
402 *
403 * Implies rwsem_del_waiter() for all woken readers.
404 */
405 static void rwsem_mark_wake(struct rw_semaphore *sem,
406 enum rwsem_wake_type wake_type,
407 struct wake_q_head *wake_q)
408 {
409 struct rwsem_waiter *waiter, *tmp;
410 long oldcount, woken = 0, adjustment = 0;
411 struct list_head wlist;
412
413 lockdep_assert_held(&sem->wait_lock);
414
415 /*
416 * Take a peek at the queue head waiter such that we can determine
417 * the wakeup(s) to perform.
418 */
419 waiter = rwsem_first_waiter(sem);
420
421 if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
422 if (wake_type == RWSEM_WAKE_ANY) {
423 /*
424 * Mark writer at the front of the queue for wakeup.
425 * Until the task is actually later awoken later by
426 * the caller, other writers are able to steal it.
427 * Readers, on the other hand, will block as they
428 * will notice the queued writer.
429 */
430 wake_q_add(wake_q, waiter->task);
431 lockevent_inc(rwsem_wake_writer);
432 }
433
434 return;
435 }
436
437 /*
438 * No reader wakeup if there are too many of them already.
439 */
440 if (unlikely(atomic_long_read(&sem->count) < 0))
441 return;
442
443 /*
444 * Writers might steal the lock before we grant it to the next reader.
445 * We prefer to do the first reader grant before counting readers
446 * so we can bail out early if a writer stole the lock.
447 */
448 if (wake_type != RWSEM_WAKE_READ_OWNED) {
449 struct task_struct *owner;
450
451 adjustment = RWSEM_READER_BIAS;
452 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
453 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
454 /*
455 * When we've been waiting "too" long (for writers
456 * to give up the lock), request a HANDOFF to
457 * force the issue.
458 */
459 if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
460 time_after(jiffies, waiter->timeout)) {
461 adjustment -= RWSEM_FLAG_HANDOFF;
462 lockevent_inc(rwsem_rlock_handoff);
463 }
464
465 atomic_long_add(-adjustment, &sem->count);
466 return;
467 }
468 /*
469 * Set it to reader-owned to give spinners an early
470 * indication that readers now have the lock.
471 * The reader nonspinnable bit seen at slowpath entry of
472 * the reader is copied over.
473 */
474 owner = waiter->task;
475 __rwsem_set_reader_owned(sem, owner);
476 }
477
478 /*
479 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
480 * queue. We know that the woken will be at least 1 as we accounted
481 * for above. Note we increment the 'active part' of the count by the
482 * number of readers before waking any processes up.
483 *
484 * This is an adaptation of the phase-fair R/W locks where at the
485 * reader phase (first waiter is a reader), all readers are eligible
486 * to acquire the lock at the same time irrespective of their order
487 * in the queue. The writers acquire the lock according to their
488 * order in the queue.
489 *
490 * We have to do wakeup in 2 passes to prevent the possibility that
491 * the reader count may be decremented before it is incremented. It
492 * is because the to-be-woken waiter may not have slept yet. So it
493 * may see waiter->task got cleared, finish its critical section and
494 * do an unlock before the reader count increment.
495 *
496 * 1) Collect the read-waiters in a separate list, count them and
497 * fully increment the reader count in rwsem.
498 * 2) For each waiters in the new list, clear waiter->task and
499 * put them into wake_q to be woken up later.
500 */
501 INIT_LIST_HEAD(&wlist);
502 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
503 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
504 continue;
505
506 woken++;
507 list_move_tail(&waiter->list, &wlist);
508
509 /*
510 * Limit # of readers that can be woken up per wakeup call.
511 */
512 if (woken >= MAX_READERS_WAKEUP)
513 break;
514 }
515
516 adjustment = woken * RWSEM_READER_BIAS - adjustment;
517 lockevent_cond_inc(rwsem_wake_reader, woken);
518
519 oldcount = atomic_long_read(&sem->count);
520 if (list_empty(&sem->wait_list)) {
521 /*
522 * Combined with list_move_tail() above, this implies
523 * rwsem_del_waiter().
524 */
525 adjustment -= RWSEM_FLAG_WAITERS;
526 if (oldcount & RWSEM_FLAG_HANDOFF)
527 adjustment -= RWSEM_FLAG_HANDOFF;
528 } else if (woken) {
529 /*
530 * When we've woken a reader, we no longer need to force
531 * writers to give up the lock and we can clear HANDOFF.
532 */
533 if (oldcount & RWSEM_FLAG_HANDOFF)
534 adjustment -= RWSEM_FLAG_HANDOFF;
535 }
536
537 if (adjustment)
538 atomic_long_add(adjustment, &sem->count);
539
540 /* 2nd pass */
541 list_for_each_entry_safe(waiter, tmp, &wlist, list) {
542 struct task_struct *tsk;
543
544 tsk = waiter->task;
545 get_task_struct(tsk);
546
547 /*
548 * Ensure calling get_task_struct() before setting the reader
549 * waiter to nil such that rwsem_down_read_slowpath() cannot
550 * race with do_exit() by always holding a reference count
551 * to the task to wakeup.
552 */
553 smp_store_release(&waiter->task, NULL);
554 /*
555 * Ensure issuing the wakeup (either by us or someone else)
556 * after setting the reader waiter to nil.
557 */
558 wake_q_add_safe(wake_q, tsk);
559 }
560 }
561
562 /*
563 * This function must be called with the sem->wait_lock held to prevent
564 * race conditions between checking the rwsem wait list and setting the
565 * sem->count accordingly.
566 *
567 * Implies rwsem_del_waiter() on success.
568 */
569 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
570 struct rwsem_waiter *waiter)
571 {
572 bool first = rwsem_first_waiter(sem) == waiter;
573 long count, new;
574
575 lockdep_assert_held(&sem->wait_lock);
576
577 count = atomic_long_read(&sem->count);
578 do {
579 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
580
581 if (has_handoff) {
582 if (!first)
583 return false;
584
585 /* First waiter inherits a previously set handoff bit */
586 waiter->handoff_set = true;
587 }
588
589 new = count;
590
591 if (count & RWSEM_LOCK_MASK) {
592 if (has_handoff || (!rt_task(waiter->task) &&
593 !time_after(jiffies, waiter->timeout)))
594 return false;
595
596 new |= RWSEM_FLAG_HANDOFF;
597 } else {
598 new |= RWSEM_WRITER_LOCKED;
599 new &= ~RWSEM_FLAG_HANDOFF;
600
601 if (list_is_singular(&sem->wait_list))
602 new &= ~RWSEM_FLAG_WAITERS;
603 }
604 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
605
606 /*
607 * We have either acquired the lock with handoff bit cleared or
608 * set the handoff bit.
609 */
610 if (new & RWSEM_FLAG_HANDOFF) {
611 waiter->handoff_set = true;
612 lockevent_inc(rwsem_wlock_handoff);
613 return false;
614 }
615
616 /*
617 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
618 * success.
619 */
620 list_del(&waiter->list);
621 rwsem_set_owner(sem);
622 return true;
623 }
624
625 /*
626 * The rwsem_spin_on_owner() function returns the following 4 values
627 * depending on the lock owner state.
628 * OWNER_NULL : owner is currently NULL
629 * OWNER_WRITER: when owner changes and is a writer
630 * OWNER_READER: when owner changes and the new owner may be a reader.
631 * OWNER_NONSPINNABLE:
632 * when optimistic spinning has to stop because either the
633 * owner stops running, is unknown, or its timeslice has
634 * been used up.
635 */
636 enum owner_state {
637 OWNER_NULL = 1 << 0,
638 OWNER_WRITER = 1 << 1,
639 OWNER_READER = 1 << 2,
640 OWNER_NONSPINNABLE = 1 << 3,
641 };
642
643 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
644 /*
645 * Try to acquire write lock before the writer has been put on wait queue.
646 */
647 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
648 {
649 long count = atomic_long_read(&sem->count);
650
651 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
652 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
653 count | RWSEM_WRITER_LOCKED)) {
654 rwsem_set_owner(sem);
655 lockevent_inc(rwsem_opt_lock);
656 return true;
657 }
658 }
659 return false;
660 }
661
662 static inline bool owner_on_cpu(struct task_struct *owner)
663 {
664 /*
665 * As lock holder preemption issue, we both skip spinning if
666 * task is not on cpu or its cpu is preempted
667 */
668 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
669 }
670
671 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
672 {
673 struct task_struct *owner;
674 unsigned long flags;
675 bool ret = true;
676
677 if (need_resched()) {
678 lockevent_inc(rwsem_opt_fail);
679 return false;
680 }
681
682 preempt_disable();
683 rcu_read_lock();
684 owner = rwsem_owner_flags(sem, &flags);
685 /*
686 * Don't check the read-owner as the entry may be stale.
687 */
688 if ((flags & RWSEM_NONSPINNABLE) ||
689 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
690 ret = false;
691 rcu_read_unlock();
692 preempt_enable();
693
694 lockevent_cond_inc(rwsem_opt_fail, !ret);
695 return ret;
696 }
697
698 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER)
699
700 static inline enum owner_state
701 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
702 {
703 if (flags & RWSEM_NONSPINNABLE)
704 return OWNER_NONSPINNABLE;
705
706 if (flags & RWSEM_READER_OWNED)
707 return OWNER_READER;
708
709 return owner ? OWNER_WRITER : OWNER_NULL;
710 }
711
712 static noinline enum owner_state
713 rwsem_spin_on_owner(struct rw_semaphore *sem)
714 {
715 struct task_struct *new, *owner;
716 unsigned long flags, new_flags;
717 enum owner_state state;
718
719 owner = rwsem_owner_flags(sem, &flags);
720 state = rwsem_owner_state(owner, flags);
721 if (state != OWNER_WRITER)
722 return state;
723
724 rcu_read_lock();
725 for (;;) {
726 /*
727 * When a waiting writer set the handoff flag, it may spin
728 * on the owner as well. Once that writer acquires the lock,
729 * we can spin on it. So we don't need to quit even when the
730 * handoff bit is set.
731 */
732 new = rwsem_owner_flags(sem, &new_flags);
733 if ((new != owner) || (new_flags != flags)) {
734 state = rwsem_owner_state(new, new_flags);
735 break;
736 }
737
738 /*
739 * Ensure we emit the owner->on_cpu, dereference _after_
740 * checking sem->owner still matches owner, if that fails,
741 * owner might point to free()d memory, if it still matches,
742 * the rcu_read_lock() ensures the memory stays valid.
743 */
744 barrier();
745
746 if (need_resched() || !owner_on_cpu(owner)) {
747 state = OWNER_NONSPINNABLE;
748 break;
749 }
750
751 cpu_relax();
752 }
753 rcu_read_unlock();
754
755 return state;
756 }
757
758 /*
759 * Calculate reader-owned rwsem spinning threshold for writer
760 *
761 * The more readers own the rwsem, the longer it will take for them to
762 * wind down and free the rwsem. So the empirical formula used to
763 * determine the actual spinning time limit here is:
764 *
765 * Spinning threshold = (10 + nr_readers/2)us
766 *
767 * The limit is capped to a maximum of 25us (30 readers). This is just
768 * a heuristic and is subjected to change in the future.
769 */
770 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
771 {
772 long count = atomic_long_read(&sem->count);
773 int readers = count >> RWSEM_READER_SHIFT;
774 u64 delta;
775
776 if (readers > 30)
777 readers = 30;
778 delta = (20 + readers) * NSEC_PER_USEC / 2;
779
780 return sched_clock() + delta;
781 }
782
783 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
784 {
785 bool taken = false;
786 int prev_owner_state = OWNER_NULL;
787 int loop = 0;
788 u64 rspin_threshold = 0;
789
790 preempt_disable();
791
792 /* sem->wait_lock should not be held when doing optimistic spinning */
793 if (!osq_lock(&sem->osq))
794 goto done;
795
796 /*
797 * Optimistically spin on the owner field and attempt to acquire the
798 * lock whenever the owner changes. Spinning will be stopped when:
799 * 1) the owning writer isn't running; or
800 * 2) readers own the lock and spinning time has exceeded limit.
801 */
802 for (;;) {
803 enum owner_state owner_state;
804
805 owner_state = rwsem_spin_on_owner(sem);
806 if (!(owner_state & OWNER_SPINNABLE))
807 break;
808
809 /*
810 * Try to acquire the lock
811 */
812 taken = rwsem_try_write_lock_unqueued(sem);
813
814 if (taken)
815 break;
816
817 /*
818 * Time-based reader-owned rwsem optimistic spinning
819 */
820 if (owner_state == OWNER_READER) {
821 /*
822 * Re-initialize rspin_threshold every time when
823 * the owner state changes from non-reader to reader.
824 * This allows a writer to steal the lock in between
825 * 2 reader phases and have the threshold reset at
826 * the beginning of the 2nd reader phase.
827 */
828 if (prev_owner_state != OWNER_READER) {
829 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
830 break;
831 rspin_threshold = rwsem_rspin_threshold(sem);
832 loop = 0;
833 }
834
835 /*
836 * Check time threshold once every 16 iterations to
837 * avoid calling sched_clock() too frequently so
838 * as to reduce the average latency between the times
839 * when the lock becomes free and when the spinner
840 * is ready to do a trylock.
841 */
842 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
843 rwsem_set_nonspinnable(sem);
844 lockevent_inc(rwsem_opt_nospin);
845 break;
846 }
847 }
848
849 /*
850 * An RT task cannot do optimistic spinning if it cannot
851 * be sure the lock holder is running or live-lock may
852 * happen if the current task and the lock holder happen
853 * to run in the same CPU. However, aborting optimistic
854 * spinning while a NULL owner is detected may miss some
855 * opportunity where spinning can continue without causing
856 * problem.
857 *
858 * There are 2 possible cases where an RT task may be able
859 * to continue spinning.
860 *
861 * 1) The lock owner is in the process of releasing the
862 * lock, sem->owner is cleared but the lock has not
863 * been released yet.
864 * 2) The lock was free and owner cleared, but another
865 * task just comes in and acquire the lock before
866 * we try to get it. The new owner may be a spinnable
867 * writer.
868 *
869 * To take advantage of two scenarios listed above, the RT
870 * task is made to retry one more time to see if it can
871 * acquire the lock or continue spinning on the new owning
872 * writer. Of course, if the time lag is long enough or the
873 * new owner is not a writer or spinnable, the RT task will
874 * quit spinning.
875 *
876 * If the owner is a writer, the need_resched() check is
877 * done inside rwsem_spin_on_owner(). If the owner is not
878 * a writer, need_resched() check needs to be done here.
879 */
880 if (owner_state != OWNER_WRITER) {
881 if (need_resched())
882 break;
883 if (rt_task(current) &&
884 (prev_owner_state != OWNER_WRITER))
885 break;
886 }
887 prev_owner_state = owner_state;
888
889 /*
890 * The cpu_relax() call is a compiler barrier which forces
891 * everything in this loop to be re-loaded. We don't need
892 * memory barriers as we'll eventually observe the right
893 * values at the cost of a few extra spins.
894 */
895 cpu_relax();
896 }
897 osq_unlock(&sem->osq);
898 done:
899 preempt_enable();
900 lockevent_cond_inc(rwsem_opt_fail, !taken);
901 return taken;
902 }
903
904 /*
905 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
906 * only be called when the reader count reaches 0.
907 */
908 static inline void clear_nonspinnable(struct rw_semaphore *sem)
909 {
910 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
911 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
912 }
913
914 #else
915 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
916 {
917 return false;
918 }
919
920 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
921 {
922 return false;
923 }
924
925 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
926
927 static inline enum owner_state
928 rwsem_spin_on_owner(struct rw_semaphore *sem)
929 {
930 return OWNER_NONSPINNABLE;
931 }
932 #endif
933
934 /*
935 * Wait for the read lock to be granted
936 */
937 static struct rw_semaphore __sched *
938 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
939 {
940 long adjustment = -RWSEM_READER_BIAS;
941 long rcnt = (count >> RWSEM_READER_SHIFT);
942 struct rwsem_waiter waiter;
943 DEFINE_WAKE_Q(wake_q);
944 bool wake = false;
945
946 /*
947 * To prevent a constant stream of readers from starving a sleeping
948 * waiter, don't attempt optimistic lock stealing if the lock is
949 * currently owned by readers.
950 */
951 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
952 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
953 goto queue;
954
955 /*
956 * Reader optimistic lock stealing.
957 */
958 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
959 rwsem_set_reader_owned(sem);
960 lockevent_inc(rwsem_rlock_steal);
961
962 /*
963 * Wake up other readers in the wait queue if it is
964 * the first reader.
965 */
966 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
967 raw_spin_lock_irq(&sem->wait_lock);
968 if (!list_empty(&sem->wait_list))
969 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
970 &wake_q);
971 raw_spin_unlock_irq(&sem->wait_lock);
972 wake_up_q(&wake_q);
973 }
974 return sem;
975 }
976
977 queue:
978 waiter.task = current;
979 waiter.type = RWSEM_WAITING_FOR_READ;
980 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
981
982 raw_spin_lock_irq(&sem->wait_lock);
983 if (list_empty(&sem->wait_list)) {
984 /*
985 * In case the wait queue is empty and the lock isn't owned
986 * by a writer or has the handoff bit set, this reader can
987 * exit the slowpath and return immediately as its
988 * RWSEM_READER_BIAS has already been set in the count.
989 */
990 if (!(atomic_long_read(&sem->count) &
991 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
992 /* Provide lock ACQUIRE */
993 smp_acquire__after_ctrl_dep();
994 raw_spin_unlock_irq(&sem->wait_lock);
995 rwsem_set_reader_owned(sem);
996 lockevent_inc(rwsem_rlock_fast);
997 return sem;
998 }
999 adjustment += RWSEM_FLAG_WAITERS;
1000 }
1001 rwsem_add_waiter(sem, &waiter);
1002
1003 /* we're now waiting on the lock, but no longer actively locking */
1004 count = atomic_long_add_return(adjustment, &sem->count);
1005
1006 /*
1007 * If there are no active locks, wake the front queued process(es).
1008 *
1009 * If there are no writers and we are first in the queue,
1010 * wake our own waiter to join the existing active readers !
1011 */
1012 if (!(count & RWSEM_LOCK_MASK)) {
1013 clear_nonspinnable(sem);
1014 wake = true;
1015 }
1016 if (wake || (!(count & RWSEM_WRITER_MASK) &&
1017 (adjustment & RWSEM_FLAG_WAITERS)))
1018 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1019
1020 raw_spin_unlock_irq(&sem->wait_lock);
1021 wake_up_q(&wake_q);
1022
1023 /* wait to be given the lock */
1024 for (;;) {
1025 set_current_state(state);
1026 if (!smp_load_acquire(&waiter.task)) {
1027 /* Matches rwsem_mark_wake()'s smp_store_release(). */
1028 break;
1029 }
1030 if (signal_pending_state(state, current)) {
1031 raw_spin_lock_irq(&sem->wait_lock);
1032 if (waiter.task)
1033 goto out_nolock;
1034 raw_spin_unlock_irq(&sem->wait_lock);
1035 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1036 break;
1037 }
1038 schedule();
1039 lockevent_inc(rwsem_sleep_reader);
1040 }
1041
1042 __set_current_state(TASK_RUNNING);
1043 lockevent_inc(rwsem_rlock);
1044 return sem;
1045
1046 out_nolock:
1047 rwsem_del_waiter(sem, &waiter);
1048 raw_spin_unlock_irq(&sem->wait_lock);
1049 __set_current_state(TASK_RUNNING);
1050 lockevent_inc(rwsem_rlock_fail);
1051 return ERR_PTR(-EINTR);
1052 }
1053
1054 /*
1055 * Wait until we successfully acquire the write lock
1056 */
1057 static struct rw_semaphore *
1058 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1059 {
1060 long count;
1061 struct rwsem_waiter waiter;
1062 DEFINE_WAKE_Q(wake_q);
1063
1064 /* do optimistic spinning and steal lock if possible */
1065 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1066 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1067 return sem;
1068 }
1069
1070 /*
1071 * Optimistic spinning failed, proceed to the slowpath
1072 * and block until we can acquire the sem.
1073 */
1074 waiter.task = current;
1075 waiter.type = RWSEM_WAITING_FOR_WRITE;
1076 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1077 waiter.handoff_set = false;
1078
1079 raw_spin_lock_irq(&sem->wait_lock);
1080 rwsem_add_waiter(sem, &waiter);
1081
1082 /* we're now waiting on the lock */
1083 if (rwsem_first_waiter(sem) != &waiter) {
1084 count = atomic_long_read(&sem->count);
1085
1086 /*
1087 * If there were already threads queued before us and:
1088 * 1) there are no active locks, wake the front
1089 * queued process(es) as the handoff bit might be set.
1090 * 2) there are no active writers and some readers, the lock
1091 * must be read owned; so we try to wake any read lock
1092 * waiters that were queued ahead of us.
1093 */
1094 if (count & RWSEM_WRITER_MASK)
1095 goto wait;
1096
1097 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1098 ? RWSEM_WAKE_READERS
1099 : RWSEM_WAKE_ANY, &wake_q);
1100
1101 if (!wake_q_empty(&wake_q)) {
1102 /*
1103 * We want to minimize wait_lock hold time especially
1104 * when a large number of readers are to be woken up.
1105 */
1106 raw_spin_unlock_irq(&sem->wait_lock);
1107 wake_up_q(&wake_q);
1108 wake_q_init(&wake_q); /* Used again, reinit */
1109 raw_spin_lock_irq(&sem->wait_lock);
1110 }
1111 } else {
1112 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1113 }
1114
1115 wait:
1116 /* wait until we successfully acquire the lock */
1117 set_current_state(state);
1118 for (;;) {
1119 if (rwsem_try_write_lock(sem, &waiter)) {
1120 /* rwsem_try_write_lock() implies ACQUIRE on success */
1121 break;
1122 }
1123
1124 raw_spin_unlock_irq(&sem->wait_lock);
1125
1126 if (signal_pending_state(state, current))
1127 goto out_nolock;
1128
1129 /*
1130 * After setting the handoff bit and failing to acquire
1131 * the lock, attempt to spin on owner to accelerate lock
1132 * transfer. If the previous owner is a on-cpu writer and it
1133 * has just released the lock, OWNER_NULL will be returned.
1134 * In this case, we attempt to acquire the lock again
1135 * without sleeping.
1136 */
1137 if (waiter.handoff_set) {
1138 enum owner_state owner_state;
1139
1140 preempt_disable();
1141 owner_state = rwsem_spin_on_owner(sem);
1142 preempt_enable();
1143
1144 if (owner_state == OWNER_NULL)
1145 goto trylock_again;
1146 }
1147
1148 schedule();
1149 lockevent_inc(rwsem_sleep_writer);
1150 set_current_state(state);
1151 trylock_again:
1152 raw_spin_lock_irq(&sem->wait_lock);
1153 }
1154 __set_current_state(TASK_RUNNING);
1155 raw_spin_unlock_irq(&sem->wait_lock);
1156 lockevent_inc(rwsem_wlock);
1157 return sem;
1158
1159 out_nolock:
1160 __set_current_state(TASK_RUNNING);
1161 raw_spin_lock_irq(&sem->wait_lock);
1162 rwsem_del_waiter(sem, &waiter);
1163 if (!list_empty(&sem->wait_list))
1164 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1165 raw_spin_unlock_irq(&sem->wait_lock);
1166 wake_up_q(&wake_q);
1167 lockevent_inc(rwsem_wlock_fail);
1168 return ERR_PTR(-EINTR);
1169 }
1170
1171 /*
1172 * handle waking up a waiter on the semaphore
1173 * - up_read/up_write has decremented the active part of count if we come here
1174 */
1175 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1176 {
1177 unsigned long flags;
1178 DEFINE_WAKE_Q(wake_q);
1179
1180 raw_spin_lock_irqsave(&sem->wait_lock, flags);
1181
1182 if (!list_empty(&sem->wait_list))
1183 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1184
1185 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1186 wake_up_q(&wake_q);
1187
1188 return sem;
1189 }
1190
1191 /*
1192 * downgrade a write lock into a read lock
1193 * - caller incremented waiting part of count and discovered it still negative
1194 * - just wake up any readers at the front of the queue
1195 */
1196 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1197 {
1198 unsigned long flags;
1199 DEFINE_WAKE_Q(wake_q);
1200
1201 raw_spin_lock_irqsave(&sem->wait_lock, flags);
1202
1203 if (!list_empty(&sem->wait_list))
1204 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1205
1206 raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1207 wake_up_q(&wake_q);
1208
1209 return sem;
1210 }
1211
1212 /*
1213 * lock for reading
1214 */
1215 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1216 {
1217 long count;
1218
1219 if (!rwsem_read_trylock(sem, &count)) {
1220 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1221 return -EINTR;
1222 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1223 }
1224 return 0;
1225 }
1226
1227 static inline void __down_read(struct rw_semaphore *sem)
1228 {
1229 __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1230 }
1231
1232 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1233 {
1234 return __down_read_common(sem, TASK_INTERRUPTIBLE);
1235 }
1236
1237 static inline int __down_read_killable(struct rw_semaphore *sem)
1238 {
1239 return __down_read_common(sem, TASK_KILLABLE);
1240 }
1241
1242 static inline int __down_read_trylock(struct rw_semaphore *sem)
1243 {
1244 long tmp;
1245
1246 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1247
1248 /*
1249 * Optimize for the case when the rwsem is not locked at all.
1250 */
1251 tmp = RWSEM_UNLOCKED_VALUE;
1252 do {
1253 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1254 tmp + RWSEM_READER_BIAS)) {
1255 rwsem_set_reader_owned(sem);
1256 return 1;
1257 }
1258 } while (!(tmp & RWSEM_READ_FAILED_MASK));
1259 return 0;
1260 }
1261
1262 /*
1263 * lock for writing
1264 */
1265 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1266 {
1267 if (unlikely(!rwsem_write_trylock(sem))) {
1268 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1269 return -EINTR;
1270 }
1271
1272 return 0;
1273 }
1274
1275 static inline void __down_write(struct rw_semaphore *sem)
1276 {
1277 __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1278 }
1279
1280 static inline int __down_write_killable(struct rw_semaphore *sem)
1281 {
1282 return __down_write_common(sem, TASK_KILLABLE);
1283 }
1284
1285 static inline int __down_write_trylock(struct rw_semaphore *sem)
1286 {
1287 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1288 return rwsem_write_trylock(sem);
1289 }
1290
1291 /*
1292 * unlock after reading
1293 */
1294 static inline void __up_read(struct rw_semaphore *sem)
1295 {
1296 long tmp;
1297
1298 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1299 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1300
1301 rwsem_clear_reader_owned(sem);
1302 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1303 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1304 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1305 RWSEM_FLAG_WAITERS)) {
1306 clear_nonspinnable(sem);
1307 rwsem_wake(sem);
1308 }
1309 }
1310
1311 /*
1312 * unlock after writing
1313 */
1314 static inline void __up_write(struct rw_semaphore *sem)
1315 {
1316 long tmp;
1317
1318 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1319 /*
1320 * sem->owner may differ from current if the ownership is transferred
1321 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1322 */
1323 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1324 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1325
1326 rwsem_clear_owner(sem);
1327 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1328 if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1329 rwsem_wake(sem);
1330 }
1331
1332 /*
1333 * downgrade write lock to read lock
1334 */
1335 static inline void __downgrade_write(struct rw_semaphore *sem)
1336 {
1337 long tmp;
1338
1339 /*
1340 * When downgrading from exclusive to shared ownership,
1341 * anything inside the write-locked region cannot leak
1342 * into the read side. In contrast, anything in the
1343 * read-locked region is ok to be re-ordered into the
1344 * write side. As such, rely on RELEASE semantics.
1345 */
1346 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1347 tmp = atomic_long_fetch_add_release(
1348 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1349 rwsem_set_reader_owned(sem);
1350 if (tmp & RWSEM_FLAG_WAITERS)
1351 rwsem_downgrade_wake(sem);
1352 }
1353
1354 #else /* !CONFIG_PREEMPT_RT */
1355
1356 #define RT_MUTEX_BUILD_MUTEX
1357 #include "rtmutex.c"
1358
1359 #define rwbase_set_and_save_current_state(state) \
1360 set_current_state(state)
1361
1362 #define rwbase_restore_current_state() \
1363 __set_current_state(TASK_RUNNING)
1364
1365 #define rwbase_rtmutex_lock_state(rtm, state) \
1366 __rt_mutex_lock(rtm, state)
1367
1368 #define rwbase_rtmutex_slowlock_locked(rtm, state) \
1369 __rt_mutex_slowlock_locked(rtm, NULL, state)
1370
1371 #define rwbase_rtmutex_unlock(rtm) \
1372 __rt_mutex_unlock(rtm)
1373
1374 #define rwbase_rtmutex_trylock(rtm) \
1375 __rt_mutex_trylock(rtm)
1376
1377 #define rwbase_signal_pending_state(state, current) \
1378 signal_pending_state(state, current)
1379
1380 #define rwbase_schedule() \
1381 schedule()
1382
1383 #include "rwbase_rt.c"
1384
1385 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1386 struct lock_class_key *key)
1387 {
1388 init_rwbase_rt(&(sem)->rwbase);
1389
1390 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1391 debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1392 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1393 #endif
1394 }
1395 EXPORT_SYMBOL(__init_rwsem);
1396
1397 static inline void __down_read(struct rw_semaphore *sem)
1398 {
1399 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1400 }
1401
1402 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1403 {
1404 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1405 }
1406
1407 static inline int __down_read_killable(struct rw_semaphore *sem)
1408 {
1409 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1410 }
1411
1412 static inline int __down_read_trylock(struct rw_semaphore *sem)
1413 {
1414 return rwbase_read_trylock(&sem->rwbase);
1415 }
1416
1417 static inline void __up_read(struct rw_semaphore *sem)
1418 {
1419 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1420 }
1421
1422 static inline void __sched __down_write(struct rw_semaphore *sem)
1423 {
1424 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1425 }
1426
1427 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1428 {
1429 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1430 }
1431
1432 static inline int __down_write_trylock(struct rw_semaphore *sem)
1433 {
1434 return rwbase_write_trylock(&sem->rwbase);
1435 }
1436
1437 static inline void __up_write(struct rw_semaphore *sem)
1438 {
1439 rwbase_write_unlock(&sem->rwbase);
1440 }
1441
1442 static inline void __downgrade_write(struct rw_semaphore *sem)
1443 {
1444 rwbase_write_downgrade(&sem->rwbase);
1445 }
1446
1447 /* Debug stubs for the common API */
1448 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1449
1450 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1451 struct task_struct *owner)
1452 {
1453 }
1454
1455 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1456 {
1457 int count = atomic_read(&sem->rwbase.readers);
1458
1459 return count < 0 && count != READER_BIAS;
1460 }
1461
1462 #endif /* CONFIG_PREEMPT_RT */
1463
1464 /*
1465 * lock for reading
1466 */
1467 void __sched down_read(struct rw_semaphore *sem)
1468 {
1469 might_sleep();
1470 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1471
1472 LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1473 }
1474 EXPORT_SYMBOL(down_read);
1475
1476 int __sched down_read_interruptible(struct rw_semaphore *sem)
1477 {
1478 might_sleep();
1479 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1480
1481 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1482 rwsem_release(&sem->dep_map, _RET_IP_);
1483 return -EINTR;
1484 }
1485
1486 return 0;
1487 }
1488 EXPORT_SYMBOL(down_read_interruptible);
1489
1490 int __sched down_read_killable(struct rw_semaphore *sem)
1491 {
1492 might_sleep();
1493 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1494
1495 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1496 rwsem_release(&sem->dep_map, _RET_IP_);
1497 return -EINTR;
1498 }
1499
1500 return 0;
1501 }
1502 EXPORT_SYMBOL(down_read_killable);
1503
1504 /*
1505 * trylock for reading -- returns 1 if successful, 0 if contention
1506 */
1507 int down_read_trylock(struct rw_semaphore *sem)
1508 {
1509 int ret = __down_read_trylock(sem);
1510
1511 if (ret == 1)
1512 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1513 return ret;
1514 }
1515 EXPORT_SYMBOL(down_read_trylock);
1516
1517 /*
1518 * lock for writing
1519 */
1520 void __sched down_write(struct rw_semaphore *sem)
1521 {
1522 might_sleep();
1523 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1524 LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1525 }
1526 EXPORT_SYMBOL(down_write);
1527
1528 /*
1529 * lock for writing
1530 */
1531 int __sched down_write_killable(struct rw_semaphore *sem)
1532 {
1533 might_sleep();
1534 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1535
1536 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1537 __down_write_killable)) {
1538 rwsem_release(&sem->dep_map, _RET_IP_);
1539 return -EINTR;
1540 }
1541
1542 return 0;
1543 }
1544 EXPORT_SYMBOL(down_write_killable);
1545
1546 /*
1547 * trylock for writing -- returns 1 if successful, 0 if contention
1548 */
1549 int down_write_trylock(struct rw_semaphore *sem)
1550 {
1551 int ret = __down_write_trylock(sem);
1552
1553 if (ret == 1)
1554 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1555
1556 return ret;
1557 }
1558 EXPORT_SYMBOL(down_write_trylock);
1559
1560 /*
1561 * release a read lock
1562 */
1563 void up_read(struct rw_semaphore *sem)
1564 {
1565 rwsem_release(&sem->dep_map, _RET_IP_);
1566 __up_read(sem);
1567 }
1568 EXPORT_SYMBOL(up_read);
1569
1570 /*
1571 * release a write lock
1572 */
1573 void up_write(struct rw_semaphore *sem)
1574 {
1575 rwsem_release(&sem->dep_map, _RET_IP_);
1576 __up_write(sem);
1577 }
1578 EXPORT_SYMBOL(up_write);
1579
1580 /*
1581 * downgrade write lock to read lock
1582 */
1583 void downgrade_write(struct rw_semaphore *sem)
1584 {
1585 lock_downgrade(&sem->dep_map, _RET_IP_);
1586 __downgrade_write(sem);
1587 }
1588 EXPORT_SYMBOL(downgrade_write);
1589
1590 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1591
1592 void down_read_nested(struct rw_semaphore *sem, int subclass)
1593 {
1594 might_sleep();
1595 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1596 LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1597 }
1598 EXPORT_SYMBOL(down_read_nested);
1599
1600 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1601 {
1602 might_sleep();
1603 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1604
1605 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1606 rwsem_release(&sem->dep_map, _RET_IP_);
1607 return -EINTR;
1608 }
1609
1610 return 0;
1611 }
1612 EXPORT_SYMBOL(down_read_killable_nested);
1613
1614 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1615 {
1616 might_sleep();
1617 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1618 LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1619 }
1620 EXPORT_SYMBOL(_down_write_nest_lock);
1621
1622 void down_read_non_owner(struct rw_semaphore *sem)
1623 {
1624 might_sleep();
1625 __down_read(sem);
1626 __rwsem_set_reader_owned(sem, NULL);
1627 }
1628 EXPORT_SYMBOL(down_read_non_owner);
1629
1630 void down_write_nested(struct rw_semaphore *sem, int subclass)
1631 {
1632 might_sleep();
1633 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1634 LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1635 }
1636 EXPORT_SYMBOL(down_write_nested);
1637
1638 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1639 {
1640 might_sleep();
1641 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1642
1643 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1644 __down_write_killable)) {
1645 rwsem_release(&sem->dep_map, _RET_IP_);
1646 return -EINTR;
1647 }
1648
1649 return 0;
1650 }
1651 EXPORT_SYMBOL(down_write_killable_nested);
1652
1653 void up_read_non_owner(struct rw_semaphore *sem)
1654 {
1655 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1656 __up_read(sem);
1657 }
1658 EXPORT_SYMBOL(up_read_non_owner);
1659
1660 #endif