]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/module.c
Merge tag 'mmc-v4.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-zesty-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/livepatch.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/dynamic_debug.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /* If this is set, the section belongs in the init part of the module */
86 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87
88 /*
89 * Mutex protects:
90 * 1) List of modules (also safely readable with preempt_disable),
91 * 2) module_use links,
92 * 3) module_addr_min/module_addr_max.
93 * (delete and add uses RCU list operations). */
94 DEFINE_MUTEX(module_mutex);
95 EXPORT_SYMBOL_GPL(module_mutex);
96 static LIST_HEAD(modules);
97
98 #ifdef CONFIG_MODULES_TREE_LOOKUP
99
100 /*
101 * Use a latched RB-tree for __module_address(); this allows us to use
102 * RCU-sched lookups of the address from any context.
103 *
104 * This is conditional on PERF_EVENTS || TRACING because those can really hit
105 * __module_address() hard by doing a lot of stack unwinding; potentially from
106 * NMI context.
107 */
108
109 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
110 {
111 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
112
113 return (unsigned long)layout->base;
114 }
115
116 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
117 {
118 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119
120 return (unsigned long)layout->size;
121 }
122
123 static __always_inline bool
124 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
125 {
126 return __mod_tree_val(a) < __mod_tree_val(b);
127 }
128
129 static __always_inline int
130 mod_tree_comp(void *key, struct latch_tree_node *n)
131 {
132 unsigned long val = (unsigned long)key;
133 unsigned long start, end;
134
135 start = __mod_tree_val(n);
136 if (val < start)
137 return -1;
138
139 end = start + __mod_tree_size(n);
140 if (val >= end)
141 return 1;
142
143 return 0;
144 }
145
146 static const struct latch_tree_ops mod_tree_ops = {
147 .less = mod_tree_less,
148 .comp = mod_tree_comp,
149 };
150
151 static struct mod_tree_root {
152 struct latch_tree_root root;
153 unsigned long addr_min;
154 unsigned long addr_max;
155 } mod_tree __cacheline_aligned = {
156 .addr_min = -1UL,
157 };
158
159 #define module_addr_min mod_tree.addr_min
160 #define module_addr_max mod_tree.addr_max
161
162 static noinline void __mod_tree_insert(struct mod_tree_node *node)
163 {
164 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 }
166
167 static void __mod_tree_remove(struct mod_tree_node *node)
168 {
169 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171
172 /*
173 * These modifications: insert, remove_init and remove; are serialized by the
174 * module_mutex.
175 */
176 static void mod_tree_insert(struct module *mod)
177 {
178 mod->core_layout.mtn.mod = mod;
179 mod->init_layout.mtn.mod = mod;
180
181 __mod_tree_insert(&mod->core_layout.mtn);
182 if (mod->init_layout.size)
183 __mod_tree_insert(&mod->init_layout.mtn);
184 }
185
186 static void mod_tree_remove_init(struct module *mod)
187 {
188 if (mod->init_layout.size)
189 __mod_tree_remove(&mod->init_layout.mtn);
190 }
191
192 static void mod_tree_remove(struct module *mod)
193 {
194 __mod_tree_remove(&mod->core_layout.mtn);
195 mod_tree_remove_init(mod);
196 }
197
198 static struct module *mod_find(unsigned long addr)
199 {
200 struct latch_tree_node *ltn;
201
202 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
203 if (!ltn)
204 return NULL;
205
206 return container_of(ltn, struct mod_tree_node, node)->mod;
207 }
208
209 #else /* MODULES_TREE_LOOKUP */
210
211 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
212
213 static void mod_tree_insert(struct module *mod) { }
214 static void mod_tree_remove_init(struct module *mod) { }
215 static void mod_tree_remove(struct module *mod) { }
216
217 static struct module *mod_find(unsigned long addr)
218 {
219 struct module *mod;
220
221 list_for_each_entry_rcu(mod, &modules, list) {
222 if (within_module(addr, mod))
223 return mod;
224 }
225
226 return NULL;
227 }
228
229 #endif /* MODULES_TREE_LOOKUP */
230
231 /*
232 * Bounds of module text, for speeding up __module_address.
233 * Protected by module_mutex.
234 */
235 static void __mod_update_bounds(void *base, unsigned int size)
236 {
237 unsigned long min = (unsigned long)base;
238 unsigned long max = min + size;
239
240 if (min < module_addr_min)
241 module_addr_min = min;
242 if (max > module_addr_max)
243 module_addr_max = max;
244 }
245
246 static void mod_update_bounds(struct module *mod)
247 {
248 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
249 if (mod->init_layout.size)
250 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 }
252
253 #ifdef CONFIG_KGDB_KDB
254 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
255 #endif /* CONFIG_KGDB_KDB */
256
257 static void module_assert_mutex(void)
258 {
259 lockdep_assert_held(&module_mutex);
260 }
261
262 static void module_assert_mutex_or_preempt(void)
263 {
264 #ifdef CONFIG_LOCKDEP
265 if (unlikely(!debug_locks))
266 return;
267
268 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
269 !lockdep_is_held(&module_mutex));
270 #endif
271 }
272
273 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
274 #ifndef CONFIG_MODULE_SIG_FORCE
275 module_param(sig_enforce, bool_enable_only, 0644);
276 #endif /* !CONFIG_MODULE_SIG_FORCE */
277
278 /* Block module loading/unloading? */
279 int modules_disabled = 0;
280 core_param(nomodule, modules_disabled, bint, 0);
281
282 /* Waiting for a module to finish initializing? */
283 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
284
285 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
286
287 int register_module_notifier(struct notifier_block *nb)
288 {
289 return blocking_notifier_chain_register(&module_notify_list, nb);
290 }
291 EXPORT_SYMBOL(register_module_notifier);
292
293 int unregister_module_notifier(struct notifier_block *nb)
294 {
295 return blocking_notifier_chain_unregister(&module_notify_list, nb);
296 }
297 EXPORT_SYMBOL(unregister_module_notifier);
298
299 struct load_info {
300 Elf_Ehdr *hdr;
301 unsigned long len;
302 Elf_Shdr *sechdrs;
303 char *secstrings, *strtab;
304 unsigned long symoffs, stroffs;
305 struct _ddebug *debug;
306 unsigned int num_debug;
307 bool sig_ok;
308 #ifdef CONFIG_KALLSYMS
309 unsigned long mod_kallsyms_init_off;
310 #endif
311 struct {
312 unsigned int sym, str, mod, vers, info, pcpu;
313 } index;
314 };
315
316 /* We require a truly strong try_module_get(): 0 means failure due to
317 ongoing or failed initialization etc. */
318 static inline int strong_try_module_get(struct module *mod)
319 {
320 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 if (mod && mod->state == MODULE_STATE_COMING)
322 return -EBUSY;
323 if (try_module_get(mod))
324 return 0;
325 else
326 return -ENOENT;
327 }
328
329 static inline void add_taint_module(struct module *mod, unsigned flag,
330 enum lockdep_ok lockdep_ok)
331 {
332 add_taint(flag, lockdep_ok);
333 mod->taints |= (1U << flag);
334 }
335
336 /*
337 * A thread that wants to hold a reference to a module only while it
338 * is running can call this to safely exit. nfsd and lockd use this.
339 */
340 void __noreturn __module_put_and_exit(struct module *mod, long code)
341 {
342 module_put(mod);
343 do_exit(code);
344 }
345 EXPORT_SYMBOL(__module_put_and_exit);
346
347 /* Find a module section: 0 means not found. */
348 static unsigned int find_sec(const struct load_info *info, const char *name)
349 {
350 unsigned int i;
351
352 for (i = 1; i < info->hdr->e_shnum; i++) {
353 Elf_Shdr *shdr = &info->sechdrs[i];
354 /* Alloc bit cleared means "ignore it." */
355 if ((shdr->sh_flags & SHF_ALLOC)
356 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 return i;
358 }
359 return 0;
360 }
361
362 /* Find a module section, or NULL. */
363 static void *section_addr(const struct load_info *info, const char *name)
364 {
365 /* Section 0 has sh_addr 0. */
366 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 }
368
369 /* Find a module section, or NULL. Fill in number of "objects" in section. */
370 static void *section_objs(const struct load_info *info,
371 const char *name,
372 size_t object_size,
373 unsigned int *num)
374 {
375 unsigned int sec = find_sec(info, name);
376
377 /* Section 0 has sh_addr 0 and sh_size 0. */
378 *num = info->sechdrs[sec].sh_size / object_size;
379 return (void *)info->sechdrs[sec].sh_addr;
380 }
381
382 /* Provided by the linker */
383 extern const struct kernel_symbol __start___ksymtab[];
384 extern const struct kernel_symbol __stop___ksymtab[];
385 extern const struct kernel_symbol __start___ksymtab_gpl[];
386 extern const struct kernel_symbol __stop___ksymtab_gpl[];
387 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
388 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
389 extern const unsigned long __start___kcrctab[];
390 extern const unsigned long __start___kcrctab_gpl[];
391 extern const unsigned long __start___kcrctab_gpl_future[];
392 #ifdef CONFIG_UNUSED_SYMBOLS
393 extern const struct kernel_symbol __start___ksymtab_unused[];
394 extern const struct kernel_symbol __stop___ksymtab_unused[];
395 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
396 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
397 extern const unsigned long __start___kcrctab_unused[];
398 extern const unsigned long __start___kcrctab_unused_gpl[];
399 #endif
400
401 #ifndef CONFIG_MODVERSIONS
402 #define symversion(base, idx) NULL
403 #else
404 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
405 #endif
406
407 static bool each_symbol_in_section(const struct symsearch *arr,
408 unsigned int arrsize,
409 struct module *owner,
410 bool (*fn)(const struct symsearch *syms,
411 struct module *owner,
412 void *data),
413 void *data)
414 {
415 unsigned int j;
416
417 for (j = 0; j < arrsize; j++) {
418 if (fn(&arr[j], owner, data))
419 return true;
420 }
421
422 return false;
423 }
424
425 /* Returns true as soon as fn returns true, otherwise false. */
426 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
427 struct module *owner,
428 void *data),
429 void *data)
430 {
431 struct module *mod;
432 static const struct symsearch arr[] = {
433 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
434 NOT_GPL_ONLY, false },
435 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
436 __start___kcrctab_gpl,
437 GPL_ONLY, false },
438 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
439 __start___kcrctab_gpl_future,
440 WILL_BE_GPL_ONLY, false },
441 #ifdef CONFIG_UNUSED_SYMBOLS
442 { __start___ksymtab_unused, __stop___ksymtab_unused,
443 __start___kcrctab_unused,
444 NOT_GPL_ONLY, true },
445 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
446 __start___kcrctab_unused_gpl,
447 GPL_ONLY, true },
448 #endif
449 };
450
451 module_assert_mutex_or_preempt();
452
453 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
454 return true;
455
456 list_for_each_entry_rcu(mod, &modules, list) {
457 struct symsearch arr[] = {
458 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
459 NOT_GPL_ONLY, false },
460 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
461 mod->gpl_crcs,
462 GPL_ONLY, false },
463 { mod->gpl_future_syms,
464 mod->gpl_future_syms + mod->num_gpl_future_syms,
465 mod->gpl_future_crcs,
466 WILL_BE_GPL_ONLY, false },
467 #ifdef CONFIG_UNUSED_SYMBOLS
468 { mod->unused_syms,
469 mod->unused_syms + mod->num_unused_syms,
470 mod->unused_crcs,
471 NOT_GPL_ONLY, true },
472 { mod->unused_gpl_syms,
473 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
474 mod->unused_gpl_crcs,
475 GPL_ONLY, true },
476 #endif
477 };
478
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481
482 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
483 return true;
484 }
485 return false;
486 }
487 EXPORT_SYMBOL_GPL(each_symbol_section);
488
489 struct find_symbol_arg {
490 /* Input */
491 const char *name;
492 bool gplok;
493 bool warn;
494
495 /* Output */
496 struct module *owner;
497 const unsigned long *crc;
498 const struct kernel_symbol *sym;
499 };
500
501 static bool check_symbol(const struct symsearch *syms,
502 struct module *owner,
503 unsigned int symnum, void *data)
504 {
505 struct find_symbol_arg *fsa = data;
506
507 if (!fsa->gplok) {
508 if (syms->licence == GPL_ONLY)
509 return false;
510 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
511 pr_warn("Symbol %s is being used by a non-GPL module, "
512 "which will not be allowed in the future\n",
513 fsa->name);
514 }
515 }
516
517 #ifdef CONFIG_UNUSED_SYMBOLS
518 if (syms->unused && fsa->warn) {
519 pr_warn("Symbol %s is marked as UNUSED, however this module is "
520 "using it.\n", fsa->name);
521 pr_warn("This symbol will go away in the future.\n");
522 pr_warn("Please evaluate if this is the right api to use and "
523 "if it really is, submit a report to the linux kernel "
524 "mailing list together with submitting your code for "
525 "inclusion.\n");
526 }
527 #endif
528
529 fsa->owner = owner;
530 fsa->crc = symversion(syms->crcs, symnum);
531 fsa->sym = &syms->start[symnum];
532 return true;
533 }
534
535 static int cmp_name(const void *va, const void *vb)
536 {
537 const char *a;
538 const struct kernel_symbol *b;
539 a = va; b = vb;
540 return strcmp(a, b->name);
541 }
542
543 static bool find_symbol_in_section(const struct symsearch *syms,
544 struct module *owner,
545 void *data)
546 {
547 struct find_symbol_arg *fsa = data;
548 struct kernel_symbol *sym;
549
550 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
551 sizeof(struct kernel_symbol), cmp_name);
552
553 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
554 return true;
555
556 return false;
557 }
558
559 /* Find a symbol and return it, along with, (optional) crc and
560 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
561 const struct kernel_symbol *find_symbol(const char *name,
562 struct module **owner,
563 const unsigned long **crc,
564 bool gplok,
565 bool warn)
566 {
567 struct find_symbol_arg fsa;
568
569 fsa.name = name;
570 fsa.gplok = gplok;
571 fsa.warn = warn;
572
573 if (each_symbol_section(find_symbol_in_section, &fsa)) {
574 if (owner)
575 *owner = fsa.owner;
576 if (crc)
577 *crc = fsa.crc;
578 return fsa.sym;
579 }
580
581 pr_debug("Failed to find symbol %s\n", name);
582 return NULL;
583 }
584 EXPORT_SYMBOL_GPL(find_symbol);
585
586 /*
587 * Search for module by name: must hold module_mutex (or preempt disabled
588 * for read-only access).
589 */
590 static struct module *find_module_all(const char *name, size_t len,
591 bool even_unformed)
592 {
593 struct module *mod;
594
595 module_assert_mutex_or_preempt();
596
597 list_for_each_entry(mod, &modules, list) {
598 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
599 continue;
600 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
601 return mod;
602 }
603 return NULL;
604 }
605
606 struct module *find_module(const char *name)
607 {
608 module_assert_mutex();
609 return find_module_all(name, strlen(name), false);
610 }
611 EXPORT_SYMBOL_GPL(find_module);
612
613 #ifdef CONFIG_SMP
614
615 static inline void __percpu *mod_percpu(struct module *mod)
616 {
617 return mod->percpu;
618 }
619
620 static int percpu_modalloc(struct module *mod, struct load_info *info)
621 {
622 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
623 unsigned long align = pcpusec->sh_addralign;
624
625 if (!pcpusec->sh_size)
626 return 0;
627
628 if (align > PAGE_SIZE) {
629 pr_warn("%s: per-cpu alignment %li > %li\n",
630 mod->name, align, PAGE_SIZE);
631 align = PAGE_SIZE;
632 }
633
634 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
635 if (!mod->percpu) {
636 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
637 mod->name, (unsigned long)pcpusec->sh_size);
638 return -ENOMEM;
639 }
640 mod->percpu_size = pcpusec->sh_size;
641 return 0;
642 }
643
644 static void percpu_modfree(struct module *mod)
645 {
646 free_percpu(mod->percpu);
647 }
648
649 static unsigned int find_pcpusec(struct load_info *info)
650 {
651 return find_sec(info, ".data..percpu");
652 }
653
654 static void percpu_modcopy(struct module *mod,
655 const void *from, unsigned long size)
656 {
657 int cpu;
658
659 for_each_possible_cpu(cpu)
660 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
661 }
662
663 /**
664 * is_module_percpu_address - test whether address is from module static percpu
665 * @addr: address to test
666 *
667 * Test whether @addr belongs to module static percpu area.
668 *
669 * RETURNS:
670 * %true if @addr is from module static percpu area
671 */
672 bool is_module_percpu_address(unsigned long addr)
673 {
674 struct module *mod;
675 unsigned int cpu;
676
677 preempt_disable();
678
679 list_for_each_entry_rcu(mod, &modules, list) {
680 if (mod->state == MODULE_STATE_UNFORMED)
681 continue;
682 if (!mod->percpu_size)
683 continue;
684 for_each_possible_cpu(cpu) {
685 void *start = per_cpu_ptr(mod->percpu, cpu);
686
687 if ((void *)addr >= start &&
688 (void *)addr < start + mod->percpu_size) {
689 preempt_enable();
690 return true;
691 }
692 }
693 }
694
695 preempt_enable();
696 return false;
697 }
698
699 #else /* ... !CONFIG_SMP */
700
701 static inline void __percpu *mod_percpu(struct module *mod)
702 {
703 return NULL;
704 }
705 static int percpu_modalloc(struct module *mod, struct load_info *info)
706 {
707 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
708 if (info->sechdrs[info->index.pcpu].sh_size != 0)
709 return -ENOMEM;
710 return 0;
711 }
712 static inline void percpu_modfree(struct module *mod)
713 {
714 }
715 static unsigned int find_pcpusec(struct load_info *info)
716 {
717 return 0;
718 }
719 static inline void percpu_modcopy(struct module *mod,
720 const void *from, unsigned long size)
721 {
722 /* pcpusec should be 0, and size of that section should be 0. */
723 BUG_ON(size != 0);
724 }
725 bool is_module_percpu_address(unsigned long addr)
726 {
727 return false;
728 }
729
730 #endif /* CONFIG_SMP */
731
732 #define MODINFO_ATTR(field) \
733 static void setup_modinfo_##field(struct module *mod, const char *s) \
734 { \
735 mod->field = kstrdup(s, GFP_KERNEL); \
736 } \
737 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
738 struct module_kobject *mk, char *buffer) \
739 { \
740 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
741 } \
742 static int modinfo_##field##_exists(struct module *mod) \
743 { \
744 return mod->field != NULL; \
745 } \
746 static void free_modinfo_##field(struct module *mod) \
747 { \
748 kfree(mod->field); \
749 mod->field = NULL; \
750 } \
751 static struct module_attribute modinfo_##field = { \
752 .attr = { .name = __stringify(field), .mode = 0444 }, \
753 .show = show_modinfo_##field, \
754 .setup = setup_modinfo_##field, \
755 .test = modinfo_##field##_exists, \
756 .free = free_modinfo_##field, \
757 };
758
759 MODINFO_ATTR(version);
760 MODINFO_ATTR(srcversion);
761
762 static char last_unloaded_module[MODULE_NAME_LEN+1];
763
764 #ifdef CONFIG_MODULE_UNLOAD
765
766 EXPORT_TRACEPOINT_SYMBOL(module_get);
767
768 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
769 #define MODULE_REF_BASE 1
770
771 /* Init the unload section of the module. */
772 static int module_unload_init(struct module *mod)
773 {
774 /*
775 * Initialize reference counter to MODULE_REF_BASE.
776 * refcnt == 0 means module is going.
777 */
778 atomic_set(&mod->refcnt, MODULE_REF_BASE);
779
780 INIT_LIST_HEAD(&mod->source_list);
781 INIT_LIST_HEAD(&mod->target_list);
782
783 /* Hold reference count during initialization. */
784 atomic_inc(&mod->refcnt);
785
786 return 0;
787 }
788
789 /* Does a already use b? */
790 static int already_uses(struct module *a, struct module *b)
791 {
792 struct module_use *use;
793
794 list_for_each_entry(use, &b->source_list, source_list) {
795 if (use->source == a) {
796 pr_debug("%s uses %s!\n", a->name, b->name);
797 return 1;
798 }
799 }
800 pr_debug("%s does not use %s!\n", a->name, b->name);
801 return 0;
802 }
803
804 /*
805 * Module a uses b
806 * - we add 'a' as a "source", 'b' as a "target" of module use
807 * - the module_use is added to the list of 'b' sources (so
808 * 'b' can walk the list to see who sourced them), and of 'a'
809 * targets (so 'a' can see what modules it targets).
810 */
811 static int add_module_usage(struct module *a, struct module *b)
812 {
813 struct module_use *use;
814
815 pr_debug("Allocating new usage for %s.\n", a->name);
816 use = kmalloc(sizeof(*use), GFP_ATOMIC);
817 if (!use) {
818 pr_warn("%s: out of memory loading\n", a->name);
819 return -ENOMEM;
820 }
821
822 use->source = a;
823 use->target = b;
824 list_add(&use->source_list, &b->source_list);
825 list_add(&use->target_list, &a->target_list);
826 return 0;
827 }
828
829 /* Module a uses b: caller needs module_mutex() */
830 int ref_module(struct module *a, struct module *b)
831 {
832 int err;
833
834 if (b == NULL || already_uses(a, b))
835 return 0;
836
837 /* If module isn't available, we fail. */
838 err = strong_try_module_get(b);
839 if (err)
840 return err;
841
842 err = add_module_usage(a, b);
843 if (err) {
844 module_put(b);
845 return err;
846 }
847 return 0;
848 }
849 EXPORT_SYMBOL_GPL(ref_module);
850
851 /* Clear the unload stuff of the module. */
852 static void module_unload_free(struct module *mod)
853 {
854 struct module_use *use, *tmp;
855
856 mutex_lock(&module_mutex);
857 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
858 struct module *i = use->target;
859 pr_debug("%s unusing %s\n", mod->name, i->name);
860 module_put(i);
861 list_del(&use->source_list);
862 list_del(&use->target_list);
863 kfree(use);
864 }
865 mutex_unlock(&module_mutex);
866 }
867
868 #ifdef CONFIG_MODULE_FORCE_UNLOAD
869 static inline int try_force_unload(unsigned int flags)
870 {
871 int ret = (flags & O_TRUNC);
872 if (ret)
873 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
874 return ret;
875 }
876 #else
877 static inline int try_force_unload(unsigned int flags)
878 {
879 return 0;
880 }
881 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
882
883 /* Try to release refcount of module, 0 means success. */
884 static int try_release_module_ref(struct module *mod)
885 {
886 int ret;
887
888 /* Try to decrement refcnt which we set at loading */
889 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
890 BUG_ON(ret < 0);
891 if (ret)
892 /* Someone can put this right now, recover with checking */
893 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
894
895 return ret;
896 }
897
898 static int try_stop_module(struct module *mod, int flags, int *forced)
899 {
900 /* If it's not unused, quit unless we're forcing. */
901 if (try_release_module_ref(mod) != 0) {
902 *forced = try_force_unload(flags);
903 if (!(*forced))
904 return -EWOULDBLOCK;
905 }
906
907 /* Mark it as dying. */
908 mod->state = MODULE_STATE_GOING;
909
910 return 0;
911 }
912
913 /**
914 * module_refcount - return the refcount or -1 if unloading
915 *
916 * @mod: the module we're checking
917 *
918 * Returns:
919 * -1 if the module is in the process of unloading
920 * otherwise the number of references in the kernel to the module
921 */
922 int module_refcount(struct module *mod)
923 {
924 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
925 }
926 EXPORT_SYMBOL(module_refcount);
927
928 /* This exists whether we can unload or not */
929 static void free_module(struct module *mod);
930
931 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
932 unsigned int, flags)
933 {
934 struct module *mod;
935 char name[MODULE_NAME_LEN];
936 int ret, forced = 0;
937
938 if (!capable(CAP_SYS_MODULE) || modules_disabled)
939 return -EPERM;
940
941 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
942 return -EFAULT;
943 name[MODULE_NAME_LEN-1] = '\0';
944
945 if (mutex_lock_interruptible(&module_mutex) != 0)
946 return -EINTR;
947
948 mod = find_module(name);
949 if (!mod) {
950 ret = -ENOENT;
951 goto out;
952 }
953
954 if (!list_empty(&mod->source_list)) {
955 /* Other modules depend on us: get rid of them first. */
956 ret = -EWOULDBLOCK;
957 goto out;
958 }
959
960 /* Doing init or already dying? */
961 if (mod->state != MODULE_STATE_LIVE) {
962 /* FIXME: if (force), slam module count damn the torpedoes */
963 pr_debug("%s already dying\n", mod->name);
964 ret = -EBUSY;
965 goto out;
966 }
967
968 /* If it has an init func, it must have an exit func to unload */
969 if (mod->init && !mod->exit) {
970 forced = try_force_unload(flags);
971 if (!forced) {
972 /* This module can't be removed */
973 ret = -EBUSY;
974 goto out;
975 }
976 }
977
978 /* Stop the machine so refcounts can't move and disable module. */
979 ret = try_stop_module(mod, flags, &forced);
980 if (ret != 0)
981 goto out;
982
983 mutex_unlock(&module_mutex);
984 /* Final destruction now no one is using it. */
985 if (mod->exit != NULL)
986 mod->exit();
987 blocking_notifier_call_chain(&module_notify_list,
988 MODULE_STATE_GOING, mod);
989 klp_module_going(mod);
990 ftrace_release_mod(mod);
991
992 async_synchronize_full();
993
994 /* Store the name of the last unloaded module for diagnostic purposes */
995 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
996
997 free_module(mod);
998 return 0;
999 out:
1000 mutex_unlock(&module_mutex);
1001 return ret;
1002 }
1003
1004 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1005 {
1006 struct module_use *use;
1007 int printed_something = 0;
1008
1009 seq_printf(m, " %i ", module_refcount(mod));
1010
1011 /*
1012 * Always include a trailing , so userspace can differentiate
1013 * between this and the old multi-field proc format.
1014 */
1015 list_for_each_entry(use, &mod->source_list, source_list) {
1016 printed_something = 1;
1017 seq_printf(m, "%s,", use->source->name);
1018 }
1019
1020 if (mod->init != NULL && mod->exit == NULL) {
1021 printed_something = 1;
1022 seq_puts(m, "[permanent],");
1023 }
1024
1025 if (!printed_something)
1026 seq_puts(m, "-");
1027 }
1028
1029 void __symbol_put(const char *symbol)
1030 {
1031 struct module *owner;
1032
1033 preempt_disable();
1034 if (!find_symbol(symbol, &owner, NULL, true, false))
1035 BUG();
1036 module_put(owner);
1037 preempt_enable();
1038 }
1039 EXPORT_SYMBOL(__symbol_put);
1040
1041 /* Note this assumes addr is a function, which it currently always is. */
1042 void symbol_put_addr(void *addr)
1043 {
1044 struct module *modaddr;
1045 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1046
1047 if (core_kernel_text(a))
1048 return;
1049
1050 /*
1051 * Even though we hold a reference on the module; we still need to
1052 * disable preemption in order to safely traverse the data structure.
1053 */
1054 preempt_disable();
1055 modaddr = __module_text_address(a);
1056 BUG_ON(!modaddr);
1057 module_put(modaddr);
1058 preempt_enable();
1059 }
1060 EXPORT_SYMBOL_GPL(symbol_put_addr);
1061
1062 static ssize_t show_refcnt(struct module_attribute *mattr,
1063 struct module_kobject *mk, char *buffer)
1064 {
1065 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1066 }
1067
1068 static struct module_attribute modinfo_refcnt =
1069 __ATTR(refcnt, 0444, show_refcnt, NULL);
1070
1071 void __module_get(struct module *module)
1072 {
1073 if (module) {
1074 preempt_disable();
1075 atomic_inc(&module->refcnt);
1076 trace_module_get(module, _RET_IP_);
1077 preempt_enable();
1078 }
1079 }
1080 EXPORT_SYMBOL(__module_get);
1081
1082 bool try_module_get(struct module *module)
1083 {
1084 bool ret = true;
1085
1086 if (module) {
1087 preempt_disable();
1088 /* Note: here, we can fail to get a reference */
1089 if (likely(module_is_live(module) &&
1090 atomic_inc_not_zero(&module->refcnt) != 0))
1091 trace_module_get(module, _RET_IP_);
1092 else
1093 ret = false;
1094
1095 preempt_enable();
1096 }
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(try_module_get);
1100
1101 void module_put(struct module *module)
1102 {
1103 int ret;
1104
1105 if (module) {
1106 preempt_disable();
1107 ret = atomic_dec_if_positive(&module->refcnt);
1108 WARN_ON(ret < 0); /* Failed to put refcount */
1109 trace_module_put(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(module_put);
1114
1115 #else /* !CONFIG_MODULE_UNLOAD */
1116 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1117 {
1118 /* We don't know the usage count, or what modules are using. */
1119 seq_puts(m, " - -");
1120 }
1121
1122 static inline void module_unload_free(struct module *mod)
1123 {
1124 }
1125
1126 int ref_module(struct module *a, struct module *b)
1127 {
1128 return strong_try_module_get(b);
1129 }
1130 EXPORT_SYMBOL_GPL(ref_module);
1131
1132 static inline int module_unload_init(struct module *mod)
1133 {
1134 return 0;
1135 }
1136 #endif /* CONFIG_MODULE_UNLOAD */
1137
1138 static size_t module_flags_taint(struct module *mod, char *buf)
1139 {
1140 size_t l = 0;
1141
1142 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1143 buf[l++] = 'P';
1144 if (mod->taints & (1 << TAINT_OOT_MODULE))
1145 buf[l++] = 'O';
1146 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1147 buf[l++] = 'F';
1148 if (mod->taints & (1 << TAINT_CRAP))
1149 buf[l++] = 'C';
1150 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1151 buf[l++] = 'E';
1152 if (mod->taints & (1 << TAINT_LIVEPATCH))
1153 buf[l++] = 'K';
1154 /*
1155 * TAINT_FORCED_RMMOD: could be added.
1156 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1157 * apply to modules.
1158 */
1159 return l;
1160 }
1161
1162 static ssize_t show_initstate(struct module_attribute *mattr,
1163 struct module_kobject *mk, char *buffer)
1164 {
1165 const char *state = "unknown";
1166
1167 switch (mk->mod->state) {
1168 case MODULE_STATE_LIVE:
1169 state = "live";
1170 break;
1171 case MODULE_STATE_COMING:
1172 state = "coming";
1173 break;
1174 case MODULE_STATE_GOING:
1175 state = "going";
1176 break;
1177 default:
1178 BUG();
1179 }
1180 return sprintf(buffer, "%s\n", state);
1181 }
1182
1183 static struct module_attribute modinfo_initstate =
1184 __ATTR(initstate, 0444, show_initstate, NULL);
1185
1186 static ssize_t store_uevent(struct module_attribute *mattr,
1187 struct module_kobject *mk,
1188 const char *buffer, size_t count)
1189 {
1190 enum kobject_action action;
1191
1192 if (kobject_action_type(buffer, count, &action) == 0)
1193 kobject_uevent(&mk->kobj, action);
1194 return count;
1195 }
1196
1197 struct module_attribute module_uevent =
1198 __ATTR(uevent, 0200, NULL, store_uevent);
1199
1200 static ssize_t show_coresize(struct module_attribute *mattr,
1201 struct module_kobject *mk, char *buffer)
1202 {
1203 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1204 }
1205
1206 static struct module_attribute modinfo_coresize =
1207 __ATTR(coresize, 0444, show_coresize, NULL);
1208
1209 static ssize_t show_initsize(struct module_attribute *mattr,
1210 struct module_kobject *mk, char *buffer)
1211 {
1212 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1213 }
1214
1215 static struct module_attribute modinfo_initsize =
1216 __ATTR(initsize, 0444, show_initsize, NULL);
1217
1218 static ssize_t show_taint(struct module_attribute *mattr,
1219 struct module_kobject *mk, char *buffer)
1220 {
1221 size_t l;
1222
1223 l = module_flags_taint(mk->mod, buffer);
1224 buffer[l++] = '\n';
1225 return l;
1226 }
1227
1228 static struct module_attribute modinfo_taint =
1229 __ATTR(taint, 0444, show_taint, NULL);
1230
1231 static struct module_attribute *modinfo_attrs[] = {
1232 &module_uevent,
1233 &modinfo_version,
1234 &modinfo_srcversion,
1235 &modinfo_initstate,
1236 &modinfo_coresize,
1237 &modinfo_initsize,
1238 &modinfo_taint,
1239 #ifdef CONFIG_MODULE_UNLOAD
1240 &modinfo_refcnt,
1241 #endif
1242 NULL,
1243 };
1244
1245 static const char vermagic[] = VERMAGIC_STRING;
1246
1247 static int try_to_force_load(struct module *mod, const char *reason)
1248 {
1249 #ifdef CONFIG_MODULE_FORCE_LOAD
1250 if (!test_taint(TAINT_FORCED_MODULE))
1251 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1252 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1253 return 0;
1254 #else
1255 return -ENOEXEC;
1256 #endif
1257 }
1258
1259 #ifdef CONFIG_MODVERSIONS
1260 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1261 static unsigned long maybe_relocated(unsigned long crc,
1262 const struct module *crc_owner)
1263 {
1264 #ifdef ARCH_RELOCATES_KCRCTAB
1265 if (crc_owner == NULL)
1266 return crc - (unsigned long)reloc_start;
1267 #endif
1268 return crc;
1269 }
1270
1271 static int check_version(Elf_Shdr *sechdrs,
1272 unsigned int versindex,
1273 const char *symname,
1274 struct module *mod,
1275 const unsigned long *crc,
1276 const struct module *crc_owner)
1277 {
1278 unsigned int i, num_versions;
1279 struct modversion_info *versions;
1280
1281 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1282 if (!crc)
1283 return 1;
1284
1285 /* No versions at all? modprobe --force does this. */
1286 if (versindex == 0)
1287 return try_to_force_load(mod, symname) == 0;
1288
1289 versions = (void *) sechdrs[versindex].sh_addr;
1290 num_versions = sechdrs[versindex].sh_size
1291 / sizeof(struct modversion_info);
1292
1293 for (i = 0; i < num_versions; i++) {
1294 if (strcmp(versions[i].name, symname) != 0)
1295 continue;
1296
1297 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1298 return 1;
1299 pr_debug("Found checksum %lX vs module %lX\n",
1300 maybe_relocated(*crc, crc_owner), versions[i].crc);
1301 goto bad_version;
1302 }
1303
1304 /* Broken toolchain. Warn once, then let it go.. */
1305 pr_warn_once("%s: no symbol version for %s\n", mod->name, symname);
1306 return 1;
1307
1308 bad_version:
1309 pr_warn("%s: disagrees about version of symbol %s\n",
1310 mod->name, symname);
1311 return 0;
1312 }
1313
1314 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1315 unsigned int versindex,
1316 struct module *mod)
1317 {
1318 const unsigned long *crc;
1319
1320 /*
1321 * Since this should be found in kernel (which can't be removed), no
1322 * locking is necessary -- use preempt_disable() to placate lockdep.
1323 */
1324 preempt_disable();
1325 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1326 &crc, true, false)) {
1327 preempt_enable();
1328 BUG();
1329 }
1330 preempt_enable();
1331 return check_version(sechdrs, versindex,
1332 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1333 NULL);
1334 }
1335
1336 /* First part is kernel version, which we ignore if module has crcs. */
1337 static inline int same_magic(const char *amagic, const char *bmagic,
1338 bool has_crcs)
1339 {
1340 if (has_crcs) {
1341 amagic += strcspn(amagic, " ");
1342 bmagic += strcspn(bmagic, " ");
1343 }
1344 return strcmp(amagic, bmagic) == 0;
1345 }
1346 #else
1347 static inline int check_version(Elf_Shdr *sechdrs,
1348 unsigned int versindex,
1349 const char *symname,
1350 struct module *mod,
1351 const unsigned long *crc,
1352 const struct module *crc_owner)
1353 {
1354 return 1;
1355 }
1356
1357 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1358 unsigned int versindex,
1359 struct module *mod)
1360 {
1361 return 1;
1362 }
1363
1364 static inline int same_magic(const char *amagic, const char *bmagic,
1365 bool has_crcs)
1366 {
1367 return strcmp(amagic, bmagic) == 0;
1368 }
1369 #endif /* CONFIG_MODVERSIONS */
1370
1371 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1372 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1373 const struct load_info *info,
1374 const char *name,
1375 char ownername[])
1376 {
1377 struct module *owner;
1378 const struct kernel_symbol *sym;
1379 const unsigned long *crc;
1380 int err;
1381
1382 /*
1383 * The module_mutex should not be a heavily contended lock;
1384 * if we get the occasional sleep here, we'll go an extra iteration
1385 * in the wait_event_interruptible(), which is harmless.
1386 */
1387 sched_annotate_sleep();
1388 mutex_lock(&module_mutex);
1389 sym = find_symbol(name, &owner, &crc,
1390 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1391 if (!sym)
1392 goto unlock;
1393
1394 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1395 owner)) {
1396 sym = ERR_PTR(-EINVAL);
1397 goto getname;
1398 }
1399
1400 err = ref_module(mod, owner);
1401 if (err) {
1402 sym = ERR_PTR(err);
1403 goto getname;
1404 }
1405
1406 getname:
1407 /* We must make copy under the lock if we failed to get ref. */
1408 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1409 unlock:
1410 mutex_unlock(&module_mutex);
1411 return sym;
1412 }
1413
1414 static const struct kernel_symbol *
1415 resolve_symbol_wait(struct module *mod,
1416 const struct load_info *info,
1417 const char *name)
1418 {
1419 const struct kernel_symbol *ksym;
1420 char owner[MODULE_NAME_LEN];
1421
1422 if (wait_event_interruptible_timeout(module_wq,
1423 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1424 || PTR_ERR(ksym) != -EBUSY,
1425 30 * HZ) <= 0) {
1426 pr_warn("%s: gave up waiting for init of module %s.\n",
1427 mod->name, owner);
1428 }
1429 return ksym;
1430 }
1431
1432 /*
1433 * /sys/module/foo/sections stuff
1434 * J. Corbet <corbet@lwn.net>
1435 */
1436 #ifdef CONFIG_SYSFS
1437
1438 #ifdef CONFIG_KALLSYMS
1439 static inline bool sect_empty(const Elf_Shdr *sect)
1440 {
1441 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1442 }
1443
1444 struct module_sect_attr {
1445 struct module_attribute mattr;
1446 char *name;
1447 unsigned long address;
1448 };
1449
1450 struct module_sect_attrs {
1451 struct attribute_group grp;
1452 unsigned int nsections;
1453 struct module_sect_attr attrs[0];
1454 };
1455
1456 static ssize_t module_sect_show(struct module_attribute *mattr,
1457 struct module_kobject *mk, char *buf)
1458 {
1459 struct module_sect_attr *sattr =
1460 container_of(mattr, struct module_sect_attr, mattr);
1461 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1462 }
1463
1464 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1465 {
1466 unsigned int section;
1467
1468 for (section = 0; section < sect_attrs->nsections; section++)
1469 kfree(sect_attrs->attrs[section].name);
1470 kfree(sect_attrs);
1471 }
1472
1473 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1474 {
1475 unsigned int nloaded = 0, i, size[2];
1476 struct module_sect_attrs *sect_attrs;
1477 struct module_sect_attr *sattr;
1478 struct attribute **gattr;
1479
1480 /* Count loaded sections and allocate structures */
1481 for (i = 0; i < info->hdr->e_shnum; i++)
1482 if (!sect_empty(&info->sechdrs[i]))
1483 nloaded++;
1484 size[0] = ALIGN(sizeof(*sect_attrs)
1485 + nloaded * sizeof(sect_attrs->attrs[0]),
1486 sizeof(sect_attrs->grp.attrs[0]));
1487 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1488 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1489 if (sect_attrs == NULL)
1490 return;
1491
1492 /* Setup section attributes. */
1493 sect_attrs->grp.name = "sections";
1494 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1495
1496 sect_attrs->nsections = 0;
1497 sattr = &sect_attrs->attrs[0];
1498 gattr = &sect_attrs->grp.attrs[0];
1499 for (i = 0; i < info->hdr->e_shnum; i++) {
1500 Elf_Shdr *sec = &info->sechdrs[i];
1501 if (sect_empty(sec))
1502 continue;
1503 sattr->address = sec->sh_addr;
1504 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1505 GFP_KERNEL);
1506 if (sattr->name == NULL)
1507 goto out;
1508 sect_attrs->nsections++;
1509 sysfs_attr_init(&sattr->mattr.attr);
1510 sattr->mattr.show = module_sect_show;
1511 sattr->mattr.store = NULL;
1512 sattr->mattr.attr.name = sattr->name;
1513 sattr->mattr.attr.mode = S_IRUGO;
1514 *(gattr++) = &(sattr++)->mattr.attr;
1515 }
1516 *gattr = NULL;
1517
1518 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1519 goto out;
1520
1521 mod->sect_attrs = sect_attrs;
1522 return;
1523 out:
1524 free_sect_attrs(sect_attrs);
1525 }
1526
1527 static void remove_sect_attrs(struct module *mod)
1528 {
1529 if (mod->sect_attrs) {
1530 sysfs_remove_group(&mod->mkobj.kobj,
1531 &mod->sect_attrs->grp);
1532 /* We are positive that no one is using any sect attrs
1533 * at this point. Deallocate immediately. */
1534 free_sect_attrs(mod->sect_attrs);
1535 mod->sect_attrs = NULL;
1536 }
1537 }
1538
1539 /*
1540 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1541 */
1542
1543 struct module_notes_attrs {
1544 struct kobject *dir;
1545 unsigned int notes;
1546 struct bin_attribute attrs[0];
1547 };
1548
1549 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1550 struct bin_attribute *bin_attr,
1551 char *buf, loff_t pos, size_t count)
1552 {
1553 /*
1554 * The caller checked the pos and count against our size.
1555 */
1556 memcpy(buf, bin_attr->private + pos, count);
1557 return count;
1558 }
1559
1560 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1561 unsigned int i)
1562 {
1563 if (notes_attrs->dir) {
1564 while (i-- > 0)
1565 sysfs_remove_bin_file(notes_attrs->dir,
1566 &notes_attrs->attrs[i]);
1567 kobject_put(notes_attrs->dir);
1568 }
1569 kfree(notes_attrs);
1570 }
1571
1572 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1573 {
1574 unsigned int notes, loaded, i;
1575 struct module_notes_attrs *notes_attrs;
1576 struct bin_attribute *nattr;
1577
1578 /* failed to create section attributes, so can't create notes */
1579 if (!mod->sect_attrs)
1580 return;
1581
1582 /* Count notes sections and allocate structures. */
1583 notes = 0;
1584 for (i = 0; i < info->hdr->e_shnum; i++)
1585 if (!sect_empty(&info->sechdrs[i]) &&
1586 (info->sechdrs[i].sh_type == SHT_NOTE))
1587 ++notes;
1588
1589 if (notes == 0)
1590 return;
1591
1592 notes_attrs = kzalloc(sizeof(*notes_attrs)
1593 + notes * sizeof(notes_attrs->attrs[0]),
1594 GFP_KERNEL);
1595 if (notes_attrs == NULL)
1596 return;
1597
1598 notes_attrs->notes = notes;
1599 nattr = &notes_attrs->attrs[0];
1600 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1601 if (sect_empty(&info->sechdrs[i]))
1602 continue;
1603 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1604 sysfs_bin_attr_init(nattr);
1605 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1606 nattr->attr.mode = S_IRUGO;
1607 nattr->size = info->sechdrs[i].sh_size;
1608 nattr->private = (void *) info->sechdrs[i].sh_addr;
1609 nattr->read = module_notes_read;
1610 ++nattr;
1611 }
1612 ++loaded;
1613 }
1614
1615 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1616 if (!notes_attrs->dir)
1617 goto out;
1618
1619 for (i = 0; i < notes; ++i)
1620 if (sysfs_create_bin_file(notes_attrs->dir,
1621 &notes_attrs->attrs[i]))
1622 goto out;
1623
1624 mod->notes_attrs = notes_attrs;
1625 return;
1626
1627 out:
1628 free_notes_attrs(notes_attrs, i);
1629 }
1630
1631 static void remove_notes_attrs(struct module *mod)
1632 {
1633 if (mod->notes_attrs)
1634 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1635 }
1636
1637 #else
1638
1639 static inline void add_sect_attrs(struct module *mod,
1640 const struct load_info *info)
1641 {
1642 }
1643
1644 static inline void remove_sect_attrs(struct module *mod)
1645 {
1646 }
1647
1648 static inline void add_notes_attrs(struct module *mod,
1649 const struct load_info *info)
1650 {
1651 }
1652
1653 static inline void remove_notes_attrs(struct module *mod)
1654 {
1655 }
1656 #endif /* CONFIG_KALLSYMS */
1657
1658 static void add_usage_links(struct module *mod)
1659 {
1660 #ifdef CONFIG_MODULE_UNLOAD
1661 struct module_use *use;
1662 int nowarn;
1663
1664 mutex_lock(&module_mutex);
1665 list_for_each_entry(use, &mod->target_list, target_list) {
1666 nowarn = sysfs_create_link(use->target->holders_dir,
1667 &mod->mkobj.kobj, mod->name);
1668 }
1669 mutex_unlock(&module_mutex);
1670 #endif
1671 }
1672
1673 static void del_usage_links(struct module *mod)
1674 {
1675 #ifdef CONFIG_MODULE_UNLOAD
1676 struct module_use *use;
1677
1678 mutex_lock(&module_mutex);
1679 list_for_each_entry(use, &mod->target_list, target_list)
1680 sysfs_remove_link(use->target->holders_dir, mod->name);
1681 mutex_unlock(&module_mutex);
1682 #endif
1683 }
1684
1685 static int module_add_modinfo_attrs(struct module *mod)
1686 {
1687 struct module_attribute *attr;
1688 struct module_attribute *temp_attr;
1689 int error = 0;
1690 int i;
1691
1692 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1693 (ARRAY_SIZE(modinfo_attrs) + 1)),
1694 GFP_KERNEL);
1695 if (!mod->modinfo_attrs)
1696 return -ENOMEM;
1697
1698 temp_attr = mod->modinfo_attrs;
1699 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1700 if (!attr->test || attr->test(mod)) {
1701 memcpy(temp_attr, attr, sizeof(*temp_attr));
1702 sysfs_attr_init(&temp_attr->attr);
1703 error = sysfs_create_file(&mod->mkobj.kobj,
1704 &temp_attr->attr);
1705 ++temp_attr;
1706 }
1707 }
1708 return error;
1709 }
1710
1711 static void module_remove_modinfo_attrs(struct module *mod)
1712 {
1713 struct module_attribute *attr;
1714 int i;
1715
1716 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1717 /* pick a field to test for end of list */
1718 if (!attr->attr.name)
1719 break;
1720 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1721 if (attr->free)
1722 attr->free(mod);
1723 }
1724 kfree(mod->modinfo_attrs);
1725 }
1726
1727 static void mod_kobject_put(struct module *mod)
1728 {
1729 DECLARE_COMPLETION_ONSTACK(c);
1730 mod->mkobj.kobj_completion = &c;
1731 kobject_put(&mod->mkobj.kobj);
1732 wait_for_completion(&c);
1733 }
1734
1735 static int mod_sysfs_init(struct module *mod)
1736 {
1737 int err;
1738 struct kobject *kobj;
1739
1740 if (!module_sysfs_initialized) {
1741 pr_err("%s: module sysfs not initialized\n", mod->name);
1742 err = -EINVAL;
1743 goto out;
1744 }
1745
1746 kobj = kset_find_obj(module_kset, mod->name);
1747 if (kobj) {
1748 pr_err("%s: module is already loaded\n", mod->name);
1749 kobject_put(kobj);
1750 err = -EINVAL;
1751 goto out;
1752 }
1753
1754 mod->mkobj.mod = mod;
1755
1756 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1757 mod->mkobj.kobj.kset = module_kset;
1758 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1759 "%s", mod->name);
1760 if (err)
1761 mod_kobject_put(mod);
1762
1763 /* delay uevent until full sysfs population */
1764 out:
1765 return err;
1766 }
1767
1768 static int mod_sysfs_setup(struct module *mod,
1769 const struct load_info *info,
1770 struct kernel_param *kparam,
1771 unsigned int num_params)
1772 {
1773 int err;
1774
1775 err = mod_sysfs_init(mod);
1776 if (err)
1777 goto out;
1778
1779 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1780 if (!mod->holders_dir) {
1781 err = -ENOMEM;
1782 goto out_unreg;
1783 }
1784
1785 err = module_param_sysfs_setup(mod, kparam, num_params);
1786 if (err)
1787 goto out_unreg_holders;
1788
1789 err = module_add_modinfo_attrs(mod);
1790 if (err)
1791 goto out_unreg_param;
1792
1793 add_usage_links(mod);
1794 add_sect_attrs(mod, info);
1795 add_notes_attrs(mod, info);
1796
1797 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1798 return 0;
1799
1800 out_unreg_param:
1801 module_param_sysfs_remove(mod);
1802 out_unreg_holders:
1803 kobject_put(mod->holders_dir);
1804 out_unreg:
1805 mod_kobject_put(mod);
1806 out:
1807 return err;
1808 }
1809
1810 static void mod_sysfs_fini(struct module *mod)
1811 {
1812 remove_notes_attrs(mod);
1813 remove_sect_attrs(mod);
1814 mod_kobject_put(mod);
1815 }
1816
1817 static void init_param_lock(struct module *mod)
1818 {
1819 mutex_init(&mod->param_lock);
1820 }
1821 #else /* !CONFIG_SYSFS */
1822
1823 static int mod_sysfs_setup(struct module *mod,
1824 const struct load_info *info,
1825 struct kernel_param *kparam,
1826 unsigned int num_params)
1827 {
1828 return 0;
1829 }
1830
1831 static void mod_sysfs_fini(struct module *mod)
1832 {
1833 }
1834
1835 static void module_remove_modinfo_attrs(struct module *mod)
1836 {
1837 }
1838
1839 static void del_usage_links(struct module *mod)
1840 {
1841 }
1842
1843 static void init_param_lock(struct module *mod)
1844 {
1845 }
1846 #endif /* CONFIG_SYSFS */
1847
1848 static void mod_sysfs_teardown(struct module *mod)
1849 {
1850 del_usage_links(mod);
1851 module_remove_modinfo_attrs(mod);
1852 module_param_sysfs_remove(mod);
1853 kobject_put(mod->mkobj.drivers_dir);
1854 kobject_put(mod->holders_dir);
1855 mod_sysfs_fini(mod);
1856 }
1857
1858 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1859 /*
1860 * LKM RO/NX protection: protect module's text/ro-data
1861 * from modification and any data from execution.
1862 *
1863 * General layout of module is:
1864 * [text] [read-only-data] [ro-after-init] [writable data]
1865 * text_size -----^ ^ ^ ^
1866 * ro_size ------------------------| | |
1867 * ro_after_init_size -----------------------------| |
1868 * size -----------------------------------------------------------|
1869 *
1870 * These values are always page-aligned (as is base)
1871 */
1872 static void frob_text(const struct module_layout *layout,
1873 int (*set_memory)(unsigned long start, int num_pages))
1874 {
1875 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1876 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1877 set_memory((unsigned long)layout->base,
1878 layout->text_size >> PAGE_SHIFT);
1879 }
1880
1881 static void frob_rodata(const struct module_layout *layout,
1882 int (*set_memory)(unsigned long start, int num_pages))
1883 {
1884 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1885 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1886 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1887 set_memory((unsigned long)layout->base + layout->text_size,
1888 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1889 }
1890
1891 static void frob_ro_after_init(const struct module_layout *layout,
1892 int (*set_memory)(unsigned long start, int num_pages))
1893 {
1894 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1895 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1896 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1897 set_memory((unsigned long)layout->base + layout->ro_size,
1898 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1899 }
1900
1901 static void frob_writable_data(const struct module_layout *layout,
1902 int (*set_memory)(unsigned long start, int num_pages))
1903 {
1904 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1905 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1906 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1907 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1908 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1909 }
1910
1911 /* livepatching wants to disable read-only so it can frob module. */
1912 void module_disable_ro(const struct module *mod)
1913 {
1914 frob_text(&mod->core_layout, set_memory_rw);
1915 frob_rodata(&mod->core_layout, set_memory_rw);
1916 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1917 frob_text(&mod->init_layout, set_memory_rw);
1918 frob_rodata(&mod->init_layout, set_memory_rw);
1919 }
1920
1921 void module_enable_ro(const struct module *mod, bool after_init)
1922 {
1923 frob_text(&mod->core_layout, set_memory_ro);
1924 frob_rodata(&mod->core_layout, set_memory_ro);
1925 frob_text(&mod->init_layout, set_memory_ro);
1926 frob_rodata(&mod->init_layout, set_memory_ro);
1927
1928 if (after_init)
1929 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1930 }
1931
1932 static void module_enable_nx(const struct module *mod)
1933 {
1934 frob_rodata(&mod->core_layout, set_memory_nx);
1935 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1936 frob_writable_data(&mod->core_layout, set_memory_nx);
1937 frob_rodata(&mod->init_layout, set_memory_nx);
1938 frob_writable_data(&mod->init_layout, set_memory_nx);
1939 }
1940
1941 static void module_disable_nx(const struct module *mod)
1942 {
1943 frob_rodata(&mod->core_layout, set_memory_x);
1944 frob_ro_after_init(&mod->core_layout, set_memory_x);
1945 frob_writable_data(&mod->core_layout, set_memory_x);
1946 frob_rodata(&mod->init_layout, set_memory_x);
1947 frob_writable_data(&mod->init_layout, set_memory_x);
1948 }
1949
1950 /* Iterate through all modules and set each module's text as RW */
1951 void set_all_modules_text_rw(void)
1952 {
1953 struct module *mod;
1954
1955 mutex_lock(&module_mutex);
1956 list_for_each_entry_rcu(mod, &modules, list) {
1957 if (mod->state == MODULE_STATE_UNFORMED)
1958 continue;
1959
1960 frob_text(&mod->core_layout, set_memory_rw);
1961 frob_text(&mod->init_layout, set_memory_rw);
1962 }
1963 mutex_unlock(&module_mutex);
1964 }
1965
1966 /* Iterate through all modules and set each module's text as RO */
1967 void set_all_modules_text_ro(void)
1968 {
1969 struct module *mod;
1970
1971 mutex_lock(&module_mutex);
1972 list_for_each_entry_rcu(mod, &modules, list) {
1973 if (mod->state == MODULE_STATE_UNFORMED)
1974 continue;
1975
1976 frob_text(&mod->core_layout, set_memory_ro);
1977 frob_text(&mod->init_layout, set_memory_ro);
1978 }
1979 mutex_unlock(&module_mutex);
1980 }
1981
1982 static void disable_ro_nx(const struct module_layout *layout)
1983 {
1984 frob_text(layout, set_memory_rw);
1985 frob_rodata(layout, set_memory_rw);
1986 frob_rodata(layout, set_memory_x);
1987 frob_ro_after_init(layout, set_memory_rw);
1988 frob_ro_after_init(layout, set_memory_x);
1989 frob_writable_data(layout, set_memory_x);
1990 }
1991
1992 #else
1993 static void disable_ro_nx(const struct module_layout *layout) { }
1994 static void module_enable_nx(const struct module *mod) { }
1995 static void module_disable_nx(const struct module *mod) { }
1996 #endif
1997
1998 #ifdef CONFIG_LIVEPATCH
1999 /*
2000 * Persist Elf information about a module. Copy the Elf header,
2001 * section header table, section string table, and symtab section
2002 * index from info to mod->klp_info.
2003 */
2004 static int copy_module_elf(struct module *mod, struct load_info *info)
2005 {
2006 unsigned int size, symndx;
2007 int ret;
2008
2009 size = sizeof(*mod->klp_info);
2010 mod->klp_info = kmalloc(size, GFP_KERNEL);
2011 if (mod->klp_info == NULL)
2012 return -ENOMEM;
2013
2014 /* Elf header */
2015 size = sizeof(mod->klp_info->hdr);
2016 memcpy(&mod->klp_info->hdr, info->hdr, size);
2017
2018 /* Elf section header table */
2019 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2020 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2021 if (mod->klp_info->sechdrs == NULL) {
2022 ret = -ENOMEM;
2023 goto free_info;
2024 }
2025 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2026
2027 /* Elf section name string table */
2028 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2029 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2030 if (mod->klp_info->secstrings == NULL) {
2031 ret = -ENOMEM;
2032 goto free_sechdrs;
2033 }
2034 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2035
2036 /* Elf symbol section index */
2037 symndx = info->index.sym;
2038 mod->klp_info->symndx = symndx;
2039
2040 /*
2041 * For livepatch modules, core_kallsyms.symtab is a complete
2042 * copy of the original symbol table. Adjust sh_addr to point
2043 * to core_kallsyms.symtab since the copy of the symtab in module
2044 * init memory is freed at the end of do_init_module().
2045 */
2046 mod->klp_info->sechdrs[symndx].sh_addr = \
2047 (unsigned long) mod->core_kallsyms.symtab;
2048
2049 return 0;
2050
2051 free_sechdrs:
2052 kfree(mod->klp_info->sechdrs);
2053 free_info:
2054 kfree(mod->klp_info);
2055 return ret;
2056 }
2057
2058 static void free_module_elf(struct module *mod)
2059 {
2060 kfree(mod->klp_info->sechdrs);
2061 kfree(mod->klp_info->secstrings);
2062 kfree(mod->klp_info);
2063 }
2064 #else /* !CONFIG_LIVEPATCH */
2065 static int copy_module_elf(struct module *mod, struct load_info *info)
2066 {
2067 return 0;
2068 }
2069
2070 static void free_module_elf(struct module *mod)
2071 {
2072 }
2073 #endif /* CONFIG_LIVEPATCH */
2074
2075 void __weak module_memfree(void *module_region)
2076 {
2077 vfree(module_region);
2078 }
2079
2080 void __weak module_arch_cleanup(struct module *mod)
2081 {
2082 }
2083
2084 void __weak module_arch_freeing_init(struct module *mod)
2085 {
2086 }
2087
2088 /* Free a module, remove from lists, etc. */
2089 static void free_module(struct module *mod)
2090 {
2091 trace_module_free(mod);
2092
2093 mod_sysfs_teardown(mod);
2094
2095 /* We leave it in list to prevent duplicate loads, but make sure
2096 * that noone uses it while it's being deconstructed. */
2097 mutex_lock(&module_mutex);
2098 mod->state = MODULE_STATE_UNFORMED;
2099 mutex_unlock(&module_mutex);
2100
2101 /* Remove dynamic debug info */
2102 ddebug_remove_module(mod->name);
2103
2104 /* Arch-specific cleanup. */
2105 module_arch_cleanup(mod);
2106
2107 /* Module unload stuff */
2108 module_unload_free(mod);
2109
2110 /* Free any allocated parameters. */
2111 destroy_params(mod->kp, mod->num_kp);
2112
2113 if (is_livepatch_module(mod))
2114 free_module_elf(mod);
2115
2116 /* Now we can delete it from the lists */
2117 mutex_lock(&module_mutex);
2118 /* Unlink carefully: kallsyms could be walking list. */
2119 list_del_rcu(&mod->list);
2120 mod_tree_remove(mod);
2121 /* Remove this module from bug list, this uses list_del_rcu */
2122 module_bug_cleanup(mod);
2123 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2124 synchronize_sched();
2125 mutex_unlock(&module_mutex);
2126
2127 /* This may be empty, but that's OK */
2128 disable_ro_nx(&mod->init_layout);
2129 module_arch_freeing_init(mod);
2130 module_memfree(mod->init_layout.base);
2131 kfree(mod->args);
2132 percpu_modfree(mod);
2133
2134 /* Free lock-classes; relies on the preceding sync_rcu(). */
2135 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2136
2137 /* Finally, free the core (containing the module structure) */
2138 disable_ro_nx(&mod->core_layout);
2139 module_memfree(mod->core_layout.base);
2140
2141 #ifdef CONFIG_MPU
2142 update_protections(current->mm);
2143 #endif
2144 }
2145
2146 void *__symbol_get(const char *symbol)
2147 {
2148 struct module *owner;
2149 const struct kernel_symbol *sym;
2150
2151 preempt_disable();
2152 sym = find_symbol(symbol, &owner, NULL, true, true);
2153 if (sym && strong_try_module_get(owner))
2154 sym = NULL;
2155 preempt_enable();
2156
2157 return sym ? (void *)sym->value : NULL;
2158 }
2159 EXPORT_SYMBOL_GPL(__symbol_get);
2160
2161 /*
2162 * Ensure that an exported symbol [global namespace] does not already exist
2163 * in the kernel or in some other module's exported symbol table.
2164 *
2165 * You must hold the module_mutex.
2166 */
2167 static int verify_export_symbols(struct module *mod)
2168 {
2169 unsigned int i;
2170 struct module *owner;
2171 const struct kernel_symbol *s;
2172 struct {
2173 const struct kernel_symbol *sym;
2174 unsigned int num;
2175 } arr[] = {
2176 { mod->syms, mod->num_syms },
2177 { mod->gpl_syms, mod->num_gpl_syms },
2178 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2179 #ifdef CONFIG_UNUSED_SYMBOLS
2180 { mod->unused_syms, mod->num_unused_syms },
2181 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2182 #endif
2183 };
2184
2185 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2186 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2187 if (find_symbol(s->name, &owner, NULL, true, false)) {
2188 pr_err("%s: exports duplicate symbol %s"
2189 " (owned by %s)\n",
2190 mod->name, s->name, module_name(owner));
2191 return -ENOEXEC;
2192 }
2193 }
2194 }
2195 return 0;
2196 }
2197
2198 /* Change all symbols so that st_value encodes the pointer directly. */
2199 static int simplify_symbols(struct module *mod, const struct load_info *info)
2200 {
2201 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2202 Elf_Sym *sym = (void *)symsec->sh_addr;
2203 unsigned long secbase;
2204 unsigned int i;
2205 int ret = 0;
2206 const struct kernel_symbol *ksym;
2207
2208 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2209 const char *name = info->strtab + sym[i].st_name;
2210
2211 switch (sym[i].st_shndx) {
2212 case SHN_COMMON:
2213 /* Ignore common symbols */
2214 if (!strncmp(name, "__gnu_lto", 9))
2215 break;
2216
2217 /* We compiled with -fno-common. These are not
2218 supposed to happen. */
2219 pr_debug("Common symbol: %s\n", name);
2220 pr_warn("%s: please compile with -fno-common\n",
2221 mod->name);
2222 ret = -ENOEXEC;
2223 break;
2224
2225 case SHN_ABS:
2226 /* Don't need to do anything */
2227 pr_debug("Absolute symbol: 0x%08lx\n",
2228 (long)sym[i].st_value);
2229 break;
2230
2231 case SHN_LIVEPATCH:
2232 /* Livepatch symbols are resolved by livepatch */
2233 break;
2234
2235 case SHN_UNDEF:
2236 ksym = resolve_symbol_wait(mod, info, name);
2237 /* Ok if resolved. */
2238 if (ksym && !IS_ERR(ksym)) {
2239 sym[i].st_value = ksym->value;
2240 break;
2241 }
2242
2243 /* Ok if weak. */
2244 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2245 break;
2246
2247 pr_warn("%s: Unknown symbol %s (err %li)\n",
2248 mod->name, name, PTR_ERR(ksym));
2249 ret = PTR_ERR(ksym) ?: -ENOENT;
2250 break;
2251
2252 default:
2253 /* Divert to percpu allocation if a percpu var. */
2254 if (sym[i].st_shndx == info->index.pcpu)
2255 secbase = (unsigned long)mod_percpu(mod);
2256 else
2257 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2258 sym[i].st_value += secbase;
2259 break;
2260 }
2261 }
2262
2263 return ret;
2264 }
2265
2266 static int apply_relocations(struct module *mod, const struct load_info *info)
2267 {
2268 unsigned int i;
2269 int err = 0;
2270
2271 /* Now do relocations. */
2272 for (i = 1; i < info->hdr->e_shnum; i++) {
2273 unsigned int infosec = info->sechdrs[i].sh_info;
2274
2275 /* Not a valid relocation section? */
2276 if (infosec >= info->hdr->e_shnum)
2277 continue;
2278
2279 /* Don't bother with non-allocated sections */
2280 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2281 continue;
2282
2283 /* Livepatch relocation sections are applied by livepatch */
2284 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2285 continue;
2286
2287 if (info->sechdrs[i].sh_type == SHT_REL)
2288 err = apply_relocate(info->sechdrs, info->strtab,
2289 info->index.sym, i, mod);
2290 else if (info->sechdrs[i].sh_type == SHT_RELA)
2291 err = apply_relocate_add(info->sechdrs, info->strtab,
2292 info->index.sym, i, mod);
2293 if (err < 0)
2294 break;
2295 }
2296 return err;
2297 }
2298
2299 /* Additional bytes needed by arch in front of individual sections */
2300 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2301 unsigned int section)
2302 {
2303 /* default implementation just returns zero */
2304 return 0;
2305 }
2306
2307 /* Update size with this section: return offset. */
2308 static long get_offset(struct module *mod, unsigned int *size,
2309 Elf_Shdr *sechdr, unsigned int section)
2310 {
2311 long ret;
2312
2313 *size += arch_mod_section_prepend(mod, section);
2314 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2315 *size = ret + sechdr->sh_size;
2316 return ret;
2317 }
2318
2319 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2320 might -- code, read-only data, read-write data, small data. Tally
2321 sizes, and place the offsets into sh_entsize fields: high bit means it
2322 belongs in init. */
2323 static void layout_sections(struct module *mod, struct load_info *info)
2324 {
2325 static unsigned long const masks[][2] = {
2326 /* NOTE: all executable code must be the first section
2327 * in this array; otherwise modify the text_size
2328 * finder in the two loops below */
2329 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2330 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2331 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2332 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2333 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2334 };
2335 unsigned int m, i;
2336
2337 for (i = 0; i < info->hdr->e_shnum; i++)
2338 info->sechdrs[i].sh_entsize = ~0UL;
2339
2340 pr_debug("Core section allocation order:\n");
2341 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2342 for (i = 0; i < info->hdr->e_shnum; ++i) {
2343 Elf_Shdr *s = &info->sechdrs[i];
2344 const char *sname = info->secstrings + s->sh_name;
2345
2346 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2347 || (s->sh_flags & masks[m][1])
2348 || s->sh_entsize != ~0UL
2349 || strstarts(sname, ".init"))
2350 continue;
2351 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2352 pr_debug("\t%s\n", sname);
2353 }
2354 switch (m) {
2355 case 0: /* executable */
2356 mod->core_layout.size = debug_align(mod->core_layout.size);
2357 mod->core_layout.text_size = mod->core_layout.size;
2358 break;
2359 case 1: /* RO: text and ro-data */
2360 mod->core_layout.size = debug_align(mod->core_layout.size);
2361 mod->core_layout.ro_size = mod->core_layout.size;
2362 break;
2363 case 2: /* RO after init */
2364 mod->core_layout.size = debug_align(mod->core_layout.size);
2365 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2366 break;
2367 case 4: /* whole core */
2368 mod->core_layout.size = debug_align(mod->core_layout.size);
2369 break;
2370 }
2371 }
2372
2373 pr_debug("Init section allocation order:\n");
2374 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2375 for (i = 0; i < info->hdr->e_shnum; ++i) {
2376 Elf_Shdr *s = &info->sechdrs[i];
2377 const char *sname = info->secstrings + s->sh_name;
2378
2379 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2380 || (s->sh_flags & masks[m][1])
2381 || s->sh_entsize != ~0UL
2382 || !strstarts(sname, ".init"))
2383 continue;
2384 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2385 | INIT_OFFSET_MASK);
2386 pr_debug("\t%s\n", sname);
2387 }
2388 switch (m) {
2389 case 0: /* executable */
2390 mod->init_layout.size = debug_align(mod->init_layout.size);
2391 mod->init_layout.text_size = mod->init_layout.size;
2392 break;
2393 case 1: /* RO: text and ro-data */
2394 mod->init_layout.size = debug_align(mod->init_layout.size);
2395 mod->init_layout.ro_size = mod->init_layout.size;
2396 break;
2397 case 2:
2398 /*
2399 * RO after init doesn't apply to init_layout (only
2400 * core_layout), so it just takes the value of ro_size.
2401 */
2402 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2403 break;
2404 case 4: /* whole init */
2405 mod->init_layout.size = debug_align(mod->init_layout.size);
2406 break;
2407 }
2408 }
2409 }
2410
2411 static void set_license(struct module *mod, const char *license)
2412 {
2413 if (!license)
2414 license = "unspecified";
2415
2416 if (!license_is_gpl_compatible(license)) {
2417 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2418 pr_warn("%s: module license '%s' taints kernel.\n",
2419 mod->name, license);
2420 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2421 LOCKDEP_NOW_UNRELIABLE);
2422 }
2423 }
2424
2425 /* Parse tag=value strings from .modinfo section */
2426 static char *next_string(char *string, unsigned long *secsize)
2427 {
2428 /* Skip non-zero chars */
2429 while (string[0]) {
2430 string++;
2431 if ((*secsize)-- <= 1)
2432 return NULL;
2433 }
2434
2435 /* Skip any zero padding. */
2436 while (!string[0]) {
2437 string++;
2438 if ((*secsize)-- <= 1)
2439 return NULL;
2440 }
2441 return string;
2442 }
2443
2444 static char *get_modinfo(struct load_info *info, const char *tag)
2445 {
2446 char *p;
2447 unsigned int taglen = strlen(tag);
2448 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2449 unsigned long size = infosec->sh_size;
2450
2451 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2452 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2453 return p + taglen + 1;
2454 }
2455 return NULL;
2456 }
2457
2458 static void setup_modinfo(struct module *mod, struct load_info *info)
2459 {
2460 struct module_attribute *attr;
2461 int i;
2462
2463 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2464 if (attr->setup)
2465 attr->setup(mod, get_modinfo(info, attr->attr.name));
2466 }
2467 }
2468
2469 static void free_modinfo(struct module *mod)
2470 {
2471 struct module_attribute *attr;
2472 int i;
2473
2474 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2475 if (attr->free)
2476 attr->free(mod);
2477 }
2478 }
2479
2480 #ifdef CONFIG_KALLSYMS
2481
2482 /* lookup symbol in given range of kernel_symbols */
2483 static const struct kernel_symbol *lookup_symbol(const char *name,
2484 const struct kernel_symbol *start,
2485 const struct kernel_symbol *stop)
2486 {
2487 return bsearch(name, start, stop - start,
2488 sizeof(struct kernel_symbol), cmp_name);
2489 }
2490
2491 static int is_exported(const char *name, unsigned long value,
2492 const struct module *mod)
2493 {
2494 const struct kernel_symbol *ks;
2495 if (!mod)
2496 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2497 else
2498 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2499 return ks != NULL && ks->value == value;
2500 }
2501
2502 /* As per nm */
2503 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2504 {
2505 const Elf_Shdr *sechdrs = info->sechdrs;
2506
2507 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2508 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2509 return 'v';
2510 else
2511 return 'w';
2512 }
2513 if (sym->st_shndx == SHN_UNDEF)
2514 return 'U';
2515 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2516 return 'a';
2517 if (sym->st_shndx >= SHN_LORESERVE)
2518 return '?';
2519 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2520 return 't';
2521 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2522 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2523 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2524 return 'r';
2525 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2526 return 'g';
2527 else
2528 return 'd';
2529 }
2530 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2531 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2532 return 's';
2533 else
2534 return 'b';
2535 }
2536 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2537 ".debug")) {
2538 return 'n';
2539 }
2540 return '?';
2541 }
2542
2543 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2544 unsigned int shnum, unsigned int pcpundx)
2545 {
2546 const Elf_Shdr *sec;
2547
2548 if (src->st_shndx == SHN_UNDEF
2549 || src->st_shndx >= shnum
2550 || !src->st_name)
2551 return false;
2552
2553 #ifdef CONFIG_KALLSYMS_ALL
2554 if (src->st_shndx == pcpundx)
2555 return true;
2556 #endif
2557
2558 sec = sechdrs + src->st_shndx;
2559 if (!(sec->sh_flags & SHF_ALLOC)
2560 #ifndef CONFIG_KALLSYMS_ALL
2561 || !(sec->sh_flags & SHF_EXECINSTR)
2562 #endif
2563 || (sec->sh_entsize & INIT_OFFSET_MASK))
2564 return false;
2565
2566 return true;
2567 }
2568
2569 /*
2570 * We only allocate and copy the strings needed by the parts of symtab
2571 * we keep. This is simple, but has the effect of making multiple
2572 * copies of duplicates. We could be more sophisticated, see
2573 * linux-kernel thread starting with
2574 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2575 */
2576 static void layout_symtab(struct module *mod, struct load_info *info)
2577 {
2578 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2579 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2580 const Elf_Sym *src;
2581 unsigned int i, nsrc, ndst, strtab_size = 0;
2582
2583 /* Put symbol section at end of init part of module. */
2584 symsect->sh_flags |= SHF_ALLOC;
2585 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2586 info->index.sym) | INIT_OFFSET_MASK;
2587 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2588
2589 src = (void *)info->hdr + symsect->sh_offset;
2590 nsrc = symsect->sh_size / sizeof(*src);
2591
2592 /* Compute total space required for the core symbols' strtab. */
2593 for (ndst = i = 0; i < nsrc; i++) {
2594 if (i == 0 || is_livepatch_module(mod) ||
2595 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2596 info->index.pcpu)) {
2597 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2598 ndst++;
2599 }
2600 }
2601
2602 /* Append room for core symbols at end of core part. */
2603 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2604 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2605 mod->core_layout.size += strtab_size;
2606 mod->core_layout.size = debug_align(mod->core_layout.size);
2607
2608 /* Put string table section at end of init part of module. */
2609 strsect->sh_flags |= SHF_ALLOC;
2610 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2611 info->index.str) | INIT_OFFSET_MASK;
2612 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2613
2614 /* We'll tack temporary mod_kallsyms on the end. */
2615 mod->init_layout.size = ALIGN(mod->init_layout.size,
2616 __alignof__(struct mod_kallsyms));
2617 info->mod_kallsyms_init_off = mod->init_layout.size;
2618 mod->init_layout.size += sizeof(struct mod_kallsyms);
2619 mod->init_layout.size = debug_align(mod->init_layout.size);
2620 }
2621
2622 /*
2623 * We use the full symtab and strtab which layout_symtab arranged to
2624 * be appended to the init section. Later we switch to the cut-down
2625 * core-only ones.
2626 */
2627 static void add_kallsyms(struct module *mod, const struct load_info *info)
2628 {
2629 unsigned int i, ndst;
2630 const Elf_Sym *src;
2631 Elf_Sym *dst;
2632 char *s;
2633 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2634
2635 /* Set up to point into init section. */
2636 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2637
2638 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2639 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2640 /* Make sure we get permanent strtab: don't use info->strtab. */
2641 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2642
2643 /* Set types up while we still have access to sections. */
2644 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2645 mod->kallsyms->symtab[i].st_info
2646 = elf_type(&mod->kallsyms->symtab[i], info);
2647
2648 /* Now populate the cut down core kallsyms for after init. */
2649 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2650 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2651 src = mod->kallsyms->symtab;
2652 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2653 if (i == 0 || is_livepatch_module(mod) ||
2654 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2655 info->index.pcpu)) {
2656 dst[ndst] = src[i];
2657 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2658 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2659 KSYM_NAME_LEN) + 1;
2660 }
2661 }
2662 mod->core_kallsyms.num_symtab = ndst;
2663 }
2664 #else
2665 static inline void layout_symtab(struct module *mod, struct load_info *info)
2666 {
2667 }
2668
2669 static void add_kallsyms(struct module *mod, const struct load_info *info)
2670 {
2671 }
2672 #endif /* CONFIG_KALLSYMS */
2673
2674 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2675 {
2676 if (!debug)
2677 return;
2678 #ifdef CONFIG_DYNAMIC_DEBUG
2679 if (ddebug_add_module(debug, num, debug->modname))
2680 pr_err("dynamic debug error adding module: %s\n",
2681 debug->modname);
2682 #endif
2683 }
2684
2685 static void dynamic_debug_remove(struct _ddebug *debug)
2686 {
2687 if (debug)
2688 ddebug_remove_module(debug->modname);
2689 }
2690
2691 void * __weak module_alloc(unsigned long size)
2692 {
2693 return vmalloc_exec(size);
2694 }
2695
2696 #ifdef CONFIG_DEBUG_KMEMLEAK
2697 static void kmemleak_load_module(const struct module *mod,
2698 const struct load_info *info)
2699 {
2700 unsigned int i;
2701
2702 /* only scan the sections containing data */
2703 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2704
2705 for (i = 1; i < info->hdr->e_shnum; i++) {
2706 /* Scan all writable sections that's not executable */
2707 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2708 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2709 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2710 continue;
2711
2712 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2713 info->sechdrs[i].sh_size, GFP_KERNEL);
2714 }
2715 }
2716 #else
2717 static inline void kmemleak_load_module(const struct module *mod,
2718 const struct load_info *info)
2719 {
2720 }
2721 #endif
2722
2723 #ifdef CONFIG_MODULE_SIG
2724 static int module_sig_check(struct load_info *info, int flags)
2725 {
2726 int err = -ENOKEY;
2727 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2728 const void *mod = info->hdr;
2729
2730 /*
2731 * Require flags == 0, as a module with version information
2732 * removed is no longer the module that was signed
2733 */
2734 if (flags == 0 &&
2735 info->len > markerlen &&
2736 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2737 /* We truncate the module to discard the signature */
2738 info->len -= markerlen;
2739 err = mod_verify_sig(mod, &info->len);
2740 }
2741
2742 if (!err) {
2743 info->sig_ok = true;
2744 return 0;
2745 }
2746
2747 /* Not having a signature is only an error if we're strict. */
2748 if (err == -ENOKEY && !sig_enforce)
2749 err = 0;
2750
2751 return err;
2752 }
2753 #else /* !CONFIG_MODULE_SIG */
2754 static int module_sig_check(struct load_info *info, int flags)
2755 {
2756 return 0;
2757 }
2758 #endif /* !CONFIG_MODULE_SIG */
2759
2760 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2761 static int elf_header_check(struct load_info *info)
2762 {
2763 if (info->len < sizeof(*(info->hdr)))
2764 return -ENOEXEC;
2765
2766 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2767 || info->hdr->e_type != ET_REL
2768 || !elf_check_arch(info->hdr)
2769 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2770 return -ENOEXEC;
2771
2772 if (info->hdr->e_shoff >= info->len
2773 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2774 info->len - info->hdr->e_shoff))
2775 return -ENOEXEC;
2776
2777 return 0;
2778 }
2779
2780 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2781
2782 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2783 {
2784 do {
2785 unsigned long n = min(len, COPY_CHUNK_SIZE);
2786
2787 if (copy_from_user(dst, usrc, n) != 0)
2788 return -EFAULT;
2789 cond_resched();
2790 dst += n;
2791 usrc += n;
2792 len -= n;
2793 } while (len);
2794 return 0;
2795 }
2796
2797 #ifdef CONFIG_LIVEPATCH
2798 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2799 {
2800 if (get_modinfo(info, "livepatch")) {
2801 mod->klp = true;
2802 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2803 }
2804
2805 return 0;
2806 }
2807 #else /* !CONFIG_LIVEPATCH */
2808 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2809 {
2810 if (get_modinfo(info, "livepatch")) {
2811 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2812 mod->name);
2813 return -ENOEXEC;
2814 }
2815
2816 return 0;
2817 }
2818 #endif /* CONFIG_LIVEPATCH */
2819
2820 /* Sets info->hdr and info->len. */
2821 static int copy_module_from_user(const void __user *umod, unsigned long len,
2822 struct load_info *info)
2823 {
2824 int err;
2825
2826 info->len = len;
2827 if (info->len < sizeof(*(info->hdr)))
2828 return -ENOEXEC;
2829
2830 err = security_kernel_read_file(NULL, READING_MODULE);
2831 if (err)
2832 return err;
2833
2834 /* Suck in entire file: we'll want most of it. */
2835 info->hdr = __vmalloc(info->len,
2836 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2837 if (!info->hdr)
2838 return -ENOMEM;
2839
2840 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2841 vfree(info->hdr);
2842 return -EFAULT;
2843 }
2844
2845 return 0;
2846 }
2847
2848 static void free_copy(struct load_info *info)
2849 {
2850 vfree(info->hdr);
2851 }
2852
2853 static int rewrite_section_headers(struct load_info *info, int flags)
2854 {
2855 unsigned int i;
2856
2857 /* This should always be true, but let's be sure. */
2858 info->sechdrs[0].sh_addr = 0;
2859
2860 for (i = 1; i < info->hdr->e_shnum; i++) {
2861 Elf_Shdr *shdr = &info->sechdrs[i];
2862 if (shdr->sh_type != SHT_NOBITS
2863 && info->len < shdr->sh_offset + shdr->sh_size) {
2864 pr_err("Module len %lu truncated\n", info->len);
2865 return -ENOEXEC;
2866 }
2867
2868 /* Mark all sections sh_addr with their address in the
2869 temporary image. */
2870 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2871
2872 #ifndef CONFIG_MODULE_UNLOAD
2873 /* Don't load .exit sections */
2874 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2875 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2876 #endif
2877 }
2878
2879 /* Track but don't keep modinfo and version sections. */
2880 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2881 info->index.vers = 0; /* Pretend no __versions section! */
2882 else
2883 info->index.vers = find_sec(info, "__versions");
2884 info->index.info = find_sec(info, ".modinfo");
2885 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2886 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2887 return 0;
2888 }
2889
2890 /*
2891 * Set up our basic convenience variables (pointers to section headers,
2892 * search for module section index etc), and do some basic section
2893 * verification.
2894 *
2895 * Return the temporary module pointer (we'll replace it with the final
2896 * one when we move the module sections around).
2897 */
2898 static struct module *setup_load_info(struct load_info *info, int flags)
2899 {
2900 unsigned int i;
2901 int err;
2902 struct module *mod;
2903
2904 /* Set up the convenience variables */
2905 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2906 info->secstrings = (void *)info->hdr
2907 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2908
2909 err = rewrite_section_headers(info, flags);
2910 if (err)
2911 return ERR_PTR(err);
2912
2913 /* Find internal symbols and strings. */
2914 for (i = 1; i < info->hdr->e_shnum; i++) {
2915 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2916 info->index.sym = i;
2917 info->index.str = info->sechdrs[i].sh_link;
2918 info->strtab = (char *)info->hdr
2919 + info->sechdrs[info->index.str].sh_offset;
2920 break;
2921 }
2922 }
2923
2924 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2925 if (!info->index.mod) {
2926 pr_warn("No module found in object\n");
2927 return ERR_PTR(-ENOEXEC);
2928 }
2929 /* This is temporary: point mod into copy of data. */
2930 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2931
2932 if (info->index.sym == 0) {
2933 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2934 return ERR_PTR(-ENOEXEC);
2935 }
2936
2937 info->index.pcpu = find_pcpusec(info);
2938
2939 /* Check module struct version now, before we try to use module. */
2940 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2941 return ERR_PTR(-ENOEXEC);
2942
2943 return mod;
2944 }
2945
2946 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2947 {
2948 const char *modmagic = get_modinfo(info, "vermagic");
2949 int err;
2950
2951 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2952 modmagic = NULL;
2953
2954 /* This is allowed: modprobe --force will invalidate it. */
2955 if (!modmagic) {
2956 err = try_to_force_load(mod, "bad vermagic");
2957 if (err)
2958 return err;
2959 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2960 pr_err("%s: version magic '%s' should be '%s'\n",
2961 mod->name, modmagic, vermagic);
2962 return -ENOEXEC;
2963 }
2964
2965 if (!get_modinfo(info, "intree")) {
2966 if (!test_taint(TAINT_OOT_MODULE))
2967 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2968 mod->name);
2969 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2970 }
2971
2972 if (get_modinfo(info, "staging")) {
2973 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2974 pr_warn("%s: module is from the staging directory, the quality "
2975 "is unknown, you have been warned.\n", mod->name);
2976 }
2977
2978 err = check_modinfo_livepatch(mod, info);
2979 if (err)
2980 return err;
2981
2982 /* Set up license info based on the info section */
2983 set_license(mod, get_modinfo(info, "license"));
2984
2985 return 0;
2986 }
2987
2988 static int find_module_sections(struct module *mod, struct load_info *info)
2989 {
2990 mod->kp = section_objs(info, "__param",
2991 sizeof(*mod->kp), &mod->num_kp);
2992 mod->syms = section_objs(info, "__ksymtab",
2993 sizeof(*mod->syms), &mod->num_syms);
2994 mod->crcs = section_addr(info, "__kcrctab");
2995 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2996 sizeof(*mod->gpl_syms),
2997 &mod->num_gpl_syms);
2998 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2999 mod->gpl_future_syms = section_objs(info,
3000 "__ksymtab_gpl_future",
3001 sizeof(*mod->gpl_future_syms),
3002 &mod->num_gpl_future_syms);
3003 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3004
3005 #ifdef CONFIG_UNUSED_SYMBOLS
3006 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3007 sizeof(*mod->unused_syms),
3008 &mod->num_unused_syms);
3009 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3010 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3011 sizeof(*mod->unused_gpl_syms),
3012 &mod->num_unused_gpl_syms);
3013 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3014 #endif
3015 #ifdef CONFIG_CONSTRUCTORS
3016 mod->ctors = section_objs(info, ".ctors",
3017 sizeof(*mod->ctors), &mod->num_ctors);
3018 if (!mod->ctors)
3019 mod->ctors = section_objs(info, ".init_array",
3020 sizeof(*mod->ctors), &mod->num_ctors);
3021 else if (find_sec(info, ".init_array")) {
3022 /*
3023 * This shouldn't happen with same compiler and binutils
3024 * building all parts of the module.
3025 */
3026 pr_warn("%s: has both .ctors and .init_array.\n",
3027 mod->name);
3028 return -EINVAL;
3029 }
3030 #endif
3031
3032 #ifdef CONFIG_TRACEPOINTS
3033 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3034 sizeof(*mod->tracepoints_ptrs),
3035 &mod->num_tracepoints);
3036 #endif
3037 #ifdef HAVE_JUMP_LABEL
3038 mod->jump_entries = section_objs(info, "__jump_table",
3039 sizeof(*mod->jump_entries),
3040 &mod->num_jump_entries);
3041 #endif
3042 #ifdef CONFIG_EVENT_TRACING
3043 mod->trace_events = section_objs(info, "_ftrace_events",
3044 sizeof(*mod->trace_events),
3045 &mod->num_trace_events);
3046 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3047 sizeof(*mod->trace_enums),
3048 &mod->num_trace_enums);
3049 #endif
3050 #ifdef CONFIG_TRACING
3051 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3052 sizeof(*mod->trace_bprintk_fmt_start),
3053 &mod->num_trace_bprintk_fmt);
3054 #endif
3055 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3056 /* sechdrs[0].sh_size is always zero */
3057 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3058 sizeof(*mod->ftrace_callsites),
3059 &mod->num_ftrace_callsites);
3060 #endif
3061
3062 mod->extable = section_objs(info, "__ex_table",
3063 sizeof(*mod->extable), &mod->num_exentries);
3064
3065 if (section_addr(info, "__obsparm"))
3066 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3067
3068 info->debug = section_objs(info, "__verbose",
3069 sizeof(*info->debug), &info->num_debug);
3070
3071 return 0;
3072 }
3073
3074 static int move_module(struct module *mod, struct load_info *info)
3075 {
3076 int i;
3077 void *ptr;
3078
3079 /* Do the allocs. */
3080 ptr = module_alloc(mod->core_layout.size);
3081 /*
3082 * The pointer to this block is stored in the module structure
3083 * which is inside the block. Just mark it as not being a
3084 * leak.
3085 */
3086 kmemleak_not_leak(ptr);
3087 if (!ptr)
3088 return -ENOMEM;
3089
3090 memset(ptr, 0, mod->core_layout.size);
3091 mod->core_layout.base = ptr;
3092
3093 if (mod->init_layout.size) {
3094 ptr = module_alloc(mod->init_layout.size);
3095 /*
3096 * The pointer to this block is stored in the module structure
3097 * which is inside the block. This block doesn't need to be
3098 * scanned as it contains data and code that will be freed
3099 * after the module is initialized.
3100 */
3101 kmemleak_ignore(ptr);
3102 if (!ptr) {
3103 module_memfree(mod->core_layout.base);
3104 return -ENOMEM;
3105 }
3106 memset(ptr, 0, mod->init_layout.size);
3107 mod->init_layout.base = ptr;
3108 } else
3109 mod->init_layout.base = NULL;
3110
3111 /* Transfer each section which specifies SHF_ALLOC */
3112 pr_debug("final section addresses:\n");
3113 for (i = 0; i < info->hdr->e_shnum; i++) {
3114 void *dest;
3115 Elf_Shdr *shdr = &info->sechdrs[i];
3116
3117 if (!(shdr->sh_flags & SHF_ALLOC))
3118 continue;
3119
3120 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3121 dest = mod->init_layout.base
3122 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3123 else
3124 dest = mod->core_layout.base + shdr->sh_entsize;
3125
3126 if (shdr->sh_type != SHT_NOBITS)
3127 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3128 /* Update sh_addr to point to copy in image. */
3129 shdr->sh_addr = (unsigned long)dest;
3130 pr_debug("\t0x%lx %s\n",
3131 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3132 }
3133
3134 return 0;
3135 }
3136
3137 static int check_module_license_and_versions(struct module *mod)
3138 {
3139 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3140
3141 /*
3142 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3143 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3144 * using GPL-only symbols it needs.
3145 */
3146 if (strcmp(mod->name, "ndiswrapper") == 0)
3147 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3148
3149 /* driverloader was caught wrongly pretending to be under GPL */
3150 if (strcmp(mod->name, "driverloader") == 0)
3151 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3152 LOCKDEP_NOW_UNRELIABLE);
3153
3154 /* lve claims to be GPL but upstream won't provide source */
3155 if (strcmp(mod->name, "lve") == 0)
3156 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3157 LOCKDEP_NOW_UNRELIABLE);
3158
3159 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3160 pr_warn("%s: module license taints kernel.\n", mod->name);
3161
3162 #ifdef CONFIG_MODVERSIONS
3163 if ((mod->num_syms && !mod->crcs)
3164 || (mod->num_gpl_syms && !mod->gpl_crcs)
3165 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3166 #ifdef CONFIG_UNUSED_SYMBOLS
3167 || (mod->num_unused_syms && !mod->unused_crcs)
3168 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3169 #endif
3170 ) {
3171 return try_to_force_load(mod,
3172 "no versions for exported symbols");
3173 }
3174 #endif
3175 return 0;
3176 }
3177
3178 static void flush_module_icache(const struct module *mod)
3179 {
3180 mm_segment_t old_fs;
3181
3182 /* flush the icache in correct context */
3183 old_fs = get_fs();
3184 set_fs(KERNEL_DS);
3185
3186 /*
3187 * Flush the instruction cache, since we've played with text.
3188 * Do it before processing of module parameters, so the module
3189 * can provide parameter accessor functions of its own.
3190 */
3191 if (mod->init_layout.base)
3192 flush_icache_range((unsigned long)mod->init_layout.base,
3193 (unsigned long)mod->init_layout.base
3194 + mod->init_layout.size);
3195 flush_icache_range((unsigned long)mod->core_layout.base,
3196 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3197
3198 set_fs(old_fs);
3199 }
3200
3201 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3202 Elf_Shdr *sechdrs,
3203 char *secstrings,
3204 struct module *mod)
3205 {
3206 return 0;
3207 }
3208
3209 /* module_blacklist is a comma-separated list of module names */
3210 static char *module_blacklist;
3211 static bool blacklisted(char *module_name)
3212 {
3213 const char *p;
3214 size_t len;
3215
3216 if (!module_blacklist)
3217 return false;
3218
3219 for (p = module_blacklist; *p; p += len) {
3220 len = strcspn(p, ",");
3221 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3222 return true;
3223 if (p[len] == ',')
3224 len++;
3225 }
3226 return false;
3227 }
3228 core_param(module_blacklist, module_blacklist, charp, 0400);
3229
3230 static struct module *layout_and_allocate(struct load_info *info, int flags)
3231 {
3232 /* Module within temporary copy. */
3233 struct module *mod;
3234 unsigned int ndx;
3235 int err;
3236
3237 mod = setup_load_info(info, flags);
3238 if (IS_ERR(mod))
3239 return mod;
3240
3241 if (blacklisted(mod->name))
3242 return ERR_PTR(-EPERM);
3243
3244 err = check_modinfo(mod, info, flags);
3245 if (err)
3246 return ERR_PTR(err);
3247
3248 /* Allow arches to frob section contents and sizes. */
3249 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3250 info->secstrings, mod);
3251 if (err < 0)
3252 return ERR_PTR(err);
3253
3254 /* We will do a special allocation for per-cpu sections later. */
3255 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3256
3257 /*
3258 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3259 * layout_sections() can put it in the right place.
3260 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3261 */
3262 ndx = find_sec(info, ".data..ro_after_init");
3263 if (ndx)
3264 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3265
3266 /* Determine total sizes, and put offsets in sh_entsize. For now
3267 this is done generically; there doesn't appear to be any
3268 special cases for the architectures. */
3269 layout_sections(mod, info);
3270 layout_symtab(mod, info);
3271
3272 /* Allocate and move to the final place */
3273 err = move_module(mod, info);
3274 if (err)
3275 return ERR_PTR(err);
3276
3277 /* Module has been copied to its final place now: return it. */
3278 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3279 kmemleak_load_module(mod, info);
3280 return mod;
3281 }
3282
3283 /* mod is no longer valid after this! */
3284 static void module_deallocate(struct module *mod, struct load_info *info)
3285 {
3286 percpu_modfree(mod);
3287 module_arch_freeing_init(mod);
3288 module_memfree(mod->init_layout.base);
3289 module_memfree(mod->core_layout.base);
3290 }
3291
3292 int __weak module_finalize(const Elf_Ehdr *hdr,
3293 const Elf_Shdr *sechdrs,
3294 struct module *me)
3295 {
3296 return 0;
3297 }
3298
3299 static int post_relocation(struct module *mod, const struct load_info *info)
3300 {
3301 /* Sort exception table now relocations are done. */
3302 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3303
3304 /* Copy relocated percpu area over. */
3305 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3306 info->sechdrs[info->index.pcpu].sh_size);
3307
3308 /* Setup kallsyms-specific fields. */
3309 add_kallsyms(mod, info);
3310
3311 /* Arch-specific module finalizing. */
3312 return module_finalize(info->hdr, info->sechdrs, mod);
3313 }
3314
3315 /* Is this module of this name done loading? No locks held. */
3316 static bool finished_loading(const char *name)
3317 {
3318 struct module *mod;
3319 bool ret;
3320
3321 /*
3322 * The module_mutex should not be a heavily contended lock;
3323 * if we get the occasional sleep here, we'll go an extra iteration
3324 * in the wait_event_interruptible(), which is harmless.
3325 */
3326 sched_annotate_sleep();
3327 mutex_lock(&module_mutex);
3328 mod = find_module_all(name, strlen(name), true);
3329 ret = !mod || mod->state == MODULE_STATE_LIVE
3330 || mod->state == MODULE_STATE_GOING;
3331 mutex_unlock(&module_mutex);
3332
3333 return ret;
3334 }
3335
3336 /* Call module constructors. */
3337 static void do_mod_ctors(struct module *mod)
3338 {
3339 #ifdef CONFIG_CONSTRUCTORS
3340 unsigned long i;
3341
3342 for (i = 0; i < mod->num_ctors; i++)
3343 mod->ctors[i]();
3344 #endif
3345 }
3346
3347 /* For freeing module_init on success, in case kallsyms traversing */
3348 struct mod_initfree {
3349 struct rcu_head rcu;
3350 void *module_init;
3351 };
3352
3353 static void do_free_init(struct rcu_head *head)
3354 {
3355 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3356 module_memfree(m->module_init);
3357 kfree(m);
3358 }
3359
3360 /*
3361 * This is where the real work happens.
3362 *
3363 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3364 * helper command 'lx-symbols'.
3365 */
3366 static noinline int do_init_module(struct module *mod)
3367 {
3368 int ret = 0;
3369 struct mod_initfree *freeinit;
3370
3371 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3372 if (!freeinit) {
3373 ret = -ENOMEM;
3374 goto fail;
3375 }
3376 freeinit->module_init = mod->init_layout.base;
3377
3378 /*
3379 * We want to find out whether @mod uses async during init. Clear
3380 * PF_USED_ASYNC. async_schedule*() will set it.
3381 */
3382 current->flags &= ~PF_USED_ASYNC;
3383
3384 do_mod_ctors(mod);
3385 /* Start the module */
3386 if (mod->init != NULL)
3387 ret = do_one_initcall(mod->init);
3388 if (ret < 0) {
3389 goto fail_free_freeinit;
3390 }
3391 if (ret > 0) {
3392 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3393 "follow 0/-E convention\n"
3394 "%s: loading module anyway...\n",
3395 __func__, mod->name, ret, __func__);
3396 dump_stack();
3397 }
3398
3399 /* Now it's a first class citizen! */
3400 mod->state = MODULE_STATE_LIVE;
3401 blocking_notifier_call_chain(&module_notify_list,
3402 MODULE_STATE_LIVE, mod);
3403
3404 /*
3405 * We need to finish all async code before the module init sequence
3406 * is done. This has potential to deadlock. For example, a newly
3407 * detected block device can trigger request_module() of the
3408 * default iosched from async probing task. Once userland helper
3409 * reaches here, async_synchronize_full() will wait on the async
3410 * task waiting on request_module() and deadlock.
3411 *
3412 * This deadlock is avoided by perfomring async_synchronize_full()
3413 * iff module init queued any async jobs. This isn't a full
3414 * solution as it will deadlock the same if module loading from
3415 * async jobs nests more than once; however, due to the various
3416 * constraints, this hack seems to be the best option for now.
3417 * Please refer to the following thread for details.
3418 *
3419 * http://thread.gmane.org/gmane.linux.kernel/1420814
3420 */
3421 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3422 async_synchronize_full();
3423
3424 mutex_lock(&module_mutex);
3425 /* Drop initial reference. */
3426 module_put(mod);
3427 trim_init_extable(mod);
3428 #ifdef CONFIG_KALLSYMS
3429 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3430 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3431 #endif
3432 module_enable_ro(mod, true);
3433 mod_tree_remove_init(mod);
3434 disable_ro_nx(&mod->init_layout);
3435 module_arch_freeing_init(mod);
3436 mod->init_layout.base = NULL;
3437 mod->init_layout.size = 0;
3438 mod->init_layout.ro_size = 0;
3439 mod->init_layout.ro_after_init_size = 0;
3440 mod->init_layout.text_size = 0;
3441 /*
3442 * We want to free module_init, but be aware that kallsyms may be
3443 * walking this with preempt disabled. In all the failure paths, we
3444 * call synchronize_sched(), but we don't want to slow down the success
3445 * path, so use actual RCU here.
3446 */
3447 call_rcu_sched(&freeinit->rcu, do_free_init);
3448 mutex_unlock(&module_mutex);
3449 wake_up_all(&module_wq);
3450
3451 return 0;
3452
3453 fail_free_freeinit:
3454 kfree(freeinit);
3455 fail:
3456 /* Try to protect us from buggy refcounters. */
3457 mod->state = MODULE_STATE_GOING;
3458 synchronize_sched();
3459 module_put(mod);
3460 blocking_notifier_call_chain(&module_notify_list,
3461 MODULE_STATE_GOING, mod);
3462 klp_module_going(mod);
3463 ftrace_release_mod(mod);
3464 free_module(mod);
3465 wake_up_all(&module_wq);
3466 return ret;
3467 }
3468
3469 static int may_init_module(void)
3470 {
3471 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3472 return -EPERM;
3473
3474 return 0;
3475 }
3476
3477 /*
3478 * We try to place it in the list now to make sure it's unique before
3479 * we dedicate too many resources. In particular, temporary percpu
3480 * memory exhaustion.
3481 */
3482 static int add_unformed_module(struct module *mod)
3483 {
3484 int err;
3485 struct module *old;
3486
3487 mod->state = MODULE_STATE_UNFORMED;
3488
3489 again:
3490 mutex_lock(&module_mutex);
3491 old = find_module_all(mod->name, strlen(mod->name), true);
3492 if (old != NULL) {
3493 if (old->state == MODULE_STATE_COMING
3494 || old->state == MODULE_STATE_UNFORMED) {
3495 /* Wait in case it fails to load. */
3496 mutex_unlock(&module_mutex);
3497 err = wait_event_interruptible(module_wq,
3498 finished_loading(mod->name));
3499 if (err)
3500 goto out_unlocked;
3501 goto again;
3502 }
3503 err = -EEXIST;
3504 goto out;
3505 }
3506 mod_update_bounds(mod);
3507 list_add_rcu(&mod->list, &modules);
3508 mod_tree_insert(mod);
3509 err = 0;
3510
3511 out:
3512 mutex_unlock(&module_mutex);
3513 out_unlocked:
3514 return err;
3515 }
3516
3517 static int complete_formation(struct module *mod, struct load_info *info)
3518 {
3519 int err;
3520
3521 mutex_lock(&module_mutex);
3522
3523 /* Find duplicate symbols (must be called under lock). */
3524 err = verify_export_symbols(mod);
3525 if (err < 0)
3526 goto out;
3527
3528 /* This relies on module_mutex for list integrity. */
3529 module_bug_finalize(info->hdr, info->sechdrs, mod);
3530
3531 module_enable_ro(mod, false);
3532 module_enable_nx(mod);
3533
3534 /* Mark state as coming so strong_try_module_get() ignores us,
3535 * but kallsyms etc. can see us. */
3536 mod->state = MODULE_STATE_COMING;
3537 mutex_unlock(&module_mutex);
3538
3539 return 0;
3540
3541 out:
3542 mutex_unlock(&module_mutex);
3543 return err;
3544 }
3545
3546 static int prepare_coming_module(struct module *mod)
3547 {
3548 int err;
3549
3550 ftrace_module_enable(mod);
3551 err = klp_module_coming(mod);
3552 if (err)
3553 return err;
3554
3555 blocking_notifier_call_chain(&module_notify_list,
3556 MODULE_STATE_COMING, mod);
3557 return 0;
3558 }
3559
3560 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3561 void *arg)
3562 {
3563 struct module *mod = arg;
3564 int ret;
3565
3566 if (strcmp(param, "async_probe") == 0) {
3567 mod->async_probe_requested = true;
3568 return 0;
3569 }
3570
3571 /* Check for magic 'dyndbg' arg */
3572 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3573 if (ret != 0)
3574 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3575 return 0;
3576 }
3577
3578 /* Allocate and load the module: note that size of section 0 is always
3579 zero, and we rely on this for optional sections. */
3580 static int load_module(struct load_info *info, const char __user *uargs,
3581 int flags)
3582 {
3583 struct module *mod;
3584 long err;
3585 char *after_dashes;
3586
3587 err = module_sig_check(info, flags);
3588 if (err)
3589 goto free_copy;
3590
3591 err = elf_header_check(info);
3592 if (err)
3593 goto free_copy;
3594
3595 /* Figure out module layout, and allocate all the memory. */
3596 mod = layout_and_allocate(info, flags);
3597 if (IS_ERR(mod)) {
3598 err = PTR_ERR(mod);
3599 goto free_copy;
3600 }
3601
3602 /* Reserve our place in the list. */
3603 err = add_unformed_module(mod);
3604 if (err)
3605 goto free_module;
3606
3607 #ifdef CONFIG_MODULE_SIG
3608 mod->sig_ok = info->sig_ok;
3609 if (!mod->sig_ok) {
3610 pr_notice_once("%s: module verification failed: signature "
3611 "and/or required key missing - tainting "
3612 "kernel\n", mod->name);
3613 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3614 }
3615 #endif
3616
3617 /* To avoid stressing percpu allocator, do this once we're unique. */
3618 err = percpu_modalloc(mod, info);
3619 if (err)
3620 goto unlink_mod;
3621
3622 /* Now module is in final location, initialize linked lists, etc. */
3623 err = module_unload_init(mod);
3624 if (err)
3625 goto unlink_mod;
3626
3627 init_param_lock(mod);
3628
3629 /* Now we've got everything in the final locations, we can
3630 * find optional sections. */
3631 err = find_module_sections(mod, info);
3632 if (err)
3633 goto free_unload;
3634
3635 err = check_module_license_and_versions(mod);
3636 if (err)
3637 goto free_unload;
3638
3639 /* Set up MODINFO_ATTR fields */
3640 setup_modinfo(mod, info);
3641
3642 /* Fix up syms, so that st_value is a pointer to location. */
3643 err = simplify_symbols(mod, info);
3644 if (err < 0)
3645 goto free_modinfo;
3646
3647 err = apply_relocations(mod, info);
3648 if (err < 0)
3649 goto free_modinfo;
3650
3651 err = post_relocation(mod, info);
3652 if (err < 0)
3653 goto free_modinfo;
3654
3655 flush_module_icache(mod);
3656
3657 /* Now copy in args */
3658 mod->args = strndup_user(uargs, ~0UL >> 1);
3659 if (IS_ERR(mod->args)) {
3660 err = PTR_ERR(mod->args);
3661 goto free_arch_cleanup;
3662 }
3663
3664 dynamic_debug_setup(info->debug, info->num_debug);
3665
3666 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3667 ftrace_module_init(mod);
3668
3669 /* Finally it's fully formed, ready to start executing. */
3670 err = complete_formation(mod, info);
3671 if (err)
3672 goto ddebug_cleanup;
3673
3674 err = prepare_coming_module(mod);
3675 if (err)
3676 goto bug_cleanup;
3677
3678 /* Module is ready to execute: parsing args may do that. */
3679 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3680 -32768, 32767, mod,
3681 unknown_module_param_cb);
3682 if (IS_ERR(after_dashes)) {
3683 err = PTR_ERR(after_dashes);
3684 goto coming_cleanup;
3685 } else if (after_dashes) {
3686 pr_warn("%s: parameters '%s' after `--' ignored\n",
3687 mod->name, after_dashes);
3688 }
3689
3690 /* Link in to syfs. */
3691 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3692 if (err < 0)
3693 goto coming_cleanup;
3694
3695 if (is_livepatch_module(mod)) {
3696 err = copy_module_elf(mod, info);
3697 if (err < 0)
3698 goto sysfs_cleanup;
3699 }
3700
3701 /* Get rid of temporary copy. */
3702 free_copy(info);
3703
3704 /* Done! */
3705 trace_module_load(mod);
3706
3707 return do_init_module(mod);
3708
3709 sysfs_cleanup:
3710 mod_sysfs_teardown(mod);
3711 coming_cleanup:
3712 blocking_notifier_call_chain(&module_notify_list,
3713 MODULE_STATE_GOING, mod);
3714 klp_module_going(mod);
3715 bug_cleanup:
3716 /* module_bug_cleanup needs module_mutex protection */
3717 mutex_lock(&module_mutex);
3718 module_bug_cleanup(mod);
3719 mutex_unlock(&module_mutex);
3720
3721 /* we can't deallocate the module until we clear memory protection */
3722 module_disable_ro(mod);
3723 module_disable_nx(mod);
3724
3725 ddebug_cleanup:
3726 dynamic_debug_remove(info->debug);
3727 synchronize_sched();
3728 kfree(mod->args);
3729 free_arch_cleanup:
3730 module_arch_cleanup(mod);
3731 free_modinfo:
3732 free_modinfo(mod);
3733 free_unload:
3734 module_unload_free(mod);
3735 unlink_mod:
3736 mutex_lock(&module_mutex);
3737 /* Unlink carefully: kallsyms could be walking list. */
3738 list_del_rcu(&mod->list);
3739 mod_tree_remove(mod);
3740 wake_up_all(&module_wq);
3741 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3742 synchronize_sched();
3743 mutex_unlock(&module_mutex);
3744 free_module:
3745 /*
3746 * Ftrace needs to clean up what it initialized.
3747 * This does nothing if ftrace_module_init() wasn't called,
3748 * but it must be called outside of module_mutex.
3749 */
3750 ftrace_release_mod(mod);
3751 /* Free lock-classes; relies on the preceding sync_rcu() */
3752 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3753
3754 module_deallocate(mod, info);
3755 free_copy:
3756 free_copy(info);
3757 return err;
3758 }
3759
3760 SYSCALL_DEFINE3(init_module, void __user *, umod,
3761 unsigned long, len, const char __user *, uargs)
3762 {
3763 int err;
3764 struct load_info info = { };
3765
3766 err = may_init_module();
3767 if (err)
3768 return err;
3769
3770 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3771 umod, len, uargs);
3772
3773 err = copy_module_from_user(umod, len, &info);
3774 if (err)
3775 return err;
3776
3777 return load_module(&info, uargs, 0);
3778 }
3779
3780 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3781 {
3782 struct load_info info = { };
3783 loff_t size;
3784 void *hdr;
3785 int err;
3786
3787 err = may_init_module();
3788 if (err)
3789 return err;
3790
3791 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3792
3793 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3794 |MODULE_INIT_IGNORE_VERMAGIC))
3795 return -EINVAL;
3796
3797 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3798 READING_MODULE);
3799 if (err)
3800 return err;
3801 info.hdr = hdr;
3802 info.len = size;
3803
3804 return load_module(&info, uargs, flags);
3805 }
3806
3807 static inline int within(unsigned long addr, void *start, unsigned long size)
3808 {
3809 return ((void *)addr >= start && (void *)addr < start + size);
3810 }
3811
3812 #ifdef CONFIG_KALLSYMS
3813 /*
3814 * This ignores the intensely annoying "mapping symbols" found
3815 * in ARM ELF files: $a, $t and $d.
3816 */
3817 static inline int is_arm_mapping_symbol(const char *str)
3818 {
3819 if (str[0] == '.' && str[1] == 'L')
3820 return true;
3821 return str[0] == '$' && strchr("axtd", str[1])
3822 && (str[2] == '\0' || str[2] == '.');
3823 }
3824
3825 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3826 {
3827 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3828 }
3829
3830 static const char *get_ksymbol(struct module *mod,
3831 unsigned long addr,
3832 unsigned long *size,
3833 unsigned long *offset)
3834 {
3835 unsigned int i, best = 0;
3836 unsigned long nextval;
3837 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3838
3839 /* At worse, next value is at end of module */
3840 if (within_module_init(addr, mod))
3841 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3842 else
3843 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3844
3845 /* Scan for closest preceding symbol, and next symbol. (ELF
3846 starts real symbols at 1). */
3847 for (i = 1; i < kallsyms->num_symtab; i++) {
3848 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3849 continue;
3850
3851 /* We ignore unnamed symbols: they're uninformative
3852 * and inserted at a whim. */
3853 if (*symname(kallsyms, i) == '\0'
3854 || is_arm_mapping_symbol(symname(kallsyms, i)))
3855 continue;
3856
3857 if (kallsyms->symtab[i].st_value <= addr
3858 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3859 best = i;
3860 if (kallsyms->symtab[i].st_value > addr
3861 && kallsyms->symtab[i].st_value < nextval)
3862 nextval = kallsyms->symtab[i].st_value;
3863 }
3864
3865 if (!best)
3866 return NULL;
3867
3868 if (size)
3869 *size = nextval - kallsyms->symtab[best].st_value;
3870 if (offset)
3871 *offset = addr - kallsyms->symtab[best].st_value;
3872 return symname(kallsyms, best);
3873 }
3874
3875 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3876 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3877 const char *module_address_lookup(unsigned long addr,
3878 unsigned long *size,
3879 unsigned long *offset,
3880 char **modname,
3881 char *namebuf)
3882 {
3883 const char *ret = NULL;
3884 struct module *mod;
3885
3886 preempt_disable();
3887 mod = __module_address(addr);
3888 if (mod) {
3889 if (modname)
3890 *modname = mod->name;
3891 ret = get_ksymbol(mod, addr, size, offset);
3892 }
3893 /* Make a copy in here where it's safe */
3894 if (ret) {
3895 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3896 ret = namebuf;
3897 }
3898 preempt_enable();
3899
3900 return ret;
3901 }
3902
3903 int lookup_module_symbol_name(unsigned long addr, char *symname)
3904 {
3905 struct module *mod;
3906
3907 preempt_disable();
3908 list_for_each_entry_rcu(mod, &modules, list) {
3909 if (mod->state == MODULE_STATE_UNFORMED)
3910 continue;
3911 if (within_module(addr, mod)) {
3912 const char *sym;
3913
3914 sym = get_ksymbol(mod, addr, NULL, NULL);
3915 if (!sym)
3916 goto out;
3917 strlcpy(symname, sym, KSYM_NAME_LEN);
3918 preempt_enable();
3919 return 0;
3920 }
3921 }
3922 out:
3923 preempt_enable();
3924 return -ERANGE;
3925 }
3926
3927 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3928 unsigned long *offset, char *modname, char *name)
3929 {
3930 struct module *mod;
3931
3932 preempt_disable();
3933 list_for_each_entry_rcu(mod, &modules, list) {
3934 if (mod->state == MODULE_STATE_UNFORMED)
3935 continue;
3936 if (within_module(addr, mod)) {
3937 const char *sym;
3938
3939 sym = get_ksymbol(mod, addr, size, offset);
3940 if (!sym)
3941 goto out;
3942 if (modname)
3943 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3944 if (name)
3945 strlcpy(name, sym, KSYM_NAME_LEN);
3946 preempt_enable();
3947 return 0;
3948 }
3949 }
3950 out:
3951 preempt_enable();
3952 return -ERANGE;
3953 }
3954
3955 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3956 char *name, char *module_name, int *exported)
3957 {
3958 struct module *mod;
3959
3960 preempt_disable();
3961 list_for_each_entry_rcu(mod, &modules, list) {
3962 struct mod_kallsyms *kallsyms;
3963
3964 if (mod->state == MODULE_STATE_UNFORMED)
3965 continue;
3966 kallsyms = rcu_dereference_sched(mod->kallsyms);
3967 if (symnum < kallsyms->num_symtab) {
3968 *value = kallsyms->symtab[symnum].st_value;
3969 *type = kallsyms->symtab[symnum].st_info;
3970 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3971 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3972 *exported = is_exported(name, *value, mod);
3973 preempt_enable();
3974 return 0;
3975 }
3976 symnum -= kallsyms->num_symtab;
3977 }
3978 preempt_enable();
3979 return -ERANGE;
3980 }
3981
3982 static unsigned long mod_find_symname(struct module *mod, const char *name)
3983 {
3984 unsigned int i;
3985 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3986
3987 for (i = 0; i < kallsyms->num_symtab; i++)
3988 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3989 kallsyms->symtab[i].st_info != 'U')
3990 return kallsyms->symtab[i].st_value;
3991 return 0;
3992 }
3993
3994 /* Look for this name: can be of form module:name. */
3995 unsigned long module_kallsyms_lookup_name(const char *name)
3996 {
3997 struct module *mod;
3998 char *colon;
3999 unsigned long ret = 0;
4000
4001 /* Don't lock: we're in enough trouble already. */
4002 preempt_disable();
4003 if ((colon = strchr(name, ':')) != NULL) {
4004 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4005 ret = mod_find_symname(mod, colon+1);
4006 } else {
4007 list_for_each_entry_rcu(mod, &modules, list) {
4008 if (mod->state == MODULE_STATE_UNFORMED)
4009 continue;
4010 if ((ret = mod_find_symname(mod, name)) != 0)
4011 break;
4012 }
4013 }
4014 preempt_enable();
4015 return ret;
4016 }
4017
4018 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4019 struct module *, unsigned long),
4020 void *data)
4021 {
4022 struct module *mod;
4023 unsigned int i;
4024 int ret;
4025
4026 module_assert_mutex();
4027
4028 list_for_each_entry(mod, &modules, list) {
4029 /* We hold module_mutex: no need for rcu_dereference_sched */
4030 struct mod_kallsyms *kallsyms = mod->kallsyms;
4031
4032 if (mod->state == MODULE_STATE_UNFORMED)
4033 continue;
4034 for (i = 0; i < kallsyms->num_symtab; i++) {
4035 ret = fn(data, symname(kallsyms, i),
4036 mod, kallsyms->symtab[i].st_value);
4037 if (ret != 0)
4038 return ret;
4039 }
4040 }
4041 return 0;
4042 }
4043 #endif /* CONFIG_KALLSYMS */
4044
4045 static char *module_flags(struct module *mod, char *buf)
4046 {
4047 int bx = 0;
4048
4049 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4050 if (mod->taints ||
4051 mod->state == MODULE_STATE_GOING ||
4052 mod->state == MODULE_STATE_COMING) {
4053 buf[bx++] = '(';
4054 bx += module_flags_taint(mod, buf + bx);
4055 /* Show a - for module-is-being-unloaded */
4056 if (mod->state == MODULE_STATE_GOING)
4057 buf[bx++] = '-';
4058 /* Show a + for module-is-being-loaded */
4059 if (mod->state == MODULE_STATE_COMING)
4060 buf[bx++] = '+';
4061 buf[bx++] = ')';
4062 }
4063 buf[bx] = '\0';
4064
4065 return buf;
4066 }
4067
4068 #ifdef CONFIG_PROC_FS
4069 /* Called by the /proc file system to return a list of modules. */
4070 static void *m_start(struct seq_file *m, loff_t *pos)
4071 {
4072 mutex_lock(&module_mutex);
4073 return seq_list_start(&modules, *pos);
4074 }
4075
4076 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4077 {
4078 return seq_list_next(p, &modules, pos);
4079 }
4080
4081 static void m_stop(struct seq_file *m, void *p)
4082 {
4083 mutex_unlock(&module_mutex);
4084 }
4085
4086 static int m_show(struct seq_file *m, void *p)
4087 {
4088 struct module *mod = list_entry(p, struct module, list);
4089 char buf[8];
4090
4091 /* We always ignore unformed modules. */
4092 if (mod->state == MODULE_STATE_UNFORMED)
4093 return 0;
4094
4095 seq_printf(m, "%s %u",
4096 mod->name, mod->init_layout.size + mod->core_layout.size);
4097 print_unload_info(m, mod);
4098
4099 /* Informative for users. */
4100 seq_printf(m, " %s",
4101 mod->state == MODULE_STATE_GOING ? "Unloading" :
4102 mod->state == MODULE_STATE_COMING ? "Loading" :
4103 "Live");
4104 /* Used by oprofile and other similar tools. */
4105 seq_printf(m, " 0x%pK", mod->core_layout.base);
4106
4107 /* Taints info */
4108 if (mod->taints)
4109 seq_printf(m, " %s", module_flags(mod, buf));
4110
4111 seq_puts(m, "\n");
4112 return 0;
4113 }
4114
4115 /* Format: modulename size refcount deps address
4116
4117 Where refcount is a number or -, and deps is a comma-separated list
4118 of depends or -.
4119 */
4120 static const struct seq_operations modules_op = {
4121 .start = m_start,
4122 .next = m_next,
4123 .stop = m_stop,
4124 .show = m_show
4125 };
4126
4127 static int modules_open(struct inode *inode, struct file *file)
4128 {
4129 return seq_open(file, &modules_op);
4130 }
4131
4132 static const struct file_operations proc_modules_operations = {
4133 .open = modules_open,
4134 .read = seq_read,
4135 .llseek = seq_lseek,
4136 .release = seq_release,
4137 };
4138
4139 static int __init proc_modules_init(void)
4140 {
4141 proc_create("modules", 0, NULL, &proc_modules_operations);
4142 return 0;
4143 }
4144 module_init(proc_modules_init);
4145 #endif
4146
4147 /* Given an address, look for it in the module exception tables. */
4148 const struct exception_table_entry *search_module_extables(unsigned long addr)
4149 {
4150 const struct exception_table_entry *e = NULL;
4151 struct module *mod;
4152
4153 preempt_disable();
4154 list_for_each_entry_rcu(mod, &modules, list) {
4155 if (mod->state == MODULE_STATE_UNFORMED)
4156 continue;
4157 if (mod->num_exentries == 0)
4158 continue;
4159
4160 e = search_extable(mod->extable,
4161 mod->extable + mod->num_exentries - 1,
4162 addr);
4163 if (e)
4164 break;
4165 }
4166 preempt_enable();
4167
4168 /* Now, if we found one, we are running inside it now, hence
4169 we cannot unload the module, hence no refcnt needed. */
4170 return e;
4171 }
4172
4173 /*
4174 * is_module_address - is this address inside a module?
4175 * @addr: the address to check.
4176 *
4177 * See is_module_text_address() if you simply want to see if the address
4178 * is code (not data).
4179 */
4180 bool is_module_address(unsigned long addr)
4181 {
4182 bool ret;
4183
4184 preempt_disable();
4185 ret = __module_address(addr) != NULL;
4186 preempt_enable();
4187
4188 return ret;
4189 }
4190
4191 /*
4192 * __module_address - get the module which contains an address.
4193 * @addr: the address.
4194 *
4195 * Must be called with preempt disabled or module mutex held so that
4196 * module doesn't get freed during this.
4197 */
4198 struct module *__module_address(unsigned long addr)
4199 {
4200 struct module *mod;
4201
4202 if (addr < module_addr_min || addr > module_addr_max)
4203 return NULL;
4204
4205 module_assert_mutex_or_preempt();
4206
4207 mod = mod_find(addr);
4208 if (mod) {
4209 BUG_ON(!within_module(addr, mod));
4210 if (mod->state == MODULE_STATE_UNFORMED)
4211 mod = NULL;
4212 }
4213 return mod;
4214 }
4215 EXPORT_SYMBOL_GPL(__module_address);
4216
4217 /*
4218 * is_module_text_address - is this address inside module code?
4219 * @addr: the address to check.
4220 *
4221 * See is_module_address() if you simply want to see if the address is
4222 * anywhere in a module. See kernel_text_address() for testing if an
4223 * address corresponds to kernel or module code.
4224 */
4225 bool is_module_text_address(unsigned long addr)
4226 {
4227 bool ret;
4228
4229 preempt_disable();
4230 ret = __module_text_address(addr) != NULL;
4231 preempt_enable();
4232
4233 return ret;
4234 }
4235
4236 /*
4237 * __module_text_address - get the module whose code contains an address.
4238 * @addr: the address.
4239 *
4240 * Must be called with preempt disabled or module mutex held so that
4241 * module doesn't get freed during this.
4242 */
4243 struct module *__module_text_address(unsigned long addr)
4244 {
4245 struct module *mod = __module_address(addr);
4246 if (mod) {
4247 /* Make sure it's within the text section. */
4248 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4249 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4250 mod = NULL;
4251 }
4252 return mod;
4253 }
4254 EXPORT_SYMBOL_GPL(__module_text_address);
4255
4256 /* Don't grab lock, we're oopsing. */
4257 void print_modules(void)
4258 {
4259 struct module *mod;
4260 char buf[8];
4261
4262 printk(KERN_DEFAULT "Modules linked in:");
4263 /* Most callers should already have preempt disabled, but make sure */
4264 preempt_disable();
4265 list_for_each_entry_rcu(mod, &modules, list) {
4266 if (mod->state == MODULE_STATE_UNFORMED)
4267 continue;
4268 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4269 }
4270 preempt_enable();
4271 if (last_unloaded_module[0])
4272 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4273 pr_cont("\n");
4274 }
4275
4276 #ifdef CONFIG_MODVERSIONS
4277 /* Generate the signature for all relevant module structures here.
4278 * If these change, we don't want to try to parse the module. */
4279 void module_layout(struct module *mod,
4280 struct modversion_info *ver,
4281 struct kernel_param *kp,
4282 struct kernel_symbol *ks,
4283 struct tracepoint * const *tp)
4284 {
4285 }
4286 EXPORT_SYMBOL(module_layout);
4287 #endif