]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/module.c
module: refactor load_module
[mirror_ubuntu-artful-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/module.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61
62 #if 0
63 #define DEBUGP printk
64 #else
65 #define DEBUGP(fmt , a...)
66 #endif
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /* If this is set, the section belongs in the init part of the module */
73 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
74
75 /*
76 * Mutex protects:
77 * 1) List of modules (also safely readable with preempt_disable),
78 * 2) module_use links,
79 * 3) module_addr_min/module_addr_max.
80 * (delete uses stop_machine/add uses RCU list operations). */
81 DEFINE_MUTEX(module_mutex);
82 EXPORT_SYMBOL_GPL(module_mutex);
83 static LIST_HEAD(modules);
84 #ifdef CONFIG_KGDB_KDB
85 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
86 #endif /* CONFIG_KGDB_KDB */
87
88
89 /* Block module loading/unloading? */
90 int modules_disabled = 0;
91
92 /* Waiting for a module to finish initializing? */
93 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
94
95 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
96
97 /* Bounds of module allocation, for speeding __module_address.
98 * Protected by module_mutex. */
99 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
100
101 int register_module_notifier(struct notifier_block * nb)
102 {
103 return blocking_notifier_chain_register(&module_notify_list, nb);
104 }
105 EXPORT_SYMBOL(register_module_notifier);
106
107 int unregister_module_notifier(struct notifier_block * nb)
108 {
109 return blocking_notifier_chain_unregister(&module_notify_list, nb);
110 }
111 EXPORT_SYMBOL(unregister_module_notifier);
112
113 /* We require a truly strong try_module_get(): 0 means failure due to
114 ongoing or failed initialization etc. */
115 static inline int strong_try_module_get(struct module *mod)
116 {
117 if (mod && mod->state == MODULE_STATE_COMING)
118 return -EBUSY;
119 if (try_module_get(mod))
120 return 0;
121 else
122 return -ENOENT;
123 }
124
125 static inline void add_taint_module(struct module *mod, unsigned flag)
126 {
127 add_taint(flag);
128 mod->taints |= (1U << flag);
129 }
130
131 /*
132 * A thread that wants to hold a reference to a module only while it
133 * is running can call this to safely exit. nfsd and lockd use this.
134 */
135 void __module_put_and_exit(struct module *mod, long code)
136 {
137 module_put(mod);
138 do_exit(code);
139 }
140 EXPORT_SYMBOL(__module_put_and_exit);
141
142 /* Find a module section: 0 means not found. */
143 static unsigned int find_sec(Elf_Ehdr *hdr,
144 Elf_Shdr *sechdrs,
145 const char *secstrings,
146 const char *name)
147 {
148 unsigned int i;
149
150 for (i = 1; i < hdr->e_shnum; i++)
151 /* Alloc bit cleared means "ignore it." */
152 if ((sechdrs[i].sh_flags & SHF_ALLOC)
153 && strcmp(secstrings+sechdrs[i].sh_name, name) == 0)
154 return i;
155 return 0;
156 }
157
158 /* Find a module section, or NULL. */
159 static void *section_addr(Elf_Ehdr *hdr, Elf_Shdr *shdrs,
160 const char *secstrings, const char *name)
161 {
162 /* Section 0 has sh_addr 0. */
163 return (void *)shdrs[find_sec(hdr, shdrs, secstrings, name)].sh_addr;
164 }
165
166 /* Find a module section, or NULL. Fill in number of "objects" in section. */
167 static void *section_objs(Elf_Ehdr *hdr,
168 Elf_Shdr *sechdrs,
169 const char *secstrings,
170 const char *name,
171 size_t object_size,
172 unsigned int *num)
173 {
174 unsigned int sec = find_sec(hdr, sechdrs, secstrings, name);
175
176 /* Section 0 has sh_addr 0 and sh_size 0. */
177 *num = sechdrs[sec].sh_size / object_size;
178 return (void *)sechdrs[sec].sh_addr;
179 }
180
181 /* Provided by the linker */
182 extern const struct kernel_symbol __start___ksymtab[];
183 extern const struct kernel_symbol __stop___ksymtab[];
184 extern const struct kernel_symbol __start___ksymtab_gpl[];
185 extern const struct kernel_symbol __stop___ksymtab_gpl[];
186 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
187 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
188 extern const unsigned long __start___kcrctab[];
189 extern const unsigned long __start___kcrctab_gpl[];
190 extern const unsigned long __start___kcrctab_gpl_future[];
191 #ifdef CONFIG_UNUSED_SYMBOLS
192 extern const struct kernel_symbol __start___ksymtab_unused[];
193 extern const struct kernel_symbol __stop___ksymtab_unused[];
194 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
195 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
196 extern const unsigned long __start___kcrctab_unused[];
197 extern const unsigned long __start___kcrctab_unused_gpl[];
198 #endif
199
200 #ifndef CONFIG_MODVERSIONS
201 #define symversion(base, idx) NULL
202 #else
203 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
204 #endif
205
206 static bool each_symbol_in_section(const struct symsearch *arr,
207 unsigned int arrsize,
208 struct module *owner,
209 bool (*fn)(const struct symsearch *syms,
210 struct module *owner,
211 unsigned int symnum, void *data),
212 void *data)
213 {
214 unsigned int i, j;
215
216 for (j = 0; j < arrsize; j++) {
217 for (i = 0; i < arr[j].stop - arr[j].start; i++)
218 if (fn(&arr[j], owner, i, data))
219 return true;
220 }
221
222 return false;
223 }
224
225 /* Returns true as soon as fn returns true, otherwise false. */
226 bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
227 unsigned int symnum, void *data), void *data)
228 {
229 struct module *mod;
230 const struct symsearch arr[] = {
231 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
232 NOT_GPL_ONLY, false },
233 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
234 __start___kcrctab_gpl,
235 GPL_ONLY, false },
236 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
237 __start___kcrctab_gpl_future,
238 WILL_BE_GPL_ONLY, false },
239 #ifdef CONFIG_UNUSED_SYMBOLS
240 { __start___ksymtab_unused, __stop___ksymtab_unused,
241 __start___kcrctab_unused,
242 NOT_GPL_ONLY, true },
243 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
244 __start___kcrctab_unused_gpl,
245 GPL_ONLY, true },
246 #endif
247 };
248
249 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
250 return true;
251
252 list_for_each_entry_rcu(mod, &modules, list) {
253 struct symsearch arr[] = {
254 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
255 NOT_GPL_ONLY, false },
256 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
257 mod->gpl_crcs,
258 GPL_ONLY, false },
259 { mod->gpl_future_syms,
260 mod->gpl_future_syms + mod->num_gpl_future_syms,
261 mod->gpl_future_crcs,
262 WILL_BE_GPL_ONLY, false },
263 #ifdef CONFIG_UNUSED_SYMBOLS
264 { mod->unused_syms,
265 mod->unused_syms + mod->num_unused_syms,
266 mod->unused_crcs,
267 NOT_GPL_ONLY, true },
268 { mod->unused_gpl_syms,
269 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
270 mod->unused_gpl_crcs,
271 GPL_ONLY, true },
272 #endif
273 };
274
275 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
276 return true;
277 }
278 return false;
279 }
280 EXPORT_SYMBOL_GPL(each_symbol);
281
282 struct find_symbol_arg {
283 /* Input */
284 const char *name;
285 bool gplok;
286 bool warn;
287
288 /* Output */
289 struct module *owner;
290 const unsigned long *crc;
291 const struct kernel_symbol *sym;
292 };
293
294 static bool find_symbol_in_section(const struct symsearch *syms,
295 struct module *owner,
296 unsigned int symnum, void *data)
297 {
298 struct find_symbol_arg *fsa = data;
299
300 if (strcmp(syms->start[symnum].name, fsa->name) != 0)
301 return false;
302
303 if (!fsa->gplok) {
304 if (syms->licence == GPL_ONLY)
305 return false;
306 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
307 printk(KERN_WARNING "Symbol %s is being used "
308 "by a non-GPL module, which will not "
309 "be allowed in the future\n", fsa->name);
310 printk(KERN_WARNING "Please see the file "
311 "Documentation/feature-removal-schedule.txt "
312 "in the kernel source tree for more details.\n");
313 }
314 }
315
316 #ifdef CONFIG_UNUSED_SYMBOLS
317 if (syms->unused && fsa->warn) {
318 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
319 "however this module is using it.\n", fsa->name);
320 printk(KERN_WARNING
321 "This symbol will go away in the future.\n");
322 printk(KERN_WARNING
323 "Please evalute if this is the right api to use and if "
324 "it really is, submit a report the linux kernel "
325 "mailinglist together with submitting your code for "
326 "inclusion.\n");
327 }
328 #endif
329
330 fsa->owner = owner;
331 fsa->crc = symversion(syms->crcs, symnum);
332 fsa->sym = &syms->start[symnum];
333 return true;
334 }
335
336 /* Find a symbol and return it, along with, (optional) crc and
337 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
338 const struct kernel_symbol *find_symbol(const char *name,
339 struct module **owner,
340 const unsigned long **crc,
341 bool gplok,
342 bool warn)
343 {
344 struct find_symbol_arg fsa;
345
346 fsa.name = name;
347 fsa.gplok = gplok;
348 fsa.warn = warn;
349
350 if (each_symbol(find_symbol_in_section, &fsa)) {
351 if (owner)
352 *owner = fsa.owner;
353 if (crc)
354 *crc = fsa.crc;
355 return fsa.sym;
356 }
357
358 DEBUGP("Failed to find symbol %s\n", name);
359 return NULL;
360 }
361 EXPORT_SYMBOL_GPL(find_symbol);
362
363 /* Search for module by name: must hold module_mutex. */
364 struct module *find_module(const char *name)
365 {
366 struct module *mod;
367
368 list_for_each_entry(mod, &modules, list) {
369 if (strcmp(mod->name, name) == 0)
370 return mod;
371 }
372 return NULL;
373 }
374 EXPORT_SYMBOL_GPL(find_module);
375
376 #ifdef CONFIG_SMP
377
378 static inline void __percpu *mod_percpu(struct module *mod)
379 {
380 return mod->percpu;
381 }
382
383 static int percpu_modalloc(struct module *mod,
384 unsigned long size, unsigned long align)
385 {
386 if (align > PAGE_SIZE) {
387 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
388 mod->name, align, PAGE_SIZE);
389 align = PAGE_SIZE;
390 }
391
392 mod->percpu = __alloc_reserved_percpu(size, align);
393 if (!mod->percpu) {
394 printk(KERN_WARNING
395 "Could not allocate %lu bytes percpu data\n", size);
396 return -ENOMEM;
397 }
398 mod->percpu_size = size;
399 return 0;
400 }
401
402 static void percpu_modfree(struct module *mod)
403 {
404 free_percpu(mod->percpu);
405 }
406
407 static unsigned int find_pcpusec(Elf_Ehdr *hdr,
408 Elf_Shdr *sechdrs,
409 const char *secstrings)
410 {
411 return find_sec(hdr, sechdrs, secstrings, ".data..percpu");
412 }
413
414 static void percpu_modcopy(struct module *mod,
415 const void *from, unsigned long size)
416 {
417 int cpu;
418
419 for_each_possible_cpu(cpu)
420 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
421 }
422
423 /**
424 * is_module_percpu_address - test whether address is from module static percpu
425 * @addr: address to test
426 *
427 * Test whether @addr belongs to module static percpu area.
428 *
429 * RETURNS:
430 * %true if @addr is from module static percpu area
431 */
432 bool is_module_percpu_address(unsigned long addr)
433 {
434 struct module *mod;
435 unsigned int cpu;
436
437 preempt_disable();
438
439 list_for_each_entry_rcu(mod, &modules, list) {
440 if (!mod->percpu_size)
441 continue;
442 for_each_possible_cpu(cpu) {
443 void *start = per_cpu_ptr(mod->percpu, cpu);
444
445 if ((void *)addr >= start &&
446 (void *)addr < start + mod->percpu_size) {
447 preempt_enable();
448 return true;
449 }
450 }
451 }
452
453 preempt_enable();
454 return false;
455 }
456
457 #else /* ... !CONFIG_SMP */
458
459 static inline void __percpu *mod_percpu(struct module *mod)
460 {
461 return NULL;
462 }
463 static inline int percpu_modalloc(struct module *mod,
464 unsigned long size, unsigned long align)
465 {
466 return -ENOMEM;
467 }
468 static inline void percpu_modfree(struct module *mod)
469 {
470 }
471 static inline unsigned int find_pcpusec(Elf_Ehdr *hdr,
472 Elf_Shdr *sechdrs,
473 const char *secstrings)
474 {
475 return 0;
476 }
477 static inline void percpu_modcopy(struct module *mod,
478 const void *from, unsigned long size)
479 {
480 /* pcpusec should be 0, and size of that section should be 0. */
481 BUG_ON(size != 0);
482 }
483 bool is_module_percpu_address(unsigned long addr)
484 {
485 return false;
486 }
487
488 #endif /* CONFIG_SMP */
489
490 #define MODINFO_ATTR(field) \
491 static void setup_modinfo_##field(struct module *mod, const char *s) \
492 { \
493 mod->field = kstrdup(s, GFP_KERNEL); \
494 } \
495 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
496 struct module *mod, char *buffer) \
497 { \
498 return sprintf(buffer, "%s\n", mod->field); \
499 } \
500 static int modinfo_##field##_exists(struct module *mod) \
501 { \
502 return mod->field != NULL; \
503 } \
504 static void free_modinfo_##field(struct module *mod) \
505 { \
506 kfree(mod->field); \
507 mod->field = NULL; \
508 } \
509 static struct module_attribute modinfo_##field = { \
510 .attr = { .name = __stringify(field), .mode = 0444 }, \
511 .show = show_modinfo_##field, \
512 .setup = setup_modinfo_##field, \
513 .test = modinfo_##field##_exists, \
514 .free = free_modinfo_##field, \
515 };
516
517 MODINFO_ATTR(version);
518 MODINFO_ATTR(srcversion);
519
520 static char last_unloaded_module[MODULE_NAME_LEN+1];
521
522 #ifdef CONFIG_MODULE_UNLOAD
523
524 EXPORT_TRACEPOINT_SYMBOL(module_get);
525
526 /* Init the unload section of the module. */
527 static void module_unload_init(struct module *mod)
528 {
529 INIT_LIST_HEAD(&mod->source_list);
530 INIT_LIST_HEAD(&mod->target_list);
531
532 /* Hold reference count during initialization. */
533 __this_cpu_write(mod->refptr->incs, 1);
534 /* Backwards compatibility macros put refcount during init. */
535 mod->waiter = current;
536 }
537
538 /* Does a already use b? */
539 static int already_uses(struct module *a, struct module *b)
540 {
541 struct module_use *use;
542
543 list_for_each_entry(use, &b->source_list, source_list) {
544 if (use->source == a) {
545 DEBUGP("%s uses %s!\n", a->name, b->name);
546 return 1;
547 }
548 }
549 DEBUGP("%s does not use %s!\n", a->name, b->name);
550 return 0;
551 }
552
553 /*
554 * Module a uses b
555 * - we add 'a' as a "source", 'b' as a "target" of module use
556 * - the module_use is added to the list of 'b' sources (so
557 * 'b' can walk the list to see who sourced them), and of 'a'
558 * targets (so 'a' can see what modules it targets).
559 */
560 static int add_module_usage(struct module *a, struct module *b)
561 {
562 struct module_use *use;
563
564 DEBUGP("Allocating new usage for %s.\n", a->name);
565 use = kmalloc(sizeof(*use), GFP_ATOMIC);
566 if (!use) {
567 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
568 return -ENOMEM;
569 }
570
571 use->source = a;
572 use->target = b;
573 list_add(&use->source_list, &b->source_list);
574 list_add(&use->target_list, &a->target_list);
575 return 0;
576 }
577
578 /* Module a uses b: caller needs module_mutex() */
579 int ref_module(struct module *a, struct module *b)
580 {
581 int err;
582
583 if (b == NULL || already_uses(a, b))
584 return 0;
585
586 /* If module isn't available, we fail. */
587 err = strong_try_module_get(b);
588 if (err)
589 return err;
590
591 err = add_module_usage(a, b);
592 if (err) {
593 module_put(b);
594 return err;
595 }
596 return 0;
597 }
598 EXPORT_SYMBOL_GPL(ref_module);
599
600 /* Clear the unload stuff of the module. */
601 static void module_unload_free(struct module *mod)
602 {
603 struct module_use *use, *tmp;
604
605 mutex_lock(&module_mutex);
606 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
607 struct module *i = use->target;
608 DEBUGP("%s unusing %s\n", mod->name, i->name);
609 module_put(i);
610 list_del(&use->source_list);
611 list_del(&use->target_list);
612 kfree(use);
613 }
614 mutex_unlock(&module_mutex);
615 }
616
617 #ifdef CONFIG_MODULE_FORCE_UNLOAD
618 static inline int try_force_unload(unsigned int flags)
619 {
620 int ret = (flags & O_TRUNC);
621 if (ret)
622 add_taint(TAINT_FORCED_RMMOD);
623 return ret;
624 }
625 #else
626 static inline int try_force_unload(unsigned int flags)
627 {
628 return 0;
629 }
630 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
631
632 struct stopref
633 {
634 struct module *mod;
635 int flags;
636 int *forced;
637 };
638
639 /* Whole machine is stopped with interrupts off when this runs. */
640 static int __try_stop_module(void *_sref)
641 {
642 struct stopref *sref = _sref;
643
644 /* If it's not unused, quit unless we're forcing. */
645 if (module_refcount(sref->mod) != 0) {
646 if (!(*sref->forced = try_force_unload(sref->flags)))
647 return -EWOULDBLOCK;
648 }
649
650 /* Mark it as dying. */
651 sref->mod->state = MODULE_STATE_GOING;
652 return 0;
653 }
654
655 static int try_stop_module(struct module *mod, int flags, int *forced)
656 {
657 if (flags & O_NONBLOCK) {
658 struct stopref sref = { mod, flags, forced };
659
660 return stop_machine(__try_stop_module, &sref, NULL);
661 } else {
662 /* We don't need to stop the machine for this. */
663 mod->state = MODULE_STATE_GOING;
664 synchronize_sched();
665 return 0;
666 }
667 }
668
669 unsigned int module_refcount(struct module *mod)
670 {
671 unsigned int incs = 0, decs = 0;
672 int cpu;
673
674 for_each_possible_cpu(cpu)
675 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
676 /*
677 * ensure the incs are added up after the decs.
678 * module_put ensures incs are visible before decs with smp_wmb.
679 *
680 * This 2-count scheme avoids the situation where the refcount
681 * for CPU0 is read, then CPU0 increments the module refcount,
682 * then CPU1 drops that refcount, then the refcount for CPU1 is
683 * read. We would record a decrement but not its corresponding
684 * increment so we would see a low count (disaster).
685 *
686 * Rare situation? But module_refcount can be preempted, and we
687 * might be tallying up 4096+ CPUs. So it is not impossible.
688 */
689 smp_rmb();
690 for_each_possible_cpu(cpu)
691 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
692 return incs - decs;
693 }
694 EXPORT_SYMBOL(module_refcount);
695
696 /* This exists whether we can unload or not */
697 static void free_module(struct module *mod);
698
699 static void wait_for_zero_refcount(struct module *mod)
700 {
701 /* Since we might sleep for some time, release the mutex first */
702 mutex_unlock(&module_mutex);
703 for (;;) {
704 DEBUGP("Looking at refcount...\n");
705 set_current_state(TASK_UNINTERRUPTIBLE);
706 if (module_refcount(mod) == 0)
707 break;
708 schedule();
709 }
710 current->state = TASK_RUNNING;
711 mutex_lock(&module_mutex);
712 }
713
714 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
715 unsigned int, flags)
716 {
717 struct module *mod;
718 char name[MODULE_NAME_LEN];
719 int ret, forced = 0;
720
721 if (!capable(CAP_SYS_MODULE) || modules_disabled)
722 return -EPERM;
723
724 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
725 return -EFAULT;
726 name[MODULE_NAME_LEN-1] = '\0';
727
728 if (mutex_lock_interruptible(&module_mutex) != 0)
729 return -EINTR;
730
731 mod = find_module(name);
732 if (!mod) {
733 ret = -ENOENT;
734 goto out;
735 }
736
737 if (!list_empty(&mod->source_list)) {
738 /* Other modules depend on us: get rid of them first. */
739 ret = -EWOULDBLOCK;
740 goto out;
741 }
742
743 /* Doing init or already dying? */
744 if (mod->state != MODULE_STATE_LIVE) {
745 /* FIXME: if (force), slam module count and wake up
746 waiter --RR */
747 DEBUGP("%s already dying\n", mod->name);
748 ret = -EBUSY;
749 goto out;
750 }
751
752 /* If it has an init func, it must have an exit func to unload */
753 if (mod->init && !mod->exit) {
754 forced = try_force_unload(flags);
755 if (!forced) {
756 /* This module can't be removed */
757 ret = -EBUSY;
758 goto out;
759 }
760 }
761
762 /* Set this up before setting mod->state */
763 mod->waiter = current;
764
765 /* Stop the machine so refcounts can't move and disable module. */
766 ret = try_stop_module(mod, flags, &forced);
767 if (ret != 0)
768 goto out;
769
770 /* Never wait if forced. */
771 if (!forced && module_refcount(mod) != 0)
772 wait_for_zero_refcount(mod);
773
774 mutex_unlock(&module_mutex);
775 /* Final destruction now noone is using it. */
776 if (mod->exit != NULL)
777 mod->exit();
778 blocking_notifier_call_chain(&module_notify_list,
779 MODULE_STATE_GOING, mod);
780 async_synchronize_full();
781
782 /* Store the name of the last unloaded module for diagnostic purposes */
783 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
784
785 free_module(mod);
786 return 0;
787 out:
788 mutex_unlock(&module_mutex);
789 return ret;
790 }
791
792 static inline void print_unload_info(struct seq_file *m, struct module *mod)
793 {
794 struct module_use *use;
795 int printed_something = 0;
796
797 seq_printf(m, " %u ", module_refcount(mod));
798
799 /* Always include a trailing , so userspace can differentiate
800 between this and the old multi-field proc format. */
801 list_for_each_entry(use, &mod->source_list, source_list) {
802 printed_something = 1;
803 seq_printf(m, "%s,", use->source->name);
804 }
805
806 if (mod->init != NULL && mod->exit == NULL) {
807 printed_something = 1;
808 seq_printf(m, "[permanent],");
809 }
810
811 if (!printed_something)
812 seq_printf(m, "-");
813 }
814
815 void __symbol_put(const char *symbol)
816 {
817 struct module *owner;
818
819 preempt_disable();
820 if (!find_symbol(symbol, &owner, NULL, true, false))
821 BUG();
822 module_put(owner);
823 preempt_enable();
824 }
825 EXPORT_SYMBOL(__symbol_put);
826
827 /* Note this assumes addr is a function, which it currently always is. */
828 void symbol_put_addr(void *addr)
829 {
830 struct module *modaddr;
831 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
832
833 if (core_kernel_text(a))
834 return;
835
836 /* module_text_address is safe here: we're supposed to have reference
837 * to module from symbol_get, so it can't go away. */
838 modaddr = __module_text_address(a);
839 BUG_ON(!modaddr);
840 module_put(modaddr);
841 }
842 EXPORT_SYMBOL_GPL(symbol_put_addr);
843
844 static ssize_t show_refcnt(struct module_attribute *mattr,
845 struct module *mod, char *buffer)
846 {
847 return sprintf(buffer, "%u\n", module_refcount(mod));
848 }
849
850 static struct module_attribute refcnt = {
851 .attr = { .name = "refcnt", .mode = 0444 },
852 .show = show_refcnt,
853 };
854
855 void module_put(struct module *module)
856 {
857 if (module) {
858 preempt_disable();
859 smp_wmb(); /* see comment in module_refcount */
860 __this_cpu_inc(module->refptr->decs);
861
862 trace_module_put(module, _RET_IP_);
863 /* Maybe they're waiting for us to drop reference? */
864 if (unlikely(!module_is_live(module)))
865 wake_up_process(module->waiter);
866 preempt_enable();
867 }
868 }
869 EXPORT_SYMBOL(module_put);
870
871 #else /* !CONFIG_MODULE_UNLOAD */
872 static inline void print_unload_info(struct seq_file *m, struct module *mod)
873 {
874 /* We don't know the usage count, or what modules are using. */
875 seq_printf(m, " - -");
876 }
877
878 static inline void module_unload_free(struct module *mod)
879 {
880 }
881
882 int ref_module(struct module *a, struct module *b)
883 {
884 return strong_try_module_get(b);
885 }
886 EXPORT_SYMBOL_GPL(ref_module);
887
888 static inline void module_unload_init(struct module *mod)
889 {
890 }
891 #endif /* CONFIG_MODULE_UNLOAD */
892
893 static ssize_t show_initstate(struct module_attribute *mattr,
894 struct module *mod, char *buffer)
895 {
896 const char *state = "unknown";
897
898 switch (mod->state) {
899 case MODULE_STATE_LIVE:
900 state = "live";
901 break;
902 case MODULE_STATE_COMING:
903 state = "coming";
904 break;
905 case MODULE_STATE_GOING:
906 state = "going";
907 break;
908 }
909 return sprintf(buffer, "%s\n", state);
910 }
911
912 static struct module_attribute initstate = {
913 .attr = { .name = "initstate", .mode = 0444 },
914 .show = show_initstate,
915 };
916
917 static struct module_attribute *modinfo_attrs[] = {
918 &modinfo_version,
919 &modinfo_srcversion,
920 &initstate,
921 #ifdef CONFIG_MODULE_UNLOAD
922 &refcnt,
923 #endif
924 NULL,
925 };
926
927 static const char vermagic[] = VERMAGIC_STRING;
928
929 static int try_to_force_load(struct module *mod, const char *reason)
930 {
931 #ifdef CONFIG_MODULE_FORCE_LOAD
932 if (!test_taint(TAINT_FORCED_MODULE))
933 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
934 mod->name, reason);
935 add_taint_module(mod, TAINT_FORCED_MODULE);
936 return 0;
937 #else
938 return -ENOEXEC;
939 #endif
940 }
941
942 #ifdef CONFIG_MODVERSIONS
943 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
944 static unsigned long maybe_relocated(unsigned long crc,
945 const struct module *crc_owner)
946 {
947 #ifdef ARCH_RELOCATES_KCRCTAB
948 if (crc_owner == NULL)
949 return crc - (unsigned long)reloc_start;
950 #endif
951 return crc;
952 }
953
954 static int check_version(Elf_Shdr *sechdrs,
955 unsigned int versindex,
956 const char *symname,
957 struct module *mod,
958 const unsigned long *crc,
959 const struct module *crc_owner)
960 {
961 unsigned int i, num_versions;
962 struct modversion_info *versions;
963
964 /* Exporting module didn't supply crcs? OK, we're already tainted. */
965 if (!crc)
966 return 1;
967
968 /* No versions at all? modprobe --force does this. */
969 if (versindex == 0)
970 return try_to_force_load(mod, symname) == 0;
971
972 versions = (void *) sechdrs[versindex].sh_addr;
973 num_versions = sechdrs[versindex].sh_size
974 / sizeof(struct modversion_info);
975
976 for (i = 0; i < num_versions; i++) {
977 if (strcmp(versions[i].name, symname) != 0)
978 continue;
979
980 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
981 return 1;
982 DEBUGP("Found checksum %lX vs module %lX\n",
983 maybe_relocated(*crc, crc_owner), versions[i].crc);
984 goto bad_version;
985 }
986
987 printk(KERN_WARNING "%s: no symbol version for %s\n",
988 mod->name, symname);
989 return 0;
990
991 bad_version:
992 printk("%s: disagrees about version of symbol %s\n",
993 mod->name, symname);
994 return 0;
995 }
996
997 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
998 unsigned int versindex,
999 struct module *mod)
1000 {
1001 const unsigned long *crc;
1002
1003 /* Since this should be found in kernel (which can't be removed),
1004 * no locking is necessary. */
1005 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1006 &crc, true, false))
1007 BUG();
1008 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1009 NULL);
1010 }
1011
1012 /* First part is kernel version, which we ignore if module has crcs. */
1013 static inline int same_magic(const char *amagic, const char *bmagic,
1014 bool has_crcs)
1015 {
1016 if (has_crcs) {
1017 amagic += strcspn(amagic, " ");
1018 bmagic += strcspn(bmagic, " ");
1019 }
1020 return strcmp(amagic, bmagic) == 0;
1021 }
1022 #else
1023 static inline int check_version(Elf_Shdr *sechdrs,
1024 unsigned int versindex,
1025 const char *symname,
1026 struct module *mod,
1027 const unsigned long *crc,
1028 const struct module *crc_owner)
1029 {
1030 return 1;
1031 }
1032
1033 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1034 unsigned int versindex,
1035 struct module *mod)
1036 {
1037 return 1;
1038 }
1039
1040 static inline int same_magic(const char *amagic, const char *bmagic,
1041 bool has_crcs)
1042 {
1043 return strcmp(amagic, bmagic) == 0;
1044 }
1045 #endif /* CONFIG_MODVERSIONS */
1046
1047 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1048 static const struct kernel_symbol *resolve_symbol(Elf_Shdr *sechdrs,
1049 unsigned int versindex,
1050 const char *name,
1051 struct module *mod,
1052 char ownername[])
1053 {
1054 struct module *owner;
1055 const struct kernel_symbol *sym;
1056 const unsigned long *crc;
1057 int err;
1058
1059 mutex_lock(&module_mutex);
1060 sym = find_symbol(name, &owner, &crc,
1061 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1062 if (!sym)
1063 goto unlock;
1064
1065 if (!check_version(sechdrs, versindex, name, mod, crc, owner)) {
1066 sym = ERR_PTR(-EINVAL);
1067 goto getname;
1068 }
1069
1070 err = ref_module(mod, owner);
1071 if (err) {
1072 sym = ERR_PTR(err);
1073 goto getname;
1074 }
1075
1076 getname:
1077 /* We must make copy under the lock if we failed to get ref. */
1078 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1079 unlock:
1080 mutex_unlock(&module_mutex);
1081 return sym;
1082 }
1083
1084 static const struct kernel_symbol *resolve_symbol_wait(Elf_Shdr *sechdrs,
1085 unsigned int versindex,
1086 const char *name,
1087 struct module *mod)
1088 {
1089 const struct kernel_symbol *ksym;
1090 char ownername[MODULE_NAME_LEN];
1091
1092 if (wait_event_interruptible_timeout(module_wq,
1093 !IS_ERR(ksym = resolve_symbol(sechdrs, versindex, name,
1094 mod, ownername)) ||
1095 PTR_ERR(ksym) != -EBUSY,
1096 30 * HZ) <= 0) {
1097 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1098 mod->name, ownername);
1099 }
1100 return ksym;
1101 }
1102
1103 /*
1104 * /sys/module/foo/sections stuff
1105 * J. Corbet <corbet@lwn.net>
1106 */
1107 #if defined(CONFIG_KALLSYMS) && defined(CONFIG_SYSFS)
1108
1109 static inline bool sect_empty(const Elf_Shdr *sect)
1110 {
1111 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1112 }
1113
1114 struct module_sect_attr
1115 {
1116 struct module_attribute mattr;
1117 char *name;
1118 unsigned long address;
1119 };
1120
1121 struct module_sect_attrs
1122 {
1123 struct attribute_group grp;
1124 unsigned int nsections;
1125 struct module_sect_attr attrs[0];
1126 };
1127
1128 static ssize_t module_sect_show(struct module_attribute *mattr,
1129 struct module *mod, char *buf)
1130 {
1131 struct module_sect_attr *sattr =
1132 container_of(mattr, struct module_sect_attr, mattr);
1133 return sprintf(buf, "0x%lx\n", sattr->address);
1134 }
1135
1136 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1137 {
1138 unsigned int section;
1139
1140 for (section = 0; section < sect_attrs->nsections; section++)
1141 kfree(sect_attrs->attrs[section].name);
1142 kfree(sect_attrs);
1143 }
1144
1145 static void add_sect_attrs(struct module *mod, unsigned int nsect,
1146 char *secstrings, Elf_Shdr *sechdrs)
1147 {
1148 unsigned int nloaded = 0, i, size[2];
1149 struct module_sect_attrs *sect_attrs;
1150 struct module_sect_attr *sattr;
1151 struct attribute **gattr;
1152
1153 /* Count loaded sections and allocate structures */
1154 for (i = 0; i < nsect; i++)
1155 if (!sect_empty(&sechdrs[i]))
1156 nloaded++;
1157 size[0] = ALIGN(sizeof(*sect_attrs)
1158 + nloaded * sizeof(sect_attrs->attrs[0]),
1159 sizeof(sect_attrs->grp.attrs[0]));
1160 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1161 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1162 if (sect_attrs == NULL)
1163 return;
1164
1165 /* Setup section attributes. */
1166 sect_attrs->grp.name = "sections";
1167 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1168
1169 sect_attrs->nsections = 0;
1170 sattr = &sect_attrs->attrs[0];
1171 gattr = &sect_attrs->grp.attrs[0];
1172 for (i = 0; i < nsect; i++) {
1173 if (sect_empty(&sechdrs[i]))
1174 continue;
1175 sattr->address = sechdrs[i].sh_addr;
1176 sattr->name = kstrdup(secstrings + sechdrs[i].sh_name,
1177 GFP_KERNEL);
1178 if (sattr->name == NULL)
1179 goto out;
1180 sect_attrs->nsections++;
1181 sysfs_attr_init(&sattr->mattr.attr);
1182 sattr->mattr.show = module_sect_show;
1183 sattr->mattr.store = NULL;
1184 sattr->mattr.attr.name = sattr->name;
1185 sattr->mattr.attr.mode = S_IRUGO;
1186 *(gattr++) = &(sattr++)->mattr.attr;
1187 }
1188 *gattr = NULL;
1189
1190 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1191 goto out;
1192
1193 mod->sect_attrs = sect_attrs;
1194 return;
1195 out:
1196 free_sect_attrs(sect_attrs);
1197 }
1198
1199 static void remove_sect_attrs(struct module *mod)
1200 {
1201 if (mod->sect_attrs) {
1202 sysfs_remove_group(&mod->mkobj.kobj,
1203 &mod->sect_attrs->grp);
1204 /* We are positive that no one is using any sect attrs
1205 * at this point. Deallocate immediately. */
1206 free_sect_attrs(mod->sect_attrs);
1207 mod->sect_attrs = NULL;
1208 }
1209 }
1210
1211 /*
1212 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1213 */
1214
1215 struct module_notes_attrs {
1216 struct kobject *dir;
1217 unsigned int notes;
1218 struct bin_attribute attrs[0];
1219 };
1220
1221 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1222 struct bin_attribute *bin_attr,
1223 char *buf, loff_t pos, size_t count)
1224 {
1225 /*
1226 * The caller checked the pos and count against our size.
1227 */
1228 memcpy(buf, bin_attr->private + pos, count);
1229 return count;
1230 }
1231
1232 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1233 unsigned int i)
1234 {
1235 if (notes_attrs->dir) {
1236 while (i-- > 0)
1237 sysfs_remove_bin_file(notes_attrs->dir,
1238 &notes_attrs->attrs[i]);
1239 kobject_put(notes_attrs->dir);
1240 }
1241 kfree(notes_attrs);
1242 }
1243
1244 static void add_notes_attrs(struct module *mod, unsigned int nsect,
1245 char *secstrings, Elf_Shdr *sechdrs)
1246 {
1247 unsigned int notes, loaded, i;
1248 struct module_notes_attrs *notes_attrs;
1249 struct bin_attribute *nattr;
1250
1251 /* failed to create section attributes, so can't create notes */
1252 if (!mod->sect_attrs)
1253 return;
1254
1255 /* Count notes sections and allocate structures. */
1256 notes = 0;
1257 for (i = 0; i < nsect; i++)
1258 if (!sect_empty(&sechdrs[i]) &&
1259 (sechdrs[i].sh_type == SHT_NOTE))
1260 ++notes;
1261
1262 if (notes == 0)
1263 return;
1264
1265 notes_attrs = kzalloc(sizeof(*notes_attrs)
1266 + notes * sizeof(notes_attrs->attrs[0]),
1267 GFP_KERNEL);
1268 if (notes_attrs == NULL)
1269 return;
1270
1271 notes_attrs->notes = notes;
1272 nattr = &notes_attrs->attrs[0];
1273 for (loaded = i = 0; i < nsect; ++i) {
1274 if (sect_empty(&sechdrs[i]))
1275 continue;
1276 if (sechdrs[i].sh_type == SHT_NOTE) {
1277 sysfs_bin_attr_init(nattr);
1278 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1279 nattr->attr.mode = S_IRUGO;
1280 nattr->size = sechdrs[i].sh_size;
1281 nattr->private = (void *) sechdrs[i].sh_addr;
1282 nattr->read = module_notes_read;
1283 ++nattr;
1284 }
1285 ++loaded;
1286 }
1287
1288 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1289 if (!notes_attrs->dir)
1290 goto out;
1291
1292 for (i = 0; i < notes; ++i)
1293 if (sysfs_create_bin_file(notes_attrs->dir,
1294 &notes_attrs->attrs[i]))
1295 goto out;
1296
1297 mod->notes_attrs = notes_attrs;
1298 return;
1299
1300 out:
1301 free_notes_attrs(notes_attrs, i);
1302 }
1303
1304 static void remove_notes_attrs(struct module *mod)
1305 {
1306 if (mod->notes_attrs)
1307 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1308 }
1309
1310 #else
1311
1312 static inline void add_sect_attrs(struct module *mod, unsigned int nsect,
1313 char *sectstrings, Elf_Shdr *sechdrs)
1314 {
1315 }
1316
1317 static inline void remove_sect_attrs(struct module *mod)
1318 {
1319 }
1320
1321 static inline void add_notes_attrs(struct module *mod, unsigned int nsect,
1322 char *sectstrings, Elf_Shdr *sechdrs)
1323 {
1324 }
1325
1326 static inline void remove_notes_attrs(struct module *mod)
1327 {
1328 }
1329 #endif
1330
1331 #ifdef CONFIG_SYSFS
1332 static void add_usage_links(struct module *mod)
1333 {
1334 #ifdef CONFIG_MODULE_UNLOAD
1335 struct module_use *use;
1336 int nowarn;
1337
1338 mutex_lock(&module_mutex);
1339 list_for_each_entry(use, &mod->target_list, target_list) {
1340 nowarn = sysfs_create_link(use->target->holders_dir,
1341 &mod->mkobj.kobj, mod->name);
1342 }
1343 mutex_unlock(&module_mutex);
1344 #endif
1345 }
1346
1347 static void del_usage_links(struct module *mod)
1348 {
1349 #ifdef CONFIG_MODULE_UNLOAD
1350 struct module_use *use;
1351
1352 mutex_lock(&module_mutex);
1353 list_for_each_entry(use, &mod->target_list, target_list)
1354 sysfs_remove_link(use->target->holders_dir, mod->name);
1355 mutex_unlock(&module_mutex);
1356 #endif
1357 }
1358
1359 static int module_add_modinfo_attrs(struct module *mod)
1360 {
1361 struct module_attribute *attr;
1362 struct module_attribute *temp_attr;
1363 int error = 0;
1364 int i;
1365
1366 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1367 (ARRAY_SIZE(modinfo_attrs) + 1)),
1368 GFP_KERNEL);
1369 if (!mod->modinfo_attrs)
1370 return -ENOMEM;
1371
1372 temp_attr = mod->modinfo_attrs;
1373 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1374 if (!attr->test ||
1375 (attr->test && attr->test(mod))) {
1376 memcpy(temp_attr, attr, sizeof(*temp_attr));
1377 sysfs_attr_init(&temp_attr->attr);
1378 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1379 ++temp_attr;
1380 }
1381 }
1382 return error;
1383 }
1384
1385 static void module_remove_modinfo_attrs(struct module *mod)
1386 {
1387 struct module_attribute *attr;
1388 int i;
1389
1390 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1391 /* pick a field to test for end of list */
1392 if (!attr->attr.name)
1393 break;
1394 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1395 if (attr->free)
1396 attr->free(mod);
1397 }
1398 kfree(mod->modinfo_attrs);
1399 }
1400
1401 static int mod_sysfs_init(struct module *mod)
1402 {
1403 int err;
1404 struct kobject *kobj;
1405
1406 if (!module_sysfs_initialized) {
1407 printk(KERN_ERR "%s: module sysfs not initialized\n",
1408 mod->name);
1409 err = -EINVAL;
1410 goto out;
1411 }
1412
1413 kobj = kset_find_obj(module_kset, mod->name);
1414 if (kobj) {
1415 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1416 kobject_put(kobj);
1417 err = -EINVAL;
1418 goto out;
1419 }
1420
1421 mod->mkobj.mod = mod;
1422
1423 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1424 mod->mkobj.kobj.kset = module_kset;
1425 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1426 "%s", mod->name);
1427 if (err)
1428 kobject_put(&mod->mkobj.kobj);
1429
1430 /* delay uevent until full sysfs population */
1431 out:
1432 return err;
1433 }
1434
1435 static int mod_sysfs_setup(struct module *mod,
1436 struct kernel_param *kparam,
1437 unsigned int num_params)
1438 {
1439 int err;
1440
1441 err = mod_sysfs_init(mod);
1442 if (err)
1443 goto out;
1444
1445 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1446 if (!mod->holders_dir) {
1447 err = -ENOMEM;
1448 goto out_unreg;
1449 }
1450
1451 err = module_param_sysfs_setup(mod, kparam, num_params);
1452 if (err)
1453 goto out_unreg_holders;
1454
1455 err = module_add_modinfo_attrs(mod);
1456 if (err)
1457 goto out_unreg_param;
1458
1459 add_usage_links(mod);
1460
1461 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1462 return 0;
1463
1464 out_unreg_param:
1465 module_param_sysfs_remove(mod);
1466 out_unreg_holders:
1467 kobject_put(mod->holders_dir);
1468 out_unreg:
1469 kobject_put(&mod->mkobj.kobj);
1470 out:
1471 return err;
1472 }
1473
1474 static void mod_sysfs_fini(struct module *mod)
1475 {
1476 kobject_put(&mod->mkobj.kobj);
1477 }
1478
1479 #else /* CONFIG_SYSFS */
1480
1481 static inline int mod_sysfs_init(struct module *mod)
1482 {
1483 return 0;
1484 }
1485
1486 static inline int mod_sysfs_setup(struct module *mod,
1487 struct kernel_param *kparam,
1488 unsigned int num_params)
1489 {
1490 return 0;
1491 }
1492
1493 static inline int module_add_modinfo_attrs(struct module *mod)
1494 {
1495 return 0;
1496 }
1497
1498 static inline void module_remove_modinfo_attrs(struct module *mod)
1499 {
1500 }
1501
1502 static void mod_sysfs_fini(struct module *mod)
1503 {
1504 }
1505
1506 static void del_usage_links(struct module *mod)
1507 {
1508 }
1509
1510 #endif /* CONFIG_SYSFS */
1511
1512 static void mod_kobject_remove(struct module *mod)
1513 {
1514 del_usage_links(mod);
1515 module_remove_modinfo_attrs(mod);
1516 module_param_sysfs_remove(mod);
1517 kobject_put(mod->mkobj.drivers_dir);
1518 kobject_put(mod->holders_dir);
1519 mod_sysfs_fini(mod);
1520 }
1521
1522 /*
1523 * unlink the module with the whole machine is stopped with interrupts off
1524 * - this defends against kallsyms not taking locks
1525 */
1526 static int __unlink_module(void *_mod)
1527 {
1528 struct module *mod = _mod;
1529 list_del(&mod->list);
1530 return 0;
1531 }
1532
1533 /* Free a module, remove from lists, etc. */
1534 static void free_module(struct module *mod)
1535 {
1536 trace_module_free(mod);
1537
1538 /* Delete from various lists */
1539 mutex_lock(&module_mutex);
1540 stop_machine(__unlink_module, mod, NULL);
1541 mutex_unlock(&module_mutex);
1542 remove_notes_attrs(mod);
1543 remove_sect_attrs(mod);
1544 mod_kobject_remove(mod);
1545
1546 /* Remove dynamic debug info */
1547 ddebug_remove_module(mod->name);
1548
1549 /* Arch-specific cleanup. */
1550 module_arch_cleanup(mod);
1551
1552 /* Module unload stuff */
1553 module_unload_free(mod);
1554
1555 /* Free any allocated parameters. */
1556 destroy_params(mod->kp, mod->num_kp);
1557
1558 /* This may be NULL, but that's OK */
1559 module_free(mod, mod->module_init);
1560 kfree(mod->args);
1561 percpu_modfree(mod);
1562 #if defined(CONFIG_MODULE_UNLOAD)
1563 if (mod->refptr)
1564 free_percpu(mod->refptr);
1565 #endif
1566 /* Free lock-classes: */
1567 lockdep_free_key_range(mod->module_core, mod->core_size);
1568
1569 /* Finally, free the core (containing the module structure) */
1570 module_free(mod, mod->module_core);
1571
1572 #ifdef CONFIG_MPU
1573 update_protections(current->mm);
1574 #endif
1575 }
1576
1577 void *__symbol_get(const char *symbol)
1578 {
1579 struct module *owner;
1580 const struct kernel_symbol *sym;
1581
1582 preempt_disable();
1583 sym = find_symbol(symbol, &owner, NULL, true, true);
1584 if (sym && strong_try_module_get(owner))
1585 sym = NULL;
1586 preempt_enable();
1587
1588 return sym ? (void *)sym->value : NULL;
1589 }
1590 EXPORT_SYMBOL_GPL(__symbol_get);
1591
1592 /*
1593 * Ensure that an exported symbol [global namespace] does not already exist
1594 * in the kernel or in some other module's exported symbol table.
1595 *
1596 * You must hold the module_mutex.
1597 */
1598 static int verify_export_symbols(struct module *mod)
1599 {
1600 unsigned int i;
1601 struct module *owner;
1602 const struct kernel_symbol *s;
1603 struct {
1604 const struct kernel_symbol *sym;
1605 unsigned int num;
1606 } arr[] = {
1607 { mod->syms, mod->num_syms },
1608 { mod->gpl_syms, mod->num_gpl_syms },
1609 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1610 #ifdef CONFIG_UNUSED_SYMBOLS
1611 { mod->unused_syms, mod->num_unused_syms },
1612 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1613 #endif
1614 };
1615
1616 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1617 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1618 if (find_symbol(s->name, &owner, NULL, true, false)) {
1619 printk(KERN_ERR
1620 "%s: exports duplicate symbol %s"
1621 " (owned by %s)\n",
1622 mod->name, s->name, module_name(owner));
1623 return -ENOEXEC;
1624 }
1625 }
1626 }
1627 return 0;
1628 }
1629
1630 /* Change all symbols so that st_value encodes the pointer directly. */
1631 static int simplify_symbols(Elf_Shdr *sechdrs,
1632 unsigned int symindex,
1633 const char *strtab,
1634 unsigned int versindex,
1635 unsigned int pcpuindex,
1636 struct module *mod)
1637 {
1638 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
1639 unsigned long secbase;
1640 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1641 int ret = 0;
1642 const struct kernel_symbol *ksym;
1643
1644 for (i = 1; i < n; i++) {
1645 switch (sym[i].st_shndx) {
1646 case SHN_COMMON:
1647 /* We compiled with -fno-common. These are not
1648 supposed to happen. */
1649 DEBUGP("Common symbol: %s\n", strtab + sym[i].st_name);
1650 printk("%s: please compile with -fno-common\n",
1651 mod->name);
1652 ret = -ENOEXEC;
1653 break;
1654
1655 case SHN_ABS:
1656 /* Don't need to do anything */
1657 DEBUGP("Absolute symbol: 0x%08lx\n",
1658 (long)sym[i].st_value);
1659 break;
1660
1661 case SHN_UNDEF:
1662 ksym = resolve_symbol_wait(sechdrs, versindex,
1663 strtab + sym[i].st_name,
1664 mod);
1665 /* Ok if resolved. */
1666 if (ksym && !IS_ERR(ksym)) {
1667 sym[i].st_value = ksym->value;
1668 break;
1669 }
1670
1671 /* Ok if weak. */
1672 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1673 break;
1674
1675 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1676 mod->name, strtab + sym[i].st_name,
1677 PTR_ERR(ksym));
1678 ret = PTR_ERR(ksym) ?: -ENOENT;
1679 break;
1680
1681 default:
1682 /* Divert to percpu allocation if a percpu var. */
1683 if (sym[i].st_shndx == pcpuindex)
1684 secbase = (unsigned long)mod_percpu(mod);
1685 else
1686 secbase = sechdrs[sym[i].st_shndx].sh_addr;
1687 sym[i].st_value += secbase;
1688 break;
1689 }
1690 }
1691
1692 return ret;
1693 }
1694
1695 /* Additional bytes needed by arch in front of individual sections */
1696 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1697 unsigned int section)
1698 {
1699 /* default implementation just returns zero */
1700 return 0;
1701 }
1702
1703 /* Update size with this section: return offset. */
1704 static long get_offset(struct module *mod, unsigned int *size,
1705 Elf_Shdr *sechdr, unsigned int section)
1706 {
1707 long ret;
1708
1709 *size += arch_mod_section_prepend(mod, section);
1710 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1711 *size = ret + sechdr->sh_size;
1712 return ret;
1713 }
1714
1715 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1716 might -- code, read-only data, read-write data, small data. Tally
1717 sizes, and place the offsets into sh_entsize fields: high bit means it
1718 belongs in init. */
1719 static void layout_sections(struct module *mod,
1720 const Elf_Ehdr *hdr,
1721 Elf_Shdr *sechdrs,
1722 const char *secstrings)
1723 {
1724 static unsigned long const masks[][2] = {
1725 /* NOTE: all executable code must be the first section
1726 * in this array; otherwise modify the text_size
1727 * finder in the two loops below */
1728 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1729 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1730 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1731 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1732 };
1733 unsigned int m, i;
1734
1735 for (i = 0; i < hdr->e_shnum; i++)
1736 sechdrs[i].sh_entsize = ~0UL;
1737
1738 DEBUGP("Core section allocation order:\n");
1739 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1740 for (i = 0; i < hdr->e_shnum; ++i) {
1741 Elf_Shdr *s = &sechdrs[i];
1742
1743 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1744 || (s->sh_flags & masks[m][1])
1745 || s->sh_entsize != ~0UL
1746 || strstarts(secstrings + s->sh_name, ".init"))
1747 continue;
1748 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1749 DEBUGP("\t%s\n", secstrings + s->sh_name);
1750 }
1751 if (m == 0)
1752 mod->core_text_size = mod->core_size;
1753 }
1754
1755 DEBUGP("Init section allocation order:\n");
1756 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1757 for (i = 0; i < hdr->e_shnum; ++i) {
1758 Elf_Shdr *s = &sechdrs[i];
1759
1760 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1761 || (s->sh_flags & masks[m][1])
1762 || s->sh_entsize != ~0UL
1763 || !strstarts(secstrings + s->sh_name, ".init"))
1764 continue;
1765 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1766 | INIT_OFFSET_MASK);
1767 DEBUGP("\t%s\n", secstrings + s->sh_name);
1768 }
1769 if (m == 0)
1770 mod->init_text_size = mod->init_size;
1771 }
1772 }
1773
1774 static void set_license(struct module *mod, const char *license)
1775 {
1776 if (!license)
1777 license = "unspecified";
1778
1779 if (!license_is_gpl_compatible(license)) {
1780 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1781 printk(KERN_WARNING "%s: module license '%s' taints "
1782 "kernel.\n", mod->name, license);
1783 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1784 }
1785 }
1786
1787 /* Parse tag=value strings from .modinfo section */
1788 static char *next_string(char *string, unsigned long *secsize)
1789 {
1790 /* Skip non-zero chars */
1791 while (string[0]) {
1792 string++;
1793 if ((*secsize)-- <= 1)
1794 return NULL;
1795 }
1796
1797 /* Skip any zero padding. */
1798 while (!string[0]) {
1799 string++;
1800 if ((*secsize)-- <= 1)
1801 return NULL;
1802 }
1803 return string;
1804 }
1805
1806 static char *get_modinfo(Elf_Shdr *sechdrs,
1807 unsigned int info,
1808 const char *tag)
1809 {
1810 char *p;
1811 unsigned int taglen = strlen(tag);
1812 unsigned long size = sechdrs[info].sh_size;
1813
1814 for (p = (char *)sechdrs[info].sh_addr; p; p = next_string(p, &size)) {
1815 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1816 return p + taglen + 1;
1817 }
1818 return NULL;
1819 }
1820
1821 static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs,
1822 unsigned int infoindex)
1823 {
1824 struct module_attribute *attr;
1825 int i;
1826
1827 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1828 if (attr->setup)
1829 attr->setup(mod,
1830 get_modinfo(sechdrs,
1831 infoindex,
1832 attr->attr.name));
1833 }
1834 }
1835
1836 static void free_modinfo(struct module *mod)
1837 {
1838 struct module_attribute *attr;
1839 int i;
1840
1841 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1842 if (attr->free)
1843 attr->free(mod);
1844 }
1845 }
1846
1847 #ifdef CONFIG_KALLSYMS
1848
1849 /* lookup symbol in given range of kernel_symbols */
1850 static const struct kernel_symbol *lookup_symbol(const char *name,
1851 const struct kernel_symbol *start,
1852 const struct kernel_symbol *stop)
1853 {
1854 const struct kernel_symbol *ks = start;
1855 for (; ks < stop; ks++)
1856 if (strcmp(ks->name, name) == 0)
1857 return ks;
1858 return NULL;
1859 }
1860
1861 static int is_exported(const char *name, unsigned long value,
1862 const struct module *mod)
1863 {
1864 const struct kernel_symbol *ks;
1865 if (!mod)
1866 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
1867 else
1868 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
1869 return ks != NULL && ks->value == value;
1870 }
1871
1872 /* As per nm */
1873 static char elf_type(const Elf_Sym *sym,
1874 Elf_Shdr *sechdrs,
1875 const char *secstrings,
1876 struct module *mod)
1877 {
1878 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
1879 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
1880 return 'v';
1881 else
1882 return 'w';
1883 }
1884 if (sym->st_shndx == SHN_UNDEF)
1885 return 'U';
1886 if (sym->st_shndx == SHN_ABS)
1887 return 'a';
1888 if (sym->st_shndx >= SHN_LORESERVE)
1889 return '?';
1890 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
1891 return 't';
1892 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
1893 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
1894 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
1895 return 'r';
1896 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1897 return 'g';
1898 else
1899 return 'd';
1900 }
1901 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1902 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1903 return 's';
1904 else
1905 return 'b';
1906 }
1907 if (strstarts(secstrings + sechdrs[sym->st_shndx].sh_name, ".debug"))
1908 return 'n';
1909 return '?';
1910 }
1911
1912 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
1913 unsigned int shnum)
1914 {
1915 const Elf_Shdr *sec;
1916
1917 if (src->st_shndx == SHN_UNDEF
1918 || src->st_shndx >= shnum
1919 || !src->st_name)
1920 return false;
1921
1922 sec = sechdrs + src->st_shndx;
1923 if (!(sec->sh_flags & SHF_ALLOC)
1924 #ifndef CONFIG_KALLSYMS_ALL
1925 || !(sec->sh_flags & SHF_EXECINSTR)
1926 #endif
1927 || (sec->sh_entsize & INIT_OFFSET_MASK))
1928 return false;
1929
1930 return true;
1931 }
1932
1933 static unsigned long layout_symtab(struct module *mod,
1934 Elf_Shdr *sechdrs,
1935 unsigned int symindex,
1936 unsigned int strindex,
1937 const Elf_Ehdr *hdr,
1938 const char *secstrings,
1939 unsigned long *pstroffs,
1940 unsigned long *strmap)
1941 {
1942 unsigned long symoffs;
1943 Elf_Shdr *symsect = sechdrs + symindex;
1944 Elf_Shdr *strsect = sechdrs + strindex;
1945 const Elf_Sym *src;
1946 const char *strtab;
1947 unsigned int i, nsrc, ndst;
1948
1949 /* Put symbol section at end of init part of module. */
1950 symsect->sh_flags |= SHF_ALLOC;
1951 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
1952 symindex) | INIT_OFFSET_MASK;
1953 DEBUGP("\t%s\n", secstrings + symsect->sh_name);
1954
1955 src = (void *)hdr + symsect->sh_offset;
1956 nsrc = symsect->sh_size / sizeof(*src);
1957 strtab = (void *)hdr + strsect->sh_offset;
1958 for (ndst = i = 1; i < nsrc; ++i, ++src)
1959 if (is_core_symbol(src, sechdrs, hdr->e_shnum)) {
1960 unsigned int j = src->st_name;
1961
1962 while(!__test_and_set_bit(j, strmap) && strtab[j])
1963 ++j;
1964 ++ndst;
1965 }
1966
1967 /* Append room for core symbols at end of core part. */
1968 symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
1969 mod->core_size = symoffs + ndst * sizeof(Elf_Sym);
1970
1971 /* Put string table section at end of init part of module. */
1972 strsect->sh_flags |= SHF_ALLOC;
1973 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
1974 strindex) | INIT_OFFSET_MASK;
1975 DEBUGP("\t%s\n", secstrings + strsect->sh_name);
1976
1977 /* Append room for core symbols' strings at end of core part. */
1978 *pstroffs = mod->core_size;
1979 __set_bit(0, strmap);
1980 mod->core_size += bitmap_weight(strmap, strsect->sh_size);
1981
1982 return symoffs;
1983 }
1984
1985 static void add_kallsyms(struct module *mod,
1986 Elf_Shdr *sechdrs,
1987 unsigned int shnum,
1988 unsigned int symindex,
1989 unsigned int strindex,
1990 unsigned long symoffs,
1991 unsigned long stroffs,
1992 const char *secstrings,
1993 unsigned long *strmap)
1994 {
1995 unsigned int i, ndst;
1996 const Elf_Sym *src;
1997 Elf_Sym *dst;
1998 char *s;
1999
2000 mod->symtab = (void *)sechdrs[symindex].sh_addr;
2001 mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
2002 mod->strtab = (void *)sechdrs[strindex].sh_addr;
2003
2004 /* Set types up while we still have access to sections. */
2005 for (i = 0; i < mod->num_symtab; i++)
2006 mod->symtab[i].st_info
2007 = elf_type(&mod->symtab[i], sechdrs, secstrings, mod);
2008
2009 mod->core_symtab = dst = mod->module_core + symoffs;
2010 src = mod->symtab;
2011 *dst = *src;
2012 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2013 if (!is_core_symbol(src, sechdrs, shnum))
2014 continue;
2015 dst[ndst] = *src;
2016 dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name);
2017 ++ndst;
2018 }
2019 mod->core_num_syms = ndst;
2020
2021 mod->core_strtab = s = mod->module_core + stroffs;
2022 for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i)
2023 if (test_bit(i, strmap))
2024 *++s = mod->strtab[i];
2025 }
2026 #else
2027 static inline unsigned long layout_symtab(struct module *mod,
2028 Elf_Shdr *sechdrs,
2029 unsigned int symindex,
2030 unsigned int strindex,
2031 const Elf_Ehdr *hdr,
2032 const char *secstrings,
2033 unsigned long *pstroffs,
2034 unsigned long *strmap)
2035 {
2036 return 0;
2037 }
2038
2039 static inline void add_kallsyms(struct module *mod,
2040 Elf_Shdr *sechdrs,
2041 unsigned int shnum,
2042 unsigned int symindex,
2043 unsigned int strindex,
2044 unsigned long symoffs,
2045 unsigned long stroffs,
2046 const char *secstrings,
2047 const unsigned long *strmap)
2048 {
2049 }
2050 #endif /* CONFIG_KALLSYMS */
2051
2052 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2053 {
2054 #ifdef CONFIG_DYNAMIC_DEBUG
2055 if (ddebug_add_module(debug, num, debug->modname))
2056 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2057 debug->modname);
2058 #endif
2059 }
2060
2061 static void dynamic_debug_remove(struct _ddebug *debug)
2062 {
2063 if (debug)
2064 ddebug_remove_module(debug->modname);
2065 }
2066
2067 static void *module_alloc_update_bounds(unsigned long size)
2068 {
2069 void *ret = module_alloc(size);
2070
2071 if (ret) {
2072 mutex_lock(&module_mutex);
2073 /* Update module bounds. */
2074 if ((unsigned long)ret < module_addr_min)
2075 module_addr_min = (unsigned long)ret;
2076 if ((unsigned long)ret + size > module_addr_max)
2077 module_addr_max = (unsigned long)ret + size;
2078 mutex_unlock(&module_mutex);
2079 }
2080 return ret;
2081 }
2082
2083 #ifdef CONFIG_DEBUG_KMEMLEAK
2084 static void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
2085 Elf_Shdr *sechdrs, char *secstrings)
2086 {
2087 unsigned int i;
2088
2089 /* only scan the sections containing data */
2090 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2091
2092 for (i = 1; i < hdr->e_shnum; i++) {
2093 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2094 continue;
2095 if (strncmp(secstrings + sechdrs[i].sh_name, ".data", 5) != 0
2096 && strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) != 0)
2097 continue;
2098
2099 kmemleak_scan_area((void *)sechdrs[i].sh_addr,
2100 sechdrs[i].sh_size, GFP_KERNEL);
2101 }
2102 }
2103 #else
2104 static inline void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
2105 Elf_Shdr *sechdrs, char *secstrings)
2106 {
2107 }
2108 #endif
2109
2110 static void find_module_sections(struct module *mod, Elf_Ehdr *hdr,
2111 Elf_Shdr *sechdrs, const char *secstrings)
2112 {
2113 mod->kp = section_objs(hdr, sechdrs, secstrings, "__param",
2114 sizeof(*mod->kp), &mod->num_kp);
2115 mod->syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab",
2116 sizeof(*mod->syms), &mod->num_syms);
2117 mod->crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab");
2118 mod->gpl_syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab_gpl",
2119 sizeof(*mod->gpl_syms),
2120 &mod->num_gpl_syms);
2121 mod->gpl_crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab_gpl");
2122 mod->gpl_future_syms = section_objs(hdr, sechdrs, secstrings,
2123 "__ksymtab_gpl_future",
2124 sizeof(*mod->gpl_future_syms),
2125 &mod->num_gpl_future_syms);
2126 mod->gpl_future_crcs = section_addr(hdr, sechdrs, secstrings,
2127 "__kcrctab_gpl_future");
2128
2129 #ifdef CONFIG_UNUSED_SYMBOLS
2130 mod->unused_syms = section_objs(hdr, sechdrs, secstrings,
2131 "__ksymtab_unused",
2132 sizeof(*mod->unused_syms),
2133 &mod->num_unused_syms);
2134 mod->unused_crcs = section_addr(hdr, sechdrs, secstrings,
2135 "__kcrctab_unused");
2136 mod->unused_gpl_syms = section_objs(hdr, sechdrs, secstrings,
2137 "__ksymtab_unused_gpl",
2138 sizeof(*mod->unused_gpl_syms),
2139 &mod->num_unused_gpl_syms);
2140 mod->unused_gpl_crcs = section_addr(hdr, sechdrs, secstrings,
2141 "__kcrctab_unused_gpl");
2142 #endif
2143 #ifdef CONFIG_CONSTRUCTORS
2144 mod->ctors = section_objs(hdr, sechdrs, secstrings, ".ctors",
2145 sizeof(*mod->ctors), &mod->num_ctors);
2146 #endif
2147
2148 #ifdef CONFIG_TRACEPOINTS
2149 mod->tracepoints = section_objs(hdr, sechdrs, secstrings,
2150 "__tracepoints",
2151 sizeof(*mod->tracepoints),
2152 &mod->num_tracepoints);
2153 #endif
2154 #ifdef CONFIG_EVENT_TRACING
2155 mod->trace_events = section_objs(hdr, sechdrs, secstrings,
2156 "_ftrace_events",
2157 sizeof(*mod->trace_events),
2158 &mod->num_trace_events);
2159 /*
2160 * This section contains pointers to allocated objects in the trace
2161 * code and not scanning it leads to false positives.
2162 */
2163 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2164 mod->num_trace_events, GFP_KERNEL);
2165 #endif
2166 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2167 /* sechdrs[0].sh_size is always zero */
2168 mod->ftrace_callsites = section_objs(hdr, sechdrs, secstrings,
2169 "__mcount_loc",
2170 sizeof(*mod->ftrace_callsites),
2171 &mod->num_ftrace_callsites);
2172 #endif
2173 }
2174
2175 /* Allocate and load the module: note that size of section 0 is always
2176 zero, and we rely on this for optional sections. */
2177 static noinline struct module *load_module(void __user *umod,
2178 unsigned long len,
2179 const char __user *uargs)
2180 {
2181 Elf_Ehdr *hdr;
2182 Elf_Shdr *sechdrs;
2183 char *secstrings, *args, *modmagic, *strtab = NULL;
2184 char *staging;
2185 unsigned int i;
2186 unsigned int symindex = 0;
2187 unsigned int strindex = 0;
2188 unsigned int modindex, versindex, infoindex, pcpuindex;
2189 struct module *mod;
2190 long err = 0;
2191 void *ptr = NULL; /* Stops spurious gcc warning */
2192 unsigned long symoffs, stroffs, *strmap;
2193 void __percpu *percpu;
2194 struct _ddebug *debug = NULL;
2195 unsigned int num_debug = 0;
2196
2197 mm_segment_t old_fs;
2198
2199 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2200 umod, len, uargs);
2201 if (len < sizeof(*hdr))
2202 return ERR_PTR(-ENOEXEC);
2203
2204 /* Suck in entire file: we'll want most of it. */
2205 /* vmalloc barfs on "unusual" numbers. Check here */
2206 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2207 return ERR_PTR(-ENOMEM);
2208
2209 if (copy_from_user(hdr, umod, len) != 0) {
2210 err = -EFAULT;
2211 goto free_hdr;
2212 }
2213
2214 /* Sanity checks against insmoding binaries or wrong arch,
2215 weird elf version */
2216 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2217 || hdr->e_type != ET_REL
2218 || !elf_check_arch(hdr)
2219 || hdr->e_shentsize != sizeof(*sechdrs)) {
2220 err = -ENOEXEC;
2221 goto free_hdr;
2222 }
2223
2224 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr))
2225 goto truncated;
2226
2227 /* Convenience variables */
2228 sechdrs = (void *)hdr + hdr->e_shoff;
2229 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
2230 sechdrs[0].sh_addr = 0;
2231
2232 for (i = 1; i < hdr->e_shnum; i++) {
2233 if (sechdrs[i].sh_type != SHT_NOBITS
2234 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size)
2235 goto truncated;
2236
2237 /* Mark all sections sh_addr with their address in the
2238 temporary image. */
2239 sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset;
2240
2241 /* Internal symbols and strings. */
2242 if (sechdrs[i].sh_type == SHT_SYMTAB) {
2243 symindex = i;
2244 strindex = sechdrs[i].sh_link;
2245 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
2246 }
2247 #ifndef CONFIG_MODULE_UNLOAD
2248 /* Don't load .exit sections */
2249 if (strstarts(secstrings+sechdrs[i].sh_name, ".exit"))
2250 sechdrs[i].sh_flags &= ~(unsigned long)SHF_ALLOC;
2251 #endif
2252 }
2253
2254 modindex = find_sec(hdr, sechdrs, secstrings,
2255 ".gnu.linkonce.this_module");
2256 if (!modindex) {
2257 printk(KERN_WARNING "No module found in object\n");
2258 err = -ENOEXEC;
2259 goto free_hdr;
2260 }
2261 /* This is temporary: point mod into copy of data. */
2262 mod = (void *)sechdrs[modindex].sh_addr;
2263
2264 if (symindex == 0) {
2265 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2266 mod->name);
2267 err = -ENOEXEC;
2268 goto free_hdr;
2269 }
2270
2271 versindex = find_sec(hdr, sechdrs, secstrings, "__versions");
2272 infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo");
2273 pcpuindex = find_pcpusec(hdr, sechdrs, secstrings);
2274
2275 /* Don't keep modinfo and version sections. */
2276 sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2277 sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2278
2279 /* Check module struct version now, before we try to use module. */
2280 if (!check_modstruct_version(sechdrs, versindex, mod)) {
2281 err = -ENOEXEC;
2282 goto free_hdr;
2283 }
2284
2285 modmagic = get_modinfo(sechdrs, infoindex, "vermagic");
2286 /* This is allowed: modprobe --force will invalidate it. */
2287 if (!modmagic) {
2288 err = try_to_force_load(mod, "bad vermagic");
2289 if (err)
2290 goto free_hdr;
2291 } else if (!same_magic(modmagic, vermagic, versindex)) {
2292 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2293 mod->name, modmagic, vermagic);
2294 err = -ENOEXEC;
2295 goto free_hdr;
2296 }
2297
2298 staging = get_modinfo(sechdrs, infoindex, "staging");
2299 if (staging) {
2300 add_taint_module(mod, TAINT_CRAP);
2301 printk(KERN_WARNING "%s: module is from the staging directory,"
2302 " the quality is unknown, you have been warned.\n",
2303 mod->name);
2304 }
2305
2306 /* Now copy in args */
2307 args = strndup_user(uargs, ~0UL >> 1);
2308 if (IS_ERR(args)) {
2309 err = PTR_ERR(args);
2310 goto free_hdr;
2311 }
2312
2313 strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size)
2314 * sizeof(long), GFP_KERNEL);
2315 if (!strmap) {
2316 err = -ENOMEM;
2317 goto free_mod;
2318 }
2319
2320 mod->state = MODULE_STATE_COMING;
2321
2322 /* Allow arches to frob section contents and sizes. */
2323 err = module_frob_arch_sections(hdr, sechdrs, secstrings, mod);
2324 if (err < 0)
2325 goto free_mod;
2326
2327 if (pcpuindex) {
2328 /* We have a special allocation for this section. */
2329 err = percpu_modalloc(mod, sechdrs[pcpuindex].sh_size,
2330 sechdrs[pcpuindex].sh_addralign);
2331 if (err)
2332 goto free_mod;
2333 sechdrs[pcpuindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2334 }
2335 /* Keep this around for failure path. */
2336 percpu = mod_percpu(mod);
2337
2338 /* Determine total sizes, and put offsets in sh_entsize. For now
2339 this is done generically; there doesn't appear to be any
2340 special cases for the architectures. */
2341 layout_sections(mod, hdr, sechdrs, secstrings);
2342 symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr,
2343 secstrings, &stroffs, strmap);
2344
2345 /* Do the allocs. */
2346 ptr = module_alloc_update_bounds(mod->core_size);
2347 /*
2348 * The pointer to this block is stored in the module structure
2349 * which is inside the block. Just mark it as not being a
2350 * leak.
2351 */
2352 kmemleak_not_leak(ptr);
2353 if (!ptr) {
2354 err = -ENOMEM;
2355 goto free_percpu;
2356 }
2357 memset(ptr, 0, mod->core_size);
2358 mod->module_core = ptr;
2359
2360 ptr = module_alloc_update_bounds(mod->init_size);
2361 /*
2362 * The pointer to this block is stored in the module structure
2363 * which is inside the block. This block doesn't need to be
2364 * scanned as it contains data and code that will be freed
2365 * after the module is initialized.
2366 */
2367 kmemleak_ignore(ptr);
2368 if (!ptr && mod->init_size) {
2369 err = -ENOMEM;
2370 goto free_core;
2371 }
2372 memset(ptr, 0, mod->init_size);
2373 mod->module_init = ptr;
2374
2375 /* Transfer each section which specifies SHF_ALLOC */
2376 DEBUGP("final section addresses:\n");
2377 for (i = 0; i < hdr->e_shnum; i++) {
2378 void *dest;
2379
2380 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2381 continue;
2382
2383 if (sechdrs[i].sh_entsize & INIT_OFFSET_MASK)
2384 dest = mod->module_init
2385 + (sechdrs[i].sh_entsize & ~INIT_OFFSET_MASK);
2386 else
2387 dest = mod->module_core + sechdrs[i].sh_entsize;
2388
2389 if (sechdrs[i].sh_type != SHT_NOBITS)
2390 memcpy(dest, (void *)sechdrs[i].sh_addr,
2391 sechdrs[i].sh_size);
2392 /* Update sh_addr to point to copy in image. */
2393 sechdrs[i].sh_addr = (unsigned long)dest;
2394 DEBUGP("\t0x%lx %s\n",
2395 sechdrs[i].sh_addr, secstrings + sechdrs[i].sh_name);
2396 }
2397 /* Module has been moved. */
2398 mod = (void *)sechdrs[modindex].sh_addr;
2399 kmemleak_load_module(mod, hdr, sechdrs, secstrings);
2400
2401 #if defined(CONFIG_MODULE_UNLOAD)
2402 mod->refptr = alloc_percpu(struct module_ref);
2403 if (!mod->refptr) {
2404 err = -ENOMEM;
2405 goto free_init;
2406 }
2407 #endif
2408 /* Now we've moved module, initialize linked lists, etc. */
2409 module_unload_init(mod);
2410
2411 /* Set up license info based on the info section */
2412 set_license(mod, get_modinfo(sechdrs, infoindex, "license"));
2413
2414 /*
2415 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2416 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2417 * using GPL-only symbols it needs.
2418 */
2419 if (strcmp(mod->name, "ndiswrapper") == 0)
2420 add_taint(TAINT_PROPRIETARY_MODULE);
2421
2422 /* driverloader was caught wrongly pretending to be under GPL */
2423 if (strcmp(mod->name, "driverloader") == 0)
2424 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2425
2426 /* Set up MODINFO_ATTR fields */
2427 setup_modinfo(mod, sechdrs, infoindex);
2428
2429 /* Fix up syms, so that st_value is a pointer to location. */
2430 err = simplify_symbols(sechdrs, symindex, strtab, versindex, pcpuindex,
2431 mod);
2432 if (err < 0)
2433 goto cleanup;
2434
2435 /* Now we've got everything in the final locations, we can
2436 * find optional sections. */
2437 find_module_sections(mod, hdr, sechdrs, secstrings);
2438
2439 #ifdef CONFIG_MODVERSIONS
2440 if ((mod->num_syms && !mod->crcs)
2441 || (mod->num_gpl_syms && !mod->gpl_crcs)
2442 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2443 #ifdef CONFIG_UNUSED_SYMBOLS
2444 || (mod->num_unused_syms && !mod->unused_crcs)
2445 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2446 #endif
2447 ) {
2448 err = try_to_force_load(mod,
2449 "no versions for exported symbols");
2450 if (err)
2451 goto cleanup;
2452 }
2453 #endif
2454
2455 /* Now do relocations. */
2456 for (i = 1; i < hdr->e_shnum; i++) {
2457 const char *strtab = (char *)sechdrs[strindex].sh_addr;
2458 unsigned int info = sechdrs[i].sh_info;
2459
2460 /* Not a valid relocation section? */
2461 if (info >= hdr->e_shnum)
2462 continue;
2463
2464 /* Don't bother with non-allocated sections */
2465 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
2466 continue;
2467
2468 if (sechdrs[i].sh_type == SHT_REL)
2469 err = apply_relocate(sechdrs, strtab, symindex, i,mod);
2470 else if (sechdrs[i].sh_type == SHT_RELA)
2471 err = apply_relocate_add(sechdrs, strtab, symindex, i,
2472 mod);
2473 if (err < 0)
2474 goto cleanup;
2475 }
2476
2477 /* Set up and sort exception table */
2478 mod->extable = section_objs(hdr, sechdrs, secstrings, "__ex_table",
2479 sizeof(*mod->extable), &mod->num_exentries);
2480 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2481
2482 /* Finally, copy percpu area over. */
2483 percpu_modcopy(mod, (void *)sechdrs[pcpuindex].sh_addr,
2484 sechdrs[pcpuindex].sh_size);
2485
2486 add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex,
2487 symoffs, stroffs, secstrings, strmap);
2488 kfree(strmap);
2489 strmap = NULL;
2490
2491 if (!mod->taints)
2492 debug = section_objs(hdr, sechdrs, secstrings, "__verbose",
2493 sizeof(*debug), &num_debug);
2494
2495 err = module_finalize(hdr, sechdrs, mod);
2496 if (err < 0)
2497 goto cleanup;
2498
2499 /* flush the icache in correct context */
2500 old_fs = get_fs();
2501 set_fs(KERNEL_DS);
2502
2503 /*
2504 * Flush the instruction cache, since we've played with text.
2505 * Do it before processing of module parameters, so the module
2506 * can provide parameter accessor functions of its own.
2507 */
2508 if (mod->module_init)
2509 flush_icache_range((unsigned long)mod->module_init,
2510 (unsigned long)mod->module_init
2511 + mod->init_size);
2512 flush_icache_range((unsigned long)mod->module_core,
2513 (unsigned long)mod->module_core + mod->core_size);
2514
2515 set_fs(old_fs);
2516
2517 mod->args = args;
2518 if (section_addr(hdr, sechdrs, secstrings, "__obsparm"))
2519 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2520 mod->name);
2521
2522 /* Now sew it into the lists so we can get lockdep and oops
2523 * info during argument parsing. Noone should access us, since
2524 * strong_try_module_get() will fail.
2525 * lockdep/oops can run asynchronous, so use the RCU list insertion
2526 * function to insert in a way safe to concurrent readers.
2527 * The mutex protects against concurrent writers.
2528 */
2529 mutex_lock(&module_mutex);
2530 if (find_module(mod->name)) {
2531 err = -EEXIST;
2532 goto unlock;
2533 }
2534
2535 if (debug)
2536 dynamic_debug_setup(debug, num_debug);
2537
2538 /* Find duplicate symbols */
2539 err = verify_export_symbols(mod);
2540 if (err < 0)
2541 goto ddebug;
2542
2543 list_add_rcu(&mod->list, &modules);
2544 mutex_unlock(&module_mutex);
2545
2546 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2547 if (err < 0)
2548 goto unlink;
2549
2550 err = mod_sysfs_setup(mod, mod->kp, mod->num_kp);
2551 if (err < 0)
2552 goto unlink;
2553
2554 add_sect_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2555 add_notes_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2556
2557 /* Get rid of temporary copy */
2558 vfree(hdr);
2559
2560 trace_module_load(mod);
2561
2562 /* Done! */
2563 return mod;
2564
2565 unlink:
2566 mutex_lock(&module_mutex);
2567 /* Unlink carefully: kallsyms could be walking list. */
2568 list_del_rcu(&mod->list);
2569 ddebug:
2570 dynamic_debug_remove(debug);
2571 unlock:
2572 mutex_unlock(&module_mutex);
2573 synchronize_sched();
2574 module_arch_cleanup(mod);
2575 cleanup:
2576 free_modinfo(mod);
2577 module_unload_free(mod);
2578 #if defined(CONFIG_MODULE_UNLOAD)
2579 free_percpu(mod->refptr);
2580 free_init:
2581 #endif
2582 module_free(mod, mod->module_init);
2583 free_core:
2584 module_free(mod, mod->module_core);
2585 /* mod will be freed with core. Don't access it beyond this line! */
2586 free_percpu:
2587 free_percpu(percpu);
2588 free_mod:
2589 kfree(args);
2590 kfree(strmap);
2591 free_hdr:
2592 vfree(hdr);
2593 return ERR_PTR(err);
2594
2595 truncated:
2596 printk(KERN_ERR "Module len %lu truncated\n", len);
2597 err = -ENOEXEC;
2598 goto free_hdr;
2599 }
2600
2601 /* Call module constructors. */
2602 static void do_mod_ctors(struct module *mod)
2603 {
2604 #ifdef CONFIG_CONSTRUCTORS
2605 unsigned long i;
2606
2607 for (i = 0; i < mod->num_ctors; i++)
2608 mod->ctors[i]();
2609 #endif
2610 }
2611
2612 /* This is where the real work happens */
2613 SYSCALL_DEFINE3(init_module, void __user *, umod,
2614 unsigned long, len, const char __user *, uargs)
2615 {
2616 struct module *mod;
2617 int ret = 0;
2618
2619 /* Must have permission */
2620 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2621 return -EPERM;
2622
2623 /* Do all the hard work */
2624 mod = load_module(umod, len, uargs);
2625 if (IS_ERR(mod))
2626 return PTR_ERR(mod);
2627
2628 blocking_notifier_call_chain(&module_notify_list,
2629 MODULE_STATE_COMING, mod);
2630
2631 do_mod_ctors(mod);
2632 /* Start the module */
2633 if (mod->init != NULL)
2634 ret = do_one_initcall(mod->init);
2635 if (ret < 0) {
2636 /* Init routine failed: abort. Try to protect us from
2637 buggy refcounters. */
2638 mod->state = MODULE_STATE_GOING;
2639 synchronize_sched();
2640 module_put(mod);
2641 blocking_notifier_call_chain(&module_notify_list,
2642 MODULE_STATE_GOING, mod);
2643 free_module(mod);
2644 wake_up(&module_wq);
2645 return ret;
2646 }
2647 if (ret > 0) {
2648 printk(KERN_WARNING
2649 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2650 "%s: loading module anyway...\n",
2651 __func__, mod->name, ret,
2652 __func__);
2653 dump_stack();
2654 }
2655
2656 /* Now it's a first class citizen! Wake up anyone waiting for it. */
2657 mod->state = MODULE_STATE_LIVE;
2658 wake_up(&module_wq);
2659 blocking_notifier_call_chain(&module_notify_list,
2660 MODULE_STATE_LIVE, mod);
2661
2662 /* We need to finish all async code before the module init sequence is done */
2663 async_synchronize_full();
2664
2665 mutex_lock(&module_mutex);
2666 /* Drop initial reference. */
2667 module_put(mod);
2668 trim_init_extable(mod);
2669 #ifdef CONFIG_KALLSYMS
2670 mod->num_symtab = mod->core_num_syms;
2671 mod->symtab = mod->core_symtab;
2672 mod->strtab = mod->core_strtab;
2673 #endif
2674 module_free(mod, mod->module_init);
2675 mod->module_init = NULL;
2676 mod->init_size = 0;
2677 mod->init_text_size = 0;
2678 mutex_unlock(&module_mutex);
2679
2680 return 0;
2681 }
2682
2683 static inline int within(unsigned long addr, void *start, unsigned long size)
2684 {
2685 return ((void *)addr >= start && (void *)addr < start + size);
2686 }
2687
2688 #ifdef CONFIG_KALLSYMS
2689 /*
2690 * This ignores the intensely annoying "mapping symbols" found
2691 * in ARM ELF files: $a, $t and $d.
2692 */
2693 static inline int is_arm_mapping_symbol(const char *str)
2694 {
2695 return str[0] == '$' && strchr("atd", str[1])
2696 && (str[2] == '\0' || str[2] == '.');
2697 }
2698
2699 static const char *get_ksymbol(struct module *mod,
2700 unsigned long addr,
2701 unsigned long *size,
2702 unsigned long *offset)
2703 {
2704 unsigned int i, best = 0;
2705 unsigned long nextval;
2706
2707 /* At worse, next value is at end of module */
2708 if (within_module_init(addr, mod))
2709 nextval = (unsigned long)mod->module_init+mod->init_text_size;
2710 else
2711 nextval = (unsigned long)mod->module_core+mod->core_text_size;
2712
2713 /* Scan for closest preceeding symbol, and next symbol. (ELF
2714 starts real symbols at 1). */
2715 for (i = 1; i < mod->num_symtab; i++) {
2716 if (mod->symtab[i].st_shndx == SHN_UNDEF)
2717 continue;
2718
2719 /* We ignore unnamed symbols: they're uninformative
2720 * and inserted at a whim. */
2721 if (mod->symtab[i].st_value <= addr
2722 && mod->symtab[i].st_value > mod->symtab[best].st_value
2723 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2724 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2725 best = i;
2726 if (mod->symtab[i].st_value > addr
2727 && mod->symtab[i].st_value < nextval
2728 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2729 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2730 nextval = mod->symtab[i].st_value;
2731 }
2732
2733 if (!best)
2734 return NULL;
2735
2736 if (size)
2737 *size = nextval - mod->symtab[best].st_value;
2738 if (offset)
2739 *offset = addr - mod->symtab[best].st_value;
2740 return mod->strtab + mod->symtab[best].st_name;
2741 }
2742
2743 /* For kallsyms to ask for address resolution. NULL means not found. Careful
2744 * not to lock to avoid deadlock on oopses, simply disable preemption. */
2745 const char *module_address_lookup(unsigned long addr,
2746 unsigned long *size,
2747 unsigned long *offset,
2748 char **modname,
2749 char *namebuf)
2750 {
2751 struct module *mod;
2752 const char *ret = NULL;
2753
2754 preempt_disable();
2755 list_for_each_entry_rcu(mod, &modules, list) {
2756 if (within_module_init(addr, mod) ||
2757 within_module_core(addr, mod)) {
2758 if (modname)
2759 *modname = mod->name;
2760 ret = get_ksymbol(mod, addr, size, offset);
2761 break;
2762 }
2763 }
2764 /* Make a copy in here where it's safe */
2765 if (ret) {
2766 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
2767 ret = namebuf;
2768 }
2769 preempt_enable();
2770 return ret;
2771 }
2772
2773 int lookup_module_symbol_name(unsigned long addr, char *symname)
2774 {
2775 struct module *mod;
2776
2777 preempt_disable();
2778 list_for_each_entry_rcu(mod, &modules, list) {
2779 if (within_module_init(addr, mod) ||
2780 within_module_core(addr, mod)) {
2781 const char *sym;
2782
2783 sym = get_ksymbol(mod, addr, NULL, NULL);
2784 if (!sym)
2785 goto out;
2786 strlcpy(symname, sym, KSYM_NAME_LEN);
2787 preempt_enable();
2788 return 0;
2789 }
2790 }
2791 out:
2792 preempt_enable();
2793 return -ERANGE;
2794 }
2795
2796 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
2797 unsigned long *offset, char *modname, char *name)
2798 {
2799 struct module *mod;
2800
2801 preempt_disable();
2802 list_for_each_entry_rcu(mod, &modules, list) {
2803 if (within_module_init(addr, mod) ||
2804 within_module_core(addr, mod)) {
2805 const char *sym;
2806
2807 sym = get_ksymbol(mod, addr, size, offset);
2808 if (!sym)
2809 goto out;
2810 if (modname)
2811 strlcpy(modname, mod->name, MODULE_NAME_LEN);
2812 if (name)
2813 strlcpy(name, sym, KSYM_NAME_LEN);
2814 preempt_enable();
2815 return 0;
2816 }
2817 }
2818 out:
2819 preempt_enable();
2820 return -ERANGE;
2821 }
2822
2823 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2824 char *name, char *module_name, int *exported)
2825 {
2826 struct module *mod;
2827
2828 preempt_disable();
2829 list_for_each_entry_rcu(mod, &modules, list) {
2830 if (symnum < mod->num_symtab) {
2831 *value = mod->symtab[symnum].st_value;
2832 *type = mod->symtab[symnum].st_info;
2833 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
2834 KSYM_NAME_LEN);
2835 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
2836 *exported = is_exported(name, *value, mod);
2837 preempt_enable();
2838 return 0;
2839 }
2840 symnum -= mod->num_symtab;
2841 }
2842 preempt_enable();
2843 return -ERANGE;
2844 }
2845
2846 static unsigned long mod_find_symname(struct module *mod, const char *name)
2847 {
2848 unsigned int i;
2849
2850 for (i = 0; i < mod->num_symtab; i++)
2851 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
2852 mod->symtab[i].st_info != 'U')
2853 return mod->symtab[i].st_value;
2854 return 0;
2855 }
2856
2857 /* Look for this name: can be of form module:name. */
2858 unsigned long module_kallsyms_lookup_name(const char *name)
2859 {
2860 struct module *mod;
2861 char *colon;
2862 unsigned long ret = 0;
2863
2864 /* Don't lock: we're in enough trouble already. */
2865 preempt_disable();
2866 if ((colon = strchr(name, ':')) != NULL) {
2867 *colon = '\0';
2868 if ((mod = find_module(name)) != NULL)
2869 ret = mod_find_symname(mod, colon+1);
2870 *colon = ':';
2871 } else {
2872 list_for_each_entry_rcu(mod, &modules, list)
2873 if ((ret = mod_find_symname(mod, name)) != 0)
2874 break;
2875 }
2876 preempt_enable();
2877 return ret;
2878 }
2879
2880 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
2881 struct module *, unsigned long),
2882 void *data)
2883 {
2884 struct module *mod;
2885 unsigned int i;
2886 int ret;
2887
2888 list_for_each_entry(mod, &modules, list) {
2889 for (i = 0; i < mod->num_symtab; i++) {
2890 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
2891 mod, mod->symtab[i].st_value);
2892 if (ret != 0)
2893 return ret;
2894 }
2895 }
2896 return 0;
2897 }
2898 #endif /* CONFIG_KALLSYMS */
2899
2900 static char *module_flags(struct module *mod, char *buf)
2901 {
2902 int bx = 0;
2903
2904 if (mod->taints ||
2905 mod->state == MODULE_STATE_GOING ||
2906 mod->state == MODULE_STATE_COMING) {
2907 buf[bx++] = '(';
2908 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
2909 buf[bx++] = 'P';
2910 if (mod->taints & (1 << TAINT_FORCED_MODULE))
2911 buf[bx++] = 'F';
2912 if (mod->taints & (1 << TAINT_CRAP))
2913 buf[bx++] = 'C';
2914 /*
2915 * TAINT_FORCED_RMMOD: could be added.
2916 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
2917 * apply to modules.
2918 */
2919
2920 /* Show a - for module-is-being-unloaded */
2921 if (mod->state == MODULE_STATE_GOING)
2922 buf[bx++] = '-';
2923 /* Show a + for module-is-being-loaded */
2924 if (mod->state == MODULE_STATE_COMING)
2925 buf[bx++] = '+';
2926 buf[bx++] = ')';
2927 }
2928 buf[bx] = '\0';
2929
2930 return buf;
2931 }
2932
2933 #ifdef CONFIG_PROC_FS
2934 /* Called by the /proc file system to return a list of modules. */
2935 static void *m_start(struct seq_file *m, loff_t *pos)
2936 {
2937 mutex_lock(&module_mutex);
2938 return seq_list_start(&modules, *pos);
2939 }
2940
2941 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
2942 {
2943 return seq_list_next(p, &modules, pos);
2944 }
2945
2946 static void m_stop(struct seq_file *m, void *p)
2947 {
2948 mutex_unlock(&module_mutex);
2949 }
2950
2951 static int m_show(struct seq_file *m, void *p)
2952 {
2953 struct module *mod = list_entry(p, struct module, list);
2954 char buf[8];
2955
2956 seq_printf(m, "%s %u",
2957 mod->name, mod->init_size + mod->core_size);
2958 print_unload_info(m, mod);
2959
2960 /* Informative for users. */
2961 seq_printf(m, " %s",
2962 mod->state == MODULE_STATE_GOING ? "Unloading":
2963 mod->state == MODULE_STATE_COMING ? "Loading":
2964 "Live");
2965 /* Used by oprofile and other similar tools. */
2966 seq_printf(m, " 0x%p", mod->module_core);
2967
2968 /* Taints info */
2969 if (mod->taints)
2970 seq_printf(m, " %s", module_flags(mod, buf));
2971
2972 seq_printf(m, "\n");
2973 return 0;
2974 }
2975
2976 /* Format: modulename size refcount deps address
2977
2978 Where refcount is a number or -, and deps is a comma-separated list
2979 of depends or -.
2980 */
2981 static const struct seq_operations modules_op = {
2982 .start = m_start,
2983 .next = m_next,
2984 .stop = m_stop,
2985 .show = m_show
2986 };
2987
2988 static int modules_open(struct inode *inode, struct file *file)
2989 {
2990 return seq_open(file, &modules_op);
2991 }
2992
2993 static const struct file_operations proc_modules_operations = {
2994 .open = modules_open,
2995 .read = seq_read,
2996 .llseek = seq_lseek,
2997 .release = seq_release,
2998 };
2999
3000 static int __init proc_modules_init(void)
3001 {
3002 proc_create("modules", 0, NULL, &proc_modules_operations);
3003 return 0;
3004 }
3005 module_init(proc_modules_init);
3006 #endif
3007
3008 /* Given an address, look for it in the module exception tables. */
3009 const struct exception_table_entry *search_module_extables(unsigned long addr)
3010 {
3011 const struct exception_table_entry *e = NULL;
3012 struct module *mod;
3013
3014 preempt_disable();
3015 list_for_each_entry_rcu(mod, &modules, list) {
3016 if (mod->num_exentries == 0)
3017 continue;
3018
3019 e = search_extable(mod->extable,
3020 mod->extable + mod->num_exentries - 1,
3021 addr);
3022 if (e)
3023 break;
3024 }
3025 preempt_enable();
3026
3027 /* Now, if we found one, we are running inside it now, hence
3028 we cannot unload the module, hence no refcnt needed. */
3029 return e;
3030 }
3031
3032 /*
3033 * is_module_address - is this address inside a module?
3034 * @addr: the address to check.
3035 *
3036 * See is_module_text_address() if you simply want to see if the address
3037 * is code (not data).
3038 */
3039 bool is_module_address(unsigned long addr)
3040 {
3041 bool ret;
3042
3043 preempt_disable();
3044 ret = __module_address(addr) != NULL;
3045 preempt_enable();
3046
3047 return ret;
3048 }
3049
3050 /*
3051 * __module_address - get the module which contains an address.
3052 * @addr: the address.
3053 *
3054 * Must be called with preempt disabled or module mutex held so that
3055 * module doesn't get freed during this.
3056 */
3057 struct module *__module_address(unsigned long addr)
3058 {
3059 struct module *mod;
3060
3061 if (addr < module_addr_min || addr > module_addr_max)
3062 return NULL;
3063
3064 list_for_each_entry_rcu(mod, &modules, list)
3065 if (within_module_core(addr, mod)
3066 || within_module_init(addr, mod))
3067 return mod;
3068 return NULL;
3069 }
3070 EXPORT_SYMBOL_GPL(__module_address);
3071
3072 /*
3073 * is_module_text_address - is this address inside module code?
3074 * @addr: the address to check.
3075 *
3076 * See is_module_address() if you simply want to see if the address is
3077 * anywhere in a module. See kernel_text_address() for testing if an
3078 * address corresponds to kernel or module code.
3079 */
3080 bool is_module_text_address(unsigned long addr)
3081 {
3082 bool ret;
3083
3084 preempt_disable();
3085 ret = __module_text_address(addr) != NULL;
3086 preempt_enable();
3087
3088 return ret;
3089 }
3090
3091 /*
3092 * __module_text_address - get the module whose code contains an address.
3093 * @addr: the address.
3094 *
3095 * Must be called with preempt disabled or module mutex held so that
3096 * module doesn't get freed during this.
3097 */
3098 struct module *__module_text_address(unsigned long addr)
3099 {
3100 struct module *mod = __module_address(addr);
3101 if (mod) {
3102 /* Make sure it's within the text section. */
3103 if (!within(addr, mod->module_init, mod->init_text_size)
3104 && !within(addr, mod->module_core, mod->core_text_size))
3105 mod = NULL;
3106 }
3107 return mod;
3108 }
3109 EXPORT_SYMBOL_GPL(__module_text_address);
3110
3111 /* Don't grab lock, we're oopsing. */
3112 void print_modules(void)
3113 {
3114 struct module *mod;
3115 char buf[8];
3116
3117 printk(KERN_DEFAULT "Modules linked in:");
3118 /* Most callers should already have preempt disabled, but make sure */
3119 preempt_disable();
3120 list_for_each_entry_rcu(mod, &modules, list)
3121 printk(" %s%s", mod->name, module_flags(mod, buf));
3122 preempt_enable();
3123 if (last_unloaded_module[0])
3124 printk(" [last unloaded: %s]", last_unloaded_module);
3125 printk("\n");
3126 }
3127
3128 #ifdef CONFIG_MODVERSIONS
3129 /* Generate the signature for all relevant module structures here.
3130 * If these change, we don't want to try to parse the module. */
3131 void module_layout(struct module *mod,
3132 struct modversion_info *ver,
3133 struct kernel_param *kp,
3134 struct kernel_symbol *ks,
3135 struct tracepoint *tp)
3136 {
3137 }
3138 EXPORT_SYMBOL(module_layout);
3139 #endif
3140
3141 #ifdef CONFIG_TRACEPOINTS
3142 void module_update_tracepoints(void)
3143 {
3144 struct module *mod;
3145
3146 mutex_lock(&module_mutex);
3147 list_for_each_entry(mod, &modules, list)
3148 if (!mod->taints)
3149 tracepoint_update_probe_range(mod->tracepoints,
3150 mod->tracepoints + mod->num_tracepoints);
3151 mutex_unlock(&module_mutex);
3152 }
3153
3154 /*
3155 * Returns 0 if current not found.
3156 * Returns 1 if current found.
3157 */
3158 int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3159 {
3160 struct module *iter_mod;
3161 int found = 0;
3162
3163 mutex_lock(&module_mutex);
3164 list_for_each_entry(iter_mod, &modules, list) {
3165 if (!iter_mod->taints) {
3166 /*
3167 * Sorted module list
3168 */
3169 if (iter_mod < iter->module)
3170 continue;
3171 else if (iter_mod > iter->module)
3172 iter->tracepoint = NULL;
3173 found = tracepoint_get_iter_range(&iter->tracepoint,
3174 iter_mod->tracepoints,
3175 iter_mod->tracepoints
3176 + iter_mod->num_tracepoints);
3177 if (found) {
3178 iter->module = iter_mod;
3179 break;
3180 }
3181 }
3182 }
3183 mutex_unlock(&module_mutex);
3184 return found;
3185 }
3186 #endif