]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/module.c
kernel: module: Use struct_size() helper
[mirror_ubuntu-hirsute-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 /* Work queue for freeing init sections in success case */
102 static struct work_struct init_free_wq;
103 static struct llist_head init_free_list;
104
105 #ifdef CONFIG_MODULES_TREE_LOOKUP
106
107 /*
108 * Use a latched RB-tree for __module_address(); this allows us to use
109 * RCU-sched lookups of the address from any context.
110 *
111 * This is conditional on PERF_EVENTS || TRACING because those can really hit
112 * __module_address() hard by doing a lot of stack unwinding; potentially from
113 * NMI context.
114 */
115
116 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
117 {
118 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119
120 return (unsigned long)layout->base;
121 }
122
123 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
124 {
125 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
126
127 return (unsigned long)layout->size;
128 }
129
130 static __always_inline bool
131 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
132 {
133 return __mod_tree_val(a) < __mod_tree_val(b);
134 }
135
136 static __always_inline int
137 mod_tree_comp(void *key, struct latch_tree_node *n)
138 {
139 unsigned long val = (unsigned long)key;
140 unsigned long start, end;
141
142 start = __mod_tree_val(n);
143 if (val < start)
144 return -1;
145
146 end = start + __mod_tree_size(n);
147 if (val >= end)
148 return 1;
149
150 return 0;
151 }
152
153 static const struct latch_tree_ops mod_tree_ops = {
154 .less = mod_tree_less,
155 .comp = mod_tree_comp,
156 };
157
158 static struct mod_tree_root {
159 struct latch_tree_root root;
160 unsigned long addr_min;
161 unsigned long addr_max;
162 } mod_tree __cacheline_aligned = {
163 .addr_min = -1UL,
164 };
165
166 #define module_addr_min mod_tree.addr_min
167 #define module_addr_max mod_tree.addr_max
168
169 static noinline void __mod_tree_insert(struct mod_tree_node *node)
170 {
171 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
172 }
173
174 static void __mod_tree_remove(struct mod_tree_node *node)
175 {
176 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
177 }
178
179 /*
180 * These modifications: insert, remove_init and remove; are serialized by the
181 * module_mutex.
182 */
183 static void mod_tree_insert(struct module *mod)
184 {
185 mod->core_layout.mtn.mod = mod;
186 mod->init_layout.mtn.mod = mod;
187
188 __mod_tree_insert(&mod->core_layout.mtn);
189 if (mod->init_layout.size)
190 __mod_tree_insert(&mod->init_layout.mtn);
191 }
192
193 static void mod_tree_remove_init(struct module *mod)
194 {
195 if (mod->init_layout.size)
196 __mod_tree_remove(&mod->init_layout.mtn);
197 }
198
199 static void mod_tree_remove(struct module *mod)
200 {
201 __mod_tree_remove(&mod->core_layout.mtn);
202 mod_tree_remove_init(mod);
203 }
204
205 static struct module *mod_find(unsigned long addr)
206 {
207 struct latch_tree_node *ltn;
208
209 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
210 if (!ltn)
211 return NULL;
212
213 return container_of(ltn, struct mod_tree_node, node)->mod;
214 }
215
216 #else /* MODULES_TREE_LOOKUP */
217
218 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
219
220 static void mod_tree_insert(struct module *mod) { }
221 static void mod_tree_remove_init(struct module *mod) { }
222 static void mod_tree_remove(struct module *mod) { }
223
224 static struct module *mod_find(unsigned long addr)
225 {
226 struct module *mod;
227
228 list_for_each_entry_rcu(mod, &modules, list) {
229 if (within_module(addr, mod))
230 return mod;
231 }
232
233 return NULL;
234 }
235
236 #endif /* MODULES_TREE_LOOKUP */
237
238 /*
239 * Bounds of module text, for speeding up __module_address.
240 * Protected by module_mutex.
241 */
242 static void __mod_update_bounds(void *base, unsigned int size)
243 {
244 unsigned long min = (unsigned long)base;
245 unsigned long max = min + size;
246
247 if (min < module_addr_min)
248 module_addr_min = min;
249 if (max > module_addr_max)
250 module_addr_max = max;
251 }
252
253 static void mod_update_bounds(struct module *mod)
254 {
255 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
256 if (mod->init_layout.size)
257 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
258 }
259
260 #ifdef CONFIG_KGDB_KDB
261 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
262 #endif /* CONFIG_KGDB_KDB */
263
264 static void module_assert_mutex(void)
265 {
266 lockdep_assert_held(&module_mutex);
267 }
268
269 static void module_assert_mutex_or_preempt(void)
270 {
271 #ifdef CONFIG_LOCKDEP
272 if (unlikely(!debug_locks))
273 return;
274
275 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
276 !lockdep_is_held(&module_mutex));
277 #endif
278 }
279
280 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
281 module_param(sig_enforce, bool_enable_only, 0644);
282
283 /*
284 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
285 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
286 */
287 bool is_module_sig_enforced(void)
288 {
289 return sig_enforce;
290 }
291 EXPORT_SYMBOL(is_module_sig_enforced);
292
293 void set_module_sig_enforced(void)
294 {
295 sig_enforce = true;
296 }
297
298 /* Block module loading/unloading? */
299 int modules_disabled = 0;
300 core_param(nomodule, modules_disabled, bint, 0);
301
302 /* Waiting for a module to finish initializing? */
303 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
304
305 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
306
307 int register_module_notifier(struct notifier_block *nb)
308 {
309 return blocking_notifier_chain_register(&module_notify_list, nb);
310 }
311 EXPORT_SYMBOL(register_module_notifier);
312
313 int unregister_module_notifier(struct notifier_block *nb)
314 {
315 return blocking_notifier_chain_unregister(&module_notify_list, nb);
316 }
317 EXPORT_SYMBOL(unregister_module_notifier);
318
319 /*
320 * We require a truly strong try_module_get(): 0 means success.
321 * Otherwise an error is returned due to ongoing or failed
322 * initialization etc.
323 */
324 static inline int strong_try_module_get(struct module *mod)
325 {
326 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
327 if (mod && mod->state == MODULE_STATE_COMING)
328 return -EBUSY;
329 if (try_module_get(mod))
330 return 0;
331 else
332 return -ENOENT;
333 }
334
335 static inline void add_taint_module(struct module *mod, unsigned flag,
336 enum lockdep_ok lockdep_ok)
337 {
338 add_taint(flag, lockdep_ok);
339 set_bit(flag, &mod->taints);
340 }
341
342 /*
343 * A thread that wants to hold a reference to a module only while it
344 * is running can call this to safely exit. nfsd and lockd use this.
345 */
346 void __noreturn __module_put_and_exit(struct module *mod, long code)
347 {
348 module_put(mod);
349 do_exit(code);
350 }
351 EXPORT_SYMBOL(__module_put_and_exit);
352
353 /* Find a module section: 0 means not found. */
354 static unsigned int find_sec(const struct load_info *info, const char *name)
355 {
356 unsigned int i;
357
358 for (i = 1; i < info->hdr->e_shnum; i++) {
359 Elf_Shdr *shdr = &info->sechdrs[i];
360 /* Alloc bit cleared means "ignore it." */
361 if ((shdr->sh_flags & SHF_ALLOC)
362 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
363 return i;
364 }
365 return 0;
366 }
367
368 /* Find a module section, or NULL. */
369 static void *section_addr(const struct load_info *info, const char *name)
370 {
371 /* Section 0 has sh_addr 0. */
372 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
373 }
374
375 /* Find a module section, or NULL. Fill in number of "objects" in section. */
376 static void *section_objs(const struct load_info *info,
377 const char *name,
378 size_t object_size,
379 unsigned int *num)
380 {
381 unsigned int sec = find_sec(info, name);
382
383 /* Section 0 has sh_addr 0 and sh_size 0. */
384 *num = info->sechdrs[sec].sh_size / object_size;
385 return (void *)info->sechdrs[sec].sh_addr;
386 }
387
388 /* Provided by the linker */
389 extern const struct kernel_symbol __start___ksymtab[];
390 extern const struct kernel_symbol __stop___ksymtab[];
391 extern const struct kernel_symbol __start___ksymtab_gpl[];
392 extern const struct kernel_symbol __stop___ksymtab_gpl[];
393 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
394 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
395 extern const s32 __start___kcrctab[];
396 extern const s32 __start___kcrctab_gpl[];
397 extern const s32 __start___kcrctab_gpl_future[];
398 #ifdef CONFIG_UNUSED_SYMBOLS
399 extern const struct kernel_symbol __start___ksymtab_unused[];
400 extern const struct kernel_symbol __stop___ksymtab_unused[];
401 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
402 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
403 extern const s32 __start___kcrctab_unused[];
404 extern const s32 __start___kcrctab_unused_gpl[];
405 #endif
406
407 #ifndef CONFIG_MODVERSIONS
408 #define symversion(base, idx) NULL
409 #else
410 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
411 #endif
412
413 static bool each_symbol_in_section(const struct symsearch *arr,
414 unsigned int arrsize,
415 struct module *owner,
416 bool (*fn)(const struct symsearch *syms,
417 struct module *owner,
418 void *data),
419 void *data)
420 {
421 unsigned int j;
422
423 for (j = 0; j < arrsize; j++) {
424 if (fn(&arr[j], owner, data))
425 return true;
426 }
427
428 return false;
429 }
430
431 /* Returns true as soon as fn returns true, otherwise false. */
432 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
433 struct module *owner,
434 void *data),
435 void *data)
436 {
437 struct module *mod;
438 static const struct symsearch arr[] = {
439 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
440 NOT_GPL_ONLY, false },
441 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
442 __start___kcrctab_gpl,
443 GPL_ONLY, false },
444 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
445 __start___kcrctab_gpl_future,
446 WILL_BE_GPL_ONLY, false },
447 #ifdef CONFIG_UNUSED_SYMBOLS
448 { __start___ksymtab_unused, __stop___ksymtab_unused,
449 __start___kcrctab_unused,
450 NOT_GPL_ONLY, true },
451 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
452 __start___kcrctab_unused_gpl,
453 GPL_ONLY, true },
454 #endif
455 };
456
457 module_assert_mutex_or_preempt();
458
459 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
460 return true;
461
462 list_for_each_entry_rcu(mod, &modules, list) {
463 struct symsearch arr[] = {
464 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
465 NOT_GPL_ONLY, false },
466 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
467 mod->gpl_crcs,
468 GPL_ONLY, false },
469 { mod->gpl_future_syms,
470 mod->gpl_future_syms + mod->num_gpl_future_syms,
471 mod->gpl_future_crcs,
472 WILL_BE_GPL_ONLY, false },
473 #ifdef CONFIG_UNUSED_SYMBOLS
474 { mod->unused_syms,
475 mod->unused_syms + mod->num_unused_syms,
476 mod->unused_crcs,
477 NOT_GPL_ONLY, true },
478 { mod->unused_gpl_syms,
479 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
480 mod->unused_gpl_crcs,
481 GPL_ONLY, true },
482 #endif
483 };
484
485 if (mod->state == MODULE_STATE_UNFORMED)
486 continue;
487
488 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
489 return true;
490 }
491 return false;
492 }
493 EXPORT_SYMBOL_GPL(each_symbol_section);
494
495 struct find_symbol_arg {
496 /* Input */
497 const char *name;
498 bool gplok;
499 bool warn;
500
501 /* Output */
502 struct module *owner;
503 const s32 *crc;
504 const struct kernel_symbol *sym;
505 };
506
507 static bool check_exported_symbol(const struct symsearch *syms,
508 struct module *owner,
509 unsigned int symnum, void *data)
510 {
511 struct find_symbol_arg *fsa = data;
512
513 if (!fsa->gplok) {
514 if (syms->licence == GPL_ONLY)
515 return false;
516 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
517 pr_warn("Symbol %s is being used by a non-GPL module, "
518 "which will not be allowed in the future\n",
519 fsa->name);
520 }
521 }
522
523 #ifdef CONFIG_UNUSED_SYMBOLS
524 if (syms->unused && fsa->warn) {
525 pr_warn("Symbol %s is marked as UNUSED, however this module is "
526 "using it.\n", fsa->name);
527 pr_warn("This symbol will go away in the future.\n");
528 pr_warn("Please evaluate if this is the right api to use and "
529 "if it really is, submit a report to the linux kernel "
530 "mailing list together with submitting your code for "
531 "inclusion.\n");
532 }
533 #endif
534
535 fsa->owner = owner;
536 fsa->crc = symversion(syms->crcs, symnum);
537 fsa->sym = &syms->start[symnum];
538 return true;
539 }
540
541 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
542 {
543 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
544 return (unsigned long)offset_to_ptr(&sym->value_offset);
545 #else
546 return sym->value;
547 #endif
548 }
549
550 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
551 {
552 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
553 return offset_to_ptr(&sym->name_offset);
554 #else
555 return sym->name;
556 #endif
557 }
558
559 static int cmp_name(const void *va, const void *vb)
560 {
561 const char *a;
562 const struct kernel_symbol *b;
563 a = va; b = vb;
564 return strcmp(a, kernel_symbol_name(b));
565 }
566
567 static bool find_exported_symbol_in_section(const struct symsearch *syms,
568 struct module *owner,
569 void *data)
570 {
571 struct find_symbol_arg *fsa = data;
572 struct kernel_symbol *sym;
573
574 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
575 sizeof(struct kernel_symbol), cmp_name);
576
577 if (sym != NULL && check_exported_symbol(syms, owner,
578 sym - syms->start, data))
579 return true;
580
581 return false;
582 }
583
584 /* Find an exported symbol and return it, along with, (optional) crc and
585 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
586 const struct kernel_symbol *find_symbol(const char *name,
587 struct module **owner,
588 const s32 **crc,
589 bool gplok,
590 bool warn)
591 {
592 struct find_symbol_arg fsa;
593
594 fsa.name = name;
595 fsa.gplok = gplok;
596 fsa.warn = warn;
597
598 if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
599 if (owner)
600 *owner = fsa.owner;
601 if (crc)
602 *crc = fsa.crc;
603 return fsa.sym;
604 }
605
606 pr_debug("Failed to find symbol %s\n", name);
607 return NULL;
608 }
609 EXPORT_SYMBOL_GPL(find_symbol);
610
611 /*
612 * Search for module by name: must hold module_mutex (or preempt disabled
613 * for read-only access).
614 */
615 static struct module *find_module_all(const char *name, size_t len,
616 bool even_unformed)
617 {
618 struct module *mod;
619
620 module_assert_mutex_or_preempt();
621
622 list_for_each_entry_rcu(mod, &modules, list) {
623 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
624 continue;
625 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
626 return mod;
627 }
628 return NULL;
629 }
630
631 struct module *find_module(const char *name)
632 {
633 module_assert_mutex();
634 return find_module_all(name, strlen(name), false);
635 }
636 EXPORT_SYMBOL_GPL(find_module);
637
638 #ifdef CONFIG_SMP
639
640 static inline void __percpu *mod_percpu(struct module *mod)
641 {
642 return mod->percpu;
643 }
644
645 static int percpu_modalloc(struct module *mod, struct load_info *info)
646 {
647 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
648 unsigned long align = pcpusec->sh_addralign;
649
650 if (!pcpusec->sh_size)
651 return 0;
652
653 if (align > PAGE_SIZE) {
654 pr_warn("%s: per-cpu alignment %li > %li\n",
655 mod->name, align, PAGE_SIZE);
656 align = PAGE_SIZE;
657 }
658
659 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
660 if (!mod->percpu) {
661 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
662 mod->name, (unsigned long)pcpusec->sh_size);
663 return -ENOMEM;
664 }
665 mod->percpu_size = pcpusec->sh_size;
666 return 0;
667 }
668
669 static void percpu_modfree(struct module *mod)
670 {
671 free_percpu(mod->percpu);
672 }
673
674 static unsigned int find_pcpusec(struct load_info *info)
675 {
676 return find_sec(info, ".data..percpu");
677 }
678
679 static void percpu_modcopy(struct module *mod,
680 const void *from, unsigned long size)
681 {
682 int cpu;
683
684 for_each_possible_cpu(cpu)
685 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
686 }
687
688 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
689 {
690 struct module *mod;
691 unsigned int cpu;
692
693 preempt_disable();
694
695 list_for_each_entry_rcu(mod, &modules, list) {
696 if (mod->state == MODULE_STATE_UNFORMED)
697 continue;
698 if (!mod->percpu_size)
699 continue;
700 for_each_possible_cpu(cpu) {
701 void *start = per_cpu_ptr(mod->percpu, cpu);
702 void *va = (void *)addr;
703
704 if (va >= start && va < start + mod->percpu_size) {
705 if (can_addr) {
706 *can_addr = (unsigned long) (va - start);
707 *can_addr += (unsigned long)
708 per_cpu_ptr(mod->percpu,
709 get_boot_cpu_id());
710 }
711 preempt_enable();
712 return true;
713 }
714 }
715 }
716
717 preempt_enable();
718 return false;
719 }
720
721 /**
722 * is_module_percpu_address - test whether address is from module static percpu
723 * @addr: address to test
724 *
725 * Test whether @addr belongs to module static percpu area.
726 *
727 * RETURNS:
728 * %true if @addr is from module static percpu area
729 */
730 bool is_module_percpu_address(unsigned long addr)
731 {
732 return __is_module_percpu_address(addr, NULL);
733 }
734
735 #else /* ... !CONFIG_SMP */
736
737 static inline void __percpu *mod_percpu(struct module *mod)
738 {
739 return NULL;
740 }
741 static int percpu_modalloc(struct module *mod, struct load_info *info)
742 {
743 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
744 if (info->sechdrs[info->index.pcpu].sh_size != 0)
745 return -ENOMEM;
746 return 0;
747 }
748 static inline void percpu_modfree(struct module *mod)
749 {
750 }
751 static unsigned int find_pcpusec(struct load_info *info)
752 {
753 return 0;
754 }
755 static inline void percpu_modcopy(struct module *mod,
756 const void *from, unsigned long size)
757 {
758 /* pcpusec should be 0, and size of that section should be 0. */
759 BUG_ON(size != 0);
760 }
761 bool is_module_percpu_address(unsigned long addr)
762 {
763 return false;
764 }
765
766 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
767 {
768 return false;
769 }
770
771 #endif /* CONFIG_SMP */
772
773 #define MODINFO_ATTR(field) \
774 static void setup_modinfo_##field(struct module *mod, const char *s) \
775 { \
776 mod->field = kstrdup(s, GFP_KERNEL); \
777 } \
778 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
779 struct module_kobject *mk, char *buffer) \
780 { \
781 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
782 } \
783 static int modinfo_##field##_exists(struct module *mod) \
784 { \
785 return mod->field != NULL; \
786 } \
787 static void free_modinfo_##field(struct module *mod) \
788 { \
789 kfree(mod->field); \
790 mod->field = NULL; \
791 } \
792 static struct module_attribute modinfo_##field = { \
793 .attr = { .name = __stringify(field), .mode = 0444 }, \
794 .show = show_modinfo_##field, \
795 .setup = setup_modinfo_##field, \
796 .test = modinfo_##field##_exists, \
797 .free = free_modinfo_##field, \
798 };
799
800 MODINFO_ATTR(version);
801 MODINFO_ATTR(srcversion);
802
803 static char last_unloaded_module[MODULE_NAME_LEN+1];
804
805 #ifdef CONFIG_MODULE_UNLOAD
806
807 EXPORT_TRACEPOINT_SYMBOL(module_get);
808
809 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
810 #define MODULE_REF_BASE 1
811
812 /* Init the unload section of the module. */
813 static int module_unload_init(struct module *mod)
814 {
815 /*
816 * Initialize reference counter to MODULE_REF_BASE.
817 * refcnt == 0 means module is going.
818 */
819 atomic_set(&mod->refcnt, MODULE_REF_BASE);
820
821 INIT_LIST_HEAD(&mod->source_list);
822 INIT_LIST_HEAD(&mod->target_list);
823
824 /* Hold reference count during initialization. */
825 atomic_inc(&mod->refcnt);
826
827 return 0;
828 }
829
830 /* Does a already use b? */
831 static int already_uses(struct module *a, struct module *b)
832 {
833 struct module_use *use;
834
835 list_for_each_entry(use, &b->source_list, source_list) {
836 if (use->source == a) {
837 pr_debug("%s uses %s!\n", a->name, b->name);
838 return 1;
839 }
840 }
841 pr_debug("%s does not use %s!\n", a->name, b->name);
842 return 0;
843 }
844
845 /*
846 * Module a uses b
847 * - we add 'a' as a "source", 'b' as a "target" of module use
848 * - the module_use is added to the list of 'b' sources (so
849 * 'b' can walk the list to see who sourced them), and of 'a'
850 * targets (so 'a' can see what modules it targets).
851 */
852 static int add_module_usage(struct module *a, struct module *b)
853 {
854 struct module_use *use;
855
856 pr_debug("Allocating new usage for %s.\n", a->name);
857 use = kmalloc(sizeof(*use), GFP_ATOMIC);
858 if (!use)
859 return -ENOMEM;
860
861 use->source = a;
862 use->target = b;
863 list_add(&use->source_list, &b->source_list);
864 list_add(&use->target_list, &a->target_list);
865 return 0;
866 }
867
868 /* Module a uses b: caller needs module_mutex() */
869 int ref_module(struct module *a, struct module *b)
870 {
871 int err;
872
873 if (b == NULL || already_uses(a, b))
874 return 0;
875
876 /* If module isn't available, we fail. */
877 err = strong_try_module_get(b);
878 if (err)
879 return err;
880
881 err = add_module_usage(a, b);
882 if (err) {
883 module_put(b);
884 return err;
885 }
886 return 0;
887 }
888 EXPORT_SYMBOL_GPL(ref_module);
889
890 /* Clear the unload stuff of the module. */
891 static void module_unload_free(struct module *mod)
892 {
893 struct module_use *use, *tmp;
894
895 mutex_lock(&module_mutex);
896 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
897 struct module *i = use->target;
898 pr_debug("%s unusing %s\n", mod->name, i->name);
899 module_put(i);
900 list_del(&use->source_list);
901 list_del(&use->target_list);
902 kfree(use);
903 }
904 mutex_unlock(&module_mutex);
905 }
906
907 #ifdef CONFIG_MODULE_FORCE_UNLOAD
908 static inline int try_force_unload(unsigned int flags)
909 {
910 int ret = (flags & O_TRUNC);
911 if (ret)
912 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
913 return ret;
914 }
915 #else
916 static inline int try_force_unload(unsigned int flags)
917 {
918 return 0;
919 }
920 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
921
922 /* Try to release refcount of module, 0 means success. */
923 static int try_release_module_ref(struct module *mod)
924 {
925 int ret;
926
927 /* Try to decrement refcnt which we set at loading */
928 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
929 BUG_ON(ret < 0);
930 if (ret)
931 /* Someone can put this right now, recover with checking */
932 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
933
934 return ret;
935 }
936
937 static int try_stop_module(struct module *mod, int flags, int *forced)
938 {
939 /* If it's not unused, quit unless we're forcing. */
940 if (try_release_module_ref(mod) != 0) {
941 *forced = try_force_unload(flags);
942 if (!(*forced))
943 return -EWOULDBLOCK;
944 }
945
946 /* Mark it as dying. */
947 mod->state = MODULE_STATE_GOING;
948
949 return 0;
950 }
951
952 /**
953 * module_refcount - return the refcount or -1 if unloading
954 *
955 * @mod: the module we're checking
956 *
957 * Returns:
958 * -1 if the module is in the process of unloading
959 * otherwise the number of references in the kernel to the module
960 */
961 int module_refcount(struct module *mod)
962 {
963 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
964 }
965 EXPORT_SYMBOL(module_refcount);
966
967 /* This exists whether we can unload or not */
968 static void free_module(struct module *mod);
969
970 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
971 unsigned int, flags)
972 {
973 struct module *mod;
974 char name[MODULE_NAME_LEN];
975 int ret, forced = 0;
976
977 if (!capable(CAP_SYS_MODULE) || modules_disabled)
978 return -EPERM;
979
980 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
981 return -EFAULT;
982 name[MODULE_NAME_LEN-1] = '\0';
983
984 audit_log_kern_module(name);
985
986 if (mutex_lock_interruptible(&module_mutex) != 0)
987 return -EINTR;
988
989 mod = find_module(name);
990 if (!mod) {
991 ret = -ENOENT;
992 goto out;
993 }
994
995 if (!list_empty(&mod->source_list)) {
996 /* Other modules depend on us: get rid of them first. */
997 ret = -EWOULDBLOCK;
998 goto out;
999 }
1000
1001 /* Doing init or already dying? */
1002 if (mod->state != MODULE_STATE_LIVE) {
1003 /* FIXME: if (force), slam module count damn the torpedoes */
1004 pr_debug("%s already dying\n", mod->name);
1005 ret = -EBUSY;
1006 goto out;
1007 }
1008
1009 /* If it has an init func, it must have an exit func to unload */
1010 if (mod->init && !mod->exit) {
1011 forced = try_force_unload(flags);
1012 if (!forced) {
1013 /* This module can't be removed */
1014 ret = -EBUSY;
1015 goto out;
1016 }
1017 }
1018
1019 /* Stop the machine so refcounts can't move and disable module. */
1020 ret = try_stop_module(mod, flags, &forced);
1021 if (ret != 0)
1022 goto out;
1023
1024 mutex_unlock(&module_mutex);
1025 /* Final destruction now no one is using it. */
1026 if (mod->exit != NULL)
1027 mod->exit();
1028 blocking_notifier_call_chain(&module_notify_list,
1029 MODULE_STATE_GOING, mod);
1030 klp_module_going(mod);
1031 ftrace_release_mod(mod);
1032
1033 async_synchronize_full();
1034
1035 /* Store the name of the last unloaded module for diagnostic purposes */
1036 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1037
1038 free_module(mod);
1039 return 0;
1040 out:
1041 mutex_unlock(&module_mutex);
1042 return ret;
1043 }
1044
1045 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1046 {
1047 struct module_use *use;
1048 int printed_something = 0;
1049
1050 seq_printf(m, " %i ", module_refcount(mod));
1051
1052 /*
1053 * Always include a trailing , so userspace can differentiate
1054 * between this and the old multi-field proc format.
1055 */
1056 list_for_each_entry(use, &mod->source_list, source_list) {
1057 printed_something = 1;
1058 seq_printf(m, "%s,", use->source->name);
1059 }
1060
1061 if (mod->init != NULL && mod->exit == NULL) {
1062 printed_something = 1;
1063 seq_puts(m, "[permanent],");
1064 }
1065
1066 if (!printed_something)
1067 seq_puts(m, "-");
1068 }
1069
1070 void __symbol_put(const char *symbol)
1071 {
1072 struct module *owner;
1073
1074 preempt_disable();
1075 if (!find_symbol(symbol, &owner, NULL, true, false))
1076 BUG();
1077 module_put(owner);
1078 preempt_enable();
1079 }
1080 EXPORT_SYMBOL(__symbol_put);
1081
1082 /* Note this assumes addr is a function, which it currently always is. */
1083 void symbol_put_addr(void *addr)
1084 {
1085 struct module *modaddr;
1086 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1087
1088 if (core_kernel_text(a))
1089 return;
1090
1091 /*
1092 * Even though we hold a reference on the module; we still need to
1093 * disable preemption in order to safely traverse the data structure.
1094 */
1095 preempt_disable();
1096 modaddr = __module_text_address(a);
1097 BUG_ON(!modaddr);
1098 module_put(modaddr);
1099 preempt_enable();
1100 }
1101 EXPORT_SYMBOL_GPL(symbol_put_addr);
1102
1103 static ssize_t show_refcnt(struct module_attribute *mattr,
1104 struct module_kobject *mk, char *buffer)
1105 {
1106 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1107 }
1108
1109 static struct module_attribute modinfo_refcnt =
1110 __ATTR(refcnt, 0444, show_refcnt, NULL);
1111
1112 void __module_get(struct module *module)
1113 {
1114 if (module) {
1115 preempt_disable();
1116 atomic_inc(&module->refcnt);
1117 trace_module_get(module, _RET_IP_);
1118 preempt_enable();
1119 }
1120 }
1121 EXPORT_SYMBOL(__module_get);
1122
1123 bool try_module_get(struct module *module)
1124 {
1125 bool ret = true;
1126
1127 if (module) {
1128 preempt_disable();
1129 /* Note: here, we can fail to get a reference */
1130 if (likely(module_is_live(module) &&
1131 atomic_inc_not_zero(&module->refcnt) != 0))
1132 trace_module_get(module, _RET_IP_);
1133 else
1134 ret = false;
1135
1136 preempt_enable();
1137 }
1138 return ret;
1139 }
1140 EXPORT_SYMBOL(try_module_get);
1141
1142 void module_put(struct module *module)
1143 {
1144 int ret;
1145
1146 if (module) {
1147 preempt_disable();
1148 ret = atomic_dec_if_positive(&module->refcnt);
1149 WARN_ON(ret < 0); /* Failed to put refcount */
1150 trace_module_put(module, _RET_IP_);
1151 preempt_enable();
1152 }
1153 }
1154 EXPORT_SYMBOL(module_put);
1155
1156 #else /* !CONFIG_MODULE_UNLOAD */
1157 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1158 {
1159 /* We don't know the usage count, or what modules are using. */
1160 seq_puts(m, " - -");
1161 }
1162
1163 static inline void module_unload_free(struct module *mod)
1164 {
1165 }
1166
1167 int ref_module(struct module *a, struct module *b)
1168 {
1169 return strong_try_module_get(b);
1170 }
1171 EXPORT_SYMBOL_GPL(ref_module);
1172
1173 static inline int module_unload_init(struct module *mod)
1174 {
1175 return 0;
1176 }
1177 #endif /* CONFIG_MODULE_UNLOAD */
1178
1179 static size_t module_flags_taint(struct module *mod, char *buf)
1180 {
1181 size_t l = 0;
1182 int i;
1183
1184 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1185 if (taint_flags[i].module && test_bit(i, &mod->taints))
1186 buf[l++] = taint_flags[i].c_true;
1187 }
1188
1189 return l;
1190 }
1191
1192 static ssize_t show_initstate(struct module_attribute *mattr,
1193 struct module_kobject *mk, char *buffer)
1194 {
1195 const char *state = "unknown";
1196
1197 switch (mk->mod->state) {
1198 case MODULE_STATE_LIVE:
1199 state = "live";
1200 break;
1201 case MODULE_STATE_COMING:
1202 state = "coming";
1203 break;
1204 case MODULE_STATE_GOING:
1205 state = "going";
1206 break;
1207 default:
1208 BUG();
1209 }
1210 return sprintf(buffer, "%s\n", state);
1211 }
1212
1213 static struct module_attribute modinfo_initstate =
1214 __ATTR(initstate, 0444, show_initstate, NULL);
1215
1216 static ssize_t store_uevent(struct module_attribute *mattr,
1217 struct module_kobject *mk,
1218 const char *buffer, size_t count)
1219 {
1220 int rc;
1221
1222 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1223 return rc ? rc : count;
1224 }
1225
1226 struct module_attribute module_uevent =
1227 __ATTR(uevent, 0200, NULL, store_uevent);
1228
1229 static ssize_t show_coresize(struct module_attribute *mattr,
1230 struct module_kobject *mk, char *buffer)
1231 {
1232 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1233 }
1234
1235 static struct module_attribute modinfo_coresize =
1236 __ATTR(coresize, 0444, show_coresize, NULL);
1237
1238 static ssize_t show_initsize(struct module_attribute *mattr,
1239 struct module_kobject *mk, char *buffer)
1240 {
1241 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1242 }
1243
1244 static struct module_attribute modinfo_initsize =
1245 __ATTR(initsize, 0444, show_initsize, NULL);
1246
1247 static ssize_t show_taint(struct module_attribute *mattr,
1248 struct module_kobject *mk, char *buffer)
1249 {
1250 size_t l;
1251
1252 l = module_flags_taint(mk->mod, buffer);
1253 buffer[l++] = '\n';
1254 return l;
1255 }
1256
1257 static struct module_attribute modinfo_taint =
1258 __ATTR(taint, 0444, show_taint, NULL);
1259
1260 static struct module_attribute *modinfo_attrs[] = {
1261 &module_uevent,
1262 &modinfo_version,
1263 &modinfo_srcversion,
1264 &modinfo_initstate,
1265 &modinfo_coresize,
1266 &modinfo_initsize,
1267 &modinfo_taint,
1268 #ifdef CONFIG_MODULE_UNLOAD
1269 &modinfo_refcnt,
1270 #endif
1271 NULL,
1272 };
1273
1274 static const char vermagic[] = VERMAGIC_STRING;
1275
1276 static int try_to_force_load(struct module *mod, const char *reason)
1277 {
1278 #ifdef CONFIG_MODULE_FORCE_LOAD
1279 if (!test_taint(TAINT_FORCED_MODULE))
1280 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1281 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1282 return 0;
1283 #else
1284 return -ENOEXEC;
1285 #endif
1286 }
1287
1288 #ifdef CONFIG_MODVERSIONS
1289
1290 static u32 resolve_rel_crc(const s32 *crc)
1291 {
1292 return *(u32 *)((void *)crc + *crc);
1293 }
1294
1295 static int check_version(const struct load_info *info,
1296 const char *symname,
1297 struct module *mod,
1298 const s32 *crc)
1299 {
1300 Elf_Shdr *sechdrs = info->sechdrs;
1301 unsigned int versindex = info->index.vers;
1302 unsigned int i, num_versions;
1303 struct modversion_info *versions;
1304
1305 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1306 if (!crc)
1307 return 1;
1308
1309 /* No versions at all? modprobe --force does this. */
1310 if (versindex == 0)
1311 return try_to_force_load(mod, symname) == 0;
1312
1313 versions = (void *) sechdrs[versindex].sh_addr;
1314 num_versions = sechdrs[versindex].sh_size
1315 / sizeof(struct modversion_info);
1316
1317 for (i = 0; i < num_versions; i++) {
1318 u32 crcval;
1319
1320 if (strcmp(versions[i].name, symname) != 0)
1321 continue;
1322
1323 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1324 crcval = resolve_rel_crc(crc);
1325 else
1326 crcval = *crc;
1327 if (versions[i].crc == crcval)
1328 return 1;
1329 pr_debug("Found checksum %X vs module %lX\n",
1330 crcval, versions[i].crc);
1331 goto bad_version;
1332 }
1333
1334 /* Broken toolchain. Warn once, then let it go.. */
1335 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1336 return 1;
1337
1338 bad_version:
1339 pr_warn("%s: disagrees about version of symbol %s\n",
1340 info->name, symname);
1341 return 0;
1342 }
1343
1344 static inline int check_modstruct_version(const struct load_info *info,
1345 struct module *mod)
1346 {
1347 const s32 *crc;
1348
1349 /*
1350 * Since this should be found in kernel (which can't be removed), no
1351 * locking is necessary -- use preempt_disable() to placate lockdep.
1352 */
1353 preempt_disable();
1354 if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1355 preempt_enable();
1356 BUG();
1357 }
1358 preempt_enable();
1359 return check_version(info, "module_layout", mod, crc);
1360 }
1361
1362 /* First part is kernel version, which we ignore if module has crcs. */
1363 static inline int same_magic(const char *amagic, const char *bmagic,
1364 bool has_crcs)
1365 {
1366 if (has_crcs) {
1367 amagic += strcspn(amagic, " ");
1368 bmagic += strcspn(bmagic, " ");
1369 }
1370 return strcmp(amagic, bmagic) == 0;
1371 }
1372 #else
1373 static inline int check_version(const struct load_info *info,
1374 const char *symname,
1375 struct module *mod,
1376 const s32 *crc)
1377 {
1378 return 1;
1379 }
1380
1381 static inline int check_modstruct_version(const struct load_info *info,
1382 struct module *mod)
1383 {
1384 return 1;
1385 }
1386
1387 static inline int same_magic(const char *amagic, const char *bmagic,
1388 bool has_crcs)
1389 {
1390 return strcmp(amagic, bmagic) == 0;
1391 }
1392 #endif /* CONFIG_MODVERSIONS */
1393
1394 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1395 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1396 const struct load_info *info,
1397 const char *name,
1398 char ownername[])
1399 {
1400 struct module *owner;
1401 const struct kernel_symbol *sym;
1402 const s32 *crc;
1403 int err;
1404
1405 /*
1406 * The module_mutex should not be a heavily contended lock;
1407 * if we get the occasional sleep here, we'll go an extra iteration
1408 * in the wait_event_interruptible(), which is harmless.
1409 */
1410 sched_annotate_sleep();
1411 mutex_lock(&module_mutex);
1412 sym = find_symbol(name, &owner, &crc,
1413 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1414 if (!sym)
1415 goto unlock;
1416
1417 if (!check_version(info, name, mod, crc)) {
1418 sym = ERR_PTR(-EINVAL);
1419 goto getname;
1420 }
1421
1422 err = ref_module(mod, owner);
1423 if (err) {
1424 sym = ERR_PTR(err);
1425 goto getname;
1426 }
1427
1428 getname:
1429 /* We must make copy under the lock if we failed to get ref. */
1430 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1431 unlock:
1432 mutex_unlock(&module_mutex);
1433 return sym;
1434 }
1435
1436 static const struct kernel_symbol *
1437 resolve_symbol_wait(struct module *mod,
1438 const struct load_info *info,
1439 const char *name)
1440 {
1441 const struct kernel_symbol *ksym;
1442 char owner[MODULE_NAME_LEN];
1443
1444 if (wait_event_interruptible_timeout(module_wq,
1445 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1446 || PTR_ERR(ksym) != -EBUSY,
1447 30 * HZ) <= 0) {
1448 pr_warn("%s: gave up waiting for init of module %s.\n",
1449 mod->name, owner);
1450 }
1451 return ksym;
1452 }
1453
1454 /*
1455 * /sys/module/foo/sections stuff
1456 * J. Corbet <corbet@lwn.net>
1457 */
1458 #ifdef CONFIG_SYSFS
1459
1460 #ifdef CONFIG_KALLSYMS
1461 static inline bool sect_empty(const Elf_Shdr *sect)
1462 {
1463 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1464 }
1465
1466 struct module_sect_attr {
1467 struct module_attribute mattr;
1468 char *name;
1469 unsigned long address;
1470 };
1471
1472 struct module_sect_attrs {
1473 struct attribute_group grp;
1474 unsigned int nsections;
1475 struct module_sect_attr attrs[0];
1476 };
1477
1478 static ssize_t module_sect_show(struct module_attribute *mattr,
1479 struct module_kobject *mk, char *buf)
1480 {
1481 struct module_sect_attr *sattr =
1482 container_of(mattr, struct module_sect_attr, mattr);
1483 return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1484 (void *)sattr->address : NULL);
1485 }
1486
1487 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1488 {
1489 unsigned int section;
1490
1491 for (section = 0; section < sect_attrs->nsections; section++)
1492 kfree(sect_attrs->attrs[section].name);
1493 kfree(sect_attrs);
1494 }
1495
1496 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1497 {
1498 unsigned int nloaded = 0, i, size[2];
1499 struct module_sect_attrs *sect_attrs;
1500 struct module_sect_attr *sattr;
1501 struct attribute **gattr;
1502
1503 /* Count loaded sections and allocate structures */
1504 for (i = 0; i < info->hdr->e_shnum; i++)
1505 if (!sect_empty(&info->sechdrs[i]))
1506 nloaded++;
1507 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1508 sizeof(sect_attrs->grp.attrs[0]));
1509 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1510 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1511 if (sect_attrs == NULL)
1512 return;
1513
1514 /* Setup section attributes. */
1515 sect_attrs->grp.name = "sections";
1516 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1517
1518 sect_attrs->nsections = 0;
1519 sattr = &sect_attrs->attrs[0];
1520 gattr = &sect_attrs->grp.attrs[0];
1521 for (i = 0; i < info->hdr->e_shnum; i++) {
1522 Elf_Shdr *sec = &info->sechdrs[i];
1523 if (sect_empty(sec))
1524 continue;
1525 sattr->address = sec->sh_addr;
1526 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1527 GFP_KERNEL);
1528 if (sattr->name == NULL)
1529 goto out;
1530 sect_attrs->nsections++;
1531 sysfs_attr_init(&sattr->mattr.attr);
1532 sattr->mattr.show = module_sect_show;
1533 sattr->mattr.store = NULL;
1534 sattr->mattr.attr.name = sattr->name;
1535 sattr->mattr.attr.mode = S_IRUSR;
1536 *(gattr++) = &(sattr++)->mattr.attr;
1537 }
1538 *gattr = NULL;
1539
1540 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1541 goto out;
1542
1543 mod->sect_attrs = sect_attrs;
1544 return;
1545 out:
1546 free_sect_attrs(sect_attrs);
1547 }
1548
1549 static void remove_sect_attrs(struct module *mod)
1550 {
1551 if (mod->sect_attrs) {
1552 sysfs_remove_group(&mod->mkobj.kobj,
1553 &mod->sect_attrs->grp);
1554 /* We are positive that no one is using any sect attrs
1555 * at this point. Deallocate immediately. */
1556 free_sect_attrs(mod->sect_attrs);
1557 mod->sect_attrs = NULL;
1558 }
1559 }
1560
1561 /*
1562 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1563 */
1564
1565 struct module_notes_attrs {
1566 struct kobject *dir;
1567 unsigned int notes;
1568 struct bin_attribute attrs[0];
1569 };
1570
1571 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1572 struct bin_attribute *bin_attr,
1573 char *buf, loff_t pos, size_t count)
1574 {
1575 /*
1576 * The caller checked the pos and count against our size.
1577 */
1578 memcpy(buf, bin_attr->private + pos, count);
1579 return count;
1580 }
1581
1582 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1583 unsigned int i)
1584 {
1585 if (notes_attrs->dir) {
1586 while (i-- > 0)
1587 sysfs_remove_bin_file(notes_attrs->dir,
1588 &notes_attrs->attrs[i]);
1589 kobject_put(notes_attrs->dir);
1590 }
1591 kfree(notes_attrs);
1592 }
1593
1594 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1595 {
1596 unsigned int notes, loaded, i;
1597 struct module_notes_attrs *notes_attrs;
1598 struct bin_attribute *nattr;
1599
1600 /* failed to create section attributes, so can't create notes */
1601 if (!mod->sect_attrs)
1602 return;
1603
1604 /* Count notes sections and allocate structures. */
1605 notes = 0;
1606 for (i = 0; i < info->hdr->e_shnum; i++)
1607 if (!sect_empty(&info->sechdrs[i]) &&
1608 (info->sechdrs[i].sh_type == SHT_NOTE))
1609 ++notes;
1610
1611 if (notes == 0)
1612 return;
1613
1614 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1615 GFP_KERNEL);
1616 if (notes_attrs == NULL)
1617 return;
1618
1619 notes_attrs->notes = notes;
1620 nattr = &notes_attrs->attrs[0];
1621 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1622 if (sect_empty(&info->sechdrs[i]))
1623 continue;
1624 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1625 sysfs_bin_attr_init(nattr);
1626 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1627 nattr->attr.mode = S_IRUGO;
1628 nattr->size = info->sechdrs[i].sh_size;
1629 nattr->private = (void *) info->sechdrs[i].sh_addr;
1630 nattr->read = module_notes_read;
1631 ++nattr;
1632 }
1633 ++loaded;
1634 }
1635
1636 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1637 if (!notes_attrs->dir)
1638 goto out;
1639
1640 for (i = 0; i < notes; ++i)
1641 if (sysfs_create_bin_file(notes_attrs->dir,
1642 &notes_attrs->attrs[i]))
1643 goto out;
1644
1645 mod->notes_attrs = notes_attrs;
1646 return;
1647
1648 out:
1649 free_notes_attrs(notes_attrs, i);
1650 }
1651
1652 static void remove_notes_attrs(struct module *mod)
1653 {
1654 if (mod->notes_attrs)
1655 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1656 }
1657
1658 #else
1659
1660 static inline void add_sect_attrs(struct module *mod,
1661 const struct load_info *info)
1662 {
1663 }
1664
1665 static inline void remove_sect_attrs(struct module *mod)
1666 {
1667 }
1668
1669 static inline void add_notes_attrs(struct module *mod,
1670 const struct load_info *info)
1671 {
1672 }
1673
1674 static inline void remove_notes_attrs(struct module *mod)
1675 {
1676 }
1677 #endif /* CONFIG_KALLSYMS */
1678
1679 static void del_usage_links(struct module *mod)
1680 {
1681 #ifdef CONFIG_MODULE_UNLOAD
1682 struct module_use *use;
1683
1684 mutex_lock(&module_mutex);
1685 list_for_each_entry(use, &mod->target_list, target_list)
1686 sysfs_remove_link(use->target->holders_dir, mod->name);
1687 mutex_unlock(&module_mutex);
1688 #endif
1689 }
1690
1691 static int add_usage_links(struct module *mod)
1692 {
1693 int ret = 0;
1694 #ifdef CONFIG_MODULE_UNLOAD
1695 struct module_use *use;
1696
1697 mutex_lock(&module_mutex);
1698 list_for_each_entry(use, &mod->target_list, target_list) {
1699 ret = sysfs_create_link(use->target->holders_dir,
1700 &mod->mkobj.kobj, mod->name);
1701 if (ret)
1702 break;
1703 }
1704 mutex_unlock(&module_mutex);
1705 if (ret)
1706 del_usage_links(mod);
1707 #endif
1708 return ret;
1709 }
1710
1711 static int module_add_modinfo_attrs(struct module *mod)
1712 {
1713 struct module_attribute *attr;
1714 struct module_attribute *temp_attr;
1715 int error = 0;
1716 int i;
1717
1718 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1719 (ARRAY_SIZE(modinfo_attrs) + 1)),
1720 GFP_KERNEL);
1721 if (!mod->modinfo_attrs)
1722 return -ENOMEM;
1723
1724 temp_attr = mod->modinfo_attrs;
1725 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1726 if (!attr->test || attr->test(mod)) {
1727 memcpy(temp_attr, attr, sizeof(*temp_attr));
1728 sysfs_attr_init(&temp_attr->attr);
1729 error = sysfs_create_file(&mod->mkobj.kobj,
1730 &temp_attr->attr);
1731 ++temp_attr;
1732 }
1733 }
1734 return error;
1735 }
1736
1737 static void module_remove_modinfo_attrs(struct module *mod)
1738 {
1739 struct module_attribute *attr;
1740 int i;
1741
1742 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1743 /* pick a field to test for end of list */
1744 if (!attr->attr.name)
1745 break;
1746 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1747 if (attr->free)
1748 attr->free(mod);
1749 }
1750 kfree(mod->modinfo_attrs);
1751 }
1752
1753 static void mod_kobject_put(struct module *mod)
1754 {
1755 DECLARE_COMPLETION_ONSTACK(c);
1756 mod->mkobj.kobj_completion = &c;
1757 kobject_put(&mod->mkobj.kobj);
1758 wait_for_completion(&c);
1759 }
1760
1761 static int mod_sysfs_init(struct module *mod)
1762 {
1763 int err;
1764 struct kobject *kobj;
1765
1766 if (!module_sysfs_initialized) {
1767 pr_err("%s: module sysfs not initialized\n", mod->name);
1768 err = -EINVAL;
1769 goto out;
1770 }
1771
1772 kobj = kset_find_obj(module_kset, mod->name);
1773 if (kobj) {
1774 pr_err("%s: module is already loaded\n", mod->name);
1775 kobject_put(kobj);
1776 err = -EINVAL;
1777 goto out;
1778 }
1779
1780 mod->mkobj.mod = mod;
1781
1782 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1783 mod->mkobj.kobj.kset = module_kset;
1784 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1785 "%s", mod->name);
1786 if (err)
1787 mod_kobject_put(mod);
1788
1789 /* delay uevent until full sysfs population */
1790 out:
1791 return err;
1792 }
1793
1794 static int mod_sysfs_setup(struct module *mod,
1795 const struct load_info *info,
1796 struct kernel_param *kparam,
1797 unsigned int num_params)
1798 {
1799 int err;
1800
1801 err = mod_sysfs_init(mod);
1802 if (err)
1803 goto out;
1804
1805 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1806 if (!mod->holders_dir) {
1807 err = -ENOMEM;
1808 goto out_unreg;
1809 }
1810
1811 err = module_param_sysfs_setup(mod, kparam, num_params);
1812 if (err)
1813 goto out_unreg_holders;
1814
1815 err = module_add_modinfo_attrs(mod);
1816 if (err)
1817 goto out_unreg_param;
1818
1819 err = add_usage_links(mod);
1820 if (err)
1821 goto out_unreg_modinfo_attrs;
1822
1823 add_sect_attrs(mod, info);
1824 add_notes_attrs(mod, info);
1825
1826 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1827 return 0;
1828
1829 out_unreg_modinfo_attrs:
1830 module_remove_modinfo_attrs(mod);
1831 out_unreg_param:
1832 module_param_sysfs_remove(mod);
1833 out_unreg_holders:
1834 kobject_put(mod->holders_dir);
1835 out_unreg:
1836 mod_kobject_put(mod);
1837 out:
1838 return err;
1839 }
1840
1841 static void mod_sysfs_fini(struct module *mod)
1842 {
1843 remove_notes_attrs(mod);
1844 remove_sect_attrs(mod);
1845 mod_kobject_put(mod);
1846 }
1847
1848 static void init_param_lock(struct module *mod)
1849 {
1850 mutex_init(&mod->param_lock);
1851 }
1852 #else /* !CONFIG_SYSFS */
1853
1854 static int mod_sysfs_setup(struct module *mod,
1855 const struct load_info *info,
1856 struct kernel_param *kparam,
1857 unsigned int num_params)
1858 {
1859 return 0;
1860 }
1861
1862 static void mod_sysfs_fini(struct module *mod)
1863 {
1864 }
1865
1866 static void module_remove_modinfo_attrs(struct module *mod)
1867 {
1868 }
1869
1870 static void del_usage_links(struct module *mod)
1871 {
1872 }
1873
1874 static void init_param_lock(struct module *mod)
1875 {
1876 }
1877 #endif /* CONFIG_SYSFS */
1878
1879 static void mod_sysfs_teardown(struct module *mod)
1880 {
1881 del_usage_links(mod);
1882 module_remove_modinfo_attrs(mod);
1883 module_param_sysfs_remove(mod);
1884 kobject_put(mod->mkobj.drivers_dir);
1885 kobject_put(mod->holders_dir);
1886 mod_sysfs_fini(mod);
1887 }
1888
1889 #ifdef CONFIG_STRICT_MODULE_RWX
1890 /*
1891 * LKM RO/NX protection: protect module's text/ro-data
1892 * from modification and any data from execution.
1893 *
1894 * General layout of module is:
1895 * [text] [read-only-data] [ro-after-init] [writable data]
1896 * text_size -----^ ^ ^ ^
1897 * ro_size ------------------------| | |
1898 * ro_after_init_size -----------------------------| |
1899 * size -----------------------------------------------------------|
1900 *
1901 * These values are always page-aligned (as is base)
1902 */
1903 static void frob_text(const struct module_layout *layout,
1904 int (*set_memory)(unsigned long start, int num_pages))
1905 {
1906 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1907 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1908 set_memory((unsigned long)layout->base,
1909 layout->text_size >> PAGE_SHIFT);
1910 }
1911
1912 static void frob_rodata(const struct module_layout *layout,
1913 int (*set_memory)(unsigned long start, int num_pages))
1914 {
1915 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1916 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1917 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1918 set_memory((unsigned long)layout->base + layout->text_size,
1919 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1920 }
1921
1922 static void frob_ro_after_init(const struct module_layout *layout,
1923 int (*set_memory)(unsigned long start, int num_pages))
1924 {
1925 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1926 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1927 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1928 set_memory((unsigned long)layout->base + layout->ro_size,
1929 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1930 }
1931
1932 static void frob_writable_data(const struct module_layout *layout,
1933 int (*set_memory)(unsigned long start, int num_pages))
1934 {
1935 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1936 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1937 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1938 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1939 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1940 }
1941
1942 /* livepatching wants to disable read-only so it can frob module. */
1943 void module_disable_ro(const struct module *mod)
1944 {
1945 if (!rodata_enabled)
1946 return;
1947
1948 frob_text(&mod->core_layout, set_memory_rw);
1949 frob_rodata(&mod->core_layout, set_memory_rw);
1950 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1951 frob_text(&mod->init_layout, set_memory_rw);
1952 frob_rodata(&mod->init_layout, set_memory_rw);
1953 }
1954
1955 void module_enable_ro(const struct module *mod, bool after_init)
1956 {
1957 if (!rodata_enabled)
1958 return;
1959
1960 set_vm_flush_reset_perms(mod->core_layout.base);
1961 set_vm_flush_reset_perms(mod->init_layout.base);
1962 frob_text(&mod->core_layout, set_memory_ro);
1963 frob_text(&mod->core_layout, set_memory_x);
1964
1965 frob_rodata(&mod->core_layout, set_memory_ro);
1966
1967 frob_text(&mod->init_layout, set_memory_ro);
1968 frob_text(&mod->init_layout, set_memory_x);
1969
1970 frob_rodata(&mod->init_layout, set_memory_ro);
1971
1972 if (after_init)
1973 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1974 }
1975
1976 static void module_enable_nx(const struct module *mod)
1977 {
1978 frob_rodata(&mod->core_layout, set_memory_nx);
1979 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1980 frob_writable_data(&mod->core_layout, set_memory_nx);
1981 frob_rodata(&mod->init_layout, set_memory_nx);
1982 frob_writable_data(&mod->init_layout, set_memory_nx);
1983 }
1984
1985 /* Iterate through all modules and set each module's text as RW */
1986 void set_all_modules_text_rw(void)
1987 {
1988 struct module *mod;
1989
1990 if (!rodata_enabled)
1991 return;
1992
1993 mutex_lock(&module_mutex);
1994 list_for_each_entry_rcu(mod, &modules, list) {
1995 if (mod->state == MODULE_STATE_UNFORMED)
1996 continue;
1997
1998 frob_text(&mod->core_layout, set_memory_rw);
1999 frob_text(&mod->init_layout, set_memory_rw);
2000 }
2001 mutex_unlock(&module_mutex);
2002 }
2003
2004 /* Iterate through all modules and set each module's text as RO */
2005 void set_all_modules_text_ro(void)
2006 {
2007 struct module *mod;
2008
2009 if (!rodata_enabled)
2010 return;
2011
2012 mutex_lock(&module_mutex);
2013 list_for_each_entry_rcu(mod, &modules, list) {
2014 /*
2015 * Ignore going modules since it's possible that ro
2016 * protection has already been disabled, otherwise we'll
2017 * run into protection faults at module deallocation.
2018 */
2019 if (mod->state == MODULE_STATE_UNFORMED ||
2020 mod->state == MODULE_STATE_GOING)
2021 continue;
2022
2023 frob_text(&mod->core_layout, set_memory_ro);
2024 frob_text(&mod->init_layout, set_memory_ro);
2025 }
2026 mutex_unlock(&module_mutex);
2027 }
2028 #else
2029 static void module_enable_nx(const struct module *mod) { }
2030 #endif
2031
2032 #ifdef CONFIG_LIVEPATCH
2033 /*
2034 * Persist Elf information about a module. Copy the Elf header,
2035 * section header table, section string table, and symtab section
2036 * index from info to mod->klp_info.
2037 */
2038 static int copy_module_elf(struct module *mod, struct load_info *info)
2039 {
2040 unsigned int size, symndx;
2041 int ret;
2042
2043 size = sizeof(*mod->klp_info);
2044 mod->klp_info = kmalloc(size, GFP_KERNEL);
2045 if (mod->klp_info == NULL)
2046 return -ENOMEM;
2047
2048 /* Elf header */
2049 size = sizeof(mod->klp_info->hdr);
2050 memcpy(&mod->klp_info->hdr, info->hdr, size);
2051
2052 /* Elf section header table */
2053 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2054 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2055 if (mod->klp_info->sechdrs == NULL) {
2056 ret = -ENOMEM;
2057 goto free_info;
2058 }
2059
2060 /* Elf section name string table */
2061 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2062 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2063 if (mod->klp_info->secstrings == NULL) {
2064 ret = -ENOMEM;
2065 goto free_sechdrs;
2066 }
2067
2068 /* Elf symbol section index */
2069 symndx = info->index.sym;
2070 mod->klp_info->symndx = symndx;
2071
2072 /*
2073 * For livepatch modules, core_kallsyms.symtab is a complete
2074 * copy of the original symbol table. Adjust sh_addr to point
2075 * to core_kallsyms.symtab since the copy of the symtab in module
2076 * init memory is freed at the end of do_init_module().
2077 */
2078 mod->klp_info->sechdrs[symndx].sh_addr = \
2079 (unsigned long) mod->core_kallsyms.symtab;
2080
2081 return 0;
2082
2083 free_sechdrs:
2084 kfree(mod->klp_info->sechdrs);
2085 free_info:
2086 kfree(mod->klp_info);
2087 return ret;
2088 }
2089
2090 static void free_module_elf(struct module *mod)
2091 {
2092 kfree(mod->klp_info->sechdrs);
2093 kfree(mod->klp_info->secstrings);
2094 kfree(mod->klp_info);
2095 }
2096 #else /* !CONFIG_LIVEPATCH */
2097 static int copy_module_elf(struct module *mod, struct load_info *info)
2098 {
2099 return 0;
2100 }
2101
2102 static void free_module_elf(struct module *mod)
2103 {
2104 }
2105 #endif /* CONFIG_LIVEPATCH */
2106
2107 void __weak module_memfree(void *module_region)
2108 {
2109 /*
2110 * This memory may be RO, and freeing RO memory in an interrupt is not
2111 * supported by vmalloc.
2112 */
2113 WARN_ON(in_interrupt());
2114 vfree(module_region);
2115 }
2116
2117 void __weak module_arch_cleanup(struct module *mod)
2118 {
2119 }
2120
2121 void __weak module_arch_freeing_init(struct module *mod)
2122 {
2123 }
2124
2125 /* Free a module, remove from lists, etc. */
2126 static void free_module(struct module *mod)
2127 {
2128 trace_module_free(mod);
2129
2130 mod_sysfs_teardown(mod);
2131
2132 /* We leave it in list to prevent duplicate loads, but make sure
2133 * that noone uses it while it's being deconstructed. */
2134 mutex_lock(&module_mutex);
2135 mod->state = MODULE_STATE_UNFORMED;
2136 mutex_unlock(&module_mutex);
2137
2138 /* Remove dynamic debug info */
2139 ddebug_remove_module(mod->name);
2140
2141 /* Arch-specific cleanup. */
2142 module_arch_cleanup(mod);
2143
2144 /* Module unload stuff */
2145 module_unload_free(mod);
2146
2147 /* Free any allocated parameters. */
2148 destroy_params(mod->kp, mod->num_kp);
2149
2150 if (is_livepatch_module(mod))
2151 free_module_elf(mod);
2152
2153 /* Now we can delete it from the lists */
2154 mutex_lock(&module_mutex);
2155 /* Unlink carefully: kallsyms could be walking list. */
2156 list_del_rcu(&mod->list);
2157 mod_tree_remove(mod);
2158 /* Remove this module from bug list, this uses list_del_rcu */
2159 module_bug_cleanup(mod);
2160 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2161 synchronize_rcu();
2162 mutex_unlock(&module_mutex);
2163
2164 /* This may be empty, but that's OK */
2165 module_arch_freeing_init(mod);
2166 module_memfree(mod->init_layout.base);
2167 kfree(mod->args);
2168 percpu_modfree(mod);
2169
2170 /* Free lock-classes; relies on the preceding sync_rcu(). */
2171 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2172
2173 /* Finally, free the core (containing the module structure) */
2174 module_memfree(mod->core_layout.base);
2175 }
2176
2177 void *__symbol_get(const char *symbol)
2178 {
2179 struct module *owner;
2180 const struct kernel_symbol *sym;
2181
2182 preempt_disable();
2183 sym = find_symbol(symbol, &owner, NULL, true, true);
2184 if (sym && strong_try_module_get(owner))
2185 sym = NULL;
2186 preempt_enable();
2187
2188 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2189 }
2190 EXPORT_SYMBOL_GPL(__symbol_get);
2191
2192 /*
2193 * Ensure that an exported symbol [global namespace] does not already exist
2194 * in the kernel or in some other module's exported symbol table.
2195 *
2196 * You must hold the module_mutex.
2197 */
2198 static int verify_exported_symbols(struct module *mod)
2199 {
2200 unsigned int i;
2201 struct module *owner;
2202 const struct kernel_symbol *s;
2203 struct {
2204 const struct kernel_symbol *sym;
2205 unsigned int num;
2206 } arr[] = {
2207 { mod->syms, mod->num_syms },
2208 { mod->gpl_syms, mod->num_gpl_syms },
2209 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2210 #ifdef CONFIG_UNUSED_SYMBOLS
2211 { mod->unused_syms, mod->num_unused_syms },
2212 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2213 #endif
2214 };
2215
2216 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2217 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2218 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2219 true, false)) {
2220 pr_err("%s: exports duplicate symbol %s"
2221 " (owned by %s)\n",
2222 mod->name, kernel_symbol_name(s),
2223 module_name(owner));
2224 return -ENOEXEC;
2225 }
2226 }
2227 }
2228 return 0;
2229 }
2230
2231 /* Change all symbols so that st_value encodes the pointer directly. */
2232 static int simplify_symbols(struct module *mod, const struct load_info *info)
2233 {
2234 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2235 Elf_Sym *sym = (void *)symsec->sh_addr;
2236 unsigned long secbase;
2237 unsigned int i;
2238 int ret = 0;
2239 const struct kernel_symbol *ksym;
2240
2241 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2242 const char *name = info->strtab + sym[i].st_name;
2243
2244 switch (sym[i].st_shndx) {
2245 case SHN_COMMON:
2246 /* Ignore common symbols */
2247 if (!strncmp(name, "__gnu_lto", 9))
2248 break;
2249
2250 /* We compiled with -fno-common. These are not
2251 supposed to happen. */
2252 pr_debug("Common symbol: %s\n", name);
2253 pr_warn("%s: please compile with -fno-common\n",
2254 mod->name);
2255 ret = -ENOEXEC;
2256 break;
2257
2258 case SHN_ABS:
2259 /* Don't need to do anything */
2260 pr_debug("Absolute symbol: 0x%08lx\n",
2261 (long)sym[i].st_value);
2262 break;
2263
2264 case SHN_LIVEPATCH:
2265 /* Livepatch symbols are resolved by livepatch */
2266 break;
2267
2268 case SHN_UNDEF:
2269 ksym = resolve_symbol_wait(mod, info, name);
2270 /* Ok if resolved. */
2271 if (ksym && !IS_ERR(ksym)) {
2272 sym[i].st_value = kernel_symbol_value(ksym);
2273 break;
2274 }
2275
2276 /* Ok if weak. */
2277 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2278 break;
2279
2280 ret = PTR_ERR(ksym) ?: -ENOENT;
2281 pr_warn("%s: Unknown symbol %s (err %d)\n",
2282 mod->name, name, ret);
2283 break;
2284
2285 default:
2286 /* Divert to percpu allocation if a percpu var. */
2287 if (sym[i].st_shndx == info->index.pcpu)
2288 secbase = (unsigned long)mod_percpu(mod);
2289 else
2290 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2291 sym[i].st_value += secbase;
2292 break;
2293 }
2294 }
2295
2296 return ret;
2297 }
2298
2299 static int apply_relocations(struct module *mod, const struct load_info *info)
2300 {
2301 unsigned int i;
2302 int err = 0;
2303
2304 /* Now do relocations. */
2305 for (i = 1; i < info->hdr->e_shnum; i++) {
2306 unsigned int infosec = info->sechdrs[i].sh_info;
2307
2308 /* Not a valid relocation section? */
2309 if (infosec >= info->hdr->e_shnum)
2310 continue;
2311
2312 /* Don't bother with non-allocated sections */
2313 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2314 continue;
2315
2316 /* Livepatch relocation sections are applied by livepatch */
2317 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2318 continue;
2319
2320 if (info->sechdrs[i].sh_type == SHT_REL)
2321 err = apply_relocate(info->sechdrs, info->strtab,
2322 info->index.sym, i, mod);
2323 else if (info->sechdrs[i].sh_type == SHT_RELA)
2324 err = apply_relocate_add(info->sechdrs, info->strtab,
2325 info->index.sym, i, mod);
2326 if (err < 0)
2327 break;
2328 }
2329 return err;
2330 }
2331
2332 /* Additional bytes needed by arch in front of individual sections */
2333 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2334 unsigned int section)
2335 {
2336 /* default implementation just returns zero */
2337 return 0;
2338 }
2339
2340 /* Update size with this section: return offset. */
2341 static long get_offset(struct module *mod, unsigned int *size,
2342 Elf_Shdr *sechdr, unsigned int section)
2343 {
2344 long ret;
2345
2346 *size += arch_mod_section_prepend(mod, section);
2347 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2348 *size = ret + sechdr->sh_size;
2349 return ret;
2350 }
2351
2352 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2353 might -- code, read-only data, read-write data, small data. Tally
2354 sizes, and place the offsets into sh_entsize fields: high bit means it
2355 belongs in init. */
2356 static void layout_sections(struct module *mod, struct load_info *info)
2357 {
2358 static unsigned long const masks[][2] = {
2359 /* NOTE: all executable code must be the first section
2360 * in this array; otherwise modify the text_size
2361 * finder in the two loops below */
2362 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2363 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2364 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2365 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2366 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2367 };
2368 unsigned int m, i;
2369
2370 for (i = 0; i < info->hdr->e_shnum; i++)
2371 info->sechdrs[i].sh_entsize = ~0UL;
2372
2373 pr_debug("Core section allocation order:\n");
2374 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2375 for (i = 0; i < info->hdr->e_shnum; ++i) {
2376 Elf_Shdr *s = &info->sechdrs[i];
2377 const char *sname = info->secstrings + s->sh_name;
2378
2379 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2380 || (s->sh_flags & masks[m][1])
2381 || s->sh_entsize != ~0UL
2382 || strstarts(sname, ".init"))
2383 continue;
2384 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2385 pr_debug("\t%s\n", sname);
2386 }
2387 switch (m) {
2388 case 0: /* executable */
2389 mod->core_layout.size = debug_align(mod->core_layout.size);
2390 mod->core_layout.text_size = mod->core_layout.size;
2391 break;
2392 case 1: /* RO: text and ro-data */
2393 mod->core_layout.size = debug_align(mod->core_layout.size);
2394 mod->core_layout.ro_size = mod->core_layout.size;
2395 break;
2396 case 2: /* RO after init */
2397 mod->core_layout.size = debug_align(mod->core_layout.size);
2398 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2399 break;
2400 case 4: /* whole core */
2401 mod->core_layout.size = debug_align(mod->core_layout.size);
2402 break;
2403 }
2404 }
2405
2406 pr_debug("Init section allocation order:\n");
2407 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2408 for (i = 0; i < info->hdr->e_shnum; ++i) {
2409 Elf_Shdr *s = &info->sechdrs[i];
2410 const char *sname = info->secstrings + s->sh_name;
2411
2412 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2413 || (s->sh_flags & masks[m][1])
2414 || s->sh_entsize != ~0UL
2415 || !strstarts(sname, ".init"))
2416 continue;
2417 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2418 | INIT_OFFSET_MASK);
2419 pr_debug("\t%s\n", sname);
2420 }
2421 switch (m) {
2422 case 0: /* executable */
2423 mod->init_layout.size = debug_align(mod->init_layout.size);
2424 mod->init_layout.text_size = mod->init_layout.size;
2425 break;
2426 case 1: /* RO: text and ro-data */
2427 mod->init_layout.size = debug_align(mod->init_layout.size);
2428 mod->init_layout.ro_size = mod->init_layout.size;
2429 break;
2430 case 2:
2431 /*
2432 * RO after init doesn't apply to init_layout (only
2433 * core_layout), so it just takes the value of ro_size.
2434 */
2435 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2436 break;
2437 case 4: /* whole init */
2438 mod->init_layout.size = debug_align(mod->init_layout.size);
2439 break;
2440 }
2441 }
2442 }
2443
2444 static void set_license(struct module *mod, const char *license)
2445 {
2446 if (!license)
2447 license = "unspecified";
2448
2449 if (!license_is_gpl_compatible(license)) {
2450 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2451 pr_warn("%s: module license '%s' taints kernel.\n",
2452 mod->name, license);
2453 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2454 LOCKDEP_NOW_UNRELIABLE);
2455 }
2456 }
2457
2458 /* Parse tag=value strings from .modinfo section */
2459 static char *next_string(char *string, unsigned long *secsize)
2460 {
2461 /* Skip non-zero chars */
2462 while (string[0]) {
2463 string++;
2464 if ((*secsize)-- <= 1)
2465 return NULL;
2466 }
2467
2468 /* Skip any zero padding. */
2469 while (!string[0]) {
2470 string++;
2471 if ((*secsize)-- <= 1)
2472 return NULL;
2473 }
2474 return string;
2475 }
2476
2477 static char *get_modinfo(struct load_info *info, const char *tag)
2478 {
2479 char *p;
2480 unsigned int taglen = strlen(tag);
2481 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2482 unsigned long size = infosec->sh_size;
2483
2484 /*
2485 * get_modinfo() calls made before rewrite_section_headers()
2486 * must use sh_offset, as sh_addr isn't set!
2487 */
2488 for (p = (char *)info->hdr + infosec->sh_offset; p; p = next_string(p, &size)) {
2489 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2490 return p + taglen + 1;
2491 }
2492 return NULL;
2493 }
2494
2495 static void setup_modinfo(struct module *mod, struct load_info *info)
2496 {
2497 struct module_attribute *attr;
2498 int i;
2499
2500 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2501 if (attr->setup)
2502 attr->setup(mod, get_modinfo(info, attr->attr.name));
2503 }
2504 }
2505
2506 static void free_modinfo(struct module *mod)
2507 {
2508 struct module_attribute *attr;
2509 int i;
2510
2511 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2512 if (attr->free)
2513 attr->free(mod);
2514 }
2515 }
2516
2517 #ifdef CONFIG_KALLSYMS
2518
2519 /* Lookup exported symbol in given range of kernel_symbols */
2520 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2521 const struct kernel_symbol *start,
2522 const struct kernel_symbol *stop)
2523 {
2524 return bsearch(name, start, stop - start,
2525 sizeof(struct kernel_symbol), cmp_name);
2526 }
2527
2528 static int is_exported(const char *name, unsigned long value,
2529 const struct module *mod)
2530 {
2531 const struct kernel_symbol *ks;
2532 if (!mod)
2533 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2534 else
2535 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2536
2537 return ks != NULL && kernel_symbol_value(ks) == value;
2538 }
2539
2540 /* As per nm */
2541 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2542 {
2543 const Elf_Shdr *sechdrs = info->sechdrs;
2544
2545 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2546 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2547 return 'v';
2548 else
2549 return 'w';
2550 }
2551 if (sym->st_shndx == SHN_UNDEF)
2552 return 'U';
2553 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2554 return 'a';
2555 if (sym->st_shndx >= SHN_LORESERVE)
2556 return '?';
2557 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2558 return 't';
2559 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2560 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2561 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2562 return 'r';
2563 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2564 return 'g';
2565 else
2566 return 'd';
2567 }
2568 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2569 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2570 return 's';
2571 else
2572 return 'b';
2573 }
2574 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2575 ".debug")) {
2576 return 'n';
2577 }
2578 return '?';
2579 }
2580
2581 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2582 unsigned int shnum, unsigned int pcpundx)
2583 {
2584 const Elf_Shdr *sec;
2585
2586 if (src->st_shndx == SHN_UNDEF
2587 || src->st_shndx >= shnum
2588 || !src->st_name)
2589 return false;
2590
2591 #ifdef CONFIG_KALLSYMS_ALL
2592 if (src->st_shndx == pcpundx)
2593 return true;
2594 #endif
2595
2596 sec = sechdrs + src->st_shndx;
2597 if (!(sec->sh_flags & SHF_ALLOC)
2598 #ifndef CONFIG_KALLSYMS_ALL
2599 || !(sec->sh_flags & SHF_EXECINSTR)
2600 #endif
2601 || (sec->sh_entsize & INIT_OFFSET_MASK))
2602 return false;
2603
2604 return true;
2605 }
2606
2607 /*
2608 * We only allocate and copy the strings needed by the parts of symtab
2609 * we keep. This is simple, but has the effect of making multiple
2610 * copies of duplicates. We could be more sophisticated, see
2611 * linux-kernel thread starting with
2612 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2613 */
2614 static void layout_symtab(struct module *mod, struct load_info *info)
2615 {
2616 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2617 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2618 const Elf_Sym *src;
2619 unsigned int i, nsrc, ndst, strtab_size = 0;
2620
2621 /* Put symbol section at end of init part of module. */
2622 symsect->sh_flags |= SHF_ALLOC;
2623 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2624 info->index.sym) | INIT_OFFSET_MASK;
2625 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2626
2627 src = (void *)info->hdr + symsect->sh_offset;
2628 nsrc = symsect->sh_size / sizeof(*src);
2629
2630 /* Compute total space required for the core symbols' strtab. */
2631 for (ndst = i = 0; i < nsrc; i++) {
2632 if (i == 0 || is_livepatch_module(mod) ||
2633 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2634 info->index.pcpu)) {
2635 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2636 ndst++;
2637 }
2638 }
2639
2640 /* Append room for core symbols at end of core part. */
2641 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2642 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2643 mod->core_layout.size += strtab_size;
2644 info->core_typeoffs = mod->core_layout.size;
2645 mod->core_layout.size += ndst * sizeof(char);
2646 mod->core_layout.size = debug_align(mod->core_layout.size);
2647
2648 /* Put string table section at end of init part of module. */
2649 strsect->sh_flags |= SHF_ALLOC;
2650 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2651 info->index.str) | INIT_OFFSET_MASK;
2652 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2653
2654 /* We'll tack temporary mod_kallsyms on the end. */
2655 mod->init_layout.size = ALIGN(mod->init_layout.size,
2656 __alignof__(struct mod_kallsyms));
2657 info->mod_kallsyms_init_off = mod->init_layout.size;
2658 mod->init_layout.size += sizeof(struct mod_kallsyms);
2659 info->init_typeoffs = mod->init_layout.size;
2660 mod->init_layout.size += nsrc * sizeof(char);
2661 mod->init_layout.size = debug_align(mod->init_layout.size);
2662 }
2663
2664 /*
2665 * We use the full symtab and strtab which layout_symtab arranged to
2666 * be appended to the init section. Later we switch to the cut-down
2667 * core-only ones.
2668 */
2669 static void add_kallsyms(struct module *mod, const struct load_info *info)
2670 {
2671 unsigned int i, ndst;
2672 const Elf_Sym *src;
2673 Elf_Sym *dst;
2674 char *s;
2675 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2676
2677 /* Set up to point into init section. */
2678 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2679
2680 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2681 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2682 /* Make sure we get permanent strtab: don't use info->strtab. */
2683 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2684 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2685
2686 /*
2687 * Now populate the cut down core kallsyms for after init
2688 * and set types up while we still have access to sections.
2689 */
2690 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2691 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2692 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2693 src = mod->kallsyms->symtab;
2694 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2695 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2696 if (i == 0 || is_livepatch_module(mod) ||
2697 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2698 info->index.pcpu)) {
2699 mod->core_kallsyms.typetab[ndst] =
2700 mod->kallsyms->typetab[i];
2701 dst[ndst] = src[i];
2702 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2703 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2704 KSYM_NAME_LEN) + 1;
2705 }
2706 }
2707 mod->core_kallsyms.num_symtab = ndst;
2708 }
2709 #else
2710 static inline void layout_symtab(struct module *mod, struct load_info *info)
2711 {
2712 }
2713
2714 static void add_kallsyms(struct module *mod, const struct load_info *info)
2715 {
2716 }
2717 #endif /* CONFIG_KALLSYMS */
2718
2719 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2720 {
2721 if (!debug)
2722 return;
2723 ddebug_add_module(debug, num, mod->name);
2724 }
2725
2726 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2727 {
2728 if (debug)
2729 ddebug_remove_module(mod->name);
2730 }
2731
2732 void * __weak module_alloc(unsigned long size)
2733 {
2734 return vmalloc_exec(size);
2735 }
2736
2737 #ifdef CONFIG_DEBUG_KMEMLEAK
2738 static void kmemleak_load_module(const struct module *mod,
2739 const struct load_info *info)
2740 {
2741 unsigned int i;
2742
2743 /* only scan the sections containing data */
2744 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2745
2746 for (i = 1; i < info->hdr->e_shnum; i++) {
2747 /* Scan all writable sections that's not executable */
2748 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2749 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2750 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2751 continue;
2752
2753 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2754 info->sechdrs[i].sh_size, GFP_KERNEL);
2755 }
2756 }
2757 #else
2758 static inline void kmemleak_load_module(const struct module *mod,
2759 const struct load_info *info)
2760 {
2761 }
2762 #endif
2763
2764 #ifdef CONFIG_MODULE_SIG
2765 static int module_sig_check(struct load_info *info, int flags)
2766 {
2767 int err = -ENOKEY;
2768 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2769 const void *mod = info->hdr;
2770
2771 /*
2772 * Require flags == 0, as a module with version information
2773 * removed is no longer the module that was signed
2774 */
2775 if (flags == 0 &&
2776 info->len > markerlen &&
2777 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2778 /* We truncate the module to discard the signature */
2779 info->len -= markerlen;
2780 err = mod_verify_sig(mod, info);
2781 }
2782
2783 if (!err) {
2784 info->sig_ok = true;
2785 return 0;
2786 }
2787
2788 /* Not having a signature is only an error if we're strict. */
2789 if (err == -ENOKEY && !is_module_sig_enforced())
2790 err = 0;
2791
2792 return err;
2793 }
2794 #else /* !CONFIG_MODULE_SIG */
2795 static int module_sig_check(struct load_info *info, int flags)
2796 {
2797 return 0;
2798 }
2799 #endif /* !CONFIG_MODULE_SIG */
2800
2801 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2802 static int elf_header_check(struct load_info *info)
2803 {
2804 if (info->len < sizeof(*(info->hdr)))
2805 return -ENOEXEC;
2806
2807 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2808 || info->hdr->e_type != ET_REL
2809 || !elf_check_arch(info->hdr)
2810 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2811 return -ENOEXEC;
2812
2813 if (info->hdr->e_shoff >= info->len
2814 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2815 info->len - info->hdr->e_shoff))
2816 return -ENOEXEC;
2817
2818 return 0;
2819 }
2820
2821 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2822
2823 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2824 {
2825 do {
2826 unsigned long n = min(len, COPY_CHUNK_SIZE);
2827
2828 if (copy_from_user(dst, usrc, n) != 0)
2829 return -EFAULT;
2830 cond_resched();
2831 dst += n;
2832 usrc += n;
2833 len -= n;
2834 } while (len);
2835 return 0;
2836 }
2837
2838 #ifdef CONFIG_LIVEPATCH
2839 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2840 {
2841 if (get_modinfo(info, "livepatch")) {
2842 mod->klp = true;
2843 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2844 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2845 mod->name);
2846 }
2847
2848 return 0;
2849 }
2850 #else /* !CONFIG_LIVEPATCH */
2851 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2852 {
2853 if (get_modinfo(info, "livepatch")) {
2854 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2855 mod->name);
2856 return -ENOEXEC;
2857 }
2858
2859 return 0;
2860 }
2861 #endif /* CONFIG_LIVEPATCH */
2862
2863 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2864 {
2865 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2866 return;
2867
2868 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2869 mod->name);
2870 }
2871
2872 /* Sets info->hdr and info->len. */
2873 static int copy_module_from_user(const void __user *umod, unsigned long len,
2874 struct load_info *info)
2875 {
2876 int err;
2877
2878 info->len = len;
2879 if (info->len < sizeof(*(info->hdr)))
2880 return -ENOEXEC;
2881
2882 err = security_kernel_load_data(LOADING_MODULE);
2883 if (err)
2884 return err;
2885
2886 /* Suck in entire file: we'll want most of it. */
2887 info->hdr = __vmalloc(info->len,
2888 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2889 if (!info->hdr)
2890 return -ENOMEM;
2891
2892 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2893 vfree(info->hdr);
2894 return -EFAULT;
2895 }
2896
2897 return 0;
2898 }
2899
2900 static void free_copy(struct load_info *info)
2901 {
2902 vfree(info->hdr);
2903 }
2904
2905 static int rewrite_section_headers(struct load_info *info, int flags)
2906 {
2907 unsigned int i;
2908
2909 /* This should always be true, but let's be sure. */
2910 info->sechdrs[0].sh_addr = 0;
2911
2912 for (i = 1; i < info->hdr->e_shnum; i++) {
2913 Elf_Shdr *shdr = &info->sechdrs[i];
2914 if (shdr->sh_type != SHT_NOBITS
2915 && info->len < shdr->sh_offset + shdr->sh_size) {
2916 pr_err("Module len %lu truncated\n", info->len);
2917 return -ENOEXEC;
2918 }
2919
2920 /* Mark all sections sh_addr with their address in the
2921 temporary image. */
2922 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2923
2924 #ifndef CONFIG_MODULE_UNLOAD
2925 /* Don't load .exit sections */
2926 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2927 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2928 #endif
2929 }
2930
2931 /* Track but don't keep modinfo and version sections. */
2932 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2933 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2934
2935 return 0;
2936 }
2937
2938 /*
2939 * Set up our basic convenience variables (pointers to section headers,
2940 * search for module section index etc), and do some basic section
2941 * verification.
2942 *
2943 * Set info->mod to the temporary copy of the module in info->hdr. The final one
2944 * will be allocated in move_module().
2945 */
2946 static int setup_load_info(struct load_info *info, int flags)
2947 {
2948 unsigned int i;
2949
2950 /* Set up the convenience variables */
2951 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2952 info->secstrings = (void *)info->hdr
2953 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2954
2955 /* Try to find a name early so we can log errors with a module name */
2956 info->index.info = find_sec(info, ".modinfo");
2957 if (!info->index.info)
2958 info->name = "(missing .modinfo section)";
2959 else
2960 info->name = get_modinfo(info, "name");
2961
2962 /* Find internal symbols and strings. */
2963 for (i = 1; i < info->hdr->e_shnum; i++) {
2964 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2965 info->index.sym = i;
2966 info->index.str = info->sechdrs[i].sh_link;
2967 info->strtab = (char *)info->hdr
2968 + info->sechdrs[info->index.str].sh_offset;
2969 break;
2970 }
2971 }
2972
2973 if (info->index.sym == 0) {
2974 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2975 return -ENOEXEC;
2976 }
2977
2978 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2979 if (!info->index.mod) {
2980 pr_warn("%s: No module found in object\n",
2981 info->name ?: "(missing .modinfo name field)");
2982 return -ENOEXEC;
2983 }
2984 /* This is temporary: point mod into copy of data. */
2985 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2986
2987 /*
2988 * If we didn't load the .modinfo 'name' field earlier, fall back to
2989 * on-disk struct mod 'name' field.
2990 */
2991 if (!info->name)
2992 info->name = info->mod->name;
2993
2994 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2995 info->index.vers = 0; /* Pretend no __versions section! */
2996 else
2997 info->index.vers = find_sec(info, "__versions");
2998
2999 info->index.pcpu = find_pcpusec(info);
3000
3001 return 0;
3002 }
3003
3004 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3005 {
3006 const char *modmagic = get_modinfo(info, "vermagic");
3007 int err;
3008
3009 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3010 modmagic = NULL;
3011
3012 /* This is allowed: modprobe --force will invalidate it. */
3013 if (!modmagic) {
3014 err = try_to_force_load(mod, "bad vermagic");
3015 if (err)
3016 return err;
3017 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3018 pr_err("%s: version magic '%s' should be '%s'\n",
3019 info->name, modmagic, vermagic);
3020 return -ENOEXEC;
3021 }
3022
3023 if (!get_modinfo(info, "intree")) {
3024 if (!test_taint(TAINT_OOT_MODULE))
3025 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3026 mod->name);
3027 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3028 }
3029
3030 check_modinfo_retpoline(mod, info);
3031
3032 if (get_modinfo(info, "staging")) {
3033 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3034 pr_warn("%s: module is from the staging directory, the quality "
3035 "is unknown, you have been warned.\n", mod->name);
3036 }
3037
3038 err = check_modinfo_livepatch(mod, info);
3039 if (err)
3040 return err;
3041
3042 /* Set up license info based on the info section */
3043 set_license(mod, get_modinfo(info, "license"));
3044
3045 return 0;
3046 }
3047
3048 static int find_module_sections(struct module *mod, struct load_info *info)
3049 {
3050 mod->kp = section_objs(info, "__param",
3051 sizeof(*mod->kp), &mod->num_kp);
3052 mod->syms = section_objs(info, "__ksymtab",
3053 sizeof(*mod->syms), &mod->num_syms);
3054 mod->crcs = section_addr(info, "__kcrctab");
3055 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3056 sizeof(*mod->gpl_syms),
3057 &mod->num_gpl_syms);
3058 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3059 mod->gpl_future_syms = section_objs(info,
3060 "__ksymtab_gpl_future",
3061 sizeof(*mod->gpl_future_syms),
3062 &mod->num_gpl_future_syms);
3063 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3064
3065 #ifdef CONFIG_UNUSED_SYMBOLS
3066 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3067 sizeof(*mod->unused_syms),
3068 &mod->num_unused_syms);
3069 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3070 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3071 sizeof(*mod->unused_gpl_syms),
3072 &mod->num_unused_gpl_syms);
3073 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3074 #endif
3075 #ifdef CONFIG_CONSTRUCTORS
3076 mod->ctors = section_objs(info, ".ctors",
3077 sizeof(*mod->ctors), &mod->num_ctors);
3078 if (!mod->ctors)
3079 mod->ctors = section_objs(info, ".init_array",
3080 sizeof(*mod->ctors), &mod->num_ctors);
3081 else if (find_sec(info, ".init_array")) {
3082 /*
3083 * This shouldn't happen with same compiler and binutils
3084 * building all parts of the module.
3085 */
3086 pr_warn("%s: has both .ctors and .init_array.\n",
3087 mod->name);
3088 return -EINVAL;
3089 }
3090 #endif
3091
3092 #ifdef CONFIG_TRACEPOINTS
3093 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3094 sizeof(*mod->tracepoints_ptrs),
3095 &mod->num_tracepoints);
3096 #endif
3097 #ifdef CONFIG_BPF_EVENTS
3098 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3099 sizeof(*mod->bpf_raw_events),
3100 &mod->num_bpf_raw_events);
3101 #endif
3102 #ifdef CONFIG_JUMP_LABEL
3103 mod->jump_entries = section_objs(info, "__jump_table",
3104 sizeof(*mod->jump_entries),
3105 &mod->num_jump_entries);
3106 #endif
3107 #ifdef CONFIG_EVENT_TRACING
3108 mod->trace_events = section_objs(info, "_ftrace_events",
3109 sizeof(*mod->trace_events),
3110 &mod->num_trace_events);
3111 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3112 sizeof(*mod->trace_evals),
3113 &mod->num_trace_evals);
3114 #endif
3115 #ifdef CONFIG_TRACING
3116 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3117 sizeof(*mod->trace_bprintk_fmt_start),
3118 &mod->num_trace_bprintk_fmt);
3119 #endif
3120 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3121 /* sechdrs[0].sh_size is always zero */
3122 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3123 sizeof(*mod->ftrace_callsites),
3124 &mod->num_ftrace_callsites);
3125 #endif
3126 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3127 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3128 sizeof(*mod->ei_funcs),
3129 &mod->num_ei_funcs);
3130 #endif
3131 mod->extable = section_objs(info, "__ex_table",
3132 sizeof(*mod->extable), &mod->num_exentries);
3133
3134 if (section_addr(info, "__obsparm"))
3135 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3136
3137 info->debug = section_objs(info, "__verbose",
3138 sizeof(*info->debug), &info->num_debug);
3139
3140 return 0;
3141 }
3142
3143 static int move_module(struct module *mod, struct load_info *info)
3144 {
3145 int i;
3146 void *ptr;
3147
3148 /* Do the allocs. */
3149 ptr = module_alloc(mod->core_layout.size);
3150 /*
3151 * The pointer to this block is stored in the module structure
3152 * which is inside the block. Just mark it as not being a
3153 * leak.
3154 */
3155 kmemleak_not_leak(ptr);
3156 if (!ptr)
3157 return -ENOMEM;
3158
3159 memset(ptr, 0, mod->core_layout.size);
3160 mod->core_layout.base = ptr;
3161
3162 if (mod->init_layout.size) {
3163 ptr = module_alloc(mod->init_layout.size);
3164 /*
3165 * The pointer to this block is stored in the module structure
3166 * which is inside the block. This block doesn't need to be
3167 * scanned as it contains data and code that will be freed
3168 * after the module is initialized.
3169 */
3170 kmemleak_ignore(ptr);
3171 if (!ptr) {
3172 module_memfree(mod->core_layout.base);
3173 return -ENOMEM;
3174 }
3175 memset(ptr, 0, mod->init_layout.size);
3176 mod->init_layout.base = ptr;
3177 } else
3178 mod->init_layout.base = NULL;
3179
3180 /* Transfer each section which specifies SHF_ALLOC */
3181 pr_debug("final section addresses:\n");
3182 for (i = 0; i < info->hdr->e_shnum; i++) {
3183 void *dest;
3184 Elf_Shdr *shdr = &info->sechdrs[i];
3185
3186 if (!(shdr->sh_flags & SHF_ALLOC))
3187 continue;
3188
3189 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3190 dest = mod->init_layout.base
3191 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3192 else
3193 dest = mod->core_layout.base + shdr->sh_entsize;
3194
3195 if (shdr->sh_type != SHT_NOBITS)
3196 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3197 /* Update sh_addr to point to copy in image. */
3198 shdr->sh_addr = (unsigned long)dest;
3199 pr_debug("\t0x%lx %s\n",
3200 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3201 }
3202
3203 return 0;
3204 }
3205
3206 static int check_module_license_and_versions(struct module *mod)
3207 {
3208 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3209
3210 /*
3211 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3212 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3213 * using GPL-only symbols it needs.
3214 */
3215 if (strcmp(mod->name, "ndiswrapper") == 0)
3216 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3217
3218 /* driverloader was caught wrongly pretending to be under GPL */
3219 if (strcmp(mod->name, "driverloader") == 0)
3220 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3221 LOCKDEP_NOW_UNRELIABLE);
3222
3223 /* lve claims to be GPL but upstream won't provide source */
3224 if (strcmp(mod->name, "lve") == 0)
3225 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3226 LOCKDEP_NOW_UNRELIABLE);
3227
3228 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3229 pr_warn("%s: module license taints kernel.\n", mod->name);
3230
3231 #ifdef CONFIG_MODVERSIONS
3232 if ((mod->num_syms && !mod->crcs)
3233 || (mod->num_gpl_syms && !mod->gpl_crcs)
3234 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3235 #ifdef CONFIG_UNUSED_SYMBOLS
3236 || (mod->num_unused_syms && !mod->unused_crcs)
3237 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3238 #endif
3239 ) {
3240 return try_to_force_load(mod,
3241 "no versions for exported symbols");
3242 }
3243 #endif
3244 return 0;
3245 }
3246
3247 static void flush_module_icache(const struct module *mod)
3248 {
3249 mm_segment_t old_fs;
3250
3251 /* flush the icache in correct context */
3252 old_fs = get_fs();
3253 set_fs(KERNEL_DS);
3254
3255 /*
3256 * Flush the instruction cache, since we've played with text.
3257 * Do it before processing of module parameters, so the module
3258 * can provide parameter accessor functions of its own.
3259 */
3260 if (mod->init_layout.base)
3261 flush_icache_range((unsigned long)mod->init_layout.base,
3262 (unsigned long)mod->init_layout.base
3263 + mod->init_layout.size);
3264 flush_icache_range((unsigned long)mod->core_layout.base,
3265 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3266
3267 set_fs(old_fs);
3268 }
3269
3270 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3271 Elf_Shdr *sechdrs,
3272 char *secstrings,
3273 struct module *mod)
3274 {
3275 return 0;
3276 }
3277
3278 /* module_blacklist is a comma-separated list of module names */
3279 static char *module_blacklist;
3280 static bool blacklisted(const char *module_name)
3281 {
3282 const char *p;
3283 size_t len;
3284
3285 if (!module_blacklist)
3286 return false;
3287
3288 for (p = module_blacklist; *p; p += len) {
3289 len = strcspn(p, ",");
3290 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3291 return true;
3292 if (p[len] == ',')
3293 len++;
3294 }
3295 return false;
3296 }
3297 core_param(module_blacklist, module_blacklist, charp, 0400);
3298
3299 static struct module *layout_and_allocate(struct load_info *info, int flags)
3300 {
3301 struct module *mod;
3302 unsigned int ndx;
3303 int err;
3304
3305 err = check_modinfo(info->mod, info, flags);
3306 if (err)
3307 return ERR_PTR(err);
3308
3309 /* Allow arches to frob section contents and sizes. */
3310 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3311 info->secstrings, info->mod);
3312 if (err < 0)
3313 return ERR_PTR(err);
3314
3315 /* We will do a special allocation for per-cpu sections later. */
3316 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3317
3318 /*
3319 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3320 * layout_sections() can put it in the right place.
3321 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3322 */
3323 ndx = find_sec(info, ".data..ro_after_init");
3324 if (ndx)
3325 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3326 /*
3327 * Mark the __jump_table section as ro_after_init as well: these data
3328 * structures are never modified, with the exception of entries that
3329 * refer to code in the __init section, which are annotated as such
3330 * at module load time.
3331 */
3332 ndx = find_sec(info, "__jump_table");
3333 if (ndx)
3334 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3335
3336 /* Determine total sizes, and put offsets in sh_entsize. For now
3337 this is done generically; there doesn't appear to be any
3338 special cases for the architectures. */
3339 layout_sections(info->mod, info);
3340 layout_symtab(info->mod, info);
3341
3342 /* Allocate and move to the final place */
3343 err = move_module(info->mod, info);
3344 if (err)
3345 return ERR_PTR(err);
3346
3347 /* Module has been copied to its final place now: return it. */
3348 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3349 kmemleak_load_module(mod, info);
3350 return mod;
3351 }
3352
3353 /* mod is no longer valid after this! */
3354 static void module_deallocate(struct module *mod, struct load_info *info)
3355 {
3356 percpu_modfree(mod);
3357 module_arch_freeing_init(mod);
3358 module_memfree(mod->init_layout.base);
3359 module_memfree(mod->core_layout.base);
3360 }
3361
3362 int __weak module_finalize(const Elf_Ehdr *hdr,
3363 const Elf_Shdr *sechdrs,
3364 struct module *me)
3365 {
3366 return 0;
3367 }
3368
3369 static int post_relocation(struct module *mod, const struct load_info *info)
3370 {
3371 /* Sort exception table now relocations are done. */
3372 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3373
3374 /* Copy relocated percpu area over. */
3375 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3376 info->sechdrs[info->index.pcpu].sh_size);
3377
3378 /* Setup kallsyms-specific fields. */
3379 add_kallsyms(mod, info);
3380
3381 /* Arch-specific module finalizing. */
3382 return module_finalize(info->hdr, info->sechdrs, mod);
3383 }
3384
3385 /* Is this module of this name done loading? No locks held. */
3386 static bool finished_loading(const char *name)
3387 {
3388 struct module *mod;
3389 bool ret;
3390
3391 /*
3392 * The module_mutex should not be a heavily contended lock;
3393 * if we get the occasional sleep here, we'll go an extra iteration
3394 * in the wait_event_interruptible(), which is harmless.
3395 */
3396 sched_annotate_sleep();
3397 mutex_lock(&module_mutex);
3398 mod = find_module_all(name, strlen(name), true);
3399 ret = !mod || mod->state == MODULE_STATE_LIVE;
3400 mutex_unlock(&module_mutex);
3401
3402 return ret;
3403 }
3404
3405 /* Call module constructors. */
3406 static void do_mod_ctors(struct module *mod)
3407 {
3408 #ifdef CONFIG_CONSTRUCTORS
3409 unsigned long i;
3410
3411 for (i = 0; i < mod->num_ctors; i++)
3412 mod->ctors[i]();
3413 #endif
3414 }
3415
3416 /* For freeing module_init on success, in case kallsyms traversing */
3417 struct mod_initfree {
3418 struct llist_node node;
3419 void *module_init;
3420 };
3421
3422 static void do_free_init(struct work_struct *w)
3423 {
3424 struct llist_node *pos, *n, *list;
3425 struct mod_initfree *initfree;
3426
3427 list = llist_del_all(&init_free_list);
3428
3429 synchronize_rcu();
3430
3431 llist_for_each_safe(pos, n, list) {
3432 initfree = container_of(pos, struct mod_initfree, node);
3433 module_memfree(initfree->module_init);
3434 kfree(initfree);
3435 }
3436 }
3437
3438 static int __init modules_wq_init(void)
3439 {
3440 INIT_WORK(&init_free_wq, do_free_init);
3441 init_llist_head(&init_free_list);
3442 return 0;
3443 }
3444 module_init(modules_wq_init);
3445
3446 /*
3447 * This is where the real work happens.
3448 *
3449 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3450 * helper command 'lx-symbols'.
3451 */
3452 static noinline int do_init_module(struct module *mod)
3453 {
3454 int ret = 0;
3455 struct mod_initfree *freeinit;
3456
3457 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3458 if (!freeinit) {
3459 ret = -ENOMEM;
3460 goto fail;
3461 }
3462 freeinit->module_init = mod->init_layout.base;
3463
3464 /*
3465 * We want to find out whether @mod uses async during init. Clear
3466 * PF_USED_ASYNC. async_schedule*() will set it.
3467 */
3468 current->flags &= ~PF_USED_ASYNC;
3469
3470 do_mod_ctors(mod);
3471 /* Start the module */
3472 if (mod->init != NULL)
3473 ret = do_one_initcall(mod->init);
3474 if (ret < 0) {
3475 goto fail_free_freeinit;
3476 }
3477 if (ret > 0) {
3478 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3479 "follow 0/-E convention\n"
3480 "%s: loading module anyway...\n",
3481 __func__, mod->name, ret, __func__);
3482 dump_stack();
3483 }
3484
3485 /* Now it's a first class citizen! */
3486 mod->state = MODULE_STATE_LIVE;
3487 blocking_notifier_call_chain(&module_notify_list,
3488 MODULE_STATE_LIVE, mod);
3489
3490 /*
3491 * We need to finish all async code before the module init sequence
3492 * is done. This has potential to deadlock. For example, a newly
3493 * detected block device can trigger request_module() of the
3494 * default iosched from async probing task. Once userland helper
3495 * reaches here, async_synchronize_full() will wait on the async
3496 * task waiting on request_module() and deadlock.
3497 *
3498 * This deadlock is avoided by perfomring async_synchronize_full()
3499 * iff module init queued any async jobs. This isn't a full
3500 * solution as it will deadlock the same if module loading from
3501 * async jobs nests more than once; however, due to the various
3502 * constraints, this hack seems to be the best option for now.
3503 * Please refer to the following thread for details.
3504 *
3505 * http://thread.gmane.org/gmane.linux.kernel/1420814
3506 */
3507 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3508 async_synchronize_full();
3509
3510 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3511 mod->init_layout.size);
3512 mutex_lock(&module_mutex);
3513 /* Drop initial reference. */
3514 module_put(mod);
3515 trim_init_extable(mod);
3516 #ifdef CONFIG_KALLSYMS
3517 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3518 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3519 #endif
3520 module_enable_ro(mod, true);
3521 mod_tree_remove_init(mod);
3522 module_arch_freeing_init(mod);
3523 mod->init_layout.base = NULL;
3524 mod->init_layout.size = 0;
3525 mod->init_layout.ro_size = 0;
3526 mod->init_layout.ro_after_init_size = 0;
3527 mod->init_layout.text_size = 0;
3528 /*
3529 * We want to free module_init, but be aware that kallsyms may be
3530 * walking this with preempt disabled. In all the failure paths, we
3531 * call synchronize_rcu(), but we don't want to slow down the success
3532 * path. module_memfree() cannot be called in an interrupt, so do the
3533 * work and call synchronize_rcu() in a work queue.
3534 *
3535 * Note that module_alloc() on most architectures creates W+X page
3536 * mappings which won't be cleaned up until do_free_init() runs. Any
3537 * code such as mark_rodata_ro() which depends on those mappings to
3538 * be cleaned up needs to sync with the queued work - ie
3539 * rcu_barrier()
3540 */
3541 if (llist_add(&freeinit->node, &init_free_list))
3542 schedule_work(&init_free_wq);
3543
3544 mutex_unlock(&module_mutex);
3545 wake_up_all(&module_wq);
3546
3547 return 0;
3548
3549 fail_free_freeinit:
3550 kfree(freeinit);
3551 fail:
3552 /* Try to protect us from buggy refcounters. */
3553 mod->state = MODULE_STATE_GOING;
3554 synchronize_rcu();
3555 module_put(mod);
3556 blocking_notifier_call_chain(&module_notify_list,
3557 MODULE_STATE_GOING, mod);
3558 klp_module_going(mod);
3559 ftrace_release_mod(mod);
3560 free_module(mod);
3561 wake_up_all(&module_wq);
3562 return ret;
3563 }
3564
3565 static int may_init_module(void)
3566 {
3567 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3568 return -EPERM;
3569
3570 return 0;
3571 }
3572
3573 /*
3574 * We try to place it in the list now to make sure it's unique before
3575 * we dedicate too many resources. In particular, temporary percpu
3576 * memory exhaustion.
3577 */
3578 static int add_unformed_module(struct module *mod)
3579 {
3580 int err;
3581 struct module *old;
3582
3583 mod->state = MODULE_STATE_UNFORMED;
3584
3585 again:
3586 mutex_lock(&module_mutex);
3587 old = find_module_all(mod->name, strlen(mod->name), true);
3588 if (old != NULL) {
3589 if (old->state != MODULE_STATE_LIVE) {
3590 /* Wait in case it fails to load. */
3591 mutex_unlock(&module_mutex);
3592 err = wait_event_interruptible(module_wq,
3593 finished_loading(mod->name));
3594 if (err)
3595 goto out_unlocked;
3596 goto again;
3597 }
3598 err = -EEXIST;
3599 goto out;
3600 }
3601 mod_update_bounds(mod);
3602 list_add_rcu(&mod->list, &modules);
3603 mod_tree_insert(mod);
3604 err = 0;
3605
3606 out:
3607 mutex_unlock(&module_mutex);
3608 out_unlocked:
3609 return err;
3610 }
3611
3612 static int complete_formation(struct module *mod, struct load_info *info)
3613 {
3614 int err;
3615
3616 mutex_lock(&module_mutex);
3617
3618 /* Find duplicate symbols (must be called under lock). */
3619 err = verify_exported_symbols(mod);
3620 if (err < 0)
3621 goto out;
3622
3623 /* This relies on module_mutex for list integrity. */
3624 module_bug_finalize(info->hdr, info->sechdrs, mod);
3625
3626 module_enable_ro(mod, false);
3627 module_enable_nx(mod);
3628
3629 /* Mark state as coming so strong_try_module_get() ignores us,
3630 * but kallsyms etc. can see us. */
3631 mod->state = MODULE_STATE_COMING;
3632 mutex_unlock(&module_mutex);
3633
3634 return 0;
3635
3636 out:
3637 mutex_unlock(&module_mutex);
3638 return err;
3639 }
3640
3641 static int prepare_coming_module(struct module *mod)
3642 {
3643 int err;
3644
3645 ftrace_module_enable(mod);
3646 err = klp_module_coming(mod);
3647 if (err)
3648 return err;
3649
3650 blocking_notifier_call_chain(&module_notify_list,
3651 MODULE_STATE_COMING, mod);
3652 return 0;
3653 }
3654
3655 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3656 void *arg)
3657 {
3658 struct module *mod = arg;
3659 int ret;
3660
3661 if (strcmp(param, "async_probe") == 0) {
3662 mod->async_probe_requested = true;
3663 return 0;
3664 }
3665
3666 /* Check for magic 'dyndbg' arg */
3667 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3668 if (ret != 0)
3669 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3670 return 0;
3671 }
3672
3673 /* Allocate and load the module: note that size of section 0 is always
3674 zero, and we rely on this for optional sections. */
3675 static int load_module(struct load_info *info, const char __user *uargs,
3676 int flags)
3677 {
3678 struct module *mod;
3679 long err = 0;
3680 char *after_dashes;
3681
3682 err = elf_header_check(info);
3683 if (err)
3684 goto free_copy;
3685
3686 err = setup_load_info(info, flags);
3687 if (err)
3688 goto free_copy;
3689
3690 if (blacklisted(info->name)) {
3691 err = -EPERM;
3692 goto free_copy;
3693 }
3694
3695 err = module_sig_check(info, flags);
3696 if (err)
3697 goto free_copy;
3698
3699 err = rewrite_section_headers(info, flags);
3700 if (err)
3701 goto free_copy;
3702
3703 /* Check module struct version now, before we try to use module. */
3704 if (!check_modstruct_version(info, info->mod)) {
3705 err = -ENOEXEC;
3706 goto free_copy;
3707 }
3708
3709 /* Figure out module layout, and allocate all the memory. */
3710 mod = layout_and_allocate(info, flags);
3711 if (IS_ERR(mod)) {
3712 err = PTR_ERR(mod);
3713 goto free_copy;
3714 }
3715
3716 audit_log_kern_module(mod->name);
3717
3718 /* Reserve our place in the list. */
3719 err = add_unformed_module(mod);
3720 if (err)
3721 goto free_module;
3722
3723 #ifdef CONFIG_MODULE_SIG
3724 mod->sig_ok = info->sig_ok;
3725 if (!mod->sig_ok) {
3726 pr_notice_once("%s: module verification failed: signature "
3727 "and/or required key missing - tainting "
3728 "kernel\n", mod->name);
3729 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3730 }
3731 #endif
3732
3733 /* To avoid stressing percpu allocator, do this once we're unique. */
3734 err = percpu_modalloc(mod, info);
3735 if (err)
3736 goto unlink_mod;
3737
3738 /* Now module is in final location, initialize linked lists, etc. */
3739 err = module_unload_init(mod);
3740 if (err)
3741 goto unlink_mod;
3742
3743 init_param_lock(mod);
3744
3745 /* Now we've got everything in the final locations, we can
3746 * find optional sections. */
3747 err = find_module_sections(mod, info);
3748 if (err)
3749 goto free_unload;
3750
3751 err = check_module_license_and_versions(mod);
3752 if (err)
3753 goto free_unload;
3754
3755 /* Set up MODINFO_ATTR fields */
3756 setup_modinfo(mod, info);
3757
3758 /* Fix up syms, so that st_value is a pointer to location. */
3759 err = simplify_symbols(mod, info);
3760 if (err < 0)
3761 goto free_modinfo;
3762
3763 err = apply_relocations(mod, info);
3764 if (err < 0)
3765 goto free_modinfo;
3766
3767 err = post_relocation(mod, info);
3768 if (err < 0)
3769 goto free_modinfo;
3770
3771 flush_module_icache(mod);
3772
3773 /* Now copy in args */
3774 mod->args = strndup_user(uargs, ~0UL >> 1);
3775 if (IS_ERR(mod->args)) {
3776 err = PTR_ERR(mod->args);
3777 goto free_arch_cleanup;
3778 }
3779
3780 dynamic_debug_setup(mod, info->debug, info->num_debug);
3781
3782 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3783 ftrace_module_init(mod);
3784
3785 /* Finally it's fully formed, ready to start executing. */
3786 err = complete_formation(mod, info);
3787 if (err)
3788 goto ddebug_cleanup;
3789
3790 err = prepare_coming_module(mod);
3791 if (err)
3792 goto bug_cleanup;
3793
3794 /* Module is ready to execute: parsing args may do that. */
3795 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3796 -32768, 32767, mod,
3797 unknown_module_param_cb);
3798 if (IS_ERR(after_dashes)) {
3799 err = PTR_ERR(after_dashes);
3800 goto coming_cleanup;
3801 } else if (after_dashes) {
3802 pr_warn("%s: parameters '%s' after `--' ignored\n",
3803 mod->name, after_dashes);
3804 }
3805
3806 /* Link in to sysfs. */
3807 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3808 if (err < 0)
3809 goto coming_cleanup;
3810
3811 if (is_livepatch_module(mod)) {
3812 err = copy_module_elf(mod, info);
3813 if (err < 0)
3814 goto sysfs_cleanup;
3815 }
3816
3817 /* Get rid of temporary copy. */
3818 free_copy(info);
3819
3820 /* Done! */
3821 trace_module_load(mod);
3822
3823 return do_init_module(mod);
3824
3825 sysfs_cleanup:
3826 mod_sysfs_teardown(mod);
3827 coming_cleanup:
3828 mod->state = MODULE_STATE_GOING;
3829 destroy_params(mod->kp, mod->num_kp);
3830 blocking_notifier_call_chain(&module_notify_list,
3831 MODULE_STATE_GOING, mod);
3832 klp_module_going(mod);
3833 bug_cleanup:
3834 /* module_bug_cleanup needs module_mutex protection */
3835 mutex_lock(&module_mutex);
3836 module_bug_cleanup(mod);
3837 mutex_unlock(&module_mutex);
3838
3839 ddebug_cleanup:
3840 ftrace_release_mod(mod);
3841 dynamic_debug_remove(mod, info->debug);
3842 synchronize_rcu();
3843 kfree(mod->args);
3844 free_arch_cleanup:
3845 module_arch_cleanup(mod);
3846 free_modinfo:
3847 free_modinfo(mod);
3848 free_unload:
3849 module_unload_free(mod);
3850 unlink_mod:
3851 mutex_lock(&module_mutex);
3852 /* Unlink carefully: kallsyms could be walking list. */
3853 list_del_rcu(&mod->list);
3854 mod_tree_remove(mod);
3855 wake_up_all(&module_wq);
3856 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3857 synchronize_rcu();
3858 mutex_unlock(&module_mutex);
3859 free_module:
3860 /* Free lock-classes; relies on the preceding sync_rcu() */
3861 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3862
3863 module_deallocate(mod, info);
3864 free_copy:
3865 free_copy(info);
3866 return err;
3867 }
3868
3869 SYSCALL_DEFINE3(init_module, void __user *, umod,
3870 unsigned long, len, const char __user *, uargs)
3871 {
3872 int err;
3873 struct load_info info = { };
3874
3875 err = may_init_module();
3876 if (err)
3877 return err;
3878
3879 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3880 umod, len, uargs);
3881
3882 err = copy_module_from_user(umod, len, &info);
3883 if (err)
3884 return err;
3885
3886 return load_module(&info, uargs, 0);
3887 }
3888
3889 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3890 {
3891 struct load_info info = { };
3892 loff_t size;
3893 void *hdr;
3894 int err;
3895
3896 err = may_init_module();
3897 if (err)
3898 return err;
3899
3900 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3901
3902 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3903 |MODULE_INIT_IGNORE_VERMAGIC))
3904 return -EINVAL;
3905
3906 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3907 READING_MODULE);
3908 if (err)
3909 return err;
3910 info.hdr = hdr;
3911 info.len = size;
3912
3913 return load_module(&info, uargs, flags);
3914 }
3915
3916 static inline int within(unsigned long addr, void *start, unsigned long size)
3917 {
3918 return ((void *)addr >= start && (void *)addr < start + size);
3919 }
3920
3921 #ifdef CONFIG_KALLSYMS
3922 /*
3923 * This ignores the intensely annoying "mapping symbols" found
3924 * in ARM ELF files: $a, $t and $d.
3925 */
3926 static inline int is_arm_mapping_symbol(const char *str)
3927 {
3928 if (str[0] == '.' && str[1] == 'L')
3929 return true;
3930 return str[0] == '$' && strchr("axtd", str[1])
3931 && (str[2] == '\0' || str[2] == '.');
3932 }
3933
3934 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
3935 {
3936 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3937 }
3938
3939 /*
3940 * Given a module and address, find the corresponding symbol and return its name
3941 * while providing its size and offset if needed.
3942 */
3943 static const char *find_kallsyms_symbol(struct module *mod,
3944 unsigned long addr,
3945 unsigned long *size,
3946 unsigned long *offset)
3947 {
3948 unsigned int i, best = 0;
3949 unsigned long nextval, bestval;
3950 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3951
3952 /* At worse, next value is at end of module */
3953 if (within_module_init(addr, mod))
3954 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3955 else
3956 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3957
3958 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
3959
3960 /* Scan for closest preceding symbol, and next symbol. (ELF
3961 starts real symbols at 1). */
3962 for (i = 1; i < kallsyms->num_symtab; i++) {
3963 const Elf_Sym *sym = &kallsyms->symtab[i];
3964 unsigned long thisval = kallsyms_symbol_value(sym);
3965
3966 if (sym->st_shndx == SHN_UNDEF)
3967 continue;
3968
3969 /* We ignore unnamed symbols: they're uninformative
3970 * and inserted at a whim. */
3971 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
3972 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
3973 continue;
3974
3975 if (thisval <= addr && thisval > bestval) {
3976 best = i;
3977 bestval = thisval;
3978 }
3979 if (thisval > addr && thisval < nextval)
3980 nextval = thisval;
3981 }
3982
3983 if (!best)
3984 return NULL;
3985
3986 if (size)
3987 *size = nextval - bestval;
3988 if (offset)
3989 *offset = addr - bestval;
3990
3991 return kallsyms_symbol_name(kallsyms, best);
3992 }
3993
3994 void * __weak dereference_module_function_descriptor(struct module *mod,
3995 void *ptr)
3996 {
3997 return ptr;
3998 }
3999
4000 /* For kallsyms to ask for address resolution. NULL means not found. Careful
4001 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4002 const char *module_address_lookup(unsigned long addr,
4003 unsigned long *size,
4004 unsigned long *offset,
4005 char **modname,
4006 char *namebuf)
4007 {
4008 const char *ret = NULL;
4009 struct module *mod;
4010
4011 preempt_disable();
4012 mod = __module_address(addr);
4013 if (mod) {
4014 if (modname)
4015 *modname = mod->name;
4016
4017 ret = find_kallsyms_symbol(mod, addr, size, offset);
4018 }
4019 /* Make a copy in here where it's safe */
4020 if (ret) {
4021 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4022 ret = namebuf;
4023 }
4024 preempt_enable();
4025
4026 return ret;
4027 }
4028
4029 int lookup_module_symbol_name(unsigned long addr, char *symname)
4030 {
4031 struct module *mod;
4032
4033 preempt_disable();
4034 list_for_each_entry_rcu(mod, &modules, list) {
4035 if (mod->state == MODULE_STATE_UNFORMED)
4036 continue;
4037 if (within_module(addr, mod)) {
4038 const char *sym;
4039
4040 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4041 if (!sym)
4042 goto out;
4043
4044 strlcpy(symname, sym, KSYM_NAME_LEN);
4045 preempt_enable();
4046 return 0;
4047 }
4048 }
4049 out:
4050 preempt_enable();
4051 return -ERANGE;
4052 }
4053
4054 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4055 unsigned long *offset, char *modname, char *name)
4056 {
4057 struct module *mod;
4058
4059 preempt_disable();
4060 list_for_each_entry_rcu(mod, &modules, list) {
4061 if (mod->state == MODULE_STATE_UNFORMED)
4062 continue;
4063 if (within_module(addr, mod)) {
4064 const char *sym;
4065
4066 sym = find_kallsyms_symbol(mod, addr, size, offset);
4067 if (!sym)
4068 goto out;
4069 if (modname)
4070 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4071 if (name)
4072 strlcpy(name, sym, KSYM_NAME_LEN);
4073 preempt_enable();
4074 return 0;
4075 }
4076 }
4077 out:
4078 preempt_enable();
4079 return -ERANGE;
4080 }
4081
4082 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4083 char *name, char *module_name, int *exported)
4084 {
4085 struct module *mod;
4086
4087 preempt_disable();
4088 list_for_each_entry_rcu(mod, &modules, list) {
4089 struct mod_kallsyms *kallsyms;
4090
4091 if (mod->state == MODULE_STATE_UNFORMED)
4092 continue;
4093 kallsyms = rcu_dereference_sched(mod->kallsyms);
4094 if (symnum < kallsyms->num_symtab) {
4095 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4096
4097 *value = kallsyms_symbol_value(sym);
4098 *type = kallsyms->typetab[symnum];
4099 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4100 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4101 *exported = is_exported(name, *value, mod);
4102 preempt_enable();
4103 return 0;
4104 }
4105 symnum -= kallsyms->num_symtab;
4106 }
4107 preempt_enable();
4108 return -ERANGE;
4109 }
4110
4111 /* Given a module and name of symbol, find and return the symbol's value */
4112 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4113 {
4114 unsigned int i;
4115 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4116
4117 for (i = 0; i < kallsyms->num_symtab; i++) {
4118 const Elf_Sym *sym = &kallsyms->symtab[i];
4119
4120 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4121 sym->st_shndx != SHN_UNDEF)
4122 return kallsyms_symbol_value(sym);
4123 }
4124 return 0;
4125 }
4126
4127 /* Look for this name: can be of form module:name. */
4128 unsigned long module_kallsyms_lookup_name(const char *name)
4129 {
4130 struct module *mod;
4131 char *colon;
4132 unsigned long ret = 0;
4133
4134 /* Don't lock: we're in enough trouble already. */
4135 preempt_disable();
4136 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4137 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4138 ret = find_kallsyms_symbol_value(mod, colon+1);
4139 } else {
4140 list_for_each_entry_rcu(mod, &modules, list) {
4141 if (mod->state == MODULE_STATE_UNFORMED)
4142 continue;
4143 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4144 break;
4145 }
4146 }
4147 preempt_enable();
4148 return ret;
4149 }
4150
4151 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4152 struct module *, unsigned long),
4153 void *data)
4154 {
4155 struct module *mod;
4156 unsigned int i;
4157 int ret;
4158
4159 module_assert_mutex();
4160
4161 list_for_each_entry(mod, &modules, list) {
4162 /* We hold module_mutex: no need for rcu_dereference_sched */
4163 struct mod_kallsyms *kallsyms = mod->kallsyms;
4164
4165 if (mod->state == MODULE_STATE_UNFORMED)
4166 continue;
4167 for (i = 0; i < kallsyms->num_symtab; i++) {
4168 const Elf_Sym *sym = &kallsyms->symtab[i];
4169
4170 if (sym->st_shndx == SHN_UNDEF)
4171 continue;
4172
4173 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4174 mod, kallsyms_symbol_value(sym));
4175 if (ret != 0)
4176 return ret;
4177 }
4178 }
4179 return 0;
4180 }
4181 #endif /* CONFIG_KALLSYMS */
4182
4183 /* Maximum number of characters written by module_flags() */
4184 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4185
4186 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4187 static char *module_flags(struct module *mod, char *buf)
4188 {
4189 int bx = 0;
4190
4191 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4192 if (mod->taints ||
4193 mod->state == MODULE_STATE_GOING ||
4194 mod->state == MODULE_STATE_COMING) {
4195 buf[bx++] = '(';
4196 bx += module_flags_taint(mod, buf + bx);
4197 /* Show a - for module-is-being-unloaded */
4198 if (mod->state == MODULE_STATE_GOING)
4199 buf[bx++] = '-';
4200 /* Show a + for module-is-being-loaded */
4201 if (mod->state == MODULE_STATE_COMING)
4202 buf[bx++] = '+';
4203 buf[bx++] = ')';
4204 }
4205 buf[bx] = '\0';
4206
4207 return buf;
4208 }
4209
4210 #ifdef CONFIG_PROC_FS
4211 /* Called by the /proc file system to return a list of modules. */
4212 static void *m_start(struct seq_file *m, loff_t *pos)
4213 {
4214 mutex_lock(&module_mutex);
4215 return seq_list_start(&modules, *pos);
4216 }
4217
4218 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4219 {
4220 return seq_list_next(p, &modules, pos);
4221 }
4222
4223 static void m_stop(struct seq_file *m, void *p)
4224 {
4225 mutex_unlock(&module_mutex);
4226 }
4227
4228 static int m_show(struct seq_file *m, void *p)
4229 {
4230 struct module *mod = list_entry(p, struct module, list);
4231 char buf[MODULE_FLAGS_BUF_SIZE];
4232 void *value;
4233
4234 /* We always ignore unformed modules. */
4235 if (mod->state == MODULE_STATE_UNFORMED)
4236 return 0;
4237
4238 seq_printf(m, "%s %u",
4239 mod->name, mod->init_layout.size + mod->core_layout.size);
4240 print_unload_info(m, mod);
4241
4242 /* Informative for users. */
4243 seq_printf(m, " %s",
4244 mod->state == MODULE_STATE_GOING ? "Unloading" :
4245 mod->state == MODULE_STATE_COMING ? "Loading" :
4246 "Live");
4247 /* Used by oprofile and other similar tools. */
4248 value = m->private ? NULL : mod->core_layout.base;
4249 seq_printf(m, " 0x%px", value);
4250
4251 /* Taints info */
4252 if (mod->taints)
4253 seq_printf(m, " %s", module_flags(mod, buf));
4254
4255 seq_puts(m, "\n");
4256 return 0;
4257 }
4258
4259 /* Format: modulename size refcount deps address
4260
4261 Where refcount is a number or -, and deps is a comma-separated list
4262 of depends or -.
4263 */
4264 static const struct seq_operations modules_op = {
4265 .start = m_start,
4266 .next = m_next,
4267 .stop = m_stop,
4268 .show = m_show
4269 };
4270
4271 /*
4272 * This also sets the "private" pointer to non-NULL if the
4273 * kernel pointers should be hidden (so you can just test
4274 * "m->private" to see if you should keep the values private).
4275 *
4276 * We use the same logic as for /proc/kallsyms.
4277 */
4278 static int modules_open(struct inode *inode, struct file *file)
4279 {
4280 int err = seq_open(file, &modules_op);
4281
4282 if (!err) {
4283 struct seq_file *m = file->private_data;
4284 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4285 }
4286
4287 return err;
4288 }
4289
4290 static const struct file_operations proc_modules_operations = {
4291 .open = modules_open,
4292 .read = seq_read,
4293 .llseek = seq_lseek,
4294 .release = seq_release,
4295 };
4296
4297 static int __init proc_modules_init(void)
4298 {
4299 proc_create("modules", 0, NULL, &proc_modules_operations);
4300 return 0;
4301 }
4302 module_init(proc_modules_init);
4303 #endif
4304
4305 /* Given an address, look for it in the module exception tables. */
4306 const struct exception_table_entry *search_module_extables(unsigned long addr)
4307 {
4308 const struct exception_table_entry *e = NULL;
4309 struct module *mod;
4310
4311 preempt_disable();
4312 mod = __module_address(addr);
4313 if (!mod)
4314 goto out;
4315
4316 if (!mod->num_exentries)
4317 goto out;
4318
4319 e = search_extable(mod->extable,
4320 mod->num_exentries,
4321 addr);
4322 out:
4323 preempt_enable();
4324
4325 /*
4326 * Now, if we found one, we are running inside it now, hence
4327 * we cannot unload the module, hence no refcnt needed.
4328 */
4329 return e;
4330 }
4331
4332 /*
4333 * is_module_address - is this address inside a module?
4334 * @addr: the address to check.
4335 *
4336 * See is_module_text_address() if you simply want to see if the address
4337 * is code (not data).
4338 */
4339 bool is_module_address(unsigned long addr)
4340 {
4341 bool ret;
4342
4343 preempt_disable();
4344 ret = __module_address(addr) != NULL;
4345 preempt_enable();
4346
4347 return ret;
4348 }
4349
4350 /*
4351 * __module_address - get the module which contains an address.
4352 * @addr: the address.
4353 *
4354 * Must be called with preempt disabled or module mutex held so that
4355 * module doesn't get freed during this.
4356 */
4357 struct module *__module_address(unsigned long addr)
4358 {
4359 struct module *mod;
4360
4361 if (addr < module_addr_min || addr > module_addr_max)
4362 return NULL;
4363
4364 module_assert_mutex_or_preempt();
4365
4366 mod = mod_find(addr);
4367 if (mod) {
4368 BUG_ON(!within_module(addr, mod));
4369 if (mod->state == MODULE_STATE_UNFORMED)
4370 mod = NULL;
4371 }
4372 return mod;
4373 }
4374 EXPORT_SYMBOL_GPL(__module_address);
4375
4376 /*
4377 * is_module_text_address - is this address inside module code?
4378 * @addr: the address to check.
4379 *
4380 * See is_module_address() if you simply want to see if the address is
4381 * anywhere in a module. See kernel_text_address() for testing if an
4382 * address corresponds to kernel or module code.
4383 */
4384 bool is_module_text_address(unsigned long addr)
4385 {
4386 bool ret;
4387
4388 preempt_disable();
4389 ret = __module_text_address(addr) != NULL;
4390 preempt_enable();
4391
4392 return ret;
4393 }
4394
4395 /*
4396 * __module_text_address - get the module whose code contains an address.
4397 * @addr: the address.
4398 *
4399 * Must be called with preempt disabled or module mutex held so that
4400 * module doesn't get freed during this.
4401 */
4402 struct module *__module_text_address(unsigned long addr)
4403 {
4404 struct module *mod = __module_address(addr);
4405 if (mod) {
4406 /* Make sure it's within the text section. */
4407 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4408 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4409 mod = NULL;
4410 }
4411 return mod;
4412 }
4413 EXPORT_SYMBOL_GPL(__module_text_address);
4414
4415 /* Don't grab lock, we're oopsing. */
4416 void print_modules(void)
4417 {
4418 struct module *mod;
4419 char buf[MODULE_FLAGS_BUF_SIZE];
4420
4421 printk(KERN_DEFAULT "Modules linked in:");
4422 /* Most callers should already have preempt disabled, but make sure */
4423 preempt_disable();
4424 list_for_each_entry_rcu(mod, &modules, list) {
4425 if (mod->state == MODULE_STATE_UNFORMED)
4426 continue;
4427 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4428 }
4429 preempt_enable();
4430 if (last_unloaded_module[0])
4431 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4432 pr_cont("\n");
4433 }
4434
4435 #ifdef CONFIG_MODVERSIONS
4436 /* Generate the signature for all relevant module structures here.
4437 * If these change, we don't want to try to parse the module. */
4438 void module_layout(struct module *mod,
4439 struct modversion_info *ver,
4440 struct kernel_param *kp,
4441 struct kernel_symbol *ks,
4442 struct tracepoint * const *tp)
4443 {
4444 }
4445 EXPORT_SYMBOL(module_layout);
4446 #endif