]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/module.c
UBUNTU: Ubuntu-5.11.0-20.21
[mirror_ubuntu-hirsute-kernel.git] / kernel / module.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7 #define INCLUDE_VERMAGIC
8
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/file.h>
17 #include <linux/fs.h>
18 #include <linux/sysfs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/elf.h>
24 #include <linux/proc_fs.h>
25 #include <linux/security.h>
26 #include <linux/seq_file.h>
27 #include <linux/syscalls.h>
28 #include <linux/fcntl.h>
29 #include <linux/rcupdate.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/moduleparam.h>
33 #include <linux/errno.h>
34 #include <linux/err.h>
35 #include <linux/vermagic.h>
36 #include <linux/notifier.h>
37 #include <linux/sched.h>
38 #include <linux/device.h>
39 #include <linux/string.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/uaccess.h>
43 #include <asm/cacheflush.h>
44 #include <linux/set_memory.h>
45 #include <asm/mmu_context.h>
46 #include <linux/license.h>
47 #include <asm/sections.h>
48 #include <linux/tracepoint.h>
49 #include <linux/ftrace.h>
50 #include <linux/livepatch.h>
51 #include <linux/async.h>
52 #include <linux/percpu.h>
53 #include <linux/kmemleak.h>
54 #include <linux/jump_label.h>
55 #include <linux/pfn.h>
56 #include <linux/bsearch.h>
57 #include <linux/dynamic_debug.h>
58 #include <linux/audit.h>
59 #include <uapi/linux/module.h>
60 #include "module-internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/module.h>
64
65 #ifndef ARCH_SHF_SMALL
66 #define ARCH_SHF_SMALL 0
67 #endif
68
69 /*
70 * Modules' sections will be aligned on page boundaries
71 * to ensure complete separation of code and data, but
72 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
73 */
74 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
75 # define debug_align(X) ALIGN(X, PAGE_SIZE)
76 #else
77 # define debug_align(X) (X)
78 #endif
79
80 /* If this is set, the section belongs in the init part of the module */
81 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
82
83 /*
84 * Mutex protects:
85 * 1) List of modules (also safely readable with preempt_disable),
86 * 2) module_use links,
87 * 3) module_addr_min/module_addr_max.
88 * (delete and add uses RCU list operations).
89 */
90 DEFINE_MUTEX(module_mutex);
91 EXPORT_SYMBOL_GPL(module_mutex);
92 static LIST_HEAD(modules);
93
94 /* Work queue for freeing init sections in success case */
95 static void do_free_init(struct work_struct *w);
96 static DECLARE_WORK(init_free_wq, do_free_init);
97 static LLIST_HEAD(init_free_list);
98
99 #ifdef CONFIG_MODULES_TREE_LOOKUP
100
101 /*
102 * Use a latched RB-tree for __module_address(); this allows us to use
103 * RCU-sched lookups of the address from any context.
104 *
105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
106 * __module_address() hard by doing a lot of stack unwinding; potentially from
107 * NMI context.
108 */
109
110 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
111 {
112 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
113
114 return (unsigned long)layout->base;
115 }
116
117 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
118 {
119 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
120
121 return (unsigned long)layout->size;
122 }
123
124 static __always_inline bool
125 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
126 {
127 return __mod_tree_val(a) < __mod_tree_val(b);
128 }
129
130 static __always_inline int
131 mod_tree_comp(void *key, struct latch_tree_node *n)
132 {
133 unsigned long val = (unsigned long)key;
134 unsigned long start, end;
135
136 start = __mod_tree_val(n);
137 if (val < start)
138 return -1;
139
140 end = start + __mod_tree_size(n);
141 if (val >= end)
142 return 1;
143
144 return 0;
145 }
146
147 static const struct latch_tree_ops mod_tree_ops = {
148 .less = mod_tree_less,
149 .comp = mod_tree_comp,
150 };
151
152 static struct mod_tree_root {
153 struct latch_tree_root root;
154 unsigned long addr_min;
155 unsigned long addr_max;
156 } mod_tree __cacheline_aligned = {
157 .addr_min = -1UL,
158 };
159
160 #define module_addr_min mod_tree.addr_min
161 #define module_addr_max mod_tree.addr_max
162
163 static noinline void __mod_tree_insert(struct mod_tree_node *node)
164 {
165 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
166 }
167
168 static void __mod_tree_remove(struct mod_tree_node *node)
169 {
170 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 }
172
173 /*
174 * These modifications: insert, remove_init and remove; are serialized by the
175 * module_mutex.
176 */
177 static void mod_tree_insert(struct module *mod)
178 {
179 mod->core_layout.mtn.mod = mod;
180 mod->init_layout.mtn.mod = mod;
181
182 __mod_tree_insert(&mod->core_layout.mtn);
183 if (mod->init_layout.size)
184 __mod_tree_insert(&mod->init_layout.mtn);
185 }
186
187 static void mod_tree_remove_init(struct module *mod)
188 {
189 if (mod->init_layout.size)
190 __mod_tree_remove(&mod->init_layout.mtn);
191 }
192
193 static void mod_tree_remove(struct module *mod)
194 {
195 __mod_tree_remove(&mod->core_layout.mtn);
196 mod_tree_remove_init(mod);
197 }
198
199 static struct module *mod_find(unsigned long addr)
200 {
201 struct latch_tree_node *ltn;
202
203 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
204 if (!ltn)
205 return NULL;
206
207 return container_of(ltn, struct mod_tree_node, node)->mod;
208 }
209
210 #else /* MODULES_TREE_LOOKUP */
211
212 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
213
214 static void mod_tree_insert(struct module *mod) { }
215 static void mod_tree_remove_init(struct module *mod) { }
216 static void mod_tree_remove(struct module *mod) { }
217
218 static struct module *mod_find(unsigned long addr)
219 {
220 struct module *mod;
221
222 list_for_each_entry_rcu(mod, &modules, list,
223 lockdep_is_held(&module_mutex)) {
224 if (within_module(addr, mod))
225 return mod;
226 }
227
228 return NULL;
229 }
230
231 #endif /* MODULES_TREE_LOOKUP */
232
233 /*
234 * Bounds of module text, for speeding up __module_address.
235 * Protected by module_mutex.
236 */
237 static void __mod_update_bounds(void *base, unsigned int size)
238 {
239 unsigned long min = (unsigned long)base;
240 unsigned long max = min + size;
241
242 if (min < module_addr_min)
243 module_addr_min = min;
244 if (max > module_addr_max)
245 module_addr_max = max;
246 }
247
248 static void mod_update_bounds(struct module *mod)
249 {
250 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
251 if (mod->init_layout.size)
252 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
253 }
254
255 #ifdef CONFIG_KGDB_KDB
256 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
257 #endif /* CONFIG_KGDB_KDB */
258
259 static void module_assert_mutex(void)
260 {
261 lockdep_assert_held(&module_mutex);
262 }
263
264 static void module_assert_mutex_or_preempt(void)
265 {
266 #ifdef CONFIG_LOCKDEP
267 if (unlikely(!debug_locks))
268 return;
269
270 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
271 !lockdep_is_held(&module_mutex));
272 #endif
273 }
274
275 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
276 module_param(sig_enforce, bool_enable_only, 0644);
277
278 /*
279 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
280 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
281 */
282 bool is_module_sig_enforced(void)
283 {
284 return sig_enforce;
285 }
286 EXPORT_SYMBOL(is_module_sig_enforced);
287
288 void set_module_sig_enforced(void)
289 {
290 sig_enforce = true;
291 }
292
293 /* Block module loading/unloading? */
294 int modules_disabled = 0;
295 core_param(nomodule, modules_disabled, bint, 0);
296
297 /* Waiting for a module to finish initializing? */
298 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
299
300 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
301
302 int register_module_notifier(struct notifier_block *nb)
303 {
304 return blocking_notifier_chain_register(&module_notify_list, nb);
305 }
306 EXPORT_SYMBOL(register_module_notifier);
307
308 int unregister_module_notifier(struct notifier_block *nb)
309 {
310 return blocking_notifier_chain_unregister(&module_notify_list, nb);
311 }
312 EXPORT_SYMBOL(unregister_module_notifier);
313
314 /*
315 * We require a truly strong try_module_get(): 0 means success.
316 * Otherwise an error is returned due to ongoing or failed
317 * initialization etc.
318 */
319 static inline int strong_try_module_get(struct module *mod)
320 {
321 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
322 if (mod && mod->state == MODULE_STATE_COMING)
323 return -EBUSY;
324 if (try_module_get(mod))
325 return 0;
326 else
327 return -ENOENT;
328 }
329
330 static inline void add_taint_module(struct module *mod, unsigned flag,
331 enum lockdep_ok lockdep_ok)
332 {
333 add_taint(flag, lockdep_ok);
334 set_bit(flag, &mod->taints);
335 }
336
337 /*
338 * A thread that wants to hold a reference to a module only while it
339 * is running can call this to safely exit. nfsd and lockd use this.
340 */
341 void __noreturn __module_put_and_exit(struct module *mod, long code)
342 {
343 module_put(mod);
344 do_exit(code);
345 }
346 EXPORT_SYMBOL(__module_put_and_exit);
347
348 /* Find a module section: 0 means not found. */
349 static unsigned int find_sec(const struct load_info *info, const char *name)
350 {
351 unsigned int i;
352
353 for (i = 1; i < info->hdr->e_shnum; i++) {
354 Elf_Shdr *shdr = &info->sechdrs[i];
355 /* Alloc bit cleared means "ignore it." */
356 if ((shdr->sh_flags & SHF_ALLOC)
357 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
358 return i;
359 }
360 return 0;
361 }
362
363 /* Find a module section, or NULL. */
364 static void *section_addr(const struct load_info *info, const char *name)
365 {
366 /* Section 0 has sh_addr 0. */
367 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
368 }
369
370 /* Find a module section, or NULL. Fill in number of "objects" in section. */
371 static void *section_objs(const struct load_info *info,
372 const char *name,
373 size_t object_size,
374 unsigned int *num)
375 {
376 unsigned int sec = find_sec(info, name);
377
378 /* Section 0 has sh_addr 0 and sh_size 0. */
379 *num = info->sechdrs[sec].sh_size / object_size;
380 return (void *)info->sechdrs[sec].sh_addr;
381 }
382
383 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
384 static unsigned int find_any_sec(const struct load_info *info, const char *name)
385 {
386 unsigned int i;
387
388 for (i = 1; i < info->hdr->e_shnum; i++) {
389 Elf_Shdr *shdr = &info->sechdrs[i];
390 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
391 return i;
392 }
393 return 0;
394 }
395
396 /*
397 * Find a module section, or NULL. Fill in number of "objects" in section.
398 * Ignores SHF_ALLOC flag.
399 */
400 static __maybe_unused void *any_section_objs(const struct load_info *info,
401 const char *name,
402 size_t object_size,
403 unsigned int *num)
404 {
405 unsigned int sec = find_any_sec(info, name);
406
407 /* Section 0 has sh_addr 0 and sh_size 0. */
408 *num = info->sechdrs[sec].sh_size / object_size;
409 return (void *)info->sechdrs[sec].sh_addr;
410 }
411
412 /* Provided by the linker */
413 extern const struct kernel_symbol __start___ksymtab[];
414 extern const struct kernel_symbol __stop___ksymtab[];
415 extern const struct kernel_symbol __start___ksymtab_gpl[];
416 extern const struct kernel_symbol __stop___ksymtab_gpl[];
417 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
418 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
419 extern const s32 __start___kcrctab[];
420 extern const s32 __start___kcrctab_gpl[];
421 extern const s32 __start___kcrctab_gpl_future[];
422 #ifdef CONFIG_UNUSED_SYMBOLS
423 extern const struct kernel_symbol __start___ksymtab_unused[];
424 extern const struct kernel_symbol __stop___ksymtab_unused[];
425 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
426 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
427 extern const s32 __start___kcrctab_unused[];
428 extern const s32 __start___kcrctab_unused_gpl[];
429 #endif
430
431 #ifndef CONFIG_MODVERSIONS
432 #define symversion(base, idx) NULL
433 #else
434 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
435 #endif
436
437 static bool each_symbol_in_section(const struct symsearch *arr,
438 unsigned int arrsize,
439 struct module *owner,
440 bool (*fn)(const struct symsearch *syms,
441 struct module *owner,
442 void *data),
443 void *data)
444 {
445 unsigned int j;
446
447 for (j = 0; j < arrsize; j++) {
448 if (fn(&arr[j], owner, data))
449 return true;
450 }
451
452 return false;
453 }
454
455 /* Returns true as soon as fn returns true, otherwise false. */
456 static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
457 struct module *owner,
458 void *data),
459 void *data)
460 {
461 struct module *mod;
462 static const struct symsearch arr[] = {
463 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
464 NOT_GPL_ONLY, false },
465 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
466 __start___kcrctab_gpl,
467 GPL_ONLY, false },
468 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
469 __start___kcrctab_gpl_future,
470 WILL_BE_GPL_ONLY, false },
471 #ifdef CONFIG_UNUSED_SYMBOLS
472 { __start___ksymtab_unused, __stop___ksymtab_unused,
473 __start___kcrctab_unused,
474 NOT_GPL_ONLY, true },
475 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
476 __start___kcrctab_unused_gpl,
477 GPL_ONLY, true },
478 #endif
479 };
480
481 module_assert_mutex_or_preempt();
482
483 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
484 return true;
485
486 list_for_each_entry_rcu(mod, &modules, list,
487 lockdep_is_held(&module_mutex)) {
488 struct symsearch arr[] = {
489 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
490 NOT_GPL_ONLY, false },
491 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
492 mod->gpl_crcs,
493 GPL_ONLY, false },
494 { mod->gpl_future_syms,
495 mod->gpl_future_syms + mod->num_gpl_future_syms,
496 mod->gpl_future_crcs,
497 WILL_BE_GPL_ONLY, false },
498 #ifdef CONFIG_UNUSED_SYMBOLS
499 { mod->unused_syms,
500 mod->unused_syms + mod->num_unused_syms,
501 mod->unused_crcs,
502 NOT_GPL_ONLY, true },
503 { mod->unused_gpl_syms,
504 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
505 mod->unused_gpl_crcs,
506 GPL_ONLY, true },
507 #endif
508 };
509
510 if (mod->state == MODULE_STATE_UNFORMED)
511 continue;
512
513 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
514 return true;
515 }
516 return false;
517 }
518
519 struct find_symbol_arg {
520 /* Input */
521 const char *name;
522 bool gplok;
523 bool warn;
524
525 /* Output */
526 struct module *owner;
527 const s32 *crc;
528 const struct kernel_symbol *sym;
529 enum mod_license license;
530 };
531
532 static bool check_exported_symbol(const struct symsearch *syms,
533 struct module *owner,
534 unsigned int symnum, void *data)
535 {
536 struct find_symbol_arg *fsa = data;
537
538 if (!fsa->gplok) {
539 if (syms->license == GPL_ONLY)
540 return false;
541 if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
542 pr_warn("Symbol %s is being used by a non-GPL module, "
543 "which will not be allowed in the future\n",
544 fsa->name);
545 }
546 }
547
548 #ifdef CONFIG_UNUSED_SYMBOLS
549 if (syms->unused && fsa->warn) {
550 pr_warn("Symbol %s is marked as UNUSED, however this module is "
551 "using it.\n", fsa->name);
552 pr_warn("This symbol will go away in the future.\n");
553 pr_warn("Please evaluate if this is the right api to use and "
554 "if it really is, submit a report to the linux kernel "
555 "mailing list together with submitting your code for "
556 "inclusion.\n");
557 }
558 #endif
559
560 fsa->owner = owner;
561 fsa->crc = symversion(syms->crcs, symnum);
562 fsa->sym = &syms->start[symnum];
563 fsa->license = syms->license;
564 return true;
565 }
566
567 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
568 {
569 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
570 return (unsigned long)offset_to_ptr(&sym->value_offset);
571 #else
572 return sym->value;
573 #endif
574 }
575
576 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
577 {
578 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
579 return offset_to_ptr(&sym->name_offset);
580 #else
581 return sym->name;
582 #endif
583 }
584
585 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
586 {
587 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
588 if (!sym->namespace_offset)
589 return NULL;
590 return offset_to_ptr(&sym->namespace_offset);
591 #else
592 return sym->namespace;
593 #endif
594 }
595
596 static int cmp_name(const void *name, const void *sym)
597 {
598 return strcmp(name, kernel_symbol_name(sym));
599 }
600
601 static bool find_exported_symbol_in_section(const struct symsearch *syms,
602 struct module *owner,
603 void *data)
604 {
605 struct find_symbol_arg *fsa = data;
606 struct kernel_symbol *sym;
607
608 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
609 sizeof(struct kernel_symbol), cmp_name);
610
611 if (sym != NULL && check_exported_symbol(syms, owner,
612 sym - syms->start, data))
613 return true;
614
615 return false;
616 }
617
618 /*
619 * Find an exported symbol and return it, along with, (optional) crc and
620 * (optional) module which owns it. Needs preempt disabled or module_mutex.
621 */
622 static const struct kernel_symbol *find_symbol(const char *name,
623 struct module **owner,
624 const s32 **crc,
625 enum mod_license *license,
626 bool gplok,
627 bool warn)
628 {
629 struct find_symbol_arg fsa;
630
631 fsa.name = name;
632 fsa.gplok = gplok;
633 fsa.warn = warn;
634
635 if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
636 if (owner)
637 *owner = fsa.owner;
638 if (crc)
639 *crc = fsa.crc;
640 if (license)
641 *license = fsa.license;
642 return fsa.sym;
643 }
644
645 pr_debug("Failed to find symbol %s\n", name);
646 return NULL;
647 }
648
649 /*
650 * Search for module by name: must hold module_mutex (or preempt disabled
651 * for read-only access).
652 */
653 static struct module *find_module_all(const char *name, size_t len,
654 bool even_unformed)
655 {
656 struct module *mod;
657
658 module_assert_mutex_or_preempt();
659
660 list_for_each_entry_rcu(mod, &modules, list,
661 lockdep_is_held(&module_mutex)) {
662 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
663 continue;
664 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
665 return mod;
666 }
667 return NULL;
668 }
669
670 struct module *find_module(const char *name)
671 {
672 module_assert_mutex();
673 return find_module_all(name, strlen(name), false);
674 }
675 EXPORT_SYMBOL_GPL(find_module);
676
677 #ifdef CONFIG_SMP
678
679 static inline void __percpu *mod_percpu(struct module *mod)
680 {
681 return mod->percpu;
682 }
683
684 static int percpu_modalloc(struct module *mod, struct load_info *info)
685 {
686 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
687 unsigned long align = pcpusec->sh_addralign;
688
689 if (!pcpusec->sh_size)
690 return 0;
691
692 if (align > PAGE_SIZE) {
693 pr_warn("%s: per-cpu alignment %li > %li\n",
694 mod->name, align, PAGE_SIZE);
695 align = PAGE_SIZE;
696 }
697
698 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
699 if (!mod->percpu) {
700 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
701 mod->name, (unsigned long)pcpusec->sh_size);
702 return -ENOMEM;
703 }
704 mod->percpu_size = pcpusec->sh_size;
705 return 0;
706 }
707
708 static void percpu_modfree(struct module *mod)
709 {
710 free_percpu(mod->percpu);
711 }
712
713 static unsigned int find_pcpusec(struct load_info *info)
714 {
715 return find_sec(info, ".data..percpu");
716 }
717
718 static void percpu_modcopy(struct module *mod,
719 const void *from, unsigned long size)
720 {
721 int cpu;
722
723 for_each_possible_cpu(cpu)
724 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
725 }
726
727 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
728 {
729 struct module *mod;
730 unsigned int cpu;
731
732 preempt_disable();
733
734 list_for_each_entry_rcu(mod, &modules, list) {
735 if (mod->state == MODULE_STATE_UNFORMED)
736 continue;
737 if (!mod->percpu_size)
738 continue;
739 for_each_possible_cpu(cpu) {
740 void *start = per_cpu_ptr(mod->percpu, cpu);
741 void *va = (void *)addr;
742
743 if (va >= start && va < start + mod->percpu_size) {
744 if (can_addr) {
745 *can_addr = (unsigned long) (va - start);
746 *can_addr += (unsigned long)
747 per_cpu_ptr(mod->percpu,
748 get_boot_cpu_id());
749 }
750 preempt_enable();
751 return true;
752 }
753 }
754 }
755
756 preempt_enable();
757 return false;
758 }
759
760 /**
761 * is_module_percpu_address() - test whether address is from module static percpu
762 * @addr: address to test
763 *
764 * Test whether @addr belongs to module static percpu area.
765 *
766 * Return: %true if @addr is from module static percpu area
767 */
768 bool is_module_percpu_address(unsigned long addr)
769 {
770 return __is_module_percpu_address(addr, NULL);
771 }
772
773 #else /* ... !CONFIG_SMP */
774
775 static inline void __percpu *mod_percpu(struct module *mod)
776 {
777 return NULL;
778 }
779 static int percpu_modalloc(struct module *mod, struct load_info *info)
780 {
781 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
782 if (info->sechdrs[info->index.pcpu].sh_size != 0)
783 return -ENOMEM;
784 return 0;
785 }
786 static inline void percpu_modfree(struct module *mod)
787 {
788 }
789 static unsigned int find_pcpusec(struct load_info *info)
790 {
791 return 0;
792 }
793 static inline void percpu_modcopy(struct module *mod,
794 const void *from, unsigned long size)
795 {
796 /* pcpusec should be 0, and size of that section should be 0. */
797 BUG_ON(size != 0);
798 }
799 bool is_module_percpu_address(unsigned long addr)
800 {
801 return false;
802 }
803
804 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
805 {
806 return false;
807 }
808
809 #endif /* CONFIG_SMP */
810
811 #define MODINFO_ATTR(field) \
812 static void setup_modinfo_##field(struct module *mod, const char *s) \
813 { \
814 mod->field = kstrdup(s, GFP_KERNEL); \
815 } \
816 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
817 struct module_kobject *mk, char *buffer) \
818 { \
819 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
820 } \
821 static int modinfo_##field##_exists(struct module *mod) \
822 { \
823 return mod->field != NULL; \
824 } \
825 static void free_modinfo_##field(struct module *mod) \
826 { \
827 kfree(mod->field); \
828 mod->field = NULL; \
829 } \
830 static struct module_attribute modinfo_##field = { \
831 .attr = { .name = __stringify(field), .mode = 0444 }, \
832 .show = show_modinfo_##field, \
833 .setup = setup_modinfo_##field, \
834 .test = modinfo_##field##_exists, \
835 .free = free_modinfo_##field, \
836 };
837
838 MODINFO_ATTR(version);
839 MODINFO_ATTR(srcversion);
840
841 static char last_unloaded_module[MODULE_NAME_LEN+1];
842
843 #ifdef CONFIG_MODULE_UNLOAD
844
845 EXPORT_TRACEPOINT_SYMBOL(module_get);
846
847 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
848 #define MODULE_REF_BASE 1
849
850 /* Init the unload section of the module. */
851 static int module_unload_init(struct module *mod)
852 {
853 /*
854 * Initialize reference counter to MODULE_REF_BASE.
855 * refcnt == 0 means module is going.
856 */
857 atomic_set(&mod->refcnt, MODULE_REF_BASE);
858
859 INIT_LIST_HEAD(&mod->source_list);
860 INIT_LIST_HEAD(&mod->target_list);
861
862 /* Hold reference count during initialization. */
863 atomic_inc(&mod->refcnt);
864
865 return 0;
866 }
867
868 /* Does a already use b? */
869 static int already_uses(struct module *a, struct module *b)
870 {
871 struct module_use *use;
872
873 list_for_each_entry(use, &b->source_list, source_list) {
874 if (use->source == a) {
875 pr_debug("%s uses %s!\n", a->name, b->name);
876 return 1;
877 }
878 }
879 pr_debug("%s does not use %s!\n", a->name, b->name);
880 return 0;
881 }
882
883 /*
884 * Module a uses b
885 * - we add 'a' as a "source", 'b' as a "target" of module use
886 * - the module_use is added to the list of 'b' sources (so
887 * 'b' can walk the list to see who sourced them), and of 'a'
888 * targets (so 'a' can see what modules it targets).
889 */
890 static int add_module_usage(struct module *a, struct module *b)
891 {
892 struct module_use *use;
893
894 pr_debug("Allocating new usage for %s.\n", a->name);
895 use = kmalloc(sizeof(*use), GFP_ATOMIC);
896 if (!use)
897 return -ENOMEM;
898
899 use->source = a;
900 use->target = b;
901 list_add(&use->source_list, &b->source_list);
902 list_add(&use->target_list, &a->target_list);
903 return 0;
904 }
905
906 /* Module a uses b: caller needs module_mutex() */
907 static int ref_module(struct module *a, struct module *b)
908 {
909 int err;
910
911 if (b == NULL || already_uses(a, b))
912 return 0;
913
914 /* If module isn't available, we fail. */
915 err = strong_try_module_get(b);
916 if (err)
917 return err;
918
919 err = add_module_usage(a, b);
920 if (err) {
921 module_put(b);
922 return err;
923 }
924 return 0;
925 }
926
927 /* Clear the unload stuff of the module. */
928 static void module_unload_free(struct module *mod)
929 {
930 struct module_use *use, *tmp;
931
932 mutex_lock(&module_mutex);
933 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
934 struct module *i = use->target;
935 pr_debug("%s unusing %s\n", mod->name, i->name);
936 module_put(i);
937 list_del(&use->source_list);
938 list_del(&use->target_list);
939 kfree(use);
940 }
941 mutex_unlock(&module_mutex);
942 }
943
944 #ifdef CONFIG_MODULE_FORCE_UNLOAD
945 static inline int try_force_unload(unsigned int flags)
946 {
947 int ret = (flags & O_TRUNC);
948 if (ret)
949 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
950 return ret;
951 }
952 #else
953 static inline int try_force_unload(unsigned int flags)
954 {
955 return 0;
956 }
957 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
958
959 /* Try to release refcount of module, 0 means success. */
960 static int try_release_module_ref(struct module *mod)
961 {
962 int ret;
963
964 /* Try to decrement refcnt which we set at loading */
965 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
966 BUG_ON(ret < 0);
967 if (ret)
968 /* Someone can put this right now, recover with checking */
969 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
970
971 return ret;
972 }
973
974 static int try_stop_module(struct module *mod, int flags, int *forced)
975 {
976 /* If it's not unused, quit unless we're forcing. */
977 if (try_release_module_ref(mod) != 0) {
978 *forced = try_force_unload(flags);
979 if (!(*forced))
980 return -EWOULDBLOCK;
981 }
982
983 /* Mark it as dying. */
984 mod->state = MODULE_STATE_GOING;
985
986 return 0;
987 }
988
989 /**
990 * module_refcount() - return the refcount or -1 if unloading
991 * @mod: the module we're checking
992 *
993 * Return:
994 * -1 if the module is in the process of unloading
995 * otherwise the number of references in the kernel to the module
996 */
997 int module_refcount(struct module *mod)
998 {
999 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
1000 }
1001 EXPORT_SYMBOL(module_refcount);
1002
1003 /* This exists whether we can unload or not */
1004 static void free_module(struct module *mod);
1005
1006 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
1007 unsigned int, flags)
1008 {
1009 struct module *mod;
1010 char name[MODULE_NAME_LEN];
1011 int ret, forced = 0;
1012
1013 if (!capable(CAP_SYS_MODULE) || modules_disabled)
1014 return -EPERM;
1015
1016 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
1017 return -EFAULT;
1018 name[MODULE_NAME_LEN-1] = '\0';
1019
1020 audit_log_kern_module(name);
1021
1022 if (mutex_lock_interruptible(&module_mutex) != 0)
1023 return -EINTR;
1024
1025 mod = find_module(name);
1026 if (!mod) {
1027 ret = -ENOENT;
1028 goto out;
1029 }
1030
1031 if (!list_empty(&mod->source_list)) {
1032 /* Other modules depend on us: get rid of them first. */
1033 ret = -EWOULDBLOCK;
1034 goto out;
1035 }
1036
1037 /* Doing init or already dying? */
1038 if (mod->state != MODULE_STATE_LIVE) {
1039 /* FIXME: if (force), slam module count damn the torpedoes */
1040 pr_debug("%s already dying\n", mod->name);
1041 ret = -EBUSY;
1042 goto out;
1043 }
1044
1045 /* If it has an init func, it must have an exit func to unload */
1046 if (mod->init && !mod->exit) {
1047 forced = try_force_unload(flags);
1048 if (!forced) {
1049 /* This module can't be removed */
1050 ret = -EBUSY;
1051 goto out;
1052 }
1053 }
1054
1055 /* Stop the machine so refcounts can't move and disable module. */
1056 ret = try_stop_module(mod, flags, &forced);
1057 if (ret != 0)
1058 goto out;
1059
1060 mutex_unlock(&module_mutex);
1061 /* Final destruction now no one is using it. */
1062 if (mod->exit != NULL)
1063 mod->exit();
1064 blocking_notifier_call_chain(&module_notify_list,
1065 MODULE_STATE_GOING, mod);
1066 klp_module_going(mod);
1067 ftrace_release_mod(mod);
1068
1069 async_synchronize_full();
1070
1071 /* Store the name of the last unloaded module for diagnostic purposes */
1072 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1073
1074 free_module(mod);
1075 /* someone could wait for the module in add_unformed_module() */
1076 wake_up_all(&module_wq);
1077 return 0;
1078 out:
1079 mutex_unlock(&module_mutex);
1080 return ret;
1081 }
1082
1083 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1084 {
1085 struct module_use *use;
1086 int printed_something = 0;
1087
1088 seq_printf(m, " %i ", module_refcount(mod));
1089
1090 /*
1091 * Always include a trailing , so userspace can differentiate
1092 * between this and the old multi-field proc format.
1093 */
1094 list_for_each_entry(use, &mod->source_list, source_list) {
1095 printed_something = 1;
1096 seq_printf(m, "%s,", use->source->name);
1097 }
1098
1099 if (mod->init != NULL && mod->exit == NULL) {
1100 printed_something = 1;
1101 seq_puts(m, "[permanent],");
1102 }
1103
1104 if (!printed_something)
1105 seq_puts(m, "-");
1106 }
1107
1108 void __symbol_put(const char *symbol)
1109 {
1110 struct module *owner;
1111
1112 preempt_disable();
1113 if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1114 BUG();
1115 module_put(owner);
1116 preempt_enable();
1117 }
1118 EXPORT_SYMBOL(__symbol_put);
1119
1120 /* Note this assumes addr is a function, which it currently always is. */
1121 void symbol_put_addr(void *addr)
1122 {
1123 struct module *modaddr;
1124 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1125
1126 if (core_kernel_text(a))
1127 return;
1128
1129 /*
1130 * Even though we hold a reference on the module; we still need to
1131 * disable preemption in order to safely traverse the data structure.
1132 */
1133 preempt_disable();
1134 modaddr = __module_text_address(a);
1135 BUG_ON(!modaddr);
1136 module_put(modaddr);
1137 preempt_enable();
1138 }
1139 EXPORT_SYMBOL_GPL(symbol_put_addr);
1140
1141 static ssize_t show_refcnt(struct module_attribute *mattr,
1142 struct module_kobject *mk, char *buffer)
1143 {
1144 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1145 }
1146
1147 static struct module_attribute modinfo_refcnt =
1148 __ATTR(refcnt, 0444, show_refcnt, NULL);
1149
1150 void __module_get(struct module *module)
1151 {
1152 if (module) {
1153 preempt_disable();
1154 atomic_inc(&module->refcnt);
1155 trace_module_get(module, _RET_IP_);
1156 preempt_enable();
1157 }
1158 }
1159 EXPORT_SYMBOL(__module_get);
1160
1161 bool try_module_get(struct module *module)
1162 {
1163 bool ret = true;
1164
1165 if (module) {
1166 preempt_disable();
1167 /* Note: here, we can fail to get a reference */
1168 if (likely(module_is_live(module) &&
1169 atomic_inc_not_zero(&module->refcnt) != 0))
1170 trace_module_get(module, _RET_IP_);
1171 else
1172 ret = false;
1173
1174 preempt_enable();
1175 }
1176 return ret;
1177 }
1178 EXPORT_SYMBOL(try_module_get);
1179
1180 void module_put(struct module *module)
1181 {
1182 int ret;
1183
1184 if (module) {
1185 preempt_disable();
1186 ret = atomic_dec_if_positive(&module->refcnt);
1187 WARN_ON(ret < 0); /* Failed to put refcount */
1188 trace_module_put(module, _RET_IP_);
1189 preempt_enable();
1190 }
1191 }
1192 EXPORT_SYMBOL(module_put);
1193
1194 #else /* !CONFIG_MODULE_UNLOAD */
1195 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1196 {
1197 /* We don't know the usage count, or what modules are using. */
1198 seq_puts(m, " - -");
1199 }
1200
1201 static inline void module_unload_free(struct module *mod)
1202 {
1203 }
1204
1205 static int ref_module(struct module *a, struct module *b)
1206 {
1207 return strong_try_module_get(b);
1208 }
1209
1210 static inline int module_unload_init(struct module *mod)
1211 {
1212 return 0;
1213 }
1214 #endif /* CONFIG_MODULE_UNLOAD */
1215
1216 static size_t module_flags_taint(struct module *mod, char *buf)
1217 {
1218 size_t l = 0;
1219 int i;
1220
1221 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1222 if (taint_flags[i].module && test_bit(i, &mod->taints))
1223 buf[l++] = taint_flags[i].c_true;
1224 }
1225
1226 return l;
1227 }
1228
1229 static ssize_t show_initstate(struct module_attribute *mattr,
1230 struct module_kobject *mk, char *buffer)
1231 {
1232 const char *state = "unknown";
1233
1234 switch (mk->mod->state) {
1235 case MODULE_STATE_LIVE:
1236 state = "live";
1237 break;
1238 case MODULE_STATE_COMING:
1239 state = "coming";
1240 break;
1241 case MODULE_STATE_GOING:
1242 state = "going";
1243 break;
1244 default:
1245 BUG();
1246 }
1247 return sprintf(buffer, "%s\n", state);
1248 }
1249
1250 static struct module_attribute modinfo_initstate =
1251 __ATTR(initstate, 0444, show_initstate, NULL);
1252
1253 static ssize_t store_uevent(struct module_attribute *mattr,
1254 struct module_kobject *mk,
1255 const char *buffer, size_t count)
1256 {
1257 int rc;
1258
1259 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1260 return rc ? rc : count;
1261 }
1262
1263 struct module_attribute module_uevent =
1264 __ATTR(uevent, 0200, NULL, store_uevent);
1265
1266 static ssize_t show_coresize(struct module_attribute *mattr,
1267 struct module_kobject *mk, char *buffer)
1268 {
1269 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1270 }
1271
1272 static struct module_attribute modinfo_coresize =
1273 __ATTR(coresize, 0444, show_coresize, NULL);
1274
1275 static ssize_t show_initsize(struct module_attribute *mattr,
1276 struct module_kobject *mk, char *buffer)
1277 {
1278 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1279 }
1280
1281 static struct module_attribute modinfo_initsize =
1282 __ATTR(initsize, 0444, show_initsize, NULL);
1283
1284 static ssize_t show_taint(struct module_attribute *mattr,
1285 struct module_kobject *mk, char *buffer)
1286 {
1287 size_t l;
1288
1289 l = module_flags_taint(mk->mod, buffer);
1290 buffer[l++] = '\n';
1291 return l;
1292 }
1293
1294 static struct module_attribute modinfo_taint =
1295 __ATTR(taint, 0444, show_taint, NULL);
1296
1297 static struct module_attribute *modinfo_attrs[] = {
1298 &module_uevent,
1299 &modinfo_version,
1300 &modinfo_srcversion,
1301 &modinfo_initstate,
1302 &modinfo_coresize,
1303 &modinfo_initsize,
1304 &modinfo_taint,
1305 #ifdef CONFIG_MODULE_UNLOAD
1306 &modinfo_refcnt,
1307 #endif
1308 NULL,
1309 };
1310
1311 static const char vermagic[] = VERMAGIC_STRING;
1312
1313 static int try_to_force_load(struct module *mod, const char *reason)
1314 {
1315 #ifdef CONFIG_MODULE_FORCE_LOAD
1316 if (!test_taint(TAINT_FORCED_MODULE))
1317 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1318 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1319 return 0;
1320 #else
1321 return -ENOEXEC;
1322 #endif
1323 }
1324
1325 #ifdef CONFIG_MODVERSIONS
1326
1327 static u32 resolve_rel_crc(const s32 *crc)
1328 {
1329 return *(u32 *)((void *)crc + *crc);
1330 }
1331
1332 static int check_version(const struct load_info *info,
1333 const char *symname,
1334 struct module *mod,
1335 const s32 *crc)
1336 {
1337 Elf_Shdr *sechdrs = info->sechdrs;
1338 unsigned int versindex = info->index.vers;
1339 unsigned int i, num_versions;
1340 struct modversion_info *versions;
1341
1342 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1343 if (!crc)
1344 return 1;
1345
1346 /* No versions at all? modprobe --force does this. */
1347 if (versindex == 0)
1348 return try_to_force_load(mod, symname) == 0;
1349
1350 versions = (void *) sechdrs[versindex].sh_addr;
1351 num_versions = sechdrs[versindex].sh_size
1352 / sizeof(struct modversion_info);
1353
1354 for (i = 0; i < num_versions; i++) {
1355 u32 crcval;
1356
1357 if (strcmp(versions[i].name, symname) != 0)
1358 continue;
1359
1360 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1361 crcval = resolve_rel_crc(crc);
1362 else
1363 crcval = *crc;
1364 if (versions[i].crc == crcval)
1365 return 1;
1366 pr_debug("Found checksum %X vs module %lX\n",
1367 crcval, versions[i].crc);
1368 goto bad_version;
1369 }
1370
1371 /* Broken toolchain. Warn once, then let it go.. */
1372 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1373 return 1;
1374
1375 bad_version:
1376 pr_warn("%s: disagrees about version of symbol %s\n",
1377 info->name, symname);
1378 return 0;
1379 }
1380
1381 static inline int check_modstruct_version(const struct load_info *info,
1382 struct module *mod)
1383 {
1384 const s32 *crc;
1385
1386 /*
1387 * Since this should be found in kernel (which can't be removed), no
1388 * locking is necessary -- use preempt_disable() to placate lockdep.
1389 */
1390 preempt_disable();
1391 if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1392 preempt_enable();
1393 BUG();
1394 }
1395 preempt_enable();
1396 return check_version(info, "module_layout", mod, crc);
1397 }
1398
1399 /* First part is kernel version, which we ignore if module has crcs. */
1400 static inline int same_magic(const char *amagic, const char *bmagic,
1401 bool has_crcs)
1402 {
1403 if (has_crcs) {
1404 amagic += strcspn(amagic, " ");
1405 bmagic += strcspn(bmagic, " ");
1406 }
1407 return strcmp(amagic, bmagic) == 0;
1408 }
1409 #else
1410 static inline int check_version(const struct load_info *info,
1411 const char *symname,
1412 struct module *mod,
1413 const s32 *crc)
1414 {
1415 return 1;
1416 }
1417
1418 static inline int check_modstruct_version(const struct load_info *info,
1419 struct module *mod)
1420 {
1421 return 1;
1422 }
1423
1424 static inline int same_magic(const char *amagic, const char *bmagic,
1425 bool has_crcs)
1426 {
1427 return strcmp(amagic, bmagic) == 0;
1428 }
1429 #endif /* CONFIG_MODVERSIONS */
1430
1431 static char *get_modinfo(const struct load_info *info, const char *tag);
1432 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1433 char *prev);
1434
1435 static int verify_namespace_is_imported(const struct load_info *info,
1436 const struct kernel_symbol *sym,
1437 struct module *mod)
1438 {
1439 const char *namespace;
1440 char *imported_namespace;
1441
1442 namespace = kernel_symbol_namespace(sym);
1443 if (namespace && namespace[0]) {
1444 imported_namespace = get_modinfo(info, "import_ns");
1445 while (imported_namespace) {
1446 if (strcmp(namespace, imported_namespace) == 0)
1447 return 0;
1448 imported_namespace = get_next_modinfo(
1449 info, "import_ns", imported_namespace);
1450 }
1451 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1452 pr_warn(
1453 #else
1454 pr_err(
1455 #endif
1456 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1457 mod->name, kernel_symbol_name(sym), namespace);
1458 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1459 return -EINVAL;
1460 #endif
1461 }
1462 return 0;
1463 }
1464
1465 static bool inherit_taint(struct module *mod, struct module *owner)
1466 {
1467 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1468 return true;
1469
1470 if (mod->using_gplonly_symbols) {
1471 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1472 mod->name, owner->name);
1473 return false;
1474 }
1475
1476 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1477 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1478 mod->name, owner->name);
1479 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1480 }
1481 return true;
1482 }
1483
1484 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1485 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1486 const struct load_info *info,
1487 const char *name,
1488 char ownername[])
1489 {
1490 struct module *owner;
1491 const struct kernel_symbol *sym;
1492 const s32 *crc;
1493 enum mod_license license;
1494 int err;
1495
1496 /*
1497 * The module_mutex should not be a heavily contended lock;
1498 * if we get the occasional sleep here, we'll go an extra iteration
1499 * in the wait_event_interruptible(), which is harmless.
1500 */
1501 sched_annotate_sleep();
1502 mutex_lock(&module_mutex);
1503 sym = find_symbol(name, &owner, &crc, &license,
1504 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1505 if (!sym)
1506 goto unlock;
1507
1508 if (license == GPL_ONLY)
1509 mod->using_gplonly_symbols = true;
1510
1511 if (!inherit_taint(mod, owner)) {
1512 sym = NULL;
1513 goto getname;
1514 }
1515
1516 if (!check_version(info, name, mod, crc)) {
1517 sym = ERR_PTR(-EINVAL);
1518 goto getname;
1519 }
1520
1521 err = verify_namespace_is_imported(info, sym, mod);
1522 if (err) {
1523 sym = ERR_PTR(err);
1524 goto getname;
1525 }
1526
1527 err = ref_module(mod, owner);
1528 if (err) {
1529 sym = ERR_PTR(err);
1530 goto getname;
1531 }
1532
1533 getname:
1534 /* We must make copy under the lock if we failed to get ref. */
1535 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1536 unlock:
1537 mutex_unlock(&module_mutex);
1538 return sym;
1539 }
1540
1541 static const struct kernel_symbol *
1542 resolve_symbol_wait(struct module *mod,
1543 const struct load_info *info,
1544 const char *name)
1545 {
1546 const struct kernel_symbol *ksym;
1547 char owner[MODULE_NAME_LEN];
1548
1549 if (wait_event_interruptible_timeout(module_wq,
1550 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1551 || PTR_ERR(ksym) != -EBUSY,
1552 30 * HZ) <= 0) {
1553 pr_warn("%s: gave up waiting for init of module %s.\n",
1554 mod->name, owner);
1555 }
1556 return ksym;
1557 }
1558
1559 /*
1560 * /sys/module/foo/sections stuff
1561 * J. Corbet <corbet@lwn.net>
1562 */
1563 #ifdef CONFIG_SYSFS
1564
1565 #ifdef CONFIG_KALLSYMS
1566 static inline bool sect_empty(const Elf_Shdr *sect)
1567 {
1568 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1569 }
1570
1571 struct module_sect_attr {
1572 struct bin_attribute battr;
1573 unsigned long address;
1574 };
1575
1576 struct module_sect_attrs {
1577 struct attribute_group grp;
1578 unsigned int nsections;
1579 struct module_sect_attr attrs[];
1580 };
1581
1582 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1583 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1584 struct bin_attribute *battr,
1585 char *buf, loff_t pos, size_t count)
1586 {
1587 struct module_sect_attr *sattr =
1588 container_of(battr, struct module_sect_attr, battr);
1589 char bounce[MODULE_SECT_READ_SIZE + 1];
1590 size_t wrote;
1591
1592 if (pos != 0)
1593 return -EINVAL;
1594
1595 /*
1596 * Since we're a binary read handler, we must account for the
1597 * trailing NUL byte that sprintf will write: if "buf" is
1598 * too small to hold the NUL, or the NUL is exactly the last
1599 * byte, the read will look like it got truncated by one byte.
1600 * Since there is no way to ask sprintf nicely to not write
1601 * the NUL, we have to use a bounce buffer.
1602 */
1603 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1604 kallsyms_show_value(file->f_cred)
1605 ? (void *)sattr->address : NULL);
1606 count = min(count, wrote);
1607 memcpy(buf, bounce, count);
1608
1609 return count;
1610 }
1611
1612 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1613 {
1614 unsigned int section;
1615
1616 for (section = 0; section < sect_attrs->nsections; section++)
1617 kfree(sect_attrs->attrs[section].battr.attr.name);
1618 kfree(sect_attrs);
1619 }
1620
1621 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1622 {
1623 unsigned int nloaded = 0, i, size[2];
1624 struct module_sect_attrs *sect_attrs;
1625 struct module_sect_attr *sattr;
1626 struct bin_attribute **gattr;
1627
1628 /* Count loaded sections and allocate structures */
1629 for (i = 0; i < info->hdr->e_shnum; i++)
1630 if (!sect_empty(&info->sechdrs[i]))
1631 nloaded++;
1632 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1633 sizeof(sect_attrs->grp.bin_attrs[0]));
1634 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1635 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1636 if (sect_attrs == NULL)
1637 return;
1638
1639 /* Setup section attributes. */
1640 sect_attrs->grp.name = "sections";
1641 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1642
1643 sect_attrs->nsections = 0;
1644 sattr = &sect_attrs->attrs[0];
1645 gattr = &sect_attrs->grp.bin_attrs[0];
1646 for (i = 0; i < info->hdr->e_shnum; i++) {
1647 Elf_Shdr *sec = &info->sechdrs[i];
1648 if (sect_empty(sec))
1649 continue;
1650 sysfs_bin_attr_init(&sattr->battr);
1651 sattr->address = sec->sh_addr;
1652 sattr->battr.attr.name =
1653 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1654 if (sattr->battr.attr.name == NULL)
1655 goto out;
1656 sect_attrs->nsections++;
1657 sattr->battr.read = module_sect_read;
1658 sattr->battr.size = MODULE_SECT_READ_SIZE;
1659 sattr->battr.attr.mode = 0400;
1660 *(gattr++) = &(sattr++)->battr;
1661 }
1662 *gattr = NULL;
1663
1664 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1665 goto out;
1666
1667 mod->sect_attrs = sect_attrs;
1668 return;
1669 out:
1670 free_sect_attrs(sect_attrs);
1671 }
1672
1673 static void remove_sect_attrs(struct module *mod)
1674 {
1675 if (mod->sect_attrs) {
1676 sysfs_remove_group(&mod->mkobj.kobj,
1677 &mod->sect_attrs->grp);
1678 /*
1679 * We are positive that no one is using any sect attrs
1680 * at this point. Deallocate immediately.
1681 */
1682 free_sect_attrs(mod->sect_attrs);
1683 mod->sect_attrs = NULL;
1684 }
1685 }
1686
1687 /*
1688 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1689 */
1690
1691 struct module_notes_attrs {
1692 struct kobject *dir;
1693 unsigned int notes;
1694 struct bin_attribute attrs[];
1695 };
1696
1697 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1698 struct bin_attribute *bin_attr,
1699 char *buf, loff_t pos, size_t count)
1700 {
1701 /*
1702 * The caller checked the pos and count against our size.
1703 */
1704 memcpy(buf, bin_attr->private + pos, count);
1705 return count;
1706 }
1707
1708 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1709 unsigned int i)
1710 {
1711 if (notes_attrs->dir) {
1712 while (i-- > 0)
1713 sysfs_remove_bin_file(notes_attrs->dir,
1714 &notes_attrs->attrs[i]);
1715 kobject_put(notes_attrs->dir);
1716 }
1717 kfree(notes_attrs);
1718 }
1719
1720 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1721 {
1722 unsigned int notes, loaded, i;
1723 struct module_notes_attrs *notes_attrs;
1724 struct bin_attribute *nattr;
1725
1726 /* failed to create section attributes, so can't create notes */
1727 if (!mod->sect_attrs)
1728 return;
1729
1730 /* Count notes sections and allocate structures. */
1731 notes = 0;
1732 for (i = 0; i < info->hdr->e_shnum; i++)
1733 if (!sect_empty(&info->sechdrs[i]) &&
1734 (info->sechdrs[i].sh_type == SHT_NOTE))
1735 ++notes;
1736
1737 if (notes == 0)
1738 return;
1739
1740 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1741 GFP_KERNEL);
1742 if (notes_attrs == NULL)
1743 return;
1744
1745 notes_attrs->notes = notes;
1746 nattr = &notes_attrs->attrs[0];
1747 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1748 if (sect_empty(&info->sechdrs[i]))
1749 continue;
1750 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1751 sysfs_bin_attr_init(nattr);
1752 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1753 nattr->attr.mode = S_IRUGO;
1754 nattr->size = info->sechdrs[i].sh_size;
1755 nattr->private = (void *) info->sechdrs[i].sh_addr;
1756 nattr->read = module_notes_read;
1757 ++nattr;
1758 }
1759 ++loaded;
1760 }
1761
1762 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1763 if (!notes_attrs->dir)
1764 goto out;
1765
1766 for (i = 0; i < notes; ++i)
1767 if (sysfs_create_bin_file(notes_attrs->dir,
1768 &notes_attrs->attrs[i]))
1769 goto out;
1770
1771 mod->notes_attrs = notes_attrs;
1772 return;
1773
1774 out:
1775 free_notes_attrs(notes_attrs, i);
1776 }
1777
1778 static void remove_notes_attrs(struct module *mod)
1779 {
1780 if (mod->notes_attrs)
1781 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1782 }
1783
1784 #else
1785
1786 static inline void add_sect_attrs(struct module *mod,
1787 const struct load_info *info)
1788 {
1789 }
1790
1791 static inline void remove_sect_attrs(struct module *mod)
1792 {
1793 }
1794
1795 static inline void add_notes_attrs(struct module *mod,
1796 const struct load_info *info)
1797 {
1798 }
1799
1800 static inline void remove_notes_attrs(struct module *mod)
1801 {
1802 }
1803 #endif /* CONFIG_KALLSYMS */
1804
1805 static void del_usage_links(struct module *mod)
1806 {
1807 #ifdef CONFIG_MODULE_UNLOAD
1808 struct module_use *use;
1809
1810 mutex_lock(&module_mutex);
1811 list_for_each_entry(use, &mod->target_list, target_list)
1812 sysfs_remove_link(use->target->holders_dir, mod->name);
1813 mutex_unlock(&module_mutex);
1814 #endif
1815 }
1816
1817 static int add_usage_links(struct module *mod)
1818 {
1819 int ret = 0;
1820 #ifdef CONFIG_MODULE_UNLOAD
1821 struct module_use *use;
1822
1823 mutex_lock(&module_mutex);
1824 list_for_each_entry(use, &mod->target_list, target_list) {
1825 ret = sysfs_create_link(use->target->holders_dir,
1826 &mod->mkobj.kobj, mod->name);
1827 if (ret)
1828 break;
1829 }
1830 mutex_unlock(&module_mutex);
1831 if (ret)
1832 del_usage_links(mod);
1833 #endif
1834 return ret;
1835 }
1836
1837 static void module_remove_modinfo_attrs(struct module *mod, int end);
1838
1839 static int module_add_modinfo_attrs(struct module *mod)
1840 {
1841 struct module_attribute *attr;
1842 struct module_attribute *temp_attr;
1843 int error = 0;
1844 int i;
1845
1846 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1847 (ARRAY_SIZE(modinfo_attrs) + 1)),
1848 GFP_KERNEL);
1849 if (!mod->modinfo_attrs)
1850 return -ENOMEM;
1851
1852 temp_attr = mod->modinfo_attrs;
1853 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1854 if (!attr->test || attr->test(mod)) {
1855 memcpy(temp_attr, attr, sizeof(*temp_attr));
1856 sysfs_attr_init(&temp_attr->attr);
1857 error = sysfs_create_file(&mod->mkobj.kobj,
1858 &temp_attr->attr);
1859 if (error)
1860 goto error_out;
1861 ++temp_attr;
1862 }
1863 }
1864
1865 return 0;
1866
1867 error_out:
1868 if (i > 0)
1869 module_remove_modinfo_attrs(mod, --i);
1870 else
1871 kfree(mod->modinfo_attrs);
1872 return error;
1873 }
1874
1875 static void module_remove_modinfo_attrs(struct module *mod, int end)
1876 {
1877 struct module_attribute *attr;
1878 int i;
1879
1880 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1881 if (end >= 0 && i > end)
1882 break;
1883 /* pick a field to test for end of list */
1884 if (!attr->attr.name)
1885 break;
1886 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1887 if (attr->free)
1888 attr->free(mod);
1889 }
1890 kfree(mod->modinfo_attrs);
1891 }
1892
1893 static void mod_kobject_put(struct module *mod)
1894 {
1895 DECLARE_COMPLETION_ONSTACK(c);
1896 mod->mkobj.kobj_completion = &c;
1897 kobject_put(&mod->mkobj.kobj);
1898 wait_for_completion(&c);
1899 }
1900
1901 static int mod_sysfs_init(struct module *mod)
1902 {
1903 int err;
1904 struct kobject *kobj;
1905
1906 if (!module_sysfs_initialized) {
1907 pr_err("%s: module sysfs not initialized\n", mod->name);
1908 err = -EINVAL;
1909 goto out;
1910 }
1911
1912 kobj = kset_find_obj(module_kset, mod->name);
1913 if (kobj) {
1914 pr_err("%s: module is already loaded\n", mod->name);
1915 kobject_put(kobj);
1916 err = -EINVAL;
1917 goto out;
1918 }
1919
1920 mod->mkobj.mod = mod;
1921
1922 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1923 mod->mkobj.kobj.kset = module_kset;
1924 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1925 "%s", mod->name);
1926 if (err)
1927 mod_kobject_put(mod);
1928
1929 out:
1930 return err;
1931 }
1932
1933 static int mod_sysfs_setup(struct module *mod,
1934 const struct load_info *info,
1935 struct kernel_param *kparam,
1936 unsigned int num_params)
1937 {
1938 int err;
1939
1940 err = mod_sysfs_init(mod);
1941 if (err)
1942 goto out;
1943
1944 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1945 if (!mod->holders_dir) {
1946 err = -ENOMEM;
1947 goto out_unreg;
1948 }
1949
1950 err = module_param_sysfs_setup(mod, kparam, num_params);
1951 if (err)
1952 goto out_unreg_holders;
1953
1954 err = module_add_modinfo_attrs(mod);
1955 if (err)
1956 goto out_unreg_param;
1957
1958 err = add_usage_links(mod);
1959 if (err)
1960 goto out_unreg_modinfo_attrs;
1961
1962 add_sect_attrs(mod, info);
1963 add_notes_attrs(mod, info);
1964
1965 return 0;
1966
1967 out_unreg_modinfo_attrs:
1968 module_remove_modinfo_attrs(mod, -1);
1969 out_unreg_param:
1970 module_param_sysfs_remove(mod);
1971 out_unreg_holders:
1972 kobject_put(mod->holders_dir);
1973 out_unreg:
1974 mod_kobject_put(mod);
1975 out:
1976 return err;
1977 }
1978
1979 static void mod_sysfs_fini(struct module *mod)
1980 {
1981 remove_notes_attrs(mod);
1982 remove_sect_attrs(mod);
1983 mod_kobject_put(mod);
1984 }
1985
1986 static void init_param_lock(struct module *mod)
1987 {
1988 mutex_init(&mod->param_lock);
1989 }
1990 #else /* !CONFIG_SYSFS */
1991
1992 static int mod_sysfs_setup(struct module *mod,
1993 const struct load_info *info,
1994 struct kernel_param *kparam,
1995 unsigned int num_params)
1996 {
1997 return 0;
1998 }
1999
2000 static void mod_sysfs_fini(struct module *mod)
2001 {
2002 }
2003
2004 static void module_remove_modinfo_attrs(struct module *mod, int end)
2005 {
2006 }
2007
2008 static void del_usage_links(struct module *mod)
2009 {
2010 }
2011
2012 static void init_param_lock(struct module *mod)
2013 {
2014 }
2015 #endif /* CONFIG_SYSFS */
2016
2017 static void mod_sysfs_teardown(struct module *mod)
2018 {
2019 del_usage_links(mod);
2020 module_remove_modinfo_attrs(mod, -1);
2021 module_param_sysfs_remove(mod);
2022 kobject_put(mod->mkobj.drivers_dir);
2023 kobject_put(mod->holders_dir);
2024 mod_sysfs_fini(mod);
2025 }
2026
2027 /*
2028 * LKM RO/NX protection: protect module's text/ro-data
2029 * from modification and any data from execution.
2030 *
2031 * General layout of module is:
2032 * [text] [read-only-data] [ro-after-init] [writable data]
2033 * text_size -----^ ^ ^ ^
2034 * ro_size ------------------------| | |
2035 * ro_after_init_size -----------------------------| |
2036 * size -----------------------------------------------------------|
2037 *
2038 * These values are always page-aligned (as is base)
2039 */
2040
2041 /*
2042 * Since some arches are moving towards PAGE_KERNEL module allocations instead
2043 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
2044 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
2045 * whether we are strict.
2046 */
2047 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
2048 static void frob_text(const struct module_layout *layout,
2049 int (*set_memory)(unsigned long start, int num_pages))
2050 {
2051 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2052 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2053 set_memory((unsigned long)layout->base,
2054 layout->text_size >> PAGE_SHIFT);
2055 }
2056
2057 static void module_enable_x(const struct module *mod)
2058 {
2059 frob_text(&mod->core_layout, set_memory_x);
2060 frob_text(&mod->init_layout, set_memory_x);
2061 }
2062 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2063 static void module_enable_x(const struct module *mod) { }
2064 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2065
2066 #ifdef CONFIG_STRICT_MODULE_RWX
2067 static void frob_rodata(const struct module_layout *layout,
2068 int (*set_memory)(unsigned long start, int num_pages))
2069 {
2070 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2071 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2072 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2073 set_memory((unsigned long)layout->base + layout->text_size,
2074 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2075 }
2076
2077 static void frob_ro_after_init(const struct module_layout *layout,
2078 int (*set_memory)(unsigned long start, int num_pages))
2079 {
2080 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2081 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2082 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2083 set_memory((unsigned long)layout->base + layout->ro_size,
2084 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2085 }
2086
2087 static void frob_writable_data(const struct module_layout *layout,
2088 int (*set_memory)(unsigned long start, int num_pages))
2089 {
2090 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2091 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2092 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2093 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2094 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2095 }
2096
2097 static void module_enable_ro(const struct module *mod, bool after_init)
2098 {
2099 if (!rodata_enabled)
2100 return;
2101
2102 set_vm_flush_reset_perms(mod->core_layout.base);
2103 set_vm_flush_reset_perms(mod->init_layout.base);
2104 frob_text(&mod->core_layout, set_memory_ro);
2105
2106 frob_rodata(&mod->core_layout, set_memory_ro);
2107 frob_text(&mod->init_layout, set_memory_ro);
2108 frob_rodata(&mod->init_layout, set_memory_ro);
2109
2110 if (after_init)
2111 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2112 }
2113
2114 static void module_enable_nx(const struct module *mod)
2115 {
2116 frob_rodata(&mod->core_layout, set_memory_nx);
2117 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2118 frob_writable_data(&mod->core_layout, set_memory_nx);
2119 frob_rodata(&mod->init_layout, set_memory_nx);
2120 frob_writable_data(&mod->init_layout, set_memory_nx);
2121 }
2122
2123 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2124 char *secstrings, struct module *mod)
2125 {
2126 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2127 int i;
2128
2129 for (i = 0; i < hdr->e_shnum; i++) {
2130 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2131 pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2132 mod->name, secstrings + sechdrs[i].sh_name, i);
2133 return -ENOEXEC;
2134 }
2135 }
2136
2137 return 0;
2138 }
2139
2140 #else /* !CONFIG_STRICT_MODULE_RWX */
2141 static void module_enable_nx(const struct module *mod) { }
2142 static void module_enable_ro(const struct module *mod, bool after_init) {}
2143 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2144 char *secstrings, struct module *mod)
2145 {
2146 return 0;
2147 }
2148 #endif /* CONFIG_STRICT_MODULE_RWX */
2149
2150 #ifdef CONFIG_LIVEPATCH
2151 /*
2152 * Persist Elf information about a module. Copy the Elf header,
2153 * section header table, section string table, and symtab section
2154 * index from info to mod->klp_info.
2155 */
2156 static int copy_module_elf(struct module *mod, struct load_info *info)
2157 {
2158 unsigned int size, symndx;
2159 int ret;
2160
2161 size = sizeof(*mod->klp_info);
2162 mod->klp_info = kmalloc(size, GFP_KERNEL);
2163 if (mod->klp_info == NULL)
2164 return -ENOMEM;
2165
2166 /* Elf header */
2167 size = sizeof(mod->klp_info->hdr);
2168 memcpy(&mod->klp_info->hdr, info->hdr, size);
2169
2170 /* Elf section header table */
2171 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2172 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2173 if (mod->klp_info->sechdrs == NULL) {
2174 ret = -ENOMEM;
2175 goto free_info;
2176 }
2177
2178 /* Elf section name string table */
2179 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2180 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2181 if (mod->klp_info->secstrings == NULL) {
2182 ret = -ENOMEM;
2183 goto free_sechdrs;
2184 }
2185
2186 /* Elf symbol section index */
2187 symndx = info->index.sym;
2188 mod->klp_info->symndx = symndx;
2189
2190 /*
2191 * For livepatch modules, core_kallsyms.symtab is a complete
2192 * copy of the original symbol table. Adjust sh_addr to point
2193 * to core_kallsyms.symtab since the copy of the symtab in module
2194 * init memory is freed at the end of do_init_module().
2195 */
2196 mod->klp_info->sechdrs[symndx].sh_addr = \
2197 (unsigned long) mod->core_kallsyms.symtab;
2198
2199 return 0;
2200
2201 free_sechdrs:
2202 kfree(mod->klp_info->sechdrs);
2203 free_info:
2204 kfree(mod->klp_info);
2205 return ret;
2206 }
2207
2208 static void free_module_elf(struct module *mod)
2209 {
2210 kfree(mod->klp_info->sechdrs);
2211 kfree(mod->klp_info->secstrings);
2212 kfree(mod->klp_info);
2213 }
2214 #else /* !CONFIG_LIVEPATCH */
2215 static int copy_module_elf(struct module *mod, struct load_info *info)
2216 {
2217 return 0;
2218 }
2219
2220 static void free_module_elf(struct module *mod)
2221 {
2222 }
2223 #endif /* CONFIG_LIVEPATCH */
2224
2225 void __weak module_memfree(void *module_region)
2226 {
2227 /*
2228 * This memory may be RO, and freeing RO memory in an interrupt is not
2229 * supported by vmalloc.
2230 */
2231 WARN_ON(in_interrupt());
2232 vfree(module_region);
2233 }
2234
2235 void __weak module_arch_cleanup(struct module *mod)
2236 {
2237 }
2238
2239 void __weak module_arch_freeing_init(struct module *mod)
2240 {
2241 }
2242
2243 /* Free a module, remove from lists, etc. */
2244 static void free_module(struct module *mod)
2245 {
2246 trace_module_free(mod);
2247
2248 mod_sysfs_teardown(mod);
2249
2250 /*
2251 * We leave it in list to prevent duplicate loads, but make sure
2252 * that noone uses it while it's being deconstructed.
2253 */
2254 mutex_lock(&module_mutex);
2255 mod->state = MODULE_STATE_UNFORMED;
2256 mutex_unlock(&module_mutex);
2257
2258 /* Remove dynamic debug info */
2259 ddebug_remove_module(mod->name);
2260
2261 /* Arch-specific cleanup. */
2262 module_arch_cleanup(mod);
2263
2264 /* Module unload stuff */
2265 module_unload_free(mod);
2266
2267 /* Free any allocated parameters. */
2268 destroy_params(mod->kp, mod->num_kp);
2269
2270 if (is_livepatch_module(mod))
2271 free_module_elf(mod);
2272
2273 /* Now we can delete it from the lists */
2274 mutex_lock(&module_mutex);
2275 /* Unlink carefully: kallsyms could be walking list. */
2276 list_del_rcu(&mod->list);
2277 mod_tree_remove(mod);
2278 /* Remove this module from bug list, this uses list_del_rcu */
2279 module_bug_cleanup(mod);
2280 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2281 synchronize_rcu();
2282 mutex_unlock(&module_mutex);
2283
2284 /* This may be empty, but that's OK */
2285 module_arch_freeing_init(mod);
2286 module_memfree(mod->init_layout.base);
2287 kfree(mod->args);
2288 percpu_modfree(mod);
2289
2290 /* Free lock-classes; relies on the preceding sync_rcu(). */
2291 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2292
2293 /* Finally, free the core (containing the module structure) */
2294 module_memfree(mod->core_layout.base);
2295 }
2296
2297 void *__symbol_get(const char *symbol)
2298 {
2299 struct module *owner;
2300 const struct kernel_symbol *sym;
2301
2302 preempt_disable();
2303 sym = find_symbol(symbol, &owner, NULL, NULL, true, true);
2304 if (sym && strong_try_module_get(owner))
2305 sym = NULL;
2306 preempt_enable();
2307
2308 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2309 }
2310 EXPORT_SYMBOL_GPL(__symbol_get);
2311
2312 /*
2313 * Ensure that an exported symbol [global namespace] does not already exist
2314 * in the kernel or in some other module's exported symbol table.
2315 *
2316 * You must hold the module_mutex.
2317 */
2318 static int verify_exported_symbols(struct module *mod)
2319 {
2320 unsigned int i;
2321 struct module *owner;
2322 const struct kernel_symbol *s;
2323 struct {
2324 const struct kernel_symbol *sym;
2325 unsigned int num;
2326 } arr[] = {
2327 { mod->syms, mod->num_syms },
2328 { mod->gpl_syms, mod->num_gpl_syms },
2329 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2330 #ifdef CONFIG_UNUSED_SYMBOLS
2331 { mod->unused_syms, mod->num_unused_syms },
2332 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2333 #endif
2334 };
2335
2336 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2337 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2338 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2339 NULL, true, false)) {
2340 pr_err("%s: exports duplicate symbol %s"
2341 " (owned by %s)\n",
2342 mod->name, kernel_symbol_name(s),
2343 module_name(owner));
2344 return -ENOEXEC;
2345 }
2346 }
2347 }
2348 return 0;
2349 }
2350
2351 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2352 {
2353 /*
2354 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2355 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2356 * i386 has a similar problem but may not deserve a fix.
2357 *
2358 * If we ever have to ignore many symbols, consider refactoring the code to
2359 * only warn if referenced by a relocation.
2360 */
2361 if (emachine == EM_386 || emachine == EM_X86_64)
2362 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2363 return false;
2364 }
2365
2366 /* Change all symbols so that st_value encodes the pointer directly. */
2367 static int simplify_symbols(struct module *mod, const struct load_info *info)
2368 {
2369 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2370 Elf_Sym *sym = (void *)symsec->sh_addr;
2371 unsigned long secbase;
2372 unsigned int i;
2373 int ret = 0;
2374 const struct kernel_symbol *ksym;
2375
2376 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2377 const char *name = info->strtab + sym[i].st_name;
2378
2379 switch (sym[i].st_shndx) {
2380 case SHN_COMMON:
2381 /* Ignore common symbols */
2382 if (!strncmp(name, "__gnu_lto", 9))
2383 break;
2384
2385 /*
2386 * We compiled with -fno-common. These are not
2387 * supposed to happen.
2388 */
2389 pr_debug("Common symbol: %s\n", name);
2390 pr_warn("%s: please compile with -fno-common\n",
2391 mod->name);
2392 ret = -ENOEXEC;
2393 break;
2394
2395 case SHN_ABS:
2396 /* Don't need to do anything */
2397 pr_debug("Absolute symbol: 0x%08lx\n",
2398 (long)sym[i].st_value);
2399 break;
2400
2401 case SHN_LIVEPATCH:
2402 /* Livepatch symbols are resolved by livepatch */
2403 break;
2404
2405 case SHN_UNDEF:
2406 ksym = resolve_symbol_wait(mod, info, name);
2407 /* Ok if resolved. */
2408 if (ksym && !IS_ERR(ksym)) {
2409 sym[i].st_value = kernel_symbol_value(ksym);
2410 break;
2411 }
2412
2413 /* Ok if weak or ignored. */
2414 if (!ksym &&
2415 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2416 ignore_undef_symbol(info->hdr->e_machine, name)))
2417 break;
2418
2419 ret = PTR_ERR(ksym) ?: -ENOENT;
2420 pr_warn("%s: Unknown symbol %s (err %d)\n",
2421 mod->name, name, ret);
2422 break;
2423
2424 default:
2425 /* Divert to percpu allocation if a percpu var. */
2426 if (sym[i].st_shndx == info->index.pcpu)
2427 secbase = (unsigned long)mod_percpu(mod);
2428 else
2429 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2430 sym[i].st_value += secbase;
2431 break;
2432 }
2433 }
2434
2435 return ret;
2436 }
2437
2438 static int apply_relocations(struct module *mod, const struct load_info *info)
2439 {
2440 unsigned int i;
2441 int err = 0;
2442
2443 /* Now do relocations. */
2444 for (i = 1; i < info->hdr->e_shnum; i++) {
2445 unsigned int infosec = info->sechdrs[i].sh_info;
2446
2447 /* Not a valid relocation section? */
2448 if (infosec >= info->hdr->e_shnum)
2449 continue;
2450
2451 /* Don't bother with non-allocated sections */
2452 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2453 continue;
2454
2455 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2456 err = klp_apply_section_relocs(mod, info->sechdrs,
2457 info->secstrings,
2458 info->strtab,
2459 info->index.sym, i,
2460 NULL);
2461 else if (info->sechdrs[i].sh_type == SHT_REL)
2462 err = apply_relocate(info->sechdrs, info->strtab,
2463 info->index.sym, i, mod);
2464 else if (info->sechdrs[i].sh_type == SHT_RELA)
2465 err = apply_relocate_add(info->sechdrs, info->strtab,
2466 info->index.sym, i, mod);
2467 if (err < 0)
2468 break;
2469 }
2470 return err;
2471 }
2472
2473 /* Additional bytes needed by arch in front of individual sections */
2474 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2475 unsigned int section)
2476 {
2477 /* default implementation just returns zero */
2478 return 0;
2479 }
2480
2481 /* Update size with this section: return offset. */
2482 static long get_offset(struct module *mod, unsigned int *size,
2483 Elf_Shdr *sechdr, unsigned int section)
2484 {
2485 long ret;
2486
2487 *size += arch_mod_section_prepend(mod, section);
2488 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2489 *size = ret + sechdr->sh_size;
2490 return ret;
2491 }
2492
2493 /*
2494 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2495 * might -- code, read-only data, read-write data, small data. Tally
2496 * sizes, and place the offsets into sh_entsize fields: high bit means it
2497 * belongs in init.
2498 */
2499 static void layout_sections(struct module *mod, struct load_info *info)
2500 {
2501 static unsigned long const masks[][2] = {
2502 /*
2503 * NOTE: all executable code must be the first section
2504 * in this array; otherwise modify the text_size
2505 * finder in the two loops below
2506 */
2507 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2508 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2509 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2510 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2511 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2512 };
2513 unsigned int m, i;
2514
2515 for (i = 0; i < info->hdr->e_shnum; i++)
2516 info->sechdrs[i].sh_entsize = ~0UL;
2517
2518 pr_debug("Core section allocation order:\n");
2519 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2520 for (i = 0; i < info->hdr->e_shnum; ++i) {
2521 Elf_Shdr *s = &info->sechdrs[i];
2522 const char *sname = info->secstrings + s->sh_name;
2523
2524 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2525 || (s->sh_flags & masks[m][1])
2526 || s->sh_entsize != ~0UL
2527 || module_init_section(sname))
2528 continue;
2529 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2530 pr_debug("\t%s\n", sname);
2531 }
2532 switch (m) {
2533 case 0: /* executable */
2534 mod->core_layout.size = debug_align(mod->core_layout.size);
2535 mod->core_layout.text_size = mod->core_layout.size;
2536 break;
2537 case 1: /* RO: text and ro-data */
2538 mod->core_layout.size = debug_align(mod->core_layout.size);
2539 mod->core_layout.ro_size = mod->core_layout.size;
2540 break;
2541 case 2: /* RO after init */
2542 mod->core_layout.size = debug_align(mod->core_layout.size);
2543 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2544 break;
2545 case 4: /* whole core */
2546 mod->core_layout.size = debug_align(mod->core_layout.size);
2547 break;
2548 }
2549 }
2550
2551 pr_debug("Init section allocation order:\n");
2552 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2553 for (i = 0; i < info->hdr->e_shnum; ++i) {
2554 Elf_Shdr *s = &info->sechdrs[i];
2555 const char *sname = info->secstrings + s->sh_name;
2556
2557 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2558 || (s->sh_flags & masks[m][1])
2559 || s->sh_entsize != ~0UL
2560 || !module_init_section(sname))
2561 continue;
2562 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2563 | INIT_OFFSET_MASK);
2564 pr_debug("\t%s\n", sname);
2565 }
2566 switch (m) {
2567 case 0: /* executable */
2568 mod->init_layout.size = debug_align(mod->init_layout.size);
2569 mod->init_layout.text_size = mod->init_layout.size;
2570 break;
2571 case 1: /* RO: text and ro-data */
2572 mod->init_layout.size = debug_align(mod->init_layout.size);
2573 mod->init_layout.ro_size = mod->init_layout.size;
2574 break;
2575 case 2:
2576 /*
2577 * RO after init doesn't apply to init_layout (only
2578 * core_layout), so it just takes the value of ro_size.
2579 */
2580 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2581 break;
2582 case 4: /* whole init */
2583 mod->init_layout.size = debug_align(mod->init_layout.size);
2584 break;
2585 }
2586 }
2587 }
2588
2589 static void set_license(struct module *mod, const char *license)
2590 {
2591 if (!license)
2592 license = "unspecified";
2593
2594 if (!license_is_gpl_compatible(license)) {
2595 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2596 pr_warn("%s: module license '%s' taints kernel.\n",
2597 mod->name, license);
2598 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2599 LOCKDEP_NOW_UNRELIABLE);
2600 }
2601 }
2602
2603 /* Parse tag=value strings from .modinfo section */
2604 static char *next_string(char *string, unsigned long *secsize)
2605 {
2606 /* Skip non-zero chars */
2607 while (string[0]) {
2608 string++;
2609 if ((*secsize)-- <= 1)
2610 return NULL;
2611 }
2612
2613 /* Skip any zero padding. */
2614 while (!string[0]) {
2615 string++;
2616 if ((*secsize)-- <= 1)
2617 return NULL;
2618 }
2619 return string;
2620 }
2621
2622 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2623 char *prev)
2624 {
2625 char *p;
2626 unsigned int taglen = strlen(tag);
2627 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2628 unsigned long size = infosec->sh_size;
2629
2630 /*
2631 * get_modinfo() calls made before rewrite_section_headers()
2632 * must use sh_offset, as sh_addr isn't set!
2633 */
2634 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2635
2636 if (prev) {
2637 size -= prev - modinfo;
2638 modinfo = next_string(prev, &size);
2639 }
2640
2641 for (p = modinfo; p; p = next_string(p, &size)) {
2642 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2643 return p + taglen + 1;
2644 }
2645 return NULL;
2646 }
2647
2648 static char *get_modinfo(const struct load_info *info, const char *tag)
2649 {
2650 return get_next_modinfo(info, tag, NULL);
2651 }
2652
2653 static void setup_modinfo(struct module *mod, struct load_info *info)
2654 {
2655 struct module_attribute *attr;
2656 int i;
2657
2658 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2659 if (attr->setup)
2660 attr->setup(mod, get_modinfo(info, attr->attr.name));
2661 }
2662 }
2663
2664 static void free_modinfo(struct module *mod)
2665 {
2666 struct module_attribute *attr;
2667 int i;
2668
2669 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2670 if (attr->free)
2671 attr->free(mod);
2672 }
2673 }
2674
2675 #ifdef CONFIG_KALLSYMS
2676
2677 /* Lookup exported symbol in given range of kernel_symbols */
2678 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2679 const struct kernel_symbol *start,
2680 const struct kernel_symbol *stop)
2681 {
2682 return bsearch(name, start, stop - start,
2683 sizeof(struct kernel_symbol), cmp_name);
2684 }
2685
2686 static int is_exported(const char *name, unsigned long value,
2687 const struct module *mod)
2688 {
2689 const struct kernel_symbol *ks;
2690 if (!mod)
2691 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2692 else
2693 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2694
2695 return ks != NULL && kernel_symbol_value(ks) == value;
2696 }
2697
2698 /* As per nm */
2699 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2700 {
2701 const Elf_Shdr *sechdrs = info->sechdrs;
2702
2703 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2704 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2705 return 'v';
2706 else
2707 return 'w';
2708 }
2709 if (sym->st_shndx == SHN_UNDEF)
2710 return 'U';
2711 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2712 return 'a';
2713 if (sym->st_shndx >= SHN_LORESERVE)
2714 return '?';
2715 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2716 return 't';
2717 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2718 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2719 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2720 return 'r';
2721 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2722 return 'g';
2723 else
2724 return 'd';
2725 }
2726 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2727 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2728 return 's';
2729 else
2730 return 'b';
2731 }
2732 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2733 ".debug")) {
2734 return 'n';
2735 }
2736 return '?';
2737 }
2738
2739 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2740 unsigned int shnum, unsigned int pcpundx)
2741 {
2742 const Elf_Shdr *sec;
2743
2744 if (src->st_shndx == SHN_UNDEF
2745 || src->st_shndx >= shnum
2746 || !src->st_name)
2747 return false;
2748
2749 #ifdef CONFIG_KALLSYMS_ALL
2750 if (src->st_shndx == pcpundx)
2751 return true;
2752 #endif
2753
2754 sec = sechdrs + src->st_shndx;
2755 if (!(sec->sh_flags & SHF_ALLOC)
2756 #ifndef CONFIG_KALLSYMS_ALL
2757 || !(sec->sh_flags & SHF_EXECINSTR)
2758 #endif
2759 || (sec->sh_entsize & INIT_OFFSET_MASK))
2760 return false;
2761
2762 return true;
2763 }
2764
2765 /*
2766 * We only allocate and copy the strings needed by the parts of symtab
2767 * we keep. This is simple, but has the effect of making multiple
2768 * copies of duplicates. We could be more sophisticated, see
2769 * linux-kernel thread starting with
2770 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2771 */
2772 static void layout_symtab(struct module *mod, struct load_info *info)
2773 {
2774 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2775 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2776 const Elf_Sym *src;
2777 unsigned int i, nsrc, ndst, strtab_size = 0;
2778
2779 /* Put symbol section at end of init part of module. */
2780 symsect->sh_flags |= SHF_ALLOC;
2781 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2782 info->index.sym) | INIT_OFFSET_MASK;
2783 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2784
2785 src = (void *)info->hdr + symsect->sh_offset;
2786 nsrc = symsect->sh_size / sizeof(*src);
2787
2788 /* Compute total space required for the core symbols' strtab. */
2789 for (ndst = i = 0; i < nsrc; i++) {
2790 if (i == 0 || is_livepatch_module(mod) ||
2791 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2792 info->index.pcpu)) {
2793 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2794 ndst++;
2795 }
2796 }
2797
2798 /* Append room for core symbols at end of core part. */
2799 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2800 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2801 mod->core_layout.size += strtab_size;
2802 info->core_typeoffs = mod->core_layout.size;
2803 mod->core_layout.size += ndst * sizeof(char);
2804 mod->core_layout.size = debug_align(mod->core_layout.size);
2805
2806 /* Put string table section at end of init part of module. */
2807 strsect->sh_flags |= SHF_ALLOC;
2808 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2809 info->index.str) | INIT_OFFSET_MASK;
2810 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2811
2812 /* We'll tack temporary mod_kallsyms on the end. */
2813 mod->init_layout.size = ALIGN(mod->init_layout.size,
2814 __alignof__(struct mod_kallsyms));
2815 info->mod_kallsyms_init_off = mod->init_layout.size;
2816 mod->init_layout.size += sizeof(struct mod_kallsyms);
2817 info->init_typeoffs = mod->init_layout.size;
2818 mod->init_layout.size += nsrc * sizeof(char);
2819 mod->init_layout.size = debug_align(mod->init_layout.size);
2820 }
2821
2822 /*
2823 * We use the full symtab and strtab which layout_symtab arranged to
2824 * be appended to the init section. Later we switch to the cut-down
2825 * core-only ones.
2826 */
2827 static void add_kallsyms(struct module *mod, const struct load_info *info)
2828 {
2829 unsigned int i, ndst;
2830 const Elf_Sym *src;
2831 Elf_Sym *dst;
2832 char *s;
2833 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2834
2835 /* Set up to point into init section. */
2836 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2837
2838 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2839 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2840 /* Make sure we get permanent strtab: don't use info->strtab. */
2841 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2842 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2843
2844 /*
2845 * Now populate the cut down core kallsyms for after init
2846 * and set types up while we still have access to sections.
2847 */
2848 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2849 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2850 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2851 src = mod->kallsyms->symtab;
2852 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2853 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2854 if (i == 0 || is_livepatch_module(mod) ||
2855 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2856 info->index.pcpu)) {
2857 mod->core_kallsyms.typetab[ndst] =
2858 mod->kallsyms->typetab[i];
2859 dst[ndst] = src[i];
2860 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2861 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2862 KSYM_NAME_LEN) + 1;
2863 }
2864 }
2865 mod->core_kallsyms.num_symtab = ndst;
2866 }
2867 #else
2868 static inline void layout_symtab(struct module *mod, struct load_info *info)
2869 {
2870 }
2871
2872 static void add_kallsyms(struct module *mod, const struct load_info *info)
2873 {
2874 }
2875 #endif /* CONFIG_KALLSYMS */
2876
2877 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2878 {
2879 if (!debug)
2880 return;
2881 ddebug_add_module(debug, num, mod->name);
2882 }
2883
2884 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2885 {
2886 if (debug)
2887 ddebug_remove_module(mod->name);
2888 }
2889
2890 void * __weak module_alloc(unsigned long size)
2891 {
2892 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2893 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2894 NUMA_NO_NODE, __builtin_return_address(0));
2895 }
2896
2897 bool __weak module_init_section(const char *name)
2898 {
2899 return strstarts(name, ".init");
2900 }
2901
2902 bool __weak module_exit_section(const char *name)
2903 {
2904 return strstarts(name, ".exit");
2905 }
2906
2907 #ifdef CONFIG_DEBUG_KMEMLEAK
2908 static void kmemleak_load_module(const struct module *mod,
2909 const struct load_info *info)
2910 {
2911 unsigned int i;
2912
2913 /* only scan the sections containing data */
2914 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2915
2916 for (i = 1; i < info->hdr->e_shnum; i++) {
2917 /* Scan all writable sections that's not executable */
2918 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2919 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2920 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2921 continue;
2922
2923 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2924 info->sechdrs[i].sh_size, GFP_KERNEL);
2925 }
2926 }
2927 #else
2928 static inline void kmemleak_load_module(const struct module *mod,
2929 const struct load_info *info)
2930 {
2931 }
2932 #endif
2933
2934 #ifdef CONFIG_MODULE_SIG
2935 static int module_sig_check(struct load_info *info, int flags)
2936 {
2937 int err = -ENODATA;
2938 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2939 const char *reason;
2940 const void *mod = info->hdr;
2941
2942 /*
2943 * Require flags == 0, as a module with version information
2944 * removed is no longer the module that was signed
2945 */
2946 if (flags == 0 &&
2947 info->len > markerlen &&
2948 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2949 /* We truncate the module to discard the signature */
2950 info->len -= markerlen;
2951 err = mod_verify_sig(mod, info);
2952 if (!err) {
2953 info->sig_ok = true;
2954 return 0;
2955 }
2956 }
2957
2958 /*
2959 * We don't permit modules to be loaded into the trusted kernels
2960 * without a valid signature on them, but if we're not enforcing,
2961 * certain errors are non-fatal.
2962 */
2963 switch (err) {
2964 case -ENODATA:
2965 reason = "unsigned module";
2966 break;
2967 case -ENOPKG:
2968 reason = "module with unsupported crypto";
2969 break;
2970 case -ENOKEY:
2971 reason = "module with unavailable key";
2972 break;
2973
2974 default:
2975 /*
2976 * All other errors are fatal, including lack of memory,
2977 * unparseable signatures, and signature check failures --
2978 * even if signatures aren't required.
2979 */
2980 return err;
2981 }
2982
2983 if (is_module_sig_enforced()) {
2984 pr_notice("Loading of %s is rejected\n", reason);
2985 return -EKEYREJECTED;
2986 }
2987
2988 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2989 }
2990 #else /* !CONFIG_MODULE_SIG */
2991 static int module_sig_check(struct load_info *info, int flags)
2992 {
2993 return 0;
2994 }
2995 #endif /* !CONFIG_MODULE_SIG */
2996
2997 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2998 {
2999 unsigned long secend;
3000
3001 /*
3002 * Check for both overflow and offset/size being
3003 * too large.
3004 */
3005 secend = shdr->sh_offset + shdr->sh_size;
3006 if (secend < shdr->sh_offset || secend > info->len)
3007 return -ENOEXEC;
3008
3009 return 0;
3010 }
3011
3012 /*
3013 * Sanity checks against invalid binaries, wrong arch, weird elf version.
3014 *
3015 * Also do basic validity checks against section offsets and sizes, the
3016 * section name string table, and the indices used for it (sh_name).
3017 */
3018 static int elf_validity_check(struct load_info *info)
3019 {
3020 unsigned int i;
3021 Elf_Shdr *shdr, *strhdr;
3022 int err;
3023
3024 if (info->len < sizeof(*(info->hdr)))
3025 return -ENOEXEC;
3026
3027 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
3028 || info->hdr->e_type != ET_REL
3029 || !elf_check_arch(info->hdr)
3030 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
3031 return -ENOEXEC;
3032
3033 /*
3034 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
3035 * known and small. So e_shnum * sizeof(Elf_Shdr)
3036 * will not overflow unsigned long on any platform.
3037 */
3038 if (info->hdr->e_shoff >= info->len
3039 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
3040 info->len - info->hdr->e_shoff))
3041 return -ENOEXEC;
3042
3043 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3044
3045 /*
3046 * Verify if the section name table index is valid.
3047 */
3048 if (info->hdr->e_shstrndx == SHN_UNDEF
3049 || info->hdr->e_shstrndx >= info->hdr->e_shnum)
3050 return -ENOEXEC;
3051
3052 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
3053 err = validate_section_offset(info, strhdr);
3054 if (err < 0)
3055 return err;
3056
3057 /*
3058 * The section name table must be NUL-terminated, as required
3059 * by the spec. This makes strcmp and pr_* calls that access
3060 * strings in the section safe.
3061 */
3062 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3063 if (info->secstrings[strhdr->sh_size - 1] != '\0')
3064 return -ENOEXEC;
3065
3066 /*
3067 * The code assumes that section 0 has a length of zero and
3068 * an addr of zero, so check for it.
3069 */
3070 if (info->sechdrs[0].sh_type != SHT_NULL
3071 || info->sechdrs[0].sh_size != 0
3072 || info->sechdrs[0].sh_addr != 0)
3073 return -ENOEXEC;
3074
3075 for (i = 1; i < info->hdr->e_shnum; i++) {
3076 shdr = &info->sechdrs[i];
3077 switch (shdr->sh_type) {
3078 case SHT_NULL:
3079 case SHT_NOBITS:
3080 continue;
3081 case SHT_SYMTAB:
3082 if (shdr->sh_link == SHN_UNDEF
3083 || shdr->sh_link >= info->hdr->e_shnum)
3084 return -ENOEXEC;
3085 fallthrough;
3086 default:
3087 err = validate_section_offset(info, shdr);
3088 if (err < 0) {
3089 pr_err("Invalid ELF section in module (section %u type %u)\n",
3090 i, shdr->sh_type);
3091 return err;
3092 }
3093
3094 if (shdr->sh_flags & SHF_ALLOC) {
3095 if (shdr->sh_name >= strhdr->sh_size) {
3096 pr_err("Invalid ELF section name in module (section %u type %u)\n",
3097 i, shdr->sh_type);
3098 return -ENOEXEC;
3099 }
3100 }
3101 break;
3102 }
3103 }
3104
3105 return 0;
3106 }
3107
3108 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3109
3110 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3111 {
3112 do {
3113 unsigned long n = min(len, COPY_CHUNK_SIZE);
3114
3115 if (copy_from_user(dst, usrc, n) != 0)
3116 return -EFAULT;
3117 cond_resched();
3118 dst += n;
3119 usrc += n;
3120 len -= n;
3121 } while (len);
3122 return 0;
3123 }
3124
3125 #ifdef CONFIG_LIVEPATCH
3126 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3127 {
3128 if (get_modinfo(info, "livepatch")) {
3129 mod->klp = true;
3130 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3131 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3132 mod->name);
3133 }
3134
3135 return 0;
3136 }
3137 #else /* !CONFIG_LIVEPATCH */
3138 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3139 {
3140 if (get_modinfo(info, "livepatch")) {
3141 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3142 mod->name);
3143 return -ENOEXEC;
3144 }
3145
3146 return 0;
3147 }
3148 #endif /* CONFIG_LIVEPATCH */
3149
3150 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3151 {
3152 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3153 return;
3154
3155 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3156 mod->name);
3157 }
3158
3159 /* Sets info->hdr and info->len. */
3160 static int copy_module_from_user(const void __user *umod, unsigned long len,
3161 struct load_info *info)
3162 {
3163 int err;
3164
3165 info->len = len;
3166 if (info->len < sizeof(*(info->hdr)))
3167 return -ENOEXEC;
3168
3169 err = security_kernel_load_data(LOADING_MODULE, true);
3170 if (err)
3171 return err;
3172
3173 /* Suck in entire file: we'll want most of it. */
3174 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3175 if (!info->hdr)
3176 return -ENOMEM;
3177
3178 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3179 err = -EFAULT;
3180 goto out;
3181 }
3182
3183 err = security_kernel_post_load_data((char *)info->hdr, info->len,
3184 LOADING_MODULE, "init_module");
3185 out:
3186 if (err)
3187 vfree(info->hdr);
3188
3189 return err;
3190 }
3191
3192 static void free_copy(struct load_info *info)
3193 {
3194 vfree(info->hdr);
3195 }
3196
3197 static int rewrite_section_headers(struct load_info *info, int flags)
3198 {
3199 unsigned int i;
3200
3201 /* This should always be true, but let's be sure. */
3202 info->sechdrs[0].sh_addr = 0;
3203
3204 for (i = 1; i < info->hdr->e_shnum; i++) {
3205 Elf_Shdr *shdr = &info->sechdrs[i];
3206
3207 /*
3208 * Mark all sections sh_addr with their address in the
3209 * temporary image.
3210 */
3211 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3212
3213 #ifndef CONFIG_MODULE_UNLOAD
3214 /* Don't load .exit sections */
3215 if (module_exit_section(info->secstrings+shdr->sh_name))
3216 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3217 #endif
3218 }
3219
3220 /* Track but don't keep modinfo and version sections. */
3221 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3222 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3223
3224 return 0;
3225 }
3226
3227 /*
3228 * Set up our basic convenience variables (pointers to section headers,
3229 * search for module section index etc), and do some basic section
3230 * verification.
3231 *
3232 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3233 * will be allocated in move_module().
3234 */
3235 static int setup_load_info(struct load_info *info, int flags)
3236 {
3237 unsigned int i;
3238
3239 /* Try to find a name early so we can log errors with a module name */
3240 info->index.info = find_sec(info, ".modinfo");
3241 if (info->index.info)
3242 info->name = get_modinfo(info, "name");
3243
3244 /* Find internal symbols and strings. */
3245 for (i = 1; i < info->hdr->e_shnum; i++) {
3246 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3247 info->index.sym = i;
3248 info->index.str = info->sechdrs[i].sh_link;
3249 info->strtab = (char *)info->hdr
3250 + info->sechdrs[info->index.str].sh_offset;
3251 break;
3252 }
3253 }
3254
3255 if (info->index.sym == 0) {
3256 pr_warn("%s: module has no symbols (stripped?)\n",
3257 info->name ?: "(missing .modinfo section or name field)");
3258 return -ENOEXEC;
3259 }
3260
3261 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3262 if (!info->index.mod) {
3263 pr_warn("%s: No module found in object\n",
3264 info->name ?: "(missing .modinfo section or name field)");
3265 return -ENOEXEC;
3266 }
3267 /* This is temporary: point mod into copy of data. */
3268 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3269
3270 /*
3271 * If we didn't load the .modinfo 'name' field earlier, fall back to
3272 * on-disk struct mod 'name' field.
3273 */
3274 if (!info->name)
3275 info->name = info->mod->name;
3276
3277 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3278 info->index.vers = 0; /* Pretend no __versions section! */
3279 else
3280 info->index.vers = find_sec(info, "__versions");
3281
3282 info->index.pcpu = find_pcpusec(info);
3283
3284 return 0;
3285 }
3286
3287 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3288 {
3289 const char *modmagic = get_modinfo(info, "vermagic");
3290 int err;
3291
3292 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3293 modmagic = NULL;
3294
3295 /* This is allowed: modprobe --force will invalidate it. */
3296 if (!modmagic) {
3297 err = try_to_force_load(mod, "bad vermagic");
3298 if (err)
3299 return err;
3300 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3301 pr_err("%s: version magic '%s' should be '%s'\n",
3302 info->name, modmagic, vermagic);
3303 return -ENOEXEC;
3304 }
3305
3306 if (!get_modinfo(info, "intree")) {
3307 if (!test_taint(TAINT_OOT_MODULE))
3308 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3309 mod->name);
3310 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3311 }
3312
3313 check_modinfo_retpoline(mod, info);
3314
3315 if (get_modinfo(info, "staging")) {
3316 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3317 pr_warn("%s: module is from the staging directory, the quality "
3318 "is unknown, you have been warned.\n", mod->name);
3319 }
3320
3321 err = check_modinfo_livepatch(mod, info);
3322 if (err)
3323 return err;
3324
3325 /* Set up license info based on the info section */
3326 set_license(mod, get_modinfo(info, "license"));
3327
3328 return 0;
3329 }
3330
3331 static int find_module_sections(struct module *mod, struct load_info *info)
3332 {
3333 mod->kp = section_objs(info, "__param",
3334 sizeof(*mod->kp), &mod->num_kp);
3335 mod->syms = section_objs(info, "__ksymtab",
3336 sizeof(*mod->syms), &mod->num_syms);
3337 mod->crcs = section_addr(info, "__kcrctab");
3338 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3339 sizeof(*mod->gpl_syms),
3340 &mod->num_gpl_syms);
3341 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3342 mod->gpl_future_syms = section_objs(info,
3343 "__ksymtab_gpl_future",
3344 sizeof(*mod->gpl_future_syms),
3345 &mod->num_gpl_future_syms);
3346 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3347
3348 #ifdef CONFIG_UNUSED_SYMBOLS
3349 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3350 sizeof(*mod->unused_syms),
3351 &mod->num_unused_syms);
3352 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3353 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3354 sizeof(*mod->unused_gpl_syms),
3355 &mod->num_unused_gpl_syms);
3356 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3357 #endif
3358 #ifdef CONFIG_CONSTRUCTORS
3359 mod->ctors = section_objs(info, ".ctors",
3360 sizeof(*mod->ctors), &mod->num_ctors);
3361 if (!mod->ctors)
3362 mod->ctors = section_objs(info, ".init_array",
3363 sizeof(*mod->ctors), &mod->num_ctors);
3364 else if (find_sec(info, ".init_array")) {
3365 /*
3366 * This shouldn't happen with same compiler and binutils
3367 * building all parts of the module.
3368 */
3369 pr_warn("%s: has both .ctors and .init_array.\n",
3370 mod->name);
3371 return -EINVAL;
3372 }
3373 #endif
3374
3375 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3376 &mod->noinstr_text_size);
3377
3378 #ifdef CONFIG_TRACEPOINTS
3379 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3380 sizeof(*mod->tracepoints_ptrs),
3381 &mod->num_tracepoints);
3382 #endif
3383 #ifdef CONFIG_TREE_SRCU
3384 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3385 sizeof(*mod->srcu_struct_ptrs),
3386 &mod->num_srcu_structs);
3387 #endif
3388 #ifdef CONFIG_BPF_EVENTS
3389 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3390 sizeof(*mod->bpf_raw_events),
3391 &mod->num_bpf_raw_events);
3392 #endif
3393 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3394 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3395 #endif
3396 #ifdef CONFIG_JUMP_LABEL
3397 mod->jump_entries = section_objs(info, "__jump_table",
3398 sizeof(*mod->jump_entries),
3399 &mod->num_jump_entries);
3400 #endif
3401 #ifdef CONFIG_EVENT_TRACING
3402 mod->trace_events = section_objs(info, "_ftrace_events",
3403 sizeof(*mod->trace_events),
3404 &mod->num_trace_events);
3405 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3406 sizeof(*mod->trace_evals),
3407 &mod->num_trace_evals);
3408 #endif
3409 #ifdef CONFIG_TRACING
3410 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3411 sizeof(*mod->trace_bprintk_fmt_start),
3412 &mod->num_trace_bprintk_fmt);
3413 #endif
3414 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3415 /* sechdrs[0].sh_size is always zero */
3416 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3417 sizeof(*mod->ftrace_callsites),
3418 &mod->num_ftrace_callsites);
3419 #endif
3420 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3421 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3422 sizeof(*mod->ei_funcs),
3423 &mod->num_ei_funcs);
3424 #endif
3425 #ifdef CONFIG_KPROBES
3426 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3427 &mod->kprobes_text_size);
3428 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3429 sizeof(unsigned long),
3430 &mod->num_kprobe_blacklist);
3431 #endif
3432 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3433 mod->static_call_sites = section_objs(info, ".static_call_sites",
3434 sizeof(*mod->static_call_sites),
3435 &mod->num_static_call_sites);
3436 #endif
3437 mod->extable = section_objs(info, "__ex_table",
3438 sizeof(*mod->extable), &mod->num_exentries);
3439
3440 if (section_addr(info, "__obsparm"))
3441 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3442
3443 info->debug = section_objs(info, "__dyndbg",
3444 sizeof(*info->debug), &info->num_debug);
3445
3446 return 0;
3447 }
3448
3449 static int move_module(struct module *mod, struct load_info *info)
3450 {
3451 int i;
3452 void *ptr;
3453
3454 /* Do the allocs. */
3455 ptr = module_alloc(mod->core_layout.size);
3456 /*
3457 * The pointer to this block is stored in the module structure
3458 * which is inside the block. Just mark it as not being a
3459 * leak.
3460 */
3461 kmemleak_not_leak(ptr);
3462 if (!ptr)
3463 return -ENOMEM;
3464
3465 memset(ptr, 0, mod->core_layout.size);
3466 mod->core_layout.base = ptr;
3467
3468 if (mod->init_layout.size) {
3469 ptr = module_alloc(mod->init_layout.size);
3470 /*
3471 * The pointer to this block is stored in the module structure
3472 * which is inside the block. This block doesn't need to be
3473 * scanned as it contains data and code that will be freed
3474 * after the module is initialized.
3475 */
3476 kmemleak_ignore(ptr);
3477 if (!ptr) {
3478 module_memfree(mod->core_layout.base);
3479 return -ENOMEM;
3480 }
3481 memset(ptr, 0, mod->init_layout.size);
3482 mod->init_layout.base = ptr;
3483 } else
3484 mod->init_layout.base = NULL;
3485
3486 /* Transfer each section which specifies SHF_ALLOC */
3487 pr_debug("final section addresses:\n");
3488 for (i = 0; i < info->hdr->e_shnum; i++) {
3489 void *dest;
3490 Elf_Shdr *shdr = &info->sechdrs[i];
3491
3492 if (!(shdr->sh_flags & SHF_ALLOC))
3493 continue;
3494
3495 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3496 dest = mod->init_layout.base
3497 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3498 else
3499 dest = mod->core_layout.base + shdr->sh_entsize;
3500
3501 if (shdr->sh_type != SHT_NOBITS)
3502 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3503 /* Update sh_addr to point to copy in image. */
3504 shdr->sh_addr = (unsigned long)dest;
3505 pr_debug("\t0x%lx %s\n",
3506 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3507 }
3508
3509 return 0;
3510 }
3511
3512 static int check_module_license_and_versions(struct module *mod)
3513 {
3514 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3515
3516 /*
3517 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3518 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3519 * using GPL-only symbols it needs.
3520 */
3521 if (strcmp(mod->name, "ndiswrapper") == 0)
3522 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3523
3524 /* driverloader was caught wrongly pretending to be under GPL */
3525 if (strcmp(mod->name, "driverloader") == 0)
3526 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3527 LOCKDEP_NOW_UNRELIABLE);
3528
3529 /* lve claims to be GPL but upstream won't provide source */
3530 if (strcmp(mod->name, "lve") == 0)
3531 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3532 LOCKDEP_NOW_UNRELIABLE);
3533
3534 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3535 pr_warn("%s: module license taints kernel.\n", mod->name);
3536
3537 #ifdef CONFIG_MODVERSIONS
3538 if ((mod->num_syms && !mod->crcs)
3539 || (mod->num_gpl_syms && !mod->gpl_crcs)
3540 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3541 #ifdef CONFIG_UNUSED_SYMBOLS
3542 || (mod->num_unused_syms && !mod->unused_crcs)
3543 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3544 #endif
3545 ) {
3546 return try_to_force_load(mod,
3547 "no versions for exported symbols");
3548 }
3549 #endif
3550 return 0;
3551 }
3552
3553 static void flush_module_icache(const struct module *mod)
3554 {
3555 /*
3556 * Flush the instruction cache, since we've played with text.
3557 * Do it before processing of module parameters, so the module
3558 * can provide parameter accessor functions of its own.
3559 */
3560 if (mod->init_layout.base)
3561 flush_icache_range((unsigned long)mod->init_layout.base,
3562 (unsigned long)mod->init_layout.base
3563 + mod->init_layout.size);
3564 flush_icache_range((unsigned long)mod->core_layout.base,
3565 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3566 }
3567
3568 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3569 Elf_Shdr *sechdrs,
3570 char *secstrings,
3571 struct module *mod)
3572 {
3573 return 0;
3574 }
3575
3576 /* module_blacklist is a comma-separated list of module names */
3577 static char *module_blacklist;
3578 static bool blacklisted(const char *module_name)
3579 {
3580 const char *p;
3581 size_t len;
3582
3583 if (!module_blacklist)
3584 return false;
3585
3586 for (p = module_blacklist; *p; p += len) {
3587 len = strcspn(p, ",");
3588 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3589 return true;
3590 if (p[len] == ',')
3591 len++;
3592 }
3593 return false;
3594 }
3595 core_param(module_blacklist, module_blacklist, charp, 0400);
3596
3597 static struct module *layout_and_allocate(struct load_info *info, int flags)
3598 {
3599 struct module *mod;
3600 unsigned int ndx;
3601 int err;
3602
3603 err = check_modinfo(info->mod, info, flags);
3604 if (err)
3605 return ERR_PTR(err);
3606
3607 /* Allow arches to frob section contents and sizes. */
3608 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3609 info->secstrings, info->mod);
3610 if (err < 0)
3611 return ERR_PTR(err);
3612
3613 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3614 info->secstrings, info->mod);
3615 if (err < 0)
3616 return ERR_PTR(err);
3617
3618 /* We will do a special allocation for per-cpu sections later. */
3619 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3620
3621 /*
3622 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3623 * layout_sections() can put it in the right place.
3624 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3625 */
3626 ndx = find_sec(info, ".data..ro_after_init");
3627 if (ndx)
3628 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3629 /*
3630 * Mark the __jump_table section as ro_after_init as well: these data
3631 * structures are never modified, with the exception of entries that
3632 * refer to code in the __init section, which are annotated as such
3633 * at module load time.
3634 */
3635 ndx = find_sec(info, "__jump_table");
3636 if (ndx)
3637 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3638
3639 /*
3640 * Determine total sizes, and put offsets in sh_entsize. For now
3641 * this is done generically; there doesn't appear to be any
3642 * special cases for the architectures.
3643 */
3644 layout_sections(info->mod, info);
3645 layout_symtab(info->mod, info);
3646
3647 /* Allocate and move to the final place */
3648 err = move_module(info->mod, info);
3649 if (err)
3650 return ERR_PTR(err);
3651
3652 /* Module has been copied to its final place now: return it. */
3653 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3654 kmemleak_load_module(mod, info);
3655 return mod;
3656 }
3657
3658 /* mod is no longer valid after this! */
3659 static void module_deallocate(struct module *mod, struct load_info *info)
3660 {
3661 percpu_modfree(mod);
3662 module_arch_freeing_init(mod);
3663 module_memfree(mod->init_layout.base);
3664 module_memfree(mod->core_layout.base);
3665 }
3666
3667 int __weak module_finalize(const Elf_Ehdr *hdr,
3668 const Elf_Shdr *sechdrs,
3669 struct module *me)
3670 {
3671 return 0;
3672 }
3673
3674 static int post_relocation(struct module *mod, const struct load_info *info)
3675 {
3676 /* Sort exception table now relocations are done. */
3677 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3678
3679 /* Copy relocated percpu area over. */
3680 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3681 info->sechdrs[info->index.pcpu].sh_size);
3682
3683 /* Setup kallsyms-specific fields. */
3684 add_kallsyms(mod, info);
3685
3686 /* Arch-specific module finalizing. */
3687 return module_finalize(info->hdr, info->sechdrs, mod);
3688 }
3689
3690 /* Is this module of this name done loading? No locks held. */
3691 static bool finished_loading(const char *name)
3692 {
3693 struct module *mod;
3694 bool ret;
3695
3696 /*
3697 * The module_mutex should not be a heavily contended lock;
3698 * if we get the occasional sleep here, we'll go an extra iteration
3699 * in the wait_event_interruptible(), which is harmless.
3700 */
3701 sched_annotate_sleep();
3702 mutex_lock(&module_mutex);
3703 mod = find_module_all(name, strlen(name), true);
3704 ret = !mod || mod->state == MODULE_STATE_LIVE;
3705 mutex_unlock(&module_mutex);
3706
3707 return ret;
3708 }
3709
3710 /* Call module constructors. */
3711 static void do_mod_ctors(struct module *mod)
3712 {
3713 #ifdef CONFIG_CONSTRUCTORS
3714 unsigned long i;
3715
3716 for (i = 0; i < mod->num_ctors; i++)
3717 mod->ctors[i]();
3718 #endif
3719 }
3720
3721 /* For freeing module_init on success, in case kallsyms traversing */
3722 struct mod_initfree {
3723 struct llist_node node;
3724 void *module_init;
3725 };
3726
3727 static void do_free_init(struct work_struct *w)
3728 {
3729 struct llist_node *pos, *n, *list;
3730 struct mod_initfree *initfree;
3731
3732 list = llist_del_all(&init_free_list);
3733
3734 synchronize_rcu();
3735
3736 llist_for_each_safe(pos, n, list) {
3737 initfree = container_of(pos, struct mod_initfree, node);
3738 module_memfree(initfree->module_init);
3739 kfree(initfree);
3740 }
3741 }
3742
3743 /*
3744 * This is where the real work happens.
3745 *
3746 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3747 * helper command 'lx-symbols'.
3748 */
3749 static noinline int do_init_module(struct module *mod)
3750 {
3751 int ret = 0;
3752 struct mod_initfree *freeinit;
3753
3754 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3755 if (!freeinit) {
3756 ret = -ENOMEM;
3757 goto fail;
3758 }
3759 freeinit->module_init = mod->init_layout.base;
3760
3761 /*
3762 * We want to find out whether @mod uses async during init. Clear
3763 * PF_USED_ASYNC. async_schedule*() will set it.
3764 */
3765 current->flags &= ~PF_USED_ASYNC;
3766
3767 do_mod_ctors(mod);
3768 /* Start the module */
3769 if (mod->init != NULL)
3770 ret = do_one_initcall(mod->init);
3771 if (ret < 0) {
3772 goto fail_free_freeinit;
3773 }
3774 if (ret > 0) {
3775 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3776 "follow 0/-E convention\n"
3777 "%s: loading module anyway...\n",
3778 __func__, mod->name, ret, __func__);
3779 dump_stack();
3780 }
3781
3782 /* Now it's a first class citizen! */
3783 mod->state = MODULE_STATE_LIVE;
3784 blocking_notifier_call_chain(&module_notify_list,
3785 MODULE_STATE_LIVE, mod);
3786
3787 /* Delay uevent until module has finished its init routine */
3788 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3789
3790 /*
3791 * We need to finish all async code before the module init sequence
3792 * is done. This has potential to deadlock. For example, a newly
3793 * detected block device can trigger request_module() of the
3794 * default iosched from async probing task. Once userland helper
3795 * reaches here, async_synchronize_full() will wait on the async
3796 * task waiting on request_module() and deadlock.
3797 *
3798 * This deadlock is avoided by perfomring async_synchronize_full()
3799 * iff module init queued any async jobs. This isn't a full
3800 * solution as it will deadlock the same if module loading from
3801 * async jobs nests more than once; however, due to the various
3802 * constraints, this hack seems to be the best option for now.
3803 * Please refer to the following thread for details.
3804 *
3805 * http://thread.gmane.org/gmane.linux.kernel/1420814
3806 */
3807 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3808 async_synchronize_full();
3809
3810 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3811 mod->init_layout.size);
3812 mutex_lock(&module_mutex);
3813 /* Drop initial reference. */
3814 module_put(mod);
3815 trim_init_extable(mod);
3816 #ifdef CONFIG_KALLSYMS
3817 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3818 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3819 #endif
3820 module_enable_ro(mod, true);
3821 mod_tree_remove_init(mod);
3822 module_arch_freeing_init(mod);
3823 mod->init_layout.base = NULL;
3824 mod->init_layout.size = 0;
3825 mod->init_layout.ro_size = 0;
3826 mod->init_layout.ro_after_init_size = 0;
3827 mod->init_layout.text_size = 0;
3828 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3829 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3830 mod->btf_data = NULL;
3831 #endif
3832 /*
3833 * We want to free module_init, but be aware that kallsyms may be
3834 * walking this with preempt disabled. In all the failure paths, we
3835 * call synchronize_rcu(), but we don't want to slow down the success
3836 * path. module_memfree() cannot be called in an interrupt, so do the
3837 * work and call synchronize_rcu() in a work queue.
3838 *
3839 * Note that module_alloc() on most architectures creates W+X page
3840 * mappings which won't be cleaned up until do_free_init() runs. Any
3841 * code such as mark_rodata_ro() which depends on those mappings to
3842 * be cleaned up needs to sync with the queued work - ie
3843 * rcu_barrier()
3844 */
3845 if (llist_add(&freeinit->node, &init_free_list))
3846 schedule_work(&init_free_wq);
3847
3848 mutex_unlock(&module_mutex);
3849 wake_up_all(&module_wq);
3850
3851 return 0;
3852
3853 fail_free_freeinit:
3854 kfree(freeinit);
3855 fail:
3856 /* Try to protect us from buggy refcounters. */
3857 mod->state = MODULE_STATE_GOING;
3858 synchronize_rcu();
3859 module_put(mod);
3860 blocking_notifier_call_chain(&module_notify_list,
3861 MODULE_STATE_GOING, mod);
3862 klp_module_going(mod);
3863 ftrace_release_mod(mod);
3864 free_module(mod);
3865 wake_up_all(&module_wq);
3866 return ret;
3867 }
3868
3869 static int may_init_module(void)
3870 {
3871 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3872 return -EPERM;
3873
3874 return 0;
3875 }
3876
3877 /*
3878 * We try to place it in the list now to make sure it's unique before
3879 * we dedicate too many resources. In particular, temporary percpu
3880 * memory exhaustion.
3881 */
3882 static int add_unformed_module(struct module *mod)
3883 {
3884 int err;
3885 struct module *old;
3886
3887 mod->state = MODULE_STATE_UNFORMED;
3888
3889 again:
3890 mutex_lock(&module_mutex);
3891 old = find_module_all(mod->name, strlen(mod->name), true);
3892 if (old != NULL) {
3893 if (old->state != MODULE_STATE_LIVE) {
3894 /* Wait in case it fails to load. */
3895 mutex_unlock(&module_mutex);
3896 err = wait_event_interruptible(module_wq,
3897 finished_loading(mod->name));
3898 if (err)
3899 goto out_unlocked;
3900 goto again;
3901 }
3902 err = -EEXIST;
3903 goto out;
3904 }
3905 mod_update_bounds(mod);
3906 list_add_rcu(&mod->list, &modules);
3907 mod_tree_insert(mod);
3908 err = 0;
3909
3910 out:
3911 mutex_unlock(&module_mutex);
3912 out_unlocked:
3913 return err;
3914 }
3915
3916 static int complete_formation(struct module *mod, struct load_info *info)
3917 {
3918 int err;
3919
3920 mutex_lock(&module_mutex);
3921
3922 /* Find duplicate symbols (must be called under lock). */
3923 err = verify_exported_symbols(mod);
3924 if (err < 0)
3925 goto out;
3926
3927 /* This relies on module_mutex for list integrity. */
3928 module_bug_finalize(info->hdr, info->sechdrs, mod);
3929
3930 module_enable_ro(mod, false);
3931 module_enable_nx(mod);
3932 module_enable_x(mod);
3933
3934 /*
3935 * Mark state as coming so strong_try_module_get() ignores us,
3936 * but kallsyms etc. can see us.
3937 */
3938 mod->state = MODULE_STATE_COMING;
3939 mutex_unlock(&module_mutex);
3940
3941 return 0;
3942
3943 out:
3944 mutex_unlock(&module_mutex);
3945 return err;
3946 }
3947
3948 static int prepare_coming_module(struct module *mod)
3949 {
3950 int err;
3951
3952 ftrace_module_enable(mod);
3953 err = klp_module_coming(mod);
3954 if (err)
3955 return err;
3956
3957 err = blocking_notifier_call_chain_robust(&module_notify_list,
3958 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3959 err = notifier_to_errno(err);
3960 if (err)
3961 klp_module_going(mod);
3962
3963 return err;
3964 }
3965
3966 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3967 void *arg)
3968 {
3969 struct module *mod = arg;
3970 int ret;
3971
3972 if (strcmp(param, "async_probe") == 0) {
3973 mod->async_probe_requested = true;
3974 return 0;
3975 }
3976
3977 /* Check for magic 'dyndbg' arg */
3978 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3979 if (ret != 0)
3980 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3981 return 0;
3982 }
3983
3984 /*
3985 * Allocate and load the module: note that size of section 0 is always
3986 * zero, and we rely on this for optional sections.
3987 */
3988 static int load_module(struct load_info *info, const char __user *uargs,
3989 int flags)
3990 {
3991 struct module *mod;
3992 long err = 0;
3993 char *after_dashes;
3994
3995 /*
3996 * Do the signature check (if any) first. All that
3997 * the signature check needs is info->len, it does
3998 * not need any of the section info. That can be
3999 * set up later. This will minimize the chances
4000 * of a corrupt module causing problems before
4001 * we even get to the signature check.
4002 *
4003 * The check will also adjust info->len by stripping
4004 * off the sig length at the end of the module, making
4005 * checks against info->len more correct.
4006 */
4007 err = module_sig_check(info, flags);
4008 if (err)
4009 goto free_copy;
4010
4011 /*
4012 * Do basic sanity checks against the ELF header and
4013 * sections.
4014 */
4015 err = elf_validity_check(info);
4016 if (err) {
4017 pr_err("Module has invalid ELF structures\n");
4018 goto free_copy;
4019 }
4020
4021 /*
4022 * Everything checks out, so set up the section info
4023 * in the info structure.
4024 */
4025 err = setup_load_info(info, flags);
4026 if (err)
4027 goto free_copy;
4028
4029 /*
4030 * Now that we know we have the correct module name, check
4031 * if it's blacklisted.
4032 */
4033 if (blacklisted(info->name)) {
4034 err = -EPERM;
4035 pr_err("Module %s is blacklisted\n", info->name);
4036 goto free_copy;
4037 }
4038
4039 err = rewrite_section_headers(info, flags);
4040 if (err)
4041 goto free_copy;
4042
4043 /* Check module struct version now, before we try to use module. */
4044 if (!check_modstruct_version(info, info->mod)) {
4045 err = -ENOEXEC;
4046 goto free_copy;
4047 }
4048
4049 /* Figure out module layout, and allocate all the memory. */
4050 mod = layout_and_allocate(info, flags);
4051 if (IS_ERR(mod)) {
4052 err = PTR_ERR(mod);
4053 goto free_copy;
4054 }
4055
4056 audit_log_kern_module(mod->name);
4057
4058 /* Reserve our place in the list. */
4059 err = add_unformed_module(mod);
4060 if (err)
4061 goto free_module;
4062
4063 #ifdef CONFIG_MODULE_SIG
4064 mod->sig_ok = info->sig_ok;
4065 if (!mod->sig_ok) {
4066 pr_notice_once("%s: module verification failed: signature "
4067 "and/or required key missing - tainting "
4068 "kernel\n", mod->name);
4069 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
4070 }
4071 #endif
4072
4073 /* To avoid stressing percpu allocator, do this once we're unique. */
4074 err = percpu_modalloc(mod, info);
4075 if (err)
4076 goto unlink_mod;
4077
4078 /* Now module is in final location, initialize linked lists, etc. */
4079 err = module_unload_init(mod);
4080 if (err)
4081 goto unlink_mod;
4082
4083 init_param_lock(mod);
4084
4085 /*
4086 * Now we've got everything in the final locations, we can
4087 * find optional sections.
4088 */
4089 err = find_module_sections(mod, info);
4090 if (err)
4091 goto free_unload;
4092
4093 err = check_module_license_and_versions(mod);
4094 if (err)
4095 goto free_unload;
4096
4097 /* Set up MODINFO_ATTR fields */
4098 setup_modinfo(mod, info);
4099
4100 /* Fix up syms, so that st_value is a pointer to location. */
4101 err = simplify_symbols(mod, info);
4102 if (err < 0)
4103 goto free_modinfo;
4104
4105 err = apply_relocations(mod, info);
4106 if (err < 0)
4107 goto free_modinfo;
4108
4109 err = post_relocation(mod, info);
4110 if (err < 0)
4111 goto free_modinfo;
4112
4113 flush_module_icache(mod);
4114
4115 /* Now copy in args */
4116 mod->args = strndup_user(uargs, ~0UL >> 1);
4117 if (IS_ERR(mod->args)) {
4118 err = PTR_ERR(mod->args);
4119 goto free_arch_cleanup;
4120 }
4121
4122 dynamic_debug_setup(mod, info->debug, info->num_debug);
4123
4124 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4125 ftrace_module_init(mod);
4126
4127 /* Finally it's fully formed, ready to start executing. */
4128 err = complete_formation(mod, info);
4129 if (err)
4130 goto ddebug_cleanup;
4131
4132 err = prepare_coming_module(mod);
4133 if (err)
4134 goto bug_cleanup;
4135
4136 /* Module is ready to execute: parsing args may do that. */
4137 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4138 -32768, 32767, mod,
4139 unknown_module_param_cb);
4140 if (IS_ERR(after_dashes)) {
4141 err = PTR_ERR(after_dashes);
4142 goto coming_cleanup;
4143 } else if (after_dashes) {
4144 pr_warn("%s: parameters '%s' after `--' ignored\n",
4145 mod->name, after_dashes);
4146 }
4147
4148 /* Link in to sysfs. */
4149 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4150 if (err < 0)
4151 goto coming_cleanup;
4152
4153 if (is_livepatch_module(mod)) {
4154 err = copy_module_elf(mod, info);
4155 if (err < 0)
4156 goto sysfs_cleanup;
4157 }
4158
4159 /* Get rid of temporary copy. */
4160 free_copy(info);
4161
4162 /* Done! */
4163 trace_module_load(mod);
4164
4165 return do_init_module(mod);
4166
4167 sysfs_cleanup:
4168 mod_sysfs_teardown(mod);
4169 coming_cleanup:
4170 mod->state = MODULE_STATE_GOING;
4171 destroy_params(mod->kp, mod->num_kp);
4172 blocking_notifier_call_chain(&module_notify_list,
4173 MODULE_STATE_GOING, mod);
4174 klp_module_going(mod);
4175 bug_cleanup:
4176 mod->state = MODULE_STATE_GOING;
4177 /* module_bug_cleanup needs module_mutex protection */
4178 mutex_lock(&module_mutex);
4179 module_bug_cleanup(mod);
4180 mutex_unlock(&module_mutex);
4181
4182 ddebug_cleanup:
4183 ftrace_release_mod(mod);
4184 dynamic_debug_remove(mod, info->debug);
4185 synchronize_rcu();
4186 kfree(mod->args);
4187 free_arch_cleanup:
4188 module_arch_cleanup(mod);
4189 free_modinfo:
4190 free_modinfo(mod);
4191 free_unload:
4192 module_unload_free(mod);
4193 unlink_mod:
4194 mutex_lock(&module_mutex);
4195 /* Unlink carefully: kallsyms could be walking list. */
4196 list_del_rcu(&mod->list);
4197 mod_tree_remove(mod);
4198 wake_up_all(&module_wq);
4199 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4200 synchronize_rcu();
4201 mutex_unlock(&module_mutex);
4202 free_module:
4203 /* Free lock-classes; relies on the preceding sync_rcu() */
4204 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4205
4206 module_deallocate(mod, info);
4207 free_copy:
4208 free_copy(info);
4209 return err;
4210 }
4211
4212 SYSCALL_DEFINE3(init_module, void __user *, umod,
4213 unsigned long, len, const char __user *, uargs)
4214 {
4215 int err;
4216 struct load_info info = { };
4217
4218 err = may_init_module();
4219 if (err)
4220 return err;
4221
4222 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4223 umod, len, uargs);
4224
4225 err = copy_module_from_user(umod, len, &info);
4226 if (err)
4227 return err;
4228
4229 return load_module(&info, uargs, 0);
4230 }
4231
4232 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4233 {
4234 struct load_info info = { };
4235 void *hdr = NULL;
4236 int err;
4237
4238 err = may_init_module();
4239 if (err)
4240 return err;
4241
4242 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4243
4244 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4245 |MODULE_INIT_IGNORE_VERMAGIC))
4246 return -EINVAL;
4247
4248 err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4249 READING_MODULE);
4250 if (err < 0)
4251 return err;
4252 info.hdr = hdr;
4253 info.len = err;
4254
4255 return load_module(&info, uargs, flags);
4256 }
4257
4258 static inline int within(unsigned long addr, void *start, unsigned long size)
4259 {
4260 return ((void *)addr >= start && (void *)addr < start + size);
4261 }
4262
4263 #ifdef CONFIG_KALLSYMS
4264 /*
4265 * This ignores the intensely annoying "mapping symbols" found
4266 * in ARM ELF files: $a, $t and $d.
4267 */
4268 static inline int is_arm_mapping_symbol(const char *str)
4269 {
4270 if (str[0] == '.' && str[1] == 'L')
4271 return true;
4272 return str[0] == '$' && strchr("axtd", str[1])
4273 && (str[2] == '\0' || str[2] == '.');
4274 }
4275
4276 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4277 {
4278 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4279 }
4280
4281 /*
4282 * Given a module and address, find the corresponding symbol and return its name
4283 * while providing its size and offset if needed.
4284 */
4285 static const char *find_kallsyms_symbol(struct module *mod,
4286 unsigned long addr,
4287 unsigned long *size,
4288 unsigned long *offset)
4289 {
4290 unsigned int i, best = 0;
4291 unsigned long nextval, bestval;
4292 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4293
4294 /* At worse, next value is at end of module */
4295 if (within_module_init(addr, mod))
4296 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4297 else
4298 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4299
4300 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4301
4302 /*
4303 * Scan for closest preceding symbol, and next symbol. (ELF
4304 * starts real symbols at 1).
4305 */
4306 for (i = 1; i < kallsyms->num_symtab; i++) {
4307 const Elf_Sym *sym = &kallsyms->symtab[i];
4308 unsigned long thisval = kallsyms_symbol_value(sym);
4309
4310 if (sym->st_shndx == SHN_UNDEF)
4311 continue;
4312
4313 /*
4314 * We ignore unnamed symbols: they're uninformative
4315 * and inserted at a whim.
4316 */
4317 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4318 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4319 continue;
4320
4321 if (thisval <= addr && thisval > bestval) {
4322 best = i;
4323 bestval = thisval;
4324 }
4325 if (thisval > addr && thisval < nextval)
4326 nextval = thisval;
4327 }
4328
4329 if (!best)
4330 return NULL;
4331
4332 if (size)
4333 *size = nextval - bestval;
4334 if (offset)
4335 *offset = addr - bestval;
4336
4337 return kallsyms_symbol_name(kallsyms, best);
4338 }
4339
4340 void * __weak dereference_module_function_descriptor(struct module *mod,
4341 void *ptr)
4342 {
4343 return ptr;
4344 }
4345
4346 /*
4347 * For kallsyms to ask for address resolution. NULL means not found. Careful
4348 * not to lock to avoid deadlock on oopses, simply disable preemption.
4349 */
4350 const char *module_address_lookup(unsigned long addr,
4351 unsigned long *size,
4352 unsigned long *offset,
4353 char **modname,
4354 char *namebuf)
4355 {
4356 const char *ret = NULL;
4357 struct module *mod;
4358
4359 preempt_disable();
4360 mod = __module_address(addr);
4361 if (mod) {
4362 if (modname)
4363 *modname = mod->name;
4364
4365 ret = find_kallsyms_symbol(mod, addr, size, offset);
4366 }
4367 /* Make a copy in here where it's safe */
4368 if (ret) {
4369 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4370 ret = namebuf;
4371 }
4372 preempt_enable();
4373
4374 return ret;
4375 }
4376
4377 int lookup_module_symbol_name(unsigned long addr, char *symname)
4378 {
4379 struct module *mod;
4380
4381 preempt_disable();
4382 list_for_each_entry_rcu(mod, &modules, list) {
4383 if (mod->state == MODULE_STATE_UNFORMED)
4384 continue;
4385 if (within_module(addr, mod)) {
4386 const char *sym;
4387
4388 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4389 if (!sym)
4390 goto out;
4391
4392 strlcpy(symname, sym, KSYM_NAME_LEN);
4393 preempt_enable();
4394 return 0;
4395 }
4396 }
4397 out:
4398 preempt_enable();
4399 return -ERANGE;
4400 }
4401
4402 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4403 unsigned long *offset, char *modname, char *name)
4404 {
4405 struct module *mod;
4406
4407 preempt_disable();
4408 list_for_each_entry_rcu(mod, &modules, list) {
4409 if (mod->state == MODULE_STATE_UNFORMED)
4410 continue;
4411 if (within_module(addr, mod)) {
4412 const char *sym;
4413
4414 sym = find_kallsyms_symbol(mod, addr, size, offset);
4415 if (!sym)
4416 goto out;
4417 if (modname)
4418 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4419 if (name)
4420 strlcpy(name, sym, KSYM_NAME_LEN);
4421 preempt_enable();
4422 return 0;
4423 }
4424 }
4425 out:
4426 preempt_enable();
4427 return -ERANGE;
4428 }
4429
4430 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4431 char *name, char *module_name, int *exported)
4432 {
4433 struct module *mod;
4434
4435 preempt_disable();
4436 list_for_each_entry_rcu(mod, &modules, list) {
4437 struct mod_kallsyms *kallsyms;
4438
4439 if (mod->state == MODULE_STATE_UNFORMED)
4440 continue;
4441 kallsyms = rcu_dereference_sched(mod->kallsyms);
4442 if (symnum < kallsyms->num_symtab) {
4443 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4444
4445 *value = kallsyms_symbol_value(sym);
4446 *type = kallsyms->typetab[symnum];
4447 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4448 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4449 *exported = is_exported(name, *value, mod);
4450 preempt_enable();
4451 return 0;
4452 }
4453 symnum -= kallsyms->num_symtab;
4454 }
4455 preempt_enable();
4456 return -ERANGE;
4457 }
4458
4459 /* Given a module and name of symbol, find and return the symbol's value */
4460 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4461 {
4462 unsigned int i;
4463 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4464
4465 for (i = 0; i < kallsyms->num_symtab; i++) {
4466 const Elf_Sym *sym = &kallsyms->symtab[i];
4467
4468 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4469 sym->st_shndx != SHN_UNDEF)
4470 return kallsyms_symbol_value(sym);
4471 }
4472 return 0;
4473 }
4474
4475 /* Look for this name: can be of form module:name. */
4476 unsigned long module_kallsyms_lookup_name(const char *name)
4477 {
4478 struct module *mod;
4479 char *colon;
4480 unsigned long ret = 0;
4481
4482 /* Don't lock: we're in enough trouble already. */
4483 preempt_disable();
4484 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4485 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4486 ret = find_kallsyms_symbol_value(mod, colon+1);
4487 } else {
4488 list_for_each_entry_rcu(mod, &modules, list) {
4489 if (mod->state == MODULE_STATE_UNFORMED)
4490 continue;
4491 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4492 break;
4493 }
4494 }
4495 preempt_enable();
4496 return ret;
4497 }
4498
4499 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4500 struct module *, unsigned long),
4501 void *data)
4502 {
4503 struct module *mod;
4504 unsigned int i;
4505 int ret;
4506
4507 module_assert_mutex();
4508
4509 list_for_each_entry(mod, &modules, list) {
4510 /* We hold module_mutex: no need for rcu_dereference_sched */
4511 struct mod_kallsyms *kallsyms = mod->kallsyms;
4512
4513 if (mod->state == MODULE_STATE_UNFORMED)
4514 continue;
4515 for (i = 0; i < kallsyms->num_symtab; i++) {
4516 const Elf_Sym *sym = &kallsyms->symtab[i];
4517
4518 if (sym->st_shndx == SHN_UNDEF)
4519 continue;
4520
4521 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4522 mod, kallsyms_symbol_value(sym));
4523 if (ret != 0)
4524 return ret;
4525 }
4526 }
4527 return 0;
4528 }
4529 #endif /* CONFIG_KALLSYMS */
4530
4531 /* Maximum number of characters written by module_flags() */
4532 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4533
4534 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4535 static char *module_flags(struct module *mod, char *buf)
4536 {
4537 int bx = 0;
4538
4539 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4540 if (mod->taints ||
4541 mod->state == MODULE_STATE_GOING ||
4542 mod->state == MODULE_STATE_COMING) {
4543 buf[bx++] = '(';
4544 bx += module_flags_taint(mod, buf + bx);
4545 /* Show a - for module-is-being-unloaded */
4546 if (mod->state == MODULE_STATE_GOING)
4547 buf[bx++] = '-';
4548 /* Show a + for module-is-being-loaded */
4549 if (mod->state == MODULE_STATE_COMING)
4550 buf[bx++] = '+';
4551 buf[bx++] = ')';
4552 }
4553 buf[bx] = '\0';
4554
4555 return buf;
4556 }
4557
4558 #ifdef CONFIG_PROC_FS
4559 /* Called by the /proc file system to return a list of modules. */
4560 static void *m_start(struct seq_file *m, loff_t *pos)
4561 {
4562 mutex_lock(&module_mutex);
4563 return seq_list_start(&modules, *pos);
4564 }
4565
4566 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4567 {
4568 return seq_list_next(p, &modules, pos);
4569 }
4570
4571 static void m_stop(struct seq_file *m, void *p)
4572 {
4573 mutex_unlock(&module_mutex);
4574 }
4575
4576 static int m_show(struct seq_file *m, void *p)
4577 {
4578 struct module *mod = list_entry(p, struct module, list);
4579 char buf[MODULE_FLAGS_BUF_SIZE];
4580 void *value;
4581
4582 /* We always ignore unformed modules. */
4583 if (mod->state == MODULE_STATE_UNFORMED)
4584 return 0;
4585
4586 seq_printf(m, "%s %u",
4587 mod->name, mod->init_layout.size + mod->core_layout.size);
4588 print_unload_info(m, mod);
4589
4590 /* Informative for users. */
4591 seq_printf(m, " %s",
4592 mod->state == MODULE_STATE_GOING ? "Unloading" :
4593 mod->state == MODULE_STATE_COMING ? "Loading" :
4594 "Live");
4595 /* Used by oprofile and other similar tools. */
4596 value = m->private ? NULL : mod->core_layout.base;
4597 seq_printf(m, " 0x%px", value);
4598
4599 /* Taints info */
4600 if (mod->taints)
4601 seq_printf(m, " %s", module_flags(mod, buf));
4602
4603 seq_puts(m, "\n");
4604 return 0;
4605 }
4606
4607 /*
4608 * Format: modulename size refcount deps address
4609 *
4610 * Where refcount is a number or -, and deps is a comma-separated list
4611 * of depends or -.
4612 */
4613 static const struct seq_operations modules_op = {
4614 .start = m_start,
4615 .next = m_next,
4616 .stop = m_stop,
4617 .show = m_show
4618 };
4619
4620 /*
4621 * This also sets the "private" pointer to non-NULL if the
4622 * kernel pointers should be hidden (so you can just test
4623 * "m->private" to see if you should keep the values private).
4624 *
4625 * We use the same logic as for /proc/kallsyms.
4626 */
4627 static int modules_open(struct inode *inode, struct file *file)
4628 {
4629 int err = seq_open(file, &modules_op);
4630
4631 if (!err) {
4632 struct seq_file *m = file->private_data;
4633 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4634 }
4635
4636 return err;
4637 }
4638
4639 static const struct proc_ops modules_proc_ops = {
4640 .proc_flags = PROC_ENTRY_PERMANENT,
4641 .proc_open = modules_open,
4642 .proc_read = seq_read,
4643 .proc_lseek = seq_lseek,
4644 .proc_release = seq_release,
4645 };
4646
4647 static int __init proc_modules_init(void)
4648 {
4649 proc_create("modules", 0, NULL, &modules_proc_ops);
4650 return 0;
4651 }
4652 module_init(proc_modules_init);
4653 #endif
4654
4655 /* Given an address, look for it in the module exception tables. */
4656 const struct exception_table_entry *search_module_extables(unsigned long addr)
4657 {
4658 const struct exception_table_entry *e = NULL;
4659 struct module *mod;
4660
4661 preempt_disable();
4662 mod = __module_address(addr);
4663 if (!mod)
4664 goto out;
4665
4666 if (!mod->num_exentries)
4667 goto out;
4668
4669 e = search_extable(mod->extable,
4670 mod->num_exentries,
4671 addr);
4672 out:
4673 preempt_enable();
4674
4675 /*
4676 * Now, if we found one, we are running inside it now, hence
4677 * we cannot unload the module, hence no refcnt needed.
4678 */
4679 return e;
4680 }
4681
4682 /**
4683 * is_module_address() - is this address inside a module?
4684 * @addr: the address to check.
4685 *
4686 * See is_module_text_address() if you simply want to see if the address
4687 * is code (not data).
4688 */
4689 bool is_module_address(unsigned long addr)
4690 {
4691 bool ret;
4692
4693 preempt_disable();
4694 ret = __module_address(addr) != NULL;
4695 preempt_enable();
4696
4697 return ret;
4698 }
4699
4700 /**
4701 * __module_address() - get the module which contains an address.
4702 * @addr: the address.
4703 *
4704 * Must be called with preempt disabled or module mutex held so that
4705 * module doesn't get freed during this.
4706 */
4707 struct module *__module_address(unsigned long addr)
4708 {
4709 struct module *mod;
4710
4711 if (addr < module_addr_min || addr > module_addr_max)
4712 return NULL;
4713
4714 module_assert_mutex_or_preempt();
4715
4716 mod = mod_find(addr);
4717 if (mod) {
4718 BUG_ON(!within_module(addr, mod));
4719 if (mod->state == MODULE_STATE_UNFORMED)
4720 mod = NULL;
4721 }
4722 return mod;
4723 }
4724
4725 /**
4726 * is_module_text_address() - is this address inside module code?
4727 * @addr: the address to check.
4728 *
4729 * See is_module_address() if you simply want to see if the address is
4730 * anywhere in a module. See kernel_text_address() for testing if an
4731 * address corresponds to kernel or module code.
4732 */
4733 bool is_module_text_address(unsigned long addr)
4734 {
4735 bool ret;
4736
4737 preempt_disable();
4738 ret = __module_text_address(addr) != NULL;
4739 preempt_enable();
4740
4741 return ret;
4742 }
4743
4744 /**
4745 * __module_text_address() - get the module whose code contains an address.
4746 * @addr: the address.
4747 *
4748 * Must be called with preempt disabled or module mutex held so that
4749 * module doesn't get freed during this.
4750 */
4751 struct module *__module_text_address(unsigned long addr)
4752 {
4753 struct module *mod = __module_address(addr);
4754 if (mod) {
4755 /* Make sure it's within the text section. */
4756 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4757 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4758 mod = NULL;
4759 }
4760 return mod;
4761 }
4762
4763 /* Don't grab lock, we're oopsing. */
4764 void print_modules(void)
4765 {
4766 struct module *mod;
4767 char buf[MODULE_FLAGS_BUF_SIZE];
4768
4769 printk(KERN_DEFAULT "Modules linked in:");
4770 /* Most callers should already have preempt disabled, but make sure */
4771 preempt_disable();
4772 list_for_each_entry_rcu(mod, &modules, list) {
4773 if (mod->state == MODULE_STATE_UNFORMED)
4774 continue;
4775 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4776 }
4777 preempt_enable();
4778 if (last_unloaded_module[0])
4779 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4780 pr_cont("\n");
4781 }
4782
4783 #ifdef CONFIG_MODVERSIONS
4784 /*
4785 * Generate the signature for all relevant module structures here.
4786 * If these change, we don't want to try to parse the module.
4787 */
4788 void module_layout(struct module *mod,
4789 struct modversion_info *ver,
4790 struct kernel_param *kp,
4791 struct kernel_symbol *ks,
4792 struct tracepoint * const *tp)
4793 {
4794 }
4795 EXPORT_SYMBOL(module_layout);
4796 #endif