]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - kernel/module.c
330f64e7e1936e1c693f828627a8417e6c1d391a
[mirror_ubuntu-disco-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/livepatch.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/dynamic_debug.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /* If this is set, the section belongs in the init part of the module */
86 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87
88 /*
89 * Mutex protects:
90 * 1) List of modules (also safely readable with preempt_disable),
91 * 2) module_use links,
92 * 3) module_addr_min/module_addr_max.
93 * (delete and add uses RCU list operations). */
94 DEFINE_MUTEX(module_mutex);
95 EXPORT_SYMBOL_GPL(module_mutex);
96 static LIST_HEAD(modules);
97
98 #ifdef CONFIG_MODULES_TREE_LOOKUP
99
100 /*
101 * Use a latched RB-tree for __module_address(); this allows us to use
102 * RCU-sched lookups of the address from any context.
103 *
104 * This is conditional on PERF_EVENTS || TRACING because those can really hit
105 * __module_address() hard by doing a lot of stack unwinding; potentially from
106 * NMI context.
107 */
108
109 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
110 {
111 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
112
113 return (unsigned long)layout->base;
114 }
115
116 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
117 {
118 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119
120 return (unsigned long)layout->size;
121 }
122
123 static __always_inline bool
124 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
125 {
126 return __mod_tree_val(a) < __mod_tree_val(b);
127 }
128
129 static __always_inline int
130 mod_tree_comp(void *key, struct latch_tree_node *n)
131 {
132 unsigned long val = (unsigned long)key;
133 unsigned long start, end;
134
135 start = __mod_tree_val(n);
136 if (val < start)
137 return -1;
138
139 end = start + __mod_tree_size(n);
140 if (val >= end)
141 return 1;
142
143 return 0;
144 }
145
146 static const struct latch_tree_ops mod_tree_ops = {
147 .less = mod_tree_less,
148 .comp = mod_tree_comp,
149 };
150
151 static struct mod_tree_root {
152 struct latch_tree_root root;
153 unsigned long addr_min;
154 unsigned long addr_max;
155 } mod_tree __cacheline_aligned = {
156 .addr_min = -1UL,
157 };
158
159 #define module_addr_min mod_tree.addr_min
160 #define module_addr_max mod_tree.addr_max
161
162 static noinline void __mod_tree_insert(struct mod_tree_node *node)
163 {
164 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 }
166
167 static void __mod_tree_remove(struct mod_tree_node *node)
168 {
169 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171
172 /*
173 * These modifications: insert, remove_init and remove; are serialized by the
174 * module_mutex.
175 */
176 static void mod_tree_insert(struct module *mod)
177 {
178 mod->core_layout.mtn.mod = mod;
179 mod->init_layout.mtn.mod = mod;
180
181 __mod_tree_insert(&mod->core_layout.mtn);
182 if (mod->init_layout.size)
183 __mod_tree_insert(&mod->init_layout.mtn);
184 }
185
186 static void mod_tree_remove_init(struct module *mod)
187 {
188 if (mod->init_layout.size)
189 __mod_tree_remove(&mod->init_layout.mtn);
190 }
191
192 static void mod_tree_remove(struct module *mod)
193 {
194 __mod_tree_remove(&mod->core_layout.mtn);
195 mod_tree_remove_init(mod);
196 }
197
198 static struct module *mod_find(unsigned long addr)
199 {
200 struct latch_tree_node *ltn;
201
202 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
203 if (!ltn)
204 return NULL;
205
206 return container_of(ltn, struct mod_tree_node, node)->mod;
207 }
208
209 #else /* MODULES_TREE_LOOKUP */
210
211 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
212
213 static void mod_tree_insert(struct module *mod) { }
214 static void mod_tree_remove_init(struct module *mod) { }
215 static void mod_tree_remove(struct module *mod) { }
216
217 static struct module *mod_find(unsigned long addr)
218 {
219 struct module *mod;
220
221 list_for_each_entry_rcu(mod, &modules, list) {
222 if (within_module(addr, mod))
223 return mod;
224 }
225
226 return NULL;
227 }
228
229 #endif /* MODULES_TREE_LOOKUP */
230
231 /*
232 * Bounds of module text, for speeding up __module_address.
233 * Protected by module_mutex.
234 */
235 static void __mod_update_bounds(void *base, unsigned int size)
236 {
237 unsigned long min = (unsigned long)base;
238 unsigned long max = min + size;
239
240 if (min < module_addr_min)
241 module_addr_min = min;
242 if (max > module_addr_max)
243 module_addr_max = max;
244 }
245
246 static void mod_update_bounds(struct module *mod)
247 {
248 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
249 if (mod->init_layout.size)
250 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 }
252
253 #ifdef CONFIG_KGDB_KDB
254 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
255 #endif /* CONFIG_KGDB_KDB */
256
257 static void module_assert_mutex(void)
258 {
259 lockdep_assert_held(&module_mutex);
260 }
261
262 static void module_assert_mutex_or_preempt(void)
263 {
264 #ifdef CONFIG_LOCKDEP
265 if (unlikely(!debug_locks))
266 return;
267
268 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
269 !lockdep_is_held(&module_mutex));
270 #endif
271 }
272
273 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
274 #ifndef CONFIG_MODULE_SIG_FORCE
275 module_param(sig_enforce, bool_enable_only, 0644);
276 #endif /* !CONFIG_MODULE_SIG_FORCE */
277
278 /* Block module loading/unloading? */
279 int modules_disabled = 0;
280 core_param(nomodule, modules_disabled, bint, 0);
281
282 /* Waiting for a module to finish initializing? */
283 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
284
285 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
286
287 int register_module_notifier(struct notifier_block *nb)
288 {
289 return blocking_notifier_chain_register(&module_notify_list, nb);
290 }
291 EXPORT_SYMBOL(register_module_notifier);
292
293 int unregister_module_notifier(struct notifier_block *nb)
294 {
295 return blocking_notifier_chain_unregister(&module_notify_list, nb);
296 }
297 EXPORT_SYMBOL(unregister_module_notifier);
298
299 struct load_info {
300 Elf_Ehdr *hdr;
301 unsigned long len;
302 Elf_Shdr *sechdrs;
303 char *secstrings, *strtab;
304 unsigned long symoffs, stroffs;
305 struct _ddebug *debug;
306 unsigned int num_debug;
307 bool sig_ok;
308 #ifdef CONFIG_KALLSYMS
309 unsigned long mod_kallsyms_init_off;
310 #endif
311 struct {
312 unsigned int sym, str, mod, vers, info, pcpu;
313 } index;
314 };
315
316 /*
317 * We require a truly strong try_module_get(): 0 means success.
318 * Otherwise an error is returned due to ongoing or failed
319 * initialization etc.
320 */
321 static inline int strong_try_module_get(struct module *mod)
322 {
323 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
324 if (mod && mod->state == MODULE_STATE_COMING)
325 return -EBUSY;
326 if (try_module_get(mod))
327 return 0;
328 else
329 return -ENOENT;
330 }
331
332 static inline void add_taint_module(struct module *mod, unsigned flag,
333 enum lockdep_ok lockdep_ok)
334 {
335 add_taint(flag, lockdep_ok);
336 set_bit(flag, &mod->taints);
337 }
338
339 /*
340 * A thread that wants to hold a reference to a module only while it
341 * is running can call this to safely exit. nfsd and lockd use this.
342 */
343 void __noreturn __module_put_and_exit(struct module *mod, long code)
344 {
345 module_put(mod);
346 do_exit(code);
347 }
348 EXPORT_SYMBOL(__module_put_and_exit);
349
350 /* Find a module section: 0 means not found. */
351 static unsigned int find_sec(const struct load_info *info, const char *name)
352 {
353 unsigned int i;
354
355 for (i = 1; i < info->hdr->e_shnum; i++) {
356 Elf_Shdr *shdr = &info->sechdrs[i];
357 /* Alloc bit cleared means "ignore it." */
358 if ((shdr->sh_flags & SHF_ALLOC)
359 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
360 return i;
361 }
362 return 0;
363 }
364
365 /* Find a module section, or NULL. */
366 static void *section_addr(const struct load_info *info, const char *name)
367 {
368 /* Section 0 has sh_addr 0. */
369 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
370 }
371
372 /* Find a module section, or NULL. Fill in number of "objects" in section. */
373 static void *section_objs(const struct load_info *info,
374 const char *name,
375 size_t object_size,
376 unsigned int *num)
377 {
378 unsigned int sec = find_sec(info, name);
379
380 /* Section 0 has sh_addr 0 and sh_size 0. */
381 *num = info->sechdrs[sec].sh_size / object_size;
382 return (void *)info->sechdrs[sec].sh_addr;
383 }
384
385 /* Provided by the linker */
386 extern const struct kernel_symbol __start___ksymtab[];
387 extern const struct kernel_symbol __stop___ksymtab[];
388 extern const struct kernel_symbol __start___ksymtab_gpl[];
389 extern const struct kernel_symbol __stop___ksymtab_gpl[];
390 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
391 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
392 extern const unsigned long __start___kcrctab[];
393 extern const unsigned long __start___kcrctab_gpl[];
394 extern const unsigned long __start___kcrctab_gpl_future[];
395 #ifdef CONFIG_UNUSED_SYMBOLS
396 extern const struct kernel_symbol __start___ksymtab_unused[];
397 extern const struct kernel_symbol __stop___ksymtab_unused[];
398 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
399 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
400 extern const unsigned long __start___kcrctab_unused[];
401 extern const unsigned long __start___kcrctab_unused_gpl[];
402 #endif
403
404 #ifndef CONFIG_MODVERSIONS
405 #define symversion(base, idx) NULL
406 #else
407 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
408 #endif
409
410 static bool each_symbol_in_section(const struct symsearch *arr,
411 unsigned int arrsize,
412 struct module *owner,
413 bool (*fn)(const struct symsearch *syms,
414 struct module *owner,
415 void *data),
416 void *data)
417 {
418 unsigned int j;
419
420 for (j = 0; j < arrsize; j++) {
421 if (fn(&arr[j], owner, data))
422 return true;
423 }
424
425 return false;
426 }
427
428 /* Returns true as soon as fn returns true, otherwise false. */
429 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
430 struct module *owner,
431 void *data),
432 void *data)
433 {
434 struct module *mod;
435 static const struct symsearch arr[] = {
436 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
437 NOT_GPL_ONLY, false },
438 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
439 __start___kcrctab_gpl,
440 GPL_ONLY, false },
441 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
442 __start___kcrctab_gpl_future,
443 WILL_BE_GPL_ONLY, false },
444 #ifdef CONFIG_UNUSED_SYMBOLS
445 { __start___ksymtab_unused, __stop___ksymtab_unused,
446 __start___kcrctab_unused,
447 NOT_GPL_ONLY, true },
448 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
449 __start___kcrctab_unused_gpl,
450 GPL_ONLY, true },
451 #endif
452 };
453
454 module_assert_mutex_or_preempt();
455
456 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
457 return true;
458
459 list_for_each_entry_rcu(mod, &modules, list) {
460 struct symsearch arr[] = {
461 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
462 NOT_GPL_ONLY, false },
463 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
464 mod->gpl_crcs,
465 GPL_ONLY, false },
466 { mod->gpl_future_syms,
467 mod->gpl_future_syms + mod->num_gpl_future_syms,
468 mod->gpl_future_crcs,
469 WILL_BE_GPL_ONLY, false },
470 #ifdef CONFIG_UNUSED_SYMBOLS
471 { mod->unused_syms,
472 mod->unused_syms + mod->num_unused_syms,
473 mod->unused_crcs,
474 NOT_GPL_ONLY, true },
475 { mod->unused_gpl_syms,
476 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
477 mod->unused_gpl_crcs,
478 GPL_ONLY, true },
479 #endif
480 };
481
482 if (mod->state == MODULE_STATE_UNFORMED)
483 continue;
484
485 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
486 return true;
487 }
488 return false;
489 }
490 EXPORT_SYMBOL_GPL(each_symbol_section);
491
492 struct find_symbol_arg {
493 /* Input */
494 const char *name;
495 bool gplok;
496 bool warn;
497
498 /* Output */
499 struct module *owner;
500 const unsigned long *crc;
501 const struct kernel_symbol *sym;
502 };
503
504 static bool check_symbol(const struct symsearch *syms,
505 struct module *owner,
506 unsigned int symnum, void *data)
507 {
508 struct find_symbol_arg *fsa = data;
509
510 if (!fsa->gplok) {
511 if (syms->licence == GPL_ONLY)
512 return false;
513 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
514 pr_warn("Symbol %s is being used by a non-GPL module, "
515 "which will not be allowed in the future\n",
516 fsa->name);
517 }
518 }
519
520 #ifdef CONFIG_UNUSED_SYMBOLS
521 if (syms->unused && fsa->warn) {
522 pr_warn("Symbol %s is marked as UNUSED, however this module is "
523 "using it.\n", fsa->name);
524 pr_warn("This symbol will go away in the future.\n");
525 pr_warn("Please evaluate if this is the right api to use and "
526 "if it really is, submit a report to the linux kernel "
527 "mailing list together with submitting your code for "
528 "inclusion.\n");
529 }
530 #endif
531
532 fsa->owner = owner;
533 fsa->crc = symversion(syms->crcs, symnum);
534 fsa->sym = &syms->start[symnum];
535 return true;
536 }
537
538 static int cmp_name(const void *va, const void *vb)
539 {
540 const char *a;
541 const struct kernel_symbol *b;
542 a = va; b = vb;
543 return strcmp(a, b->name);
544 }
545
546 static bool find_symbol_in_section(const struct symsearch *syms,
547 struct module *owner,
548 void *data)
549 {
550 struct find_symbol_arg *fsa = data;
551 struct kernel_symbol *sym;
552
553 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
554 sizeof(struct kernel_symbol), cmp_name);
555
556 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
557 return true;
558
559 return false;
560 }
561
562 /* Find a symbol and return it, along with, (optional) crc and
563 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
564 const struct kernel_symbol *find_symbol(const char *name,
565 struct module **owner,
566 const unsigned long **crc,
567 bool gplok,
568 bool warn)
569 {
570 struct find_symbol_arg fsa;
571
572 fsa.name = name;
573 fsa.gplok = gplok;
574 fsa.warn = warn;
575
576 if (each_symbol_section(find_symbol_in_section, &fsa)) {
577 if (owner)
578 *owner = fsa.owner;
579 if (crc)
580 *crc = fsa.crc;
581 return fsa.sym;
582 }
583
584 pr_debug("Failed to find symbol %s\n", name);
585 return NULL;
586 }
587 EXPORT_SYMBOL_GPL(find_symbol);
588
589 /*
590 * Search for module by name: must hold module_mutex (or preempt disabled
591 * for read-only access).
592 */
593 static struct module *find_module_all(const char *name, size_t len,
594 bool even_unformed)
595 {
596 struct module *mod;
597
598 module_assert_mutex_or_preempt();
599
600 list_for_each_entry(mod, &modules, list) {
601 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
602 continue;
603 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
604 return mod;
605 }
606 return NULL;
607 }
608
609 struct module *find_module(const char *name)
610 {
611 module_assert_mutex();
612 return find_module_all(name, strlen(name), false);
613 }
614 EXPORT_SYMBOL_GPL(find_module);
615
616 #ifdef CONFIG_SMP
617
618 static inline void __percpu *mod_percpu(struct module *mod)
619 {
620 return mod->percpu;
621 }
622
623 static int percpu_modalloc(struct module *mod, struct load_info *info)
624 {
625 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
626 unsigned long align = pcpusec->sh_addralign;
627
628 if (!pcpusec->sh_size)
629 return 0;
630
631 if (align > PAGE_SIZE) {
632 pr_warn("%s: per-cpu alignment %li > %li\n",
633 mod->name, align, PAGE_SIZE);
634 align = PAGE_SIZE;
635 }
636
637 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
638 if (!mod->percpu) {
639 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
640 mod->name, (unsigned long)pcpusec->sh_size);
641 return -ENOMEM;
642 }
643 mod->percpu_size = pcpusec->sh_size;
644 return 0;
645 }
646
647 static void percpu_modfree(struct module *mod)
648 {
649 free_percpu(mod->percpu);
650 }
651
652 static unsigned int find_pcpusec(struct load_info *info)
653 {
654 return find_sec(info, ".data..percpu");
655 }
656
657 static void percpu_modcopy(struct module *mod,
658 const void *from, unsigned long size)
659 {
660 int cpu;
661
662 for_each_possible_cpu(cpu)
663 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
664 }
665
666 /**
667 * is_module_percpu_address - test whether address is from module static percpu
668 * @addr: address to test
669 *
670 * Test whether @addr belongs to module static percpu area.
671 *
672 * RETURNS:
673 * %true if @addr is from module static percpu area
674 */
675 bool is_module_percpu_address(unsigned long addr)
676 {
677 struct module *mod;
678 unsigned int cpu;
679
680 preempt_disable();
681
682 list_for_each_entry_rcu(mod, &modules, list) {
683 if (mod->state == MODULE_STATE_UNFORMED)
684 continue;
685 if (!mod->percpu_size)
686 continue;
687 for_each_possible_cpu(cpu) {
688 void *start = per_cpu_ptr(mod->percpu, cpu);
689
690 if ((void *)addr >= start &&
691 (void *)addr < start + mod->percpu_size) {
692 preempt_enable();
693 return true;
694 }
695 }
696 }
697
698 preempt_enable();
699 return false;
700 }
701
702 #else /* ... !CONFIG_SMP */
703
704 static inline void __percpu *mod_percpu(struct module *mod)
705 {
706 return NULL;
707 }
708 static int percpu_modalloc(struct module *mod, struct load_info *info)
709 {
710 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
711 if (info->sechdrs[info->index.pcpu].sh_size != 0)
712 return -ENOMEM;
713 return 0;
714 }
715 static inline void percpu_modfree(struct module *mod)
716 {
717 }
718 static unsigned int find_pcpusec(struct load_info *info)
719 {
720 return 0;
721 }
722 static inline void percpu_modcopy(struct module *mod,
723 const void *from, unsigned long size)
724 {
725 /* pcpusec should be 0, and size of that section should be 0. */
726 BUG_ON(size != 0);
727 }
728 bool is_module_percpu_address(unsigned long addr)
729 {
730 return false;
731 }
732
733 #endif /* CONFIG_SMP */
734
735 #define MODINFO_ATTR(field) \
736 static void setup_modinfo_##field(struct module *mod, const char *s) \
737 { \
738 mod->field = kstrdup(s, GFP_KERNEL); \
739 } \
740 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
741 struct module_kobject *mk, char *buffer) \
742 { \
743 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
744 } \
745 static int modinfo_##field##_exists(struct module *mod) \
746 { \
747 return mod->field != NULL; \
748 } \
749 static void free_modinfo_##field(struct module *mod) \
750 { \
751 kfree(mod->field); \
752 mod->field = NULL; \
753 } \
754 static struct module_attribute modinfo_##field = { \
755 .attr = { .name = __stringify(field), .mode = 0444 }, \
756 .show = show_modinfo_##field, \
757 .setup = setup_modinfo_##field, \
758 .test = modinfo_##field##_exists, \
759 .free = free_modinfo_##field, \
760 };
761
762 MODINFO_ATTR(version);
763 MODINFO_ATTR(srcversion);
764
765 static char last_unloaded_module[MODULE_NAME_LEN+1];
766
767 #ifdef CONFIG_MODULE_UNLOAD
768
769 EXPORT_TRACEPOINT_SYMBOL(module_get);
770
771 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
772 #define MODULE_REF_BASE 1
773
774 /* Init the unload section of the module. */
775 static int module_unload_init(struct module *mod)
776 {
777 /*
778 * Initialize reference counter to MODULE_REF_BASE.
779 * refcnt == 0 means module is going.
780 */
781 atomic_set(&mod->refcnt, MODULE_REF_BASE);
782
783 INIT_LIST_HEAD(&mod->source_list);
784 INIT_LIST_HEAD(&mod->target_list);
785
786 /* Hold reference count during initialization. */
787 atomic_inc(&mod->refcnt);
788
789 return 0;
790 }
791
792 /* Does a already use b? */
793 static int already_uses(struct module *a, struct module *b)
794 {
795 struct module_use *use;
796
797 list_for_each_entry(use, &b->source_list, source_list) {
798 if (use->source == a) {
799 pr_debug("%s uses %s!\n", a->name, b->name);
800 return 1;
801 }
802 }
803 pr_debug("%s does not use %s!\n", a->name, b->name);
804 return 0;
805 }
806
807 /*
808 * Module a uses b
809 * - we add 'a' as a "source", 'b' as a "target" of module use
810 * - the module_use is added to the list of 'b' sources (so
811 * 'b' can walk the list to see who sourced them), and of 'a'
812 * targets (so 'a' can see what modules it targets).
813 */
814 static int add_module_usage(struct module *a, struct module *b)
815 {
816 struct module_use *use;
817
818 pr_debug("Allocating new usage for %s.\n", a->name);
819 use = kmalloc(sizeof(*use), GFP_ATOMIC);
820 if (!use) {
821 pr_warn("%s: out of memory loading\n", a->name);
822 return -ENOMEM;
823 }
824
825 use->source = a;
826 use->target = b;
827 list_add(&use->source_list, &b->source_list);
828 list_add(&use->target_list, &a->target_list);
829 return 0;
830 }
831
832 /* Module a uses b: caller needs module_mutex() */
833 int ref_module(struct module *a, struct module *b)
834 {
835 int err;
836
837 if (b == NULL || already_uses(a, b))
838 return 0;
839
840 /* If module isn't available, we fail. */
841 err = strong_try_module_get(b);
842 if (err)
843 return err;
844
845 err = add_module_usage(a, b);
846 if (err) {
847 module_put(b);
848 return err;
849 }
850 return 0;
851 }
852 EXPORT_SYMBOL_GPL(ref_module);
853
854 /* Clear the unload stuff of the module. */
855 static void module_unload_free(struct module *mod)
856 {
857 struct module_use *use, *tmp;
858
859 mutex_lock(&module_mutex);
860 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
861 struct module *i = use->target;
862 pr_debug("%s unusing %s\n", mod->name, i->name);
863 module_put(i);
864 list_del(&use->source_list);
865 list_del(&use->target_list);
866 kfree(use);
867 }
868 mutex_unlock(&module_mutex);
869 }
870
871 #ifdef CONFIG_MODULE_FORCE_UNLOAD
872 static inline int try_force_unload(unsigned int flags)
873 {
874 int ret = (flags & O_TRUNC);
875 if (ret)
876 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
877 return ret;
878 }
879 #else
880 static inline int try_force_unload(unsigned int flags)
881 {
882 return 0;
883 }
884 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
885
886 /* Try to release refcount of module, 0 means success. */
887 static int try_release_module_ref(struct module *mod)
888 {
889 int ret;
890
891 /* Try to decrement refcnt which we set at loading */
892 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
893 BUG_ON(ret < 0);
894 if (ret)
895 /* Someone can put this right now, recover with checking */
896 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
897
898 return ret;
899 }
900
901 static int try_stop_module(struct module *mod, int flags, int *forced)
902 {
903 /* If it's not unused, quit unless we're forcing. */
904 if (try_release_module_ref(mod) != 0) {
905 *forced = try_force_unload(flags);
906 if (!(*forced))
907 return -EWOULDBLOCK;
908 }
909
910 /* Mark it as dying. */
911 mod->state = MODULE_STATE_GOING;
912
913 return 0;
914 }
915
916 /**
917 * module_refcount - return the refcount or -1 if unloading
918 *
919 * @mod: the module we're checking
920 *
921 * Returns:
922 * -1 if the module is in the process of unloading
923 * otherwise the number of references in the kernel to the module
924 */
925 int module_refcount(struct module *mod)
926 {
927 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
928 }
929 EXPORT_SYMBOL(module_refcount);
930
931 /* This exists whether we can unload or not */
932 static void free_module(struct module *mod);
933
934 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
935 unsigned int, flags)
936 {
937 struct module *mod;
938 char name[MODULE_NAME_LEN];
939 int ret, forced = 0;
940
941 if (!capable(CAP_SYS_MODULE) || modules_disabled)
942 return -EPERM;
943
944 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
945 return -EFAULT;
946 name[MODULE_NAME_LEN-1] = '\0';
947
948 if (mutex_lock_interruptible(&module_mutex) != 0)
949 return -EINTR;
950
951 mod = find_module(name);
952 if (!mod) {
953 ret = -ENOENT;
954 goto out;
955 }
956
957 if (!list_empty(&mod->source_list)) {
958 /* Other modules depend on us: get rid of them first. */
959 ret = -EWOULDBLOCK;
960 goto out;
961 }
962
963 /* Doing init or already dying? */
964 if (mod->state != MODULE_STATE_LIVE) {
965 /* FIXME: if (force), slam module count damn the torpedoes */
966 pr_debug("%s already dying\n", mod->name);
967 ret = -EBUSY;
968 goto out;
969 }
970
971 /* If it has an init func, it must have an exit func to unload */
972 if (mod->init && !mod->exit) {
973 forced = try_force_unload(flags);
974 if (!forced) {
975 /* This module can't be removed */
976 ret = -EBUSY;
977 goto out;
978 }
979 }
980
981 /* Stop the machine so refcounts can't move and disable module. */
982 ret = try_stop_module(mod, flags, &forced);
983 if (ret != 0)
984 goto out;
985
986 mutex_unlock(&module_mutex);
987 /* Final destruction now no one is using it. */
988 if (mod->exit != NULL)
989 mod->exit();
990 blocking_notifier_call_chain(&module_notify_list,
991 MODULE_STATE_GOING, mod);
992 klp_module_going(mod);
993 ftrace_release_mod(mod);
994
995 async_synchronize_full();
996
997 /* Store the name of the last unloaded module for diagnostic purposes */
998 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
999
1000 free_module(mod);
1001 return 0;
1002 out:
1003 mutex_unlock(&module_mutex);
1004 return ret;
1005 }
1006
1007 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1008 {
1009 struct module_use *use;
1010 int printed_something = 0;
1011
1012 seq_printf(m, " %i ", module_refcount(mod));
1013
1014 /*
1015 * Always include a trailing , so userspace can differentiate
1016 * between this and the old multi-field proc format.
1017 */
1018 list_for_each_entry(use, &mod->source_list, source_list) {
1019 printed_something = 1;
1020 seq_printf(m, "%s,", use->source->name);
1021 }
1022
1023 if (mod->init != NULL && mod->exit == NULL) {
1024 printed_something = 1;
1025 seq_puts(m, "[permanent],");
1026 }
1027
1028 if (!printed_something)
1029 seq_puts(m, "-");
1030 }
1031
1032 void __symbol_put(const char *symbol)
1033 {
1034 struct module *owner;
1035
1036 preempt_disable();
1037 if (!find_symbol(symbol, &owner, NULL, true, false))
1038 BUG();
1039 module_put(owner);
1040 preempt_enable();
1041 }
1042 EXPORT_SYMBOL(__symbol_put);
1043
1044 /* Note this assumes addr is a function, which it currently always is. */
1045 void symbol_put_addr(void *addr)
1046 {
1047 struct module *modaddr;
1048 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1049
1050 if (core_kernel_text(a))
1051 return;
1052
1053 /*
1054 * Even though we hold a reference on the module; we still need to
1055 * disable preemption in order to safely traverse the data structure.
1056 */
1057 preempt_disable();
1058 modaddr = __module_text_address(a);
1059 BUG_ON(!modaddr);
1060 module_put(modaddr);
1061 preempt_enable();
1062 }
1063 EXPORT_SYMBOL_GPL(symbol_put_addr);
1064
1065 static ssize_t show_refcnt(struct module_attribute *mattr,
1066 struct module_kobject *mk, char *buffer)
1067 {
1068 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1069 }
1070
1071 static struct module_attribute modinfo_refcnt =
1072 __ATTR(refcnt, 0444, show_refcnt, NULL);
1073
1074 void __module_get(struct module *module)
1075 {
1076 if (module) {
1077 preempt_disable();
1078 atomic_inc(&module->refcnt);
1079 trace_module_get(module, _RET_IP_);
1080 preempt_enable();
1081 }
1082 }
1083 EXPORT_SYMBOL(__module_get);
1084
1085 bool try_module_get(struct module *module)
1086 {
1087 bool ret = true;
1088
1089 if (module) {
1090 preempt_disable();
1091 /* Note: here, we can fail to get a reference */
1092 if (likely(module_is_live(module) &&
1093 atomic_inc_not_zero(&module->refcnt) != 0))
1094 trace_module_get(module, _RET_IP_);
1095 else
1096 ret = false;
1097
1098 preempt_enable();
1099 }
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(try_module_get);
1103
1104 void module_put(struct module *module)
1105 {
1106 int ret;
1107
1108 if (module) {
1109 preempt_disable();
1110 ret = atomic_dec_if_positive(&module->refcnt);
1111 WARN_ON(ret < 0); /* Failed to put refcount */
1112 trace_module_put(module, _RET_IP_);
1113 preempt_enable();
1114 }
1115 }
1116 EXPORT_SYMBOL(module_put);
1117
1118 #else /* !CONFIG_MODULE_UNLOAD */
1119 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1120 {
1121 /* We don't know the usage count, or what modules are using. */
1122 seq_puts(m, " - -");
1123 }
1124
1125 static inline void module_unload_free(struct module *mod)
1126 {
1127 }
1128
1129 int ref_module(struct module *a, struct module *b)
1130 {
1131 return strong_try_module_get(b);
1132 }
1133 EXPORT_SYMBOL_GPL(ref_module);
1134
1135 static inline int module_unload_init(struct module *mod)
1136 {
1137 return 0;
1138 }
1139 #endif /* CONFIG_MODULE_UNLOAD */
1140
1141 static size_t module_flags_taint(struct module *mod, char *buf)
1142 {
1143 size_t l = 0;
1144 int i;
1145
1146 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1147 if (taint_flags[i].module && test_bit(i, &mod->taints))
1148 buf[l++] = taint_flags[i].true;
1149 }
1150
1151 return l;
1152 }
1153
1154 static ssize_t show_initstate(struct module_attribute *mattr,
1155 struct module_kobject *mk, char *buffer)
1156 {
1157 const char *state = "unknown";
1158
1159 switch (mk->mod->state) {
1160 case MODULE_STATE_LIVE:
1161 state = "live";
1162 break;
1163 case MODULE_STATE_COMING:
1164 state = "coming";
1165 break;
1166 case MODULE_STATE_GOING:
1167 state = "going";
1168 break;
1169 default:
1170 BUG();
1171 }
1172 return sprintf(buffer, "%s\n", state);
1173 }
1174
1175 static struct module_attribute modinfo_initstate =
1176 __ATTR(initstate, 0444, show_initstate, NULL);
1177
1178 static ssize_t store_uevent(struct module_attribute *mattr,
1179 struct module_kobject *mk,
1180 const char *buffer, size_t count)
1181 {
1182 enum kobject_action action;
1183
1184 if (kobject_action_type(buffer, count, &action) == 0)
1185 kobject_uevent(&mk->kobj, action);
1186 return count;
1187 }
1188
1189 struct module_attribute module_uevent =
1190 __ATTR(uevent, 0200, NULL, store_uevent);
1191
1192 static ssize_t show_coresize(struct module_attribute *mattr,
1193 struct module_kobject *mk, char *buffer)
1194 {
1195 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1196 }
1197
1198 static struct module_attribute modinfo_coresize =
1199 __ATTR(coresize, 0444, show_coresize, NULL);
1200
1201 static ssize_t show_initsize(struct module_attribute *mattr,
1202 struct module_kobject *mk, char *buffer)
1203 {
1204 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1205 }
1206
1207 static struct module_attribute modinfo_initsize =
1208 __ATTR(initsize, 0444, show_initsize, NULL);
1209
1210 static ssize_t show_taint(struct module_attribute *mattr,
1211 struct module_kobject *mk, char *buffer)
1212 {
1213 size_t l;
1214
1215 l = module_flags_taint(mk->mod, buffer);
1216 buffer[l++] = '\n';
1217 return l;
1218 }
1219
1220 static struct module_attribute modinfo_taint =
1221 __ATTR(taint, 0444, show_taint, NULL);
1222
1223 static struct module_attribute *modinfo_attrs[] = {
1224 &module_uevent,
1225 &modinfo_version,
1226 &modinfo_srcversion,
1227 &modinfo_initstate,
1228 &modinfo_coresize,
1229 &modinfo_initsize,
1230 &modinfo_taint,
1231 #ifdef CONFIG_MODULE_UNLOAD
1232 &modinfo_refcnt,
1233 #endif
1234 NULL,
1235 };
1236
1237 static const char vermagic[] = VERMAGIC_STRING;
1238
1239 static int try_to_force_load(struct module *mod, const char *reason)
1240 {
1241 #ifdef CONFIG_MODULE_FORCE_LOAD
1242 if (!test_taint(TAINT_FORCED_MODULE))
1243 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1244 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1245 return 0;
1246 #else
1247 return -ENOEXEC;
1248 #endif
1249 }
1250
1251 #ifdef CONFIG_MODVERSIONS
1252 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1253 static unsigned long maybe_relocated(unsigned long crc,
1254 const struct module *crc_owner)
1255 {
1256 #ifdef ARCH_RELOCATES_KCRCTAB
1257 if (crc_owner == NULL)
1258 return crc - (unsigned long)reloc_start;
1259 #endif
1260 return crc;
1261 }
1262
1263 static int check_version(Elf_Shdr *sechdrs,
1264 unsigned int versindex,
1265 const char *symname,
1266 struct module *mod,
1267 const unsigned long *crc,
1268 const struct module *crc_owner)
1269 {
1270 unsigned int i, num_versions;
1271 struct modversion_info *versions;
1272
1273 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1274 if (!crc)
1275 return 1;
1276
1277 /* No versions at all? modprobe --force does this. */
1278 if (versindex == 0)
1279 return try_to_force_load(mod, symname) == 0;
1280
1281 versions = (void *) sechdrs[versindex].sh_addr;
1282 num_versions = sechdrs[versindex].sh_size
1283 / sizeof(struct modversion_info);
1284
1285 for (i = 0; i < num_versions; i++) {
1286 if (strcmp(versions[i].name, symname) != 0)
1287 continue;
1288
1289 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1290 return 1;
1291 pr_debug("Found checksum %lX vs module %lX\n",
1292 maybe_relocated(*crc, crc_owner), versions[i].crc);
1293 goto bad_version;
1294 }
1295
1296 /* Broken toolchain. Warn once, then let it go.. */
1297 pr_warn_once("%s: no symbol version for %s\n", mod->name, symname);
1298 return 1;
1299
1300 bad_version:
1301 pr_warn("%s: disagrees about version of symbol %s\n",
1302 mod->name, symname);
1303 return 0;
1304 }
1305
1306 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1307 unsigned int versindex,
1308 struct module *mod)
1309 {
1310 const unsigned long *crc;
1311
1312 /*
1313 * Since this should be found in kernel (which can't be removed), no
1314 * locking is necessary -- use preempt_disable() to placate lockdep.
1315 */
1316 preempt_disable();
1317 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1318 &crc, true, false)) {
1319 preempt_enable();
1320 BUG();
1321 }
1322 preempt_enable();
1323 return check_version(sechdrs, versindex,
1324 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1325 NULL);
1326 }
1327
1328 /* First part is kernel version, which we ignore if module has crcs. */
1329 static inline int same_magic(const char *amagic, const char *bmagic,
1330 bool has_crcs)
1331 {
1332 if (has_crcs) {
1333 amagic += strcspn(amagic, " ");
1334 bmagic += strcspn(bmagic, " ");
1335 }
1336 return strcmp(amagic, bmagic) == 0;
1337 }
1338 #else
1339 static inline int check_version(Elf_Shdr *sechdrs,
1340 unsigned int versindex,
1341 const char *symname,
1342 struct module *mod,
1343 const unsigned long *crc,
1344 const struct module *crc_owner)
1345 {
1346 return 1;
1347 }
1348
1349 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1350 unsigned int versindex,
1351 struct module *mod)
1352 {
1353 return 1;
1354 }
1355
1356 static inline int same_magic(const char *amagic, const char *bmagic,
1357 bool has_crcs)
1358 {
1359 return strcmp(amagic, bmagic) == 0;
1360 }
1361 #endif /* CONFIG_MODVERSIONS */
1362
1363 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1364 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1365 const struct load_info *info,
1366 const char *name,
1367 char ownername[])
1368 {
1369 struct module *owner;
1370 const struct kernel_symbol *sym;
1371 const unsigned long *crc;
1372 int err;
1373
1374 /*
1375 * The module_mutex should not be a heavily contended lock;
1376 * if we get the occasional sleep here, we'll go an extra iteration
1377 * in the wait_event_interruptible(), which is harmless.
1378 */
1379 sched_annotate_sleep();
1380 mutex_lock(&module_mutex);
1381 sym = find_symbol(name, &owner, &crc,
1382 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1383 if (!sym)
1384 goto unlock;
1385
1386 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1387 owner)) {
1388 sym = ERR_PTR(-EINVAL);
1389 goto getname;
1390 }
1391
1392 err = ref_module(mod, owner);
1393 if (err) {
1394 sym = ERR_PTR(err);
1395 goto getname;
1396 }
1397
1398 getname:
1399 /* We must make copy under the lock if we failed to get ref. */
1400 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1401 unlock:
1402 mutex_unlock(&module_mutex);
1403 return sym;
1404 }
1405
1406 static const struct kernel_symbol *
1407 resolve_symbol_wait(struct module *mod,
1408 const struct load_info *info,
1409 const char *name)
1410 {
1411 const struct kernel_symbol *ksym;
1412 char owner[MODULE_NAME_LEN];
1413
1414 if (wait_event_interruptible_timeout(module_wq,
1415 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1416 || PTR_ERR(ksym) != -EBUSY,
1417 30 * HZ) <= 0) {
1418 pr_warn("%s: gave up waiting for init of module %s.\n",
1419 mod->name, owner);
1420 }
1421 return ksym;
1422 }
1423
1424 /*
1425 * /sys/module/foo/sections stuff
1426 * J. Corbet <corbet@lwn.net>
1427 */
1428 #ifdef CONFIG_SYSFS
1429
1430 #ifdef CONFIG_KALLSYMS
1431 static inline bool sect_empty(const Elf_Shdr *sect)
1432 {
1433 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1434 }
1435
1436 struct module_sect_attr {
1437 struct module_attribute mattr;
1438 char *name;
1439 unsigned long address;
1440 };
1441
1442 struct module_sect_attrs {
1443 struct attribute_group grp;
1444 unsigned int nsections;
1445 struct module_sect_attr attrs[0];
1446 };
1447
1448 static ssize_t module_sect_show(struct module_attribute *mattr,
1449 struct module_kobject *mk, char *buf)
1450 {
1451 struct module_sect_attr *sattr =
1452 container_of(mattr, struct module_sect_attr, mattr);
1453 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1454 }
1455
1456 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1457 {
1458 unsigned int section;
1459
1460 for (section = 0; section < sect_attrs->nsections; section++)
1461 kfree(sect_attrs->attrs[section].name);
1462 kfree(sect_attrs);
1463 }
1464
1465 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1466 {
1467 unsigned int nloaded = 0, i, size[2];
1468 struct module_sect_attrs *sect_attrs;
1469 struct module_sect_attr *sattr;
1470 struct attribute **gattr;
1471
1472 /* Count loaded sections and allocate structures */
1473 for (i = 0; i < info->hdr->e_shnum; i++)
1474 if (!sect_empty(&info->sechdrs[i]))
1475 nloaded++;
1476 size[0] = ALIGN(sizeof(*sect_attrs)
1477 + nloaded * sizeof(sect_attrs->attrs[0]),
1478 sizeof(sect_attrs->grp.attrs[0]));
1479 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1480 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1481 if (sect_attrs == NULL)
1482 return;
1483
1484 /* Setup section attributes. */
1485 sect_attrs->grp.name = "sections";
1486 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1487
1488 sect_attrs->nsections = 0;
1489 sattr = &sect_attrs->attrs[0];
1490 gattr = &sect_attrs->grp.attrs[0];
1491 for (i = 0; i < info->hdr->e_shnum; i++) {
1492 Elf_Shdr *sec = &info->sechdrs[i];
1493 if (sect_empty(sec))
1494 continue;
1495 sattr->address = sec->sh_addr;
1496 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1497 GFP_KERNEL);
1498 if (sattr->name == NULL)
1499 goto out;
1500 sect_attrs->nsections++;
1501 sysfs_attr_init(&sattr->mattr.attr);
1502 sattr->mattr.show = module_sect_show;
1503 sattr->mattr.store = NULL;
1504 sattr->mattr.attr.name = sattr->name;
1505 sattr->mattr.attr.mode = S_IRUGO;
1506 *(gattr++) = &(sattr++)->mattr.attr;
1507 }
1508 *gattr = NULL;
1509
1510 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1511 goto out;
1512
1513 mod->sect_attrs = sect_attrs;
1514 return;
1515 out:
1516 free_sect_attrs(sect_attrs);
1517 }
1518
1519 static void remove_sect_attrs(struct module *mod)
1520 {
1521 if (mod->sect_attrs) {
1522 sysfs_remove_group(&mod->mkobj.kobj,
1523 &mod->sect_attrs->grp);
1524 /* We are positive that no one is using any sect attrs
1525 * at this point. Deallocate immediately. */
1526 free_sect_attrs(mod->sect_attrs);
1527 mod->sect_attrs = NULL;
1528 }
1529 }
1530
1531 /*
1532 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1533 */
1534
1535 struct module_notes_attrs {
1536 struct kobject *dir;
1537 unsigned int notes;
1538 struct bin_attribute attrs[0];
1539 };
1540
1541 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1542 struct bin_attribute *bin_attr,
1543 char *buf, loff_t pos, size_t count)
1544 {
1545 /*
1546 * The caller checked the pos and count against our size.
1547 */
1548 memcpy(buf, bin_attr->private + pos, count);
1549 return count;
1550 }
1551
1552 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1553 unsigned int i)
1554 {
1555 if (notes_attrs->dir) {
1556 while (i-- > 0)
1557 sysfs_remove_bin_file(notes_attrs->dir,
1558 &notes_attrs->attrs[i]);
1559 kobject_put(notes_attrs->dir);
1560 }
1561 kfree(notes_attrs);
1562 }
1563
1564 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1565 {
1566 unsigned int notes, loaded, i;
1567 struct module_notes_attrs *notes_attrs;
1568 struct bin_attribute *nattr;
1569
1570 /* failed to create section attributes, so can't create notes */
1571 if (!mod->sect_attrs)
1572 return;
1573
1574 /* Count notes sections and allocate structures. */
1575 notes = 0;
1576 for (i = 0; i < info->hdr->e_shnum; i++)
1577 if (!sect_empty(&info->sechdrs[i]) &&
1578 (info->sechdrs[i].sh_type == SHT_NOTE))
1579 ++notes;
1580
1581 if (notes == 0)
1582 return;
1583
1584 notes_attrs = kzalloc(sizeof(*notes_attrs)
1585 + notes * sizeof(notes_attrs->attrs[0]),
1586 GFP_KERNEL);
1587 if (notes_attrs == NULL)
1588 return;
1589
1590 notes_attrs->notes = notes;
1591 nattr = &notes_attrs->attrs[0];
1592 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1593 if (sect_empty(&info->sechdrs[i]))
1594 continue;
1595 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1596 sysfs_bin_attr_init(nattr);
1597 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1598 nattr->attr.mode = S_IRUGO;
1599 nattr->size = info->sechdrs[i].sh_size;
1600 nattr->private = (void *) info->sechdrs[i].sh_addr;
1601 nattr->read = module_notes_read;
1602 ++nattr;
1603 }
1604 ++loaded;
1605 }
1606
1607 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1608 if (!notes_attrs->dir)
1609 goto out;
1610
1611 for (i = 0; i < notes; ++i)
1612 if (sysfs_create_bin_file(notes_attrs->dir,
1613 &notes_attrs->attrs[i]))
1614 goto out;
1615
1616 mod->notes_attrs = notes_attrs;
1617 return;
1618
1619 out:
1620 free_notes_attrs(notes_attrs, i);
1621 }
1622
1623 static void remove_notes_attrs(struct module *mod)
1624 {
1625 if (mod->notes_attrs)
1626 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1627 }
1628
1629 #else
1630
1631 static inline void add_sect_attrs(struct module *mod,
1632 const struct load_info *info)
1633 {
1634 }
1635
1636 static inline void remove_sect_attrs(struct module *mod)
1637 {
1638 }
1639
1640 static inline void add_notes_attrs(struct module *mod,
1641 const struct load_info *info)
1642 {
1643 }
1644
1645 static inline void remove_notes_attrs(struct module *mod)
1646 {
1647 }
1648 #endif /* CONFIG_KALLSYMS */
1649
1650 static void add_usage_links(struct module *mod)
1651 {
1652 #ifdef CONFIG_MODULE_UNLOAD
1653 struct module_use *use;
1654 int nowarn;
1655
1656 mutex_lock(&module_mutex);
1657 list_for_each_entry(use, &mod->target_list, target_list) {
1658 nowarn = sysfs_create_link(use->target->holders_dir,
1659 &mod->mkobj.kobj, mod->name);
1660 }
1661 mutex_unlock(&module_mutex);
1662 #endif
1663 }
1664
1665 static void del_usage_links(struct module *mod)
1666 {
1667 #ifdef CONFIG_MODULE_UNLOAD
1668 struct module_use *use;
1669
1670 mutex_lock(&module_mutex);
1671 list_for_each_entry(use, &mod->target_list, target_list)
1672 sysfs_remove_link(use->target->holders_dir, mod->name);
1673 mutex_unlock(&module_mutex);
1674 #endif
1675 }
1676
1677 static int module_add_modinfo_attrs(struct module *mod)
1678 {
1679 struct module_attribute *attr;
1680 struct module_attribute *temp_attr;
1681 int error = 0;
1682 int i;
1683
1684 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1685 (ARRAY_SIZE(modinfo_attrs) + 1)),
1686 GFP_KERNEL);
1687 if (!mod->modinfo_attrs)
1688 return -ENOMEM;
1689
1690 temp_attr = mod->modinfo_attrs;
1691 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1692 if (!attr->test || attr->test(mod)) {
1693 memcpy(temp_attr, attr, sizeof(*temp_attr));
1694 sysfs_attr_init(&temp_attr->attr);
1695 error = sysfs_create_file(&mod->mkobj.kobj,
1696 &temp_attr->attr);
1697 ++temp_attr;
1698 }
1699 }
1700 return error;
1701 }
1702
1703 static void module_remove_modinfo_attrs(struct module *mod)
1704 {
1705 struct module_attribute *attr;
1706 int i;
1707
1708 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1709 /* pick a field to test for end of list */
1710 if (!attr->attr.name)
1711 break;
1712 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1713 if (attr->free)
1714 attr->free(mod);
1715 }
1716 kfree(mod->modinfo_attrs);
1717 }
1718
1719 static void mod_kobject_put(struct module *mod)
1720 {
1721 DECLARE_COMPLETION_ONSTACK(c);
1722 mod->mkobj.kobj_completion = &c;
1723 kobject_put(&mod->mkobj.kobj);
1724 wait_for_completion(&c);
1725 }
1726
1727 static int mod_sysfs_init(struct module *mod)
1728 {
1729 int err;
1730 struct kobject *kobj;
1731
1732 if (!module_sysfs_initialized) {
1733 pr_err("%s: module sysfs not initialized\n", mod->name);
1734 err = -EINVAL;
1735 goto out;
1736 }
1737
1738 kobj = kset_find_obj(module_kset, mod->name);
1739 if (kobj) {
1740 pr_err("%s: module is already loaded\n", mod->name);
1741 kobject_put(kobj);
1742 err = -EINVAL;
1743 goto out;
1744 }
1745
1746 mod->mkobj.mod = mod;
1747
1748 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1749 mod->mkobj.kobj.kset = module_kset;
1750 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1751 "%s", mod->name);
1752 if (err)
1753 mod_kobject_put(mod);
1754
1755 /* delay uevent until full sysfs population */
1756 out:
1757 return err;
1758 }
1759
1760 static int mod_sysfs_setup(struct module *mod,
1761 const struct load_info *info,
1762 struct kernel_param *kparam,
1763 unsigned int num_params)
1764 {
1765 int err;
1766
1767 err = mod_sysfs_init(mod);
1768 if (err)
1769 goto out;
1770
1771 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1772 if (!mod->holders_dir) {
1773 err = -ENOMEM;
1774 goto out_unreg;
1775 }
1776
1777 err = module_param_sysfs_setup(mod, kparam, num_params);
1778 if (err)
1779 goto out_unreg_holders;
1780
1781 err = module_add_modinfo_attrs(mod);
1782 if (err)
1783 goto out_unreg_param;
1784
1785 add_usage_links(mod);
1786 add_sect_attrs(mod, info);
1787 add_notes_attrs(mod, info);
1788
1789 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1790 return 0;
1791
1792 out_unreg_param:
1793 module_param_sysfs_remove(mod);
1794 out_unreg_holders:
1795 kobject_put(mod->holders_dir);
1796 out_unreg:
1797 mod_kobject_put(mod);
1798 out:
1799 return err;
1800 }
1801
1802 static void mod_sysfs_fini(struct module *mod)
1803 {
1804 remove_notes_attrs(mod);
1805 remove_sect_attrs(mod);
1806 mod_kobject_put(mod);
1807 }
1808
1809 static void init_param_lock(struct module *mod)
1810 {
1811 mutex_init(&mod->param_lock);
1812 }
1813 #else /* !CONFIG_SYSFS */
1814
1815 static int mod_sysfs_setup(struct module *mod,
1816 const struct load_info *info,
1817 struct kernel_param *kparam,
1818 unsigned int num_params)
1819 {
1820 return 0;
1821 }
1822
1823 static void mod_sysfs_fini(struct module *mod)
1824 {
1825 }
1826
1827 static void module_remove_modinfo_attrs(struct module *mod)
1828 {
1829 }
1830
1831 static void del_usage_links(struct module *mod)
1832 {
1833 }
1834
1835 static void init_param_lock(struct module *mod)
1836 {
1837 }
1838 #endif /* CONFIG_SYSFS */
1839
1840 static void mod_sysfs_teardown(struct module *mod)
1841 {
1842 del_usage_links(mod);
1843 module_remove_modinfo_attrs(mod);
1844 module_param_sysfs_remove(mod);
1845 kobject_put(mod->mkobj.drivers_dir);
1846 kobject_put(mod->holders_dir);
1847 mod_sysfs_fini(mod);
1848 }
1849
1850 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1851 /*
1852 * LKM RO/NX protection: protect module's text/ro-data
1853 * from modification and any data from execution.
1854 *
1855 * General layout of module is:
1856 * [text] [read-only-data] [ro-after-init] [writable data]
1857 * text_size -----^ ^ ^ ^
1858 * ro_size ------------------------| | |
1859 * ro_after_init_size -----------------------------| |
1860 * size -----------------------------------------------------------|
1861 *
1862 * These values are always page-aligned (as is base)
1863 */
1864 static void frob_text(const struct module_layout *layout,
1865 int (*set_memory)(unsigned long start, int num_pages))
1866 {
1867 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1868 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1869 set_memory((unsigned long)layout->base,
1870 layout->text_size >> PAGE_SHIFT);
1871 }
1872
1873 static void frob_rodata(const struct module_layout *layout,
1874 int (*set_memory)(unsigned long start, int num_pages))
1875 {
1876 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1877 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1878 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1879 set_memory((unsigned long)layout->base + layout->text_size,
1880 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1881 }
1882
1883 static void frob_ro_after_init(const struct module_layout *layout,
1884 int (*set_memory)(unsigned long start, int num_pages))
1885 {
1886 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1887 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1888 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1889 set_memory((unsigned long)layout->base + layout->ro_size,
1890 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1891 }
1892
1893 static void frob_writable_data(const struct module_layout *layout,
1894 int (*set_memory)(unsigned long start, int num_pages))
1895 {
1896 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1897 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1898 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1899 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1900 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1901 }
1902
1903 /* livepatching wants to disable read-only so it can frob module. */
1904 void module_disable_ro(const struct module *mod)
1905 {
1906 if (!rodata_enabled)
1907 return;
1908
1909 frob_text(&mod->core_layout, set_memory_rw);
1910 frob_rodata(&mod->core_layout, set_memory_rw);
1911 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1912 frob_text(&mod->init_layout, set_memory_rw);
1913 frob_rodata(&mod->init_layout, set_memory_rw);
1914 }
1915
1916 void module_enable_ro(const struct module *mod, bool after_init)
1917 {
1918 if (!rodata_enabled)
1919 return;
1920
1921 frob_text(&mod->core_layout, set_memory_ro);
1922 frob_rodata(&mod->core_layout, set_memory_ro);
1923 frob_text(&mod->init_layout, set_memory_ro);
1924 frob_rodata(&mod->init_layout, set_memory_ro);
1925
1926 if (after_init)
1927 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1928 }
1929
1930 static void module_enable_nx(const struct module *mod)
1931 {
1932 frob_rodata(&mod->core_layout, set_memory_nx);
1933 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1934 frob_writable_data(&mod->core_layout, set_memory_nx);
1935 frob_rodata(&mod->init_layout, set_memory_nx);
1936 frob_writable_data(&mod->init_layout, set_memory_nx);
1937 }
1938
1939 static void module_disable_nx(const struct module *mod)
1940 {
1941 frob_rodata(&mod->core_layout, set_memory_x);
1942 frob_ro_after_init(&mod->core_layout, set_memory_x);
1943 frob_writable_data(&mod->core_layout, set_memory_x);
1944 frob_rodata(&mod->init_layout, set_memory_x);
1945 frob_writable_data(&mod->init_layout, set_memory_x);
1946 }
1947
1948 /* Iterate through all modules and set each module's text as RW */
1949 void set_all_modules_text_rw(void)
1950 {
1951 struct module *mod;
1952
1953 if (!rodata_enabled)
1954 return;
1955
1956 mutex_lock(&module_mutex);
1957 list_for_each_entry_rcu(mod, &modules, list) {
1958 if (mod->state == MODULE_STATE_UNFORMED)
1959 continue;
1960
1961 frob_text(&mod->core_layout, set_memory_rw);
1962 frob_text(&mod->init_layout, set_memory_rw);
1963 }
1964 mutex_unlock(&module_mutex);
1965 }
1966
1967 /* Iterate through all modules and set each module's text as RO */
1968 void set_all_modules_text_ro(void)
1969 {
1970 struct module *mod;
1971
1972 if (!rodata_enabled)
1973 return;
1974
1975 mutex_lock(&module_mutex);
1976 list_for_each_entry_rcu(mod, &modules, list) {
1977 /*
1978 * Ignore going modules since it's possible that ro
1979 * protection has already been disabled, otherwise we'll
1980 * run into protection faults at module deallocation.
1981 */
1982 if (mod->state == MODULE_STATE_UNFORMED ||
1983 mod->state == MODULE_STATE_GOING)
1984 continue;
1985
1986 frob_text(&mod->core_layout, set_memory_ro);
1987 frob_text(&mod->init_layout, set_memory_ro);
1988 }
1989 mutex_unlock(&module_mutex);
1990 }
1991
1992 static void disable_ro_nx(const struct module_layout *layout)
1993 {
1994 if (rodata_enabled) {
1995 frob_text(layout, set_memory_rw);
1996 frob_rodata(layout, set_memory_rw);
1997 frob_ro_after_init(layout, set_memory_rw);
1998 }
1999 frob_rodata(layout, set_memory_x);
2000 frob_ro_after_init(layout, set_memory_x);
2001 frob_writable_data(layout, set_memory_x);
2002 }
2003
2004 #else
2005 static void disable_ro_nx(const struct module_layout *layout) { }
2006 static void module_enable_nx(const struct module *mod) { }
2007 static void module_disable_nx(const struct module *mod) { }
2008 #endif
2009
2010 #ifdef CONFIG_LIVEPATCH
2011 /*
2012 * Persist Elf information about a module. Copy the Elf header,
2013 * section header table, section string table, and symtab section
2014 * index from info to mod->klp_info.
2015 */
2016 static int copy_module_elf(struct module *mod, struct load_info *info)
2017 {
2018 unsigned int size, symndx;
2019 int ret;
2020
2021 size = sizeof(*mod->klp_info);
2022 mod->klp_info = kmalloc(size, GFP_KERNEL);
2023 if (mod->klp_info == NULL)
2024 return -ENOMEM;
2025
2026 /* Elf header */
2027 size = sizeof(mod->klp_info->hdr);
2028 memcpy(&mod->klp_info->hdr, info->hdr, size);
2029
2030 /* Elf section header table */
2031 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2032 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2033 if (mod->klp_info->sechdrs == NULL) {
2034 ret = -ENOMEM;
2035 goto free_info;
2036 }
2037 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2038
2039 /* Elf section name string table */
2040 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2041 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2042 if (mod->klp_info->secstrings == NULL) {
2043 ret = -ENOMEM;
2044 goto free_sechdrs;
2045 }
2046 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2047
2048 /* Elf symbol section index */
2049 symndx = info->index.sym;
2050 mod->klp_info->symndx = symndx;
2051
2052 /*
2053 * For livepatch modules, core_kallsyms.symtab is a complete
2054 * copy of the original symbol table. Adjust sh_addr to point
2055 * to core_kallsyms.symtab since the copy of the symtab in module
2056 * init memory is freed at the end of do_init_module().
2057 */
2058 mod->klp_info->sechdrs[symndx].sh_addr = \
2059 (unsigned long) mod->core_kallsyms.symtab;
2060
2061 return 0;
2062
2063 free_sechdrs:
2064 kfree(mod->klp_info->sechdrs);
2065 free_info:
2066 kfree(mod->klp_info);
2067 return ret;
2068 }
2069
2070 static void free_module_elf(struct module *mod)
2071 {
2072 kfree(mod->klp_info->sechdrs);
2073 kfree(mod->klp_info->secstrings);
2074 kfree(mod->klp_info);
2075 }
2076 #else /* !CONFIG_LIVEPATCH */
2077 static int copy_module_elf(struct module *mod, struct load_info *info)
2078 {
2079 return 0;
2080 }
2081
2082 static void free_module_elf(struct module *mod)
2083 {
2084 }
2085 #endif /* CONFIG_LIVEPATCH */
2086
2087 void __weak module_memfree(void *module_region)
2088 {
2089 vfree(module_region);
2090 }
2091
2092 void __weak module_arch_cleanup(struct module *mod)
2093 {
2094 }
2095
2096 void __weak module_arch_freeing_init(struct module *mod)
2097 {
2098 }
2099
2100 /* Free a module, remove from lists, etc. */
2101 static void free_module(struct module *mod)
2102 {
2103 trace_module_free(mod);
2104
2105 mod_sysfs_teardown(mod);
2106
2107 /* We leave it in list to prevent duplicate loads, but make sure
2108 * that noone uses it while it's being deconstructed. */
2109 mutex_lock(&module_mutex);
2110 mod->state = MODULE_STATE_UNFORMED;
2111 mutex_unlock(&module_mutex);
2112
2113 /* Remove dynamic debug info */
2114 ddebug_remove_module(mod->name);
2115
2116 /* Arch-specific cleanup. */
2117 module_arch_cleanup(mod);
2118
2119 /* Module unload stuff */
2120 module_unload_free(mod);
2121
2122 /* Free any allocated parameters. */
2123 destroy_params(mod->kp, mod->num_kp);
2124
2125 if (is_livepatch_module(mod))
2126 free_module_elf(mod);
2127
2128 /* Now we can delete it from the lists */
2129 mutex_lock(&module_mutex);
2130 /* Unlink carefully: kallsyms could be walking list. */
2131 list_del_rcu(&mod->list);
2132 mod_tree_remove(mod);
2133 /* Remove this module from bug list, this uses list_del_rcu */
2134 module_bug_cleanup(mod);
2135 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2136 synchronize_sched();
2137 mutex_unlock(&module_mutex);
2138
2139 /* This may be empty, but that's OK */
2140 disable_ro_nx(&mod->init_layout);
2141 module_arch_freeing_init(mod);
2142 module_memfree(mod->init_layout.base);
2143 kfree(mod->args);
2144 percpu_modfree(mod);
2145
2146 /* Free lock-classes; relies on the preceding sync_rcu(). */
2147 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2148
2149 /* Finally, free the core (containing the module structure) */
2150 disable_ro_nx(&mod->core_layout);
2151 module_memfree(mod->core_layout.base);
2152
2153 #ifdef CONFIG_MPU
2154 update_protections(current->mm);
2155 #endif
2156 }
2157
2158 void *__symbol_get(const char *symbol)
2159 {
2160 struct module *owner;
2161 const struct kernel_symbol *sym;
2162
2163 preempt_disable();
2164 sym = find_symbol(symbol, &owner, NULL, true, true);
2165 if (sym && strong_try_module_get(owner))
2166 sym = NULL;
2167 preempt_enable();
2168
2169 return sym ? (void *)sym->value : NULL;
2170 }
2171 EXPORT_SYMBOL_GPL(__symbol_get);
2172
2173 /*
2174 * Ensure that an exported symbol [global namespace] does not already exist
2175 * in the kernel or in some other module's exported symbol table.
2176 *
2177 * You must hold the module_mutex.
2178 */
2179 static int verify_export_symbols(struct module *mod)
2180 {
2181 unsigned int i;
2182 struct module *owner;
2183 const struct kernel_symbol *s;
2184 struct {
2185 const struct kernel_symbol *sym;
2186 unsigned int num;
2187 } arr[] = {
2188 { mod->syms, mod->num_syms },
2189 { mod->gpl_syms, mod->num_gpl_syms },
2190 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2191 #ifdef CONFIG_UNUSED_SYMBOLS
2192 { mod->unused_syms, mod->num_unused_syms },
2193 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2194 #endif
2195 };
2196
2197 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2198 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2199 if (find_symbol(s->name, &owner, NULL, true, false)) {
2200 pr_err("%s: exports duplicate symbol %s"
2201 " (owned by %s)\n",
2202 mod->name, s->name, module_name(owner));
2203 return -ENOEXEC;
2204 }
2205 }
2206 }
2207 return 0;
2208 }
2209
2210 /* Change all symbols so that st_value encodes the pointer directly. */
2211 static int simplify_symbols(struct module *mod, const struct load_info *info)
2212 {
2213 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2214 Elf_Sym *sym = (void *)symsec->sh_addr;
2215 unsigned long secbase;
2216 unsigned int i;
2217 int ret = 0;
2218 const struct kernel_symbol *ksym;
2219
2220 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2221 const char *name = info->strtab + sym[i].st_name;
2222
2223 switch (sym[i].st_shndx) {
2224 case SHN_COMMON:
2225 /* Ignore common symbols */
2226 if (!strncmp(name, "__gnu_lto", 9))
2227 break;
2228
2229 /* We compiled with -fno-common. These are not
2230 supposed to happen. */
2231 pr_debug("Common symbol: %s\n", name);
2232 pr_warn("%s: please compile with -fno-common\n",
2233 mod->name);
2234 ret = -ENOEXEC;
2235 break;
2236
2237 case SHN_ABS:
2238 /* Don't need to do anything */
2239 pr_debug("Absolute symbol: 0x%08lx\n",
2240 (long)sym[i].st_value);
2241 break;
2242
2243 case SHN_LIVEPATCH:
2244 /* Livepatch symbols are resolved by livepatch */
2245 break;
2246
2247 case SHN_UNDEF:
2248 ksym = resolve_symbol_wait(mod, info, name);
2249 /* Ok if resolved. */
2250 if (ksym && !IS_ERR(ksym)) {
2251 sym[i].st_value = ksym->value;
2252 break;
2253 }
2254
2255 /* Ok if weak. */
2256 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2257 break;
2258
2259 pr_warn("%s: Unknown symbol %s (err %li)\n",
2260 mod->name, name, PTR_ERR(ksym));
2261 ret = PTR_ERR(ksym) ?: -ENOENT;
2262 break;
2263
2264 default:
2265 /* Divert to percpu allocation if a percpu var. */
2266 if (sym[i].st_shndx == info->index.pcpu)
2267 secbase = (unsigned long)mod_percpu(mod);
2268 else
2269 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2270 sym[i].st_value += secbase;
2271 break;
2272 }
2273 }
2274
2275 return ret;
2276 }
2277
2278 static int apply_relocations(struct module *mod, const struct load_info *info)
2279 {
2280 unsigned int i;
2281 int err = 0;
2282
2283 /* Now do relocations. */
2284 for (i = 1; i < info->hdr->e_shnum; i++) {
2285 unsigned int infosec = info->sechdrs[i].sh_info;
2286
2287 /* Not a valid relocation section? */
2288 if (infosec >= info->hdr->e_shnum)
2289 continue;
2290
2291 /* Don't bother with non-allocated sections */
2292 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2293 continue;
2294
2295 /* Livepatch relocation sections are applied by livepatch */
2296 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2297 continue;
2298
2299 if (info->sechdrs[i].sh_type == SHT_REL)
2300 err = apply_relocate(info->sechdrs, info->strtab,
2301 info->index.sym, i, mod);
2302 else if (info->sechdrs[i].sh_type == SHT_RELA)
2303 err = apply_relocate_add(info->sechdrs, info->strtab,
2304 info->index.sym, i, mod);
2305 if (err < 0)
2306 break;
2307 }
2308 return err;
2309 }
2310
2311 /* Additional bytes needed by arch in front of individual sections */
2312 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2313 unsigned int section)
2314 {
2315 /* default implementation just returns zero */
2316 return 0;
2317 }
2318
2319 /* Update size with this section: return offset. */
2320 static long get_offset(struct module *mod, unsigned int *size,
2321 Elf_Shdr *sechdr, unsigned int section)
2322 {
2323 long ret;
2324
2325 *size += arch_mod_section_prepend(mod, section);
2326 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2327 *size = ret + sechdr->sh_size;
2328 return ret;
2329 }
2330
2331 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2332 might -- code, read-only data, read-write data, small data. Tally
2333 sizes, and place the offsets into sh_entsize fields: high bit means it
2334 belongs in init. */
2335 static void layout_sections(struct module *mod, struct load_info *info)
2336 {
2337 static unsigned long const masks[][2] = {
2338 /* NOTE: all executable code must be the first section
2339 * in this array; otherwise modify the text_size
2340 * finder in the two loops below */
2341 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2342 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2343 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2344 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2345 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2346 };
2347 unsigned int m, i;
2348
2349 for (i = 0; i < info->hdr->e_shnum; i++)
2350 info->sechdrs[i].sh_entsize = ~0UL;
2351
2352 pr_debug("Core section allocation order:\n");
2353 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2354 for (i = 0; i < info->hdr->e_shnum; ++i) {
2355 Elf_Shdr *s = &info->sechdrs[i];
2356 const char *sname = info->secstrings + s->sh_name;
2357
2358 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2359 || (s->sh_flags & masks[m][1])
2360 || s->sh_entsize != ~0UL
2361 || strstarts(sname, ".init"))
2362 continue;
2363 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2364 pr_debug("\t%s\n", sname);
2365 }
2366 switch (m) {
2367 case 0: /* executable */
2368 mod->core_layout.size = debug_align(mod->core_layout.size);
2369 mod->core_layout.text_size = mod->core_layout.size;
2370 break;
2371 case 1: /* RO: text and ro-data */
2372 mod->core_layout.size = debug_align(mod->core_layout.size);
2373 mod->core_layout.ro_size = mod->core_layout.size;
2374 break;
2375 case 2: /* RO after init */
2376 mod->core_layout.size = debug_align(mod->core_layout.size);
2377 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2378 break;
2379 case 4: /* whole core */
2380 mod->core_layout.size = debug_align(mod->core_layout.size);
2381 break;
2382 }
2383 }
2384
2385 pr_debug("Init section allocation order:\n");
2386 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2387 for (i = 0; i < info->hdr->e_shnum; ++i) {
2388 Elf_Shdr *s = &info->sechdrs[i];
2389 const char *sname = info->secstrings + s->sh_name;
2390
2391 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2392 || (s->sh_flags & masks[m][1])
2393 || s->sh_entsize != ~0UL
2394 || !strstarts(sname, ".init"))
2395 continue;
2396 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2397 | INIT_OFFSET_MASK);
2398 pr_debug("\t%s\n", sname);
2399 }
2400 switch (m) {
2401 case 0: /* executable */
2402 mod->init_layout.size = debug_align(mod->init_layout.size);
2403 mod->init_layout.text_size = mod->init_layout.size;
2404 break;
2405 case 1: /* RO: text and ro-data */
2406 mod->init_layout.size = debug_align(mod->init_layout.size);
2407 mod->init_layout.ro_size = mod->init_layout.size;
2408 break;
2409 case 2:
2410 /*
2411 * RO after init doesn't apply to init_layout (only
2412 * core_layout), so it just takes the value of ro_size.
2413 */
2414 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2415 break;
2416 case 4: /* whole init */
2417 mod->init_layout.size = debug_align(mod->init_layout.size);
2418 break;
2419 }
2420 }
2421 }
2422
2423 static void set_license(struct module *mod, const char *license)
2424 {
2425 if (!license)
2426 license = "unspecified";
2427
2428 if (!license_is_gpl_compatible(license)) {
2429 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2430 pr_warn("%s: module license '%s' taints kernel.\n",
2431 mod->name, license);
2432 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2433 LOCKDEP_NOW_UNRELIABLE);
2434 }
2435 }
2436
2437 /* Parse tag=value strings from .modinfo section */
2438 static char *next_string(char *string, unsigned long *secsize)
2439 {
2440 /* Skip non-zero chars */
2441 while (string[0]) {
2442 string++;
2443 if ((*secsize)-- <= 1)
2444 return NULL;
2445 }
2446
2447 /* Skip any zero padding. */
2448 while (!string[0]) {
2449 string++;
2450 if ((*secsize)-- <= 1)
2451 return NULL;
2452 }
2453 return string;
2454 }
2455
2456 static char *get_modinfo(struct load_info *info, const char *tag)
2457 {
2458 char *p;
2459 unsigned int taglen = strlen(tag);
2460 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2461 unsigned long size = infosec->sh_size;
2462
2463 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2464 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2465 return p + taglen + 1;
2466 }
2467 return NULL;
2468 }
2469
2470 static void setup_modinfo(struct module *mod, struct load_info *info)
2471 {
2472 struct module_attribute *attr;
2473 int i;
2474
2475 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2476 if (attr->setup)
2477 attr->setup(mod, get_modinfo(info, attr->attr.name));
2478 }
2479 }
2480
2481 static void free_modinfo(struct module *mod)
2482 {
2483 struct module_attribute *attr;
2484 int i;
2485
2486 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2487 if (attr->free)
2488 attr->free(mod);
2489 }
2490 }
2491
2492 #ifdef CONFIG_KALLSYMS
2493
2494 /* lookup symbol in given range of kernel_symbols */
2495 static const struct kernel_symbol *lookup_symbol(const char *name,
2496 const struct kernel_symbol *start,
2497 const struct kernel_symbol *stop)
2498 {
2499 return bsearch(name, start, stop - start,
2500 sizeof(struct kernel_symbol), cmp_name);
2501 }
2502
2503 static int is_exported(const char *name, unsigned long value,
2504 const struct module *mod)
2505 {
2506 const struct kernel_symbol *ks;
2507 if (!mod)
2508 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2509 else
2510 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2511 return ks != NULL && ks->value == value;
2512 }
2513
2514 /* As per nm */
2515 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2516 {
2517 const Elf_Shdr *sechdrs = info->sechdrs;
2518
2519 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2520 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2521 return 'v';
2522 else
2523 return 'w';
2524 }
2525 if (sym->st_shndx == SHN_UNDEF)
2526 return 'U';
2527 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2528 return 'a';
2529 if (sym->st_shndx >= SHN_LORESERVE)
2530 return '?';
2531 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2532 return 't';
2533 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2534 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2535 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2536 return 'r';
2537 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2538 return 'g';
2539 else
2540 return 'd';
2541 }
2542 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2543 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2544 return 's';
2545 else
2546 return 'b';
2547 }
2548 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2549 ".debug")) {
2550 return 'n';
2551 }
2552 return '?';
2553 }
2554
2555 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2556 unsigned int shnum, unsigned int pcpundx)
2557 {
2558 const Elf_Shdr *sec;
2559
2560 if (src->st_shndx == SHN_UNDEF
2561 || src->st_shndx >= shnum
2562 || !src->st_name)
2563 return false;
2564
2565 #ifdef CONFIG_KALLSYMS_ALL
2566 if (src->st_shndx == pcpundx)
2567 return true;
2568 #endif
2569
2570 sec = sechdrs + src->st_shndx;
2571 if (!(sec->sh_flags & SHF_ALLOC)
2572 #ifndef CONFIG_KALLSYMS_ALL
2573 || !(sec->sh_flags & SHF_EXECINSTR)
2574 #endif
2575 || (sec->sh_entsize & INIT_OFFSET_MASK))
2576 return false;
2577
2578 return true;
2579 }
2580
2581 /*
2582 * We only allocate and copy the strings needed by the parts of symtab
2583 * we keep. This is simple, but has the effect of making multiple
2584 * copies of duplicates. We could be more sophisticated, see
2585 * linux-kernel thread starting with
2586 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2587 */
2588 static void layout_symtab(struct module *mod, struct load_info *info)
2589 {
2590 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2591 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2592 const Elf_Sym *src;
2593 unsigned int i, nsrc, ndst, strtab_size = 0;
2594
2595 /* Put symbol section at end of init part of module. */
2596 symsect->sh_flags |= SHF_ALLOC;
2597 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2598 info->index.sym) | INIT_OFFSET_MASK;
2599 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2600
2601 src = (void *)info->hdr + symsect->sh_offset;
2602 nsrc = symsect->sh_size / sizeof(*src);
2603
2604 /* Compute total space required for the core symbols' strtab. */
2605 for (ndst = i = 0; i < nsrc; i++) {
2606 if (i == 0 || is_livepatch_module(mod) ||
2607 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2608 info->index.pcpu)) {
2609 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2610 ndst++;
2611 }
2612 }
2613
2614 /* Append room for core symbols at end of core part. */
2615 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2616 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2617 mod->core_layout.size += strtab_size;
2618 mod->core_layout.size = debug_align(mod->core_layout.size);
2619
2620 /* Put string table section at end of init part of module. */
2621 strsect->sh_flags |= SHF_ALLOC;
2622 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2623 info->index.str) | INIT_OFFSET_MASK;
2624 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2625
2626 /* We'll tack temporary mod_kallsyms on the end. */
2627 mod->init_layout.size = ALIGN(mod->init_layout.size,
2628 __alignof__(struct mod_kallsyms));
2629 info->mod_kallsyms_init_off = mod->init_layout.size;
2630 mod->init_layout.size += sizeof(struct mod_kallsyms);
2631 mod->init_layout.size = debug_align(mod->init_layout.size);
2632 }
2633
2634 /*
2635 * We use the full symtab and strtab which layout_symtab arranged to
2636 * be appended to the init section. Later we switch to the cut-down
2637 * core-only ones.
2638 */
2639 static void add_kallsyms(struct module *mod, const struct load_info *info)
2640 {
2641 unsigned int i, ndst;
2642 const Elf_Sym *src;
2643 Elf_Sym *dst;
2644 char *s;
2645 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2646
2647 /* Set up to point into init section. */
2648 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2649
2650 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2651 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2652 /* Make sure we get permanent strtab: don't use info->strtab. */
2653 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2654
2655 /* Set types up while we still have access to sections. */
2656 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2657 mod->kallsyms->symtab[i].st_info
2658 = elf_type(&mod->kallsyms->symtab[i], info);
2659
2660 /* Now populate the cut down core kallsyms for after init. */
2661 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2662 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2663 src = mod->kallsyms->symtab;
2664 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2665 if (i == 0 || is_livepatch_module(mod) ||
2666 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2667 info->index.pcpu)) {
2668 dst[ndst] = src[i];
2669 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2670 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2671 KSYM_NAME_LEN) + 1;
2672 }
2673 }
2674 mod->core_kallsyms.num_symtab = ndst;
2675 }
2676 #else
2677 static inline void layout_symtab(struct module *mod, struct load_info *info)
2678 {
2679 }
2680
2681 static void add_kallsyms(struct module *mod, const struct load_info *info)
2682 {
2683 }
2684 #endif /* CONFIG_KALLSYMS */
2685
2686 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2687 {
2688 if (!debug)
2689 return;
2690 #ifdef CONFIG_DYNAMIC_DEBUG
2691 if (ddebug_add_module(debug, num, debug->modname))
2692 pr_err("dynamic debug error adding module: %s\n",
2693 debug->modname);
2694 #endif
2695 }
2696
2697 static void dynamic_debug_remove(struct _ddebug *debug)
2698 {
2699 if (debug)
2700 ddebug_remove_module(debug->modname);
2701 }
2702
2703 void * __weak module_alloc(unsigned long size)
2704 {
2705 return vmalloc_exec(size);
2706 }
2707
2708 #ifdef CONFIG_DEBUG_KMEMLEAK
2709 static void kmemleak_load_module(const struct module *mod,
2710 const struct load_info *info)
2711 {
2712 unsigned int i;
2713
2714 /* only scan the sections containing data */
2715 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2716
2717 for (i = 1; i < info->hdr->e_shnum; i++) {
2718 /* Scan all writable sections that's not executable */
2719 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2720 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2721 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2722 continue;
2723
2724 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2725 info->sechdrs[i].sh_size, GFP_KERNEL);
2726 }
2727 }
2728 #else
2729 static inline void kmemleak_load_module(const struct module *mod,
2730 const struct load_info *info)
2731 {
2732 }
2733 #endif
2734
2735 #ifdef CONFIG_MODULE_SIG
2736 static int module_sig_check(struct load_info *info, int flags)
2737 {
2738 int err = -ENOKEY;
2739 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2740 const void *mod = info->hdr;
2741
2742 /*
2743 * Require flags == 0, as a module with version information
2744 * removed is no longer the module that was signed
2745 */
2746 if (flags == 0 &&
2747 info->len > markerlen &&
2748 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2749 /* We truncate the module to discard the signature */
2750 info->len -= markerlen;
2751 err = mod_verify_sig(mod, &info->len);
2752 }
2753
2754 if (!err) {
2755 info->sig_ok = true;
2756 return 0;
2757 }
2758
2759 /* Not having a signature is only an error if we're strict. */
2760 if (err == -ENOKEY && !sig_enforce)
2761 err = 0;
2762
2763 return err;
2764 }
2765 #else /* !CONFIG_MODULE_SIG */
2766 static int module_sig_check(struct load_info *info, int flags)
2767 {
2768 return 0;
2769 }
2770 #endif /* !CONFIG_MODULE_SIG */
2771
2772 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2773 static int elf_header_check(struct load_info *info)
2774 {
2775 if (info->len < sizeof(*(info->hdr)))
2776 return -ENOEXEC;
2777
2778 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2779 || info->hdr->e_type != ET_REL
2780 || !elf_check_arch(info->hdr)
2781 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2782 return -ENOEXEC;
2783
2784 if (info->hdr->e_shoff >= info->len
2785 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2786 info->len - info->hdr->e_shoff))
2787 return -ENOEXEC;
2788
2789 return 0;
2790 }
2791
2792 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2793
2794 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2795 {
2796 do {
2797 unsigned long n = min(len, COPY_CHUNK_SIZE);
2798
2799 if (copy_from_user(dst, usrc, n) != 0)
2800 return -EFAULT;
2801 cond_resched();
2802 dst += n;
2803 usrc += n;
2804 len -= n;
2805 } while (len);
2806 return 0;
2807 }
2808
2809 #ifdef CONFIG_LIVEPATCH
2810 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2811 {
2812 if (get_modinfo(info, "livepatch")) {
2813 mod->klp = true;
2814 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2815 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2816 mod->name);
2817 }
2818
2819 return 0;
2820 }
2821 #else /* !CONFIG_LIVEPATCH */
2822 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2823 {
2824 if (get_modinfo(info, "livepatch")) {
2825 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2826 mod->name);
2827 return -ENOEXEC;
2828 }
2829
2830 return 0;
2831 }
2832 #endif /* CONFIG_LIVEPATCH */
2833
2834 /* Sets info->hdr and info->len. */
2835 static int copy_module_from_user(const void __user *umod, unsigned long len,
2836 struct load_info *info)
2837 {
2838 int err;
2839
2840 info->len = len;
2841 if (info->len < sizeof(*(info->hdr)))
2842 return -ENOEXEC;
2843
2844 err = security_kernel_read_file(NULL, READING_MODULE);
2845 if (err)
2846 return err;
2847
2848 /* Suck in entire file: we'll want most of it. */
2849 info->hdr = __vmalloc(info->len,
2850 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2851 if (!info->hdr)
2852 return -ENOMEM;
2853
2854 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2855 vfree(info->hdr);
2856 return -EFAULT;
2857 }
2858
2859 return 0;
2860 }
2861
2862 static void free_copy(struct load_info *info)
2863 {
2864 vfree(info->hdr);
2865 }
2866
2867 static int rewrite_section_headers(struct load_info *info, int flags)
2868 {
2869 unsigned int i;
2870
2871 /* This should always be true, but let's be sure. */
2872 info->sechdrs[0].sh_addr = 0;
2873
2874 for (i = 1; i < info->hdr->e_shnum; i++) {
2875 Elf_Shdr *shdr = &info->sechdrs[i];
2876 if (shdr->sh_type != SHT_NOBITS
2877 && info->len < shdr->sh_offset + shdr->sh_size) {
2878 pr_err("Module len %lu truncated\n", info->len);
2879 return -ENOEXEC;
2880 }
2881
2882 /* Mark all sections sh_addr with their address in the
2883 temporary image. */
2884 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2885
2886 #ifndef CONFIG_MODULE_UNLOAD
2887 /* Don't load .exit sections */
2888 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2889 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2890 #endif
2891 }
2892
2893 /* Track but don't keep modinfo and version sections. */
2894 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2895 info->index.vers = 0; /* Pretend no __versions section! */
2896 else
2897 info->index.vers = find_sec(info, "__versions");
2898 info->index.info = find_sec(info, ".modinfo");
2899 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2900 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2901 return 0;
2902 }
2903
2904 /*
2905 * Set up our basic convenience variables (pointers to section headers,
2906 * search for module section index etc), and do some basic section
2907 * verification.
2908 *
2909 * Return the temporary module pointer (we'll replace it with the final
2910 * one when we move the module sections around).
2911 */
2912 static struct module *setup_load_info(struct load_info *info, int flags)
2913 {
2914 unsigned int i;
2915 int err;
2916 struct module *mod;
2917
2918 /* Set up the convenience variables */
2919 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2920 info->secstrings = (void *)info->hdr
2921 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2922
2923 err = rewrite_section_headers(info, flags);
2924 if (err)
2925 return ERR_PTR(err);
2926
2927 /* Find internal symbols and strings. */
2928 for (i = 1; i < info->hdr->e_shnum; i++) {
2929 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2930 info->index.sym = i;
2931 info->index.str = info->sechdrs[i].sh_link;
2932 info->strtab = (char *)info->hdr
2933 + info->sechdrs[info->index.str].sh_offset;
2934 break;
2935 }
2936 }
2937
2938 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2939 if (!info->index.mod) {
2940 pr_warn("No module found in object\n");
2941 return ERR_PTR(-ENOEXEC);
2942 }
2943 /* This is temporary: point mod into copy of data. */
2944 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2945
2946 if (info->index.sym == 0) {
2947 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2948 return ERR_PTR(-ENOEXEC);
2949 }
2950
2951 info->index.pcpu = find_pcpusec(info);
2952
2953 /* Check module struct version now, before we try to use module. */
2954 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2955 return ERR_PTR(-ENOEXEC);
2956
2957 return mod;
2958 }
2959
2960 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2961 {
2962 const char *modmagic = get_modinfo(info, "vermagic");
2963 int err;
2964
2965 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2966 modmagic = NULL;
2967
2968 /* This is allowed: modprobe --force will invalidate it. */
2969 if (!modmagic) {
2970 err = try_to_force_load(mod, "bad vermagic");
2971 if (err)
2972 return err;
2973 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2974 pr_err("%s: version magic '%s' should be '%s'\n",
2975 mod->name, modmagic, vermagic);
2976 return -ENOEXEC;
2977 }
2978
2979 if (!get_modinfo(info, "intree")) {
2980 if (!test_taint(TAINT_OOT_MODULE))
2981 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2982 mod->name);
2983 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2984 }
2985
2986 if (get_modinfo(info, "staging")) {
2987 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2988 pr_warn("%s: module is from the staging directory, the quality "
2989 "is unknown, you have been warned.\n", mod->name);
2990 }
2991
2992 err = check_modinfo_livepatch(mod, info);
2993 if (err)
2994 return err;
2995
2996 /* Set up license info based on the info section */
2997 set_license(mod, get_modinfo(info, "license"));
2998
2999 return 0;
3000 }
3001
3002 static int find_module_sections(struct module *mod, struct load_info *info)
3003 {
3004 mod->kp = section_objs(info, "__param",
3005 sizeof(*mod->kp), &mod->num_kp);
3006 mod->syms = section_objs(info, "__ksymtab",
3007 sizeof(*mod->syms), &mod->num_syms);
3008 mod->crcs = section_addr(info, "__kcrctab");
3009 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3010 sizeof(*mod->gpl_syms),
3011 &mod->num_gpl_syms);
3012 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3013 mod->gpl_future_syms = section_objs(info,
3014 "__ksymtab_gpl_future",
3015 sizeof(*mod->gpl_future_syms),
3016 &mod->num_gpl_future_syms);
3017 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3018
3019 #ifdef CONFIG_UNUSED_SYMBOLS
3020 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3021 sizeof(*mod->unused_syms),
3022 &mod->num_unused_syms);
3023 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3024 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3025 sizeof(*mod->unused_gpl_syms),
3026 &mod->num_unused_gpl_syms);
3027 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3028 #endif
3029 #ifdef CONFIG_CONSTRUCTORS
3030 mod->ctors = section_objs(info, ".ctors",
3031 sizeof(*mod->ctors), &mod->num_ctors);
3032 if (!mod->ctors)
3033 mod->ctors = section_objs(info, ".init_array",
3034 sizeof(*mod->ctors), &mod->num_ctors);
3035 else if (find_sec(info, ".init_array")) {
3036 /*
3037 * This shouldn't happen with same compiler and binutils
3038 * building all parts of the module.
3039 */
3040 pr_warn("%s: has both .ctors and .init_array.\n",
3041 mod->name);
3042 return -EINVAL;
3043 }
3044 #endif
3045
3046 #ifdef CONFIG_TRACEPOINTS
3047 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3048 sizeof(*mod->tracepoints_ptrs),
3049 &mod->num_tracepoints);
3050 #endif
3051 #ifdef HAVE_JUMP_LABEL
3052 mod->jump_entries = section_objs(info, "__jump_table",
3053 sizeof(*mod->jump_entries),
3054 &mod->num_jump_entries);
3055 #endif
3056 #ifdef CONFIG_EVENT_TRACING
3057 mod->trace_events = section_objs(info, "_ftrace_events",
3058 sizeof(*mod->trace_events),
3059 &mod->num_trace_events);
3060 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3061 sizeof(*mod->trace_enums),
3062 &mod->num_trace_enums);
3063 #endif
3064 #ifdef CONFIG_TRACING
3065 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3066 sizeof(*mod->trace_bprintk_fmt_start),
3067 &mod->num_trace_bprintk_fmt);
3068 #endif
3069 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3070 /* sechdrs[0].sh_size is always zero */
3071 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3072 sizeof(*mod->ftrace_callsites),
3073 &mod->num_ftrace_callsites);
3074 #endif
3075
3076 mod->extable = section_objs(info, "__ex_table",
3077 sizeof(*mod->extable), &mod->num_exentries);
3078
3079 if (section_addr(info, "__obsparm"))
3080 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3081
3082 info->debug = section_objs(info, "__verbose",
3083 sizeof(*info->debug), &info->num_debug);
3084
3085 return 0;
3086 }
3087
3088 static int move_module(struct module *mod, struct load_info *info)
3089 {
3090 int i;
3091 void *ptr;
3092
3093 /* Do the allocs. */
3094 ptr = module_alloc(mod->core_layout.size);
3095 /*
3096 * The pointer to this block is stored in the module structure
3097 * which is inside the block. Just mark it as not being a
3098 * leak.
3099 */
3100 kmemleak_not_leak(ptr);
3101 if (!ptr)
3102 return -ENOMEM;
3103
3104 memset(ptr, 0, mod->core_layout.size);
3105 mod->core_layout.base = ptr;
3106
3107 if (mod->init_layout.size) {
3108 ptr = module_alloc(mod->init_layout.size);
3109 /*
3110 * The pointer to this block is stored in the module structure
3111 * which is inside the block. This block doesn't need to be
3112 * scanned as it contains data and code that will be freed
3113 * after the module is initialized.
3114 */
3115 kmemleak_ignore(ptr);
3116 if (!ptr) {
3117 module_memfree(mod->core_layout.base);
3118 return -ENOMEM;
3119 }
3120 memset(ptr, 0, mod->init_layout.size);
3121 mod->init_layout.base = ptr;
3122 } else
3123 mod->init_layout.base = NULL;
3124
3125 /* Transfer each section which specifies SHF_ALLOC */
3126 pr_debug("final section addresses:\n");
3127 for (i = 0; i < info->hdr->e_shnum; i++) {
3128 void *dest;
3129 Elf_Shdr *shdr = &info->sechdrs[i];
3130
3131 if (!(shdr->sh_flags & SHF_ALLOC))
3132 continue;
3133
3134 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3135 dest = mod->init_layout.base
3136 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3137 else
3138 dest = mod->core_layout.base + shdr->sh_entsize;
3139
3140 if (shdr->sh_type != SHT_NOBITS)
3141 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3142 /* Update sh_addr to point to copy in image. */
3143 shdr->sh_addr = (unsigned long)dest;
3144 pr_debug("\t0x%lx %s\n",
3145 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3146 }
3147
3148 return 0;
3149 }
3150
3151 static int check_module_license_and_versions(struct module *mod)
3152 {
3153 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3154
3155 /*
3156 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3157 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3158 * using GPL-only symbols it needs.
3159 */
3160 if (strcmp(mod->name, "ndiswrapper") == 0)
3161 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3162
3163 /* driverloader was caught wrongly pretending to be under GPL */
3164 if (strcmp(mod->name, "driverloader") == 0)
3165 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3166 LOCKDEP_NOW_UNRELIABLE);
3167
3168 /* lve claims to be GPL but upstream won't provide source */
3169 if (strcmp(mod->name, "lve") == 0)
3170 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3171 LOCKDEP_NOW_UNRELIABLE);
3172
3173 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3174 pr_warn("%s: module license taints kernel.\n", mod->name);
3175
3176 #ifdef CONFIG_MODVERSIONS
3177 if ((mod->num_syms && !mod->crcs)
3178 || (mod->num_gpl_syms && !mod->gpl_crcs)
3179 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3180 #ifdef CONFIG_UNUSED_SYMBOLS
3181 || (mod->num_unused_syms && !mod->unused_crcs)
3182 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3183 #endif
3184 ) {
3185 return try_to_force_load(mod,
3186 "no versions for exported symbols");
3187 }
3188 #endif
3189 return 0;
3190 }
3191
3192 static void flush_module_icache(const struct module *mod)
3193 {
3194 mm_segment_t old_fs;
3195
3196 /* flush the icache in correct context */
3197 old_fs = get_fs();
3198 set_fs(KERNEL_DS);
3199
3200 /*
3201 * Flush the instruction cache, since we've played with text.
3202 * Do it before processing of module parameters, so the module
3203 * can provide parameter accessor functions of its own.
3204 */
3205 if (mod->init_layout.base)
3206 flush_icache_range((unsigned long)mod->init_layout.base,
3207 (unsigned long)mod->init_layout.base
3208 + mod->init_layout.size);
3209 flush_icache_range((unsigned long)mod->core_layout.base,
3210 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3211
3212 set_fs(old_fs);
3213 }
3214
3215 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3216 Elf_Shdr *sechdrs,
3217 char *secstrings,
3218 struct module *mod)
3219 {
3220 return 0;
3221 }
3222
3223 /* module_blacklist is a comma-separated list of module names */
3224 static char *module_blacklist;
3225 static bool blacklisted(char *module_name)
3226 {
3227 const char *p;
3228 size_t len;
3229
3230 if (!module_blacklist)
3231 return false;
3232
3233 for (p = module_blacklist; *p; p += len) {
3234 len = strcspn(p, ",");
3235 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3236 return true;
3237 if (p[len] == ',')
3238 len++;
3239 }
3240 return false;
3241 }
3242 core_param(module_blacklist, module_blacklist, charp, 0400);
3243
3244 static struct module *layout_and_allocate(struct load_info *info, int flags)
3245 {
3246 /* Module within temporary copy. */
3247 struct module *mod;
3248 unsigned int ndx;
3249 int err;
3250
3251 mod = setup_load_info(info, flags);
3252 if (IS_ERR(mod))
3253 return mod;
3254
3255 if (blacklisted(mod->name))
3256 return ERR_PTR(-EPERM);
3257
3258 err = check_modinfo(mod, info, flags);
3259 if (err)
3260 return ERR_PTR(err);
3261
3262 /* Allow arches to frob section contents and sizes. */
3263 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3264 info->secstrings, mod);
3265 if (err < 0)
3266 return ERR_PTR(err);
3267
3268 /* We will do a special allocation for per-cpu sections later. */
3269 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3270
3271 /*
3272 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3273 * layout_sections() can put it in the right place.
3274 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3275 */
3276 ndx = find_sec(info, ".data..ro_after_init");
3277 if (ndx)
3278 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3279
3280 /* Determine total sizes, and put offsets in sh_entsize. For now
3281 this is done generically; there doesn't appear to be any
3282 special cases for the architectures. */
3283 layout_sections(mod, info);
3284 layout_symtab(mod, info);
3285
3286 /* Allocate and move to the final place */
3287 err = move_module(mod, info);
3288 if (err)
3289 return ERR_PTR(err);
3290
3291 /* Module has been copied to its final place now: return it. */
3292 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3293 kmemleak_load_module(mod, info);
3294 return mod;
3295 }
3296
3297 /* mod is no longer valid after this! */
3298 static void module_deallocate(struct module *mod, struct load_info *info)
3299 {
3300 percpu_modfree(mod);
3301 module_arch_freeing_init(mod);
3302 module_memfree(mod->init_layout.base);
3303 module_memfree(mod->core_layout.base);
3304 }
3305
3306 int __weak module_finalize(const Elf_Ehdr *hdr,
3307 const Elf_Shdr *sechdrs,
3308 struct module *me)
3309 {
3310 return 0;
3311 }
3312
3313 static int post_relocation(struct module *mod, const struct load_info *info)
3314 {
3315 /* Sort exception table now relocations are done. */
3316 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3317
3318 /* Copy relocated percpu area over. */
3319 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3320 info->sechdrs[info->index.pcpu].sh_size);
3321
3322 /* Setup kallsyms-specific fields. */
3323 add_kallsyms(mod, info);
3324
3325 /* Arch-specific module finalizing. */
3326 return module_finalize(info->hdr, info->sechdrs, mod);
3327 }
3328
3329 /* Is this module of this name done loading? No locks held. */
3330 static bool finished_loading(const char *name)
3331 {
3332 struct module *mod;
3333 bool ret;
3334
3335 /*
3336 * The module_mutex should not be a heavily contended lock;
3337 * if we get the occasional sleep here, we'll go an extra iteration
3338 * in the wait_event_interruptible(), which is harmless.
3339 */
3340 sched_annotate_sleep();
3341 mutex_lock(&module_mutex);
3342 mod = find_module_all(name, strlen(name), true);
3343 ret = !mod || mod->state == MODULE_STATE_LIVE
3344 || mod->state == MODULE_STATE_GOING;
3345 mutex_unlock(&module_mutex);
3346
3347 return ret;
3348 }
3349
3350 /* Call module constructors. */
3351 static void do_mod_ctors(struct module *mod)
3352 {
3353 #ifdef CONFIG_CONSTRUCTORS
3354 unsigned long i;
3355
3356 for (i = 0; i < mod->num_ctors; i++)
3357 mod->ctors[i]();
3358 #endif
3359 }
3360
3361 /* For freeing module_init on success, in case kallsyms traversing */
3362 struct mod_initfree {
3363 struct rcu_head rcu;
3364 void *module_init;
3365 };
3366
3367 static void do_free_init(struct rcu_head *head)
3368 {
3369 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3370 module_memfree(m->module_init);
3371 kfree(m);
3372 }
3373
3374 /*
3375 * This is where the real work happens.
3376 *
3377 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3378 * helper command 'lx-symbols'.
3379 */
3380 static noinline int do_init_module(struct module *mod)
3381 {
3382 int ret = 0;
3383 struct mod_initfree *freeinit;
3384
3385 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3386 if (!freeinit) {
3387 ret = -ENOMEM;
3388 goto fail;
3389 }
3390 freeinit->module_init = mod->init_layout.base;
3391
3392 /*
3393 * We want to find out whether @mod uses async during init. Clear
3394 * PF_USED_ASYNC. async_schedule*() will set it.
3395 */
3396 current->flags &= ~PF_USED_ASYNC;
3397
3398 do_mod_ctors(mod);
3399 /* Start the module */
3400 if (mod->init != NULL)
3401 ret = do_one_initcall(mod->init);
3402 if (ret < 0) {
3403 goto fail_free_freeinit;
3404 }
3405 if (ret > 0) {
3406 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3407 "follow 0/-E convention\n"
3408 "%s: loading module anyway...\n",
3409 __func__, mod->name, ret, __func__);
3410 dump_stack();
3411 }
3412
3413 /* Now it's a first class citizen! */
3414 mod->state = MODULE_STATE_LIVE;
3415 blocking_notifier_call_chain(&module_notify_list,
3416 MODULE_STATE_LIVE, mod);
3417
3418 /*
3419 * We need to finish all async code before the module init sequence
3420 * is done. This has potential to deadlock. For example, a newly
3421 * detected block device can trigger request_module() of the
3422 * default iosched from async probing task. Once userland helper
3423 * reaches here, async_synchronize_full() will wait on the async
3424 * task waiting on request_module() and deadlock.
3425 *
3426 * This deadlock is avoided by perfomring async_synchronize_full()
3427 * iff module init queued any async jobs. This isn't a full
3428 * solution as it will deadlock the same if module loading from
3429 * async jobs nests more than once; however, due to the various
3430 * constraints, this hack seems to be the best option for now.
3431 * Please refer to the following thread for details.
3432 *
3433 * http://thread.gmane.org/gmane.linux.kernel/1420814
3434 */
3435 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3436 async_synchronize_full();
3437
3438 mutex_lock(&module_mutex);
3439 /* Drop initial reference. */
3440 module_put(mod);
3441 trim_init_extable(mod);
3442 #ifdef CONFIG_KALLSYMS
3443 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3444 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3445 #endif
3446 module_enable_ro(mod, true);
3447 mod_tree_remove_init(mod);
3448 disable_ro_nx(&mod->init_layout);
3449 module_arch_freeing_init(mod);
3450 mod->init_layout.base = NULL;
3451 mod->init_layout.size = 0;
3452 mod->init_layout.ro_size = 0;
3453 mod->init_layout.ro_after_init_size = 0;
3454 mod->init_layout.text_size = 0;
3455 /*
3456 * We want to free module_init, but be aware that kallsyms may be
3457 * walking this with preempt disabled. In all the failure paths, we
3458 * call synchronize_sched(), but we don't want to slow down the success
3459 * path, so use actual RCU here.
3460 */
3461 call_rcu_sched(&freeinit->rcu, do_free_init);
3462 mutex_unlock(&module_mutex);
3463 wake_up_all(&module_wq);
3464
3465 return 0;
3466
3467 fail_free_freeinit:
3468 kfree(freeinit);
3469 fail:
3470 /* Try to protect us from buggy refcounters. */
3471 mod->state = MODULE_STATE_GOING;
3472 synchronize_sched();
3473 module_put(mod);
3474 blocking_notifier_call_chain(&module_notify_list,
3475 MODULE_STATE_GOING, mod);
3476 klp_module_going(mod);
3477 ftrace_release_mod(mod);
3478 free_module(mod);
3479 wake_up_all(&module_wq);
3480 return ret;
3481 }
3482
3483 static int may_init_module(void)
3484 {
3485 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3486 return -EPERM;
3487
3488 return 0;
3489 }
3490
3491 /*
3492 * We try to place it in the list now to make sure it's unique before
3493 * we dedicate too many resources. In particular, temporary percpu
3494 * memory exhaustion.
3495 */
3496 static int add_unformed_module(struct module *mod)
3497 {
3498 int err;
3499 struct module *old;
3500
3501 mod->state = MODULE_STATE_UNFORMED;
3502
3503 again:
3504 mutex_lock(&module_mutex);
3505 old = find_module_all(mod->name, strlen(mod->name), true);
3506 if (old != NULL) {
3507 if (old->state == MODULE_STATE_COMING
3508 || old->state == MODULE_STATE_UNFORMED) {
3509 /* Wait in case it fails to load. */
3510 mutex_unlock(&module_mutex);
3511 err = wait_event_interruptible(module_wq,
3512 finished_loading(mod->name));
3513 if (err)
3514 goto out_unlocked;
3515 goto again;
3516 }
3517 err = -EEXIST;
3518 goto out;
3519 }
3520 mod_update_bounds(mod);
3521 list_add_rcu(&mod->list, &modules);
3522 mod_tree_insert(mod);
3523 err = 0;
3524
3525 out:
3526 mutex_unlock(&module_mutex);
3527 out_unlocked:
3528 return err;
3529 }
3530
3531 static int complete_formation(struct module *mod, struct load_info *info)
3532 {
3533 int err;
3534
3535 mutex_lock(&module_mutex);
3536
3537 /* Find duplicate symbols (must be called under lock). */
3538 err = verify_export_symbols(mod);
3539 if (err < 0)
3540 goto out;
3541
3542 /* This relies on module_mutex for list integrity. */
3543 module_bug_finalize(info->hdr, info->sechdrs, mod);
3544
3545 module_enable_ro(mod, false);
3546 module_enable_nx(mod);
3547
3548 /* Mark state as coming so strong_try_module_get() ignores us,
3549 * but kallsyms etc. can see us. */
3550 mod->state = MODULE_STATE_COMING;
3551 mutex_unlock(&module_mutex);
3552
3553 return 0;
3554
3555 out:
3556 mutex_unlock(&module_mutex);
3557 return err;
3558 }
3559
3560 static int prepare_coming_module(struct module *mod)
3561 {
3562 int err;
3563
3564 ftrace_module_enable(mod);
3565 err = klp_module_coming(mod);
3566 if (err)
3567 return err;
3568
3569 blocking_notifier_call_chain(&module_notify_list,
3570 MODULE_STATE_COMING, mod);
3571 return 0;
3572 }
3573
3574 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3575 void *arg)
3576 {
3577 struct module *mod = arg;
3578 int ret;
3579
3580 if (strcmp(param, "async_probe") == 0) {
3581 mod->async_probe_requested = true;
3582 return 0;
3583 }
3584
3585 /* Check for magic 'dyndbg' arg */
3586 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3587 if (ret != 0)
3588 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3589 return 0;
3590 }
3591
3592 /* Allocate and load the module: note that size of section 0 is always
3593 zero, and we rely on this for optional sections. */
3594 static int load_module(struct load_info *info, const char __user *uargs,
3595 int flags)
3596 {
3597 struct module *mod;
3598 long err;
3599 char *after_dashes;
3600
3601 err = module_sig_check(info, flags);
3602 if (err)
3603 goto free_copy;
3604
3605 err = elf_header_check(info);
3606 if (err)
3607 goto free_copy;
3608
3609 /* Figure out module layout, and allocate all the memory. */
3610 mod = layout_and_allocate(info, flags);
3611 if (IS_ERR(mod)) {
3612 err = PTR_ERR(mod);
3613 goto free_copy;
3614 }
3615
3616 /* Reserve our place in the list. */
3617 err = add_unformed_module(mod);
3618 if (err)
3619 goto free_module;
3620
3621 #ifdef CONFIG_MODULE_SIG
3622 mod->sig_ok = info->sig_ok;
3623 if (!mod->sig_ok) {
3624 pr_notice_once("%s: module verification failed: signature "
3625 "and/or required key missing - tainting "
3626 "kernel\n", mod->name);
3627 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3628 }
3629 #endif
3630
3631 /* To avoid stressing percpu allocator, do this once we're unique. */
3632 err = percpu_modalloc(mod, info);
3633 if (err)
3634 goto unlink_mod;
3635
3636 /* Now module is in final location, initialize linked lists, etc. */
3637 err = module_unload_init(mod);
3638 if (err)
3639 goto unlink_mod;
3640
3641 init_param_lock(mod);
3642
3643 /* Now we've got everything in the final locations, we can
3644 * find optional sections. */
3645 err = find_module_sections(mod, info);
3646 if (err)
3647 goto free_unload;
3648
3649 err = check_module_license_and_versions(mod);
3650 if (err)
3651 goto free_unload;
3652
3653 /* Set up MODINFO_ATTR fields */
3654 setup_modinfo(mod, info);
3655
3656 /* Fix up syms, so that st_value is a pointer to location. */
3657 err = simplify_symbols(mod, info);
3658 if (err < 0)
3659 goto free_modinfo;
3660
3661 err = apply_relocations(mod, info);
3662 if (err < 0)
3663 goto free_modinfo;
3664
3665 err = post_relocation(mod, info);
3666 if (err < 0)
3667 goto free_modinfo;
3668
3669 flush_module_icache(mod);
3670
3671 /* Now copy in args */
3672 mod->args = strndup_user(uargs, ~0UL >> 1);
3673 if (IS_ERR(mod->args)) {
3674 err = PTR_ERR(mod->args);
3675 goto free_arch_cleanup;
3676 }
3677
3678 dynamic_debug_setup(info->debug, info->num_debug);
3679
3680 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3681 ftrace_module_init(mod);
3682
3683 /* Finally it's fully formed, ready to start executing. */
3684 err = complete_formation(mod, info);
3685 if (err)
3686 goto ddebug_cleanup;
3687
3688 err = prepare_coming_module(mod);
3689 if (err)
3690 goto bug_cleanup;
3691
3692 /* Module is ready to execute: parsing args may do that. */
3693 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3694 -32768, 32767, mod,
3695 unknown_module_param_cb);
3696 if (IS_ERR(after_dashes)) {
3697 err = PTR_ERR(after_dashes);
3698 goto coming_cleanup;
3699 } else if (after_dashes) {
3700 pr_warn("%s: parameters '%s' after `--' ignored\n",
3701 mod->name, after_dashes);
3702 }
3703
3704 /* Link in to syfs. */
3705 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3706 if (err < 0)
3707 goto coming_cleanup;
3708
3709 if (is_livepatch_module(mod)) {
3710 err = copy_module_elf(mod, info);
3711 if (err < 0)
3712 goto sysfs_cleanup;
3713 }
3714
3715 /* Get rid of temporary copy. */
3716 free_copy(info);
3717
3718 /* Done! */
3719 trace_module_load(mod);
3720
3721 return do_init_module(mod);
3722
3723 sysfs_cleanup:
3724 mod_sysfs_teardown(mod);
3725 coming_cleanup:
3726 mod->state = MODULE_STATE_GOING;
3727 blocking_notifier_call_chain(&module_notify_list,
3728 MODULE_STATE_GOING, mod);
3729 klp_module_going(mod);
3730 bug_cleanup:
3731 /* module_bug_cleanup needs module_mutex protection */
3732 mutex_lock(&module_mutex);
3733 module_bug_cleanup(mod);
3734 mutex_unlock(&module_mutex);
3735
3736 /* we can't deallocate the module until we clear memory protection */
3737 module_disable_ro(mod);
3738 module_disable_nx(mod);
3739
3740 ddebug_cleanup:
3741 dynamic_debug_remove(info->debug);
3742 synchronize_sched();
3743 kfree(mod->args);
3744 free_arch_cleanup:
3745 module_arch_cleanup(mod);
3746 free_modinfo:
3747 free_modinfo(mod);
3748 free_unload:
3749 module_unload_free(mod);
3750 unlink_mod:
3751 mutex_lock(&module_mutex);
3752 /* Unlink carefully: kallsyms could be walking list. */
3753 list_del_rcu(&mod->list);
3754 mod_tree_remove(mod);
3755 wake_up_all(&module_wq);
3756 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3757 synchronize_sched();
3758 mutex_unlock(&module_mutex);
3759 free_module:
3760 /*
3761 * Ftrace needs to clean up what it initialized.
3762 * This does nothing if ftrace_module_init() wasn't called,
3763 * but it must be called outside of module_mutex.
3764 */
3765 ftrace_release_mod(mod);
3766 /* Free lock-classes; relies on the preceding sync_rcu() */
3767 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3768
3769 module_deallocate(mod, info);
3770 free_copy:
3771 free_copy(info);
3772 return err;
3773 }
3774
3775 SYSCALL_DEFINE3(init_module, void __user *, umod,
3776 unsigned long, len, const char __user *, uargs)
3777 {
3778 int err;
3779 struct load_info info = { };
3780
3781 err = may_init_module();
3782 if (err)
3783 return err;
3784
3785 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3786 umod, len, uargs);
3787
3788 err = copy_module_from_user(umod, len, &info);
3789 if (err)
3790 return err;
3791
3792 return load_module(&info, uargs, 0);
3793 }
3794
3795 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3796 {
3797 struct load_info info = { };
3798 loff_t size;
3799 void *hdr;
3800 int err;
3801
3802 err = may_init_module();
3803 if (err)
3804 return err;
3805
3806 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3807
3808 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3809 |MODULE_INIT_IGNORE_VERMAGIC))
3810 return -EINVAL;
3811
3812 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3813 READING_MODULE);
3814 if (err)
3815 return err;
3816 info.hdr = hdr;
3817 info.len = size;
3818
3819 return load_module(&info, uargs, flags);
3820 }
3821
3822 static inline int within(unsigned long addr, void *start, unsigned long size)
3823 {
3824 return ((void *)addr >= start && (void *)addr < start + size);
3825 }
3826
3827 #ifdef CONFIG_KALLSYMS
3828 /*
3829 * This ignores the intensely annoying "mapping symbols" found
3830 * in ARM ELF files: $a, $t and $d.
3831 */
3832 static inline int is_arm_mapping_symbol(const char *str)
3833 {
3834 if (str[0] == '.' && str[1] == 'L')
3835 return true;
3836 return str[0] == '$' && strchr("axtd", str[1])
3837 && (str[2] == '\0' || str[2] == '.');
3838 }
3839
3840 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3841 {
3842 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3843 }
3844
3845 static const char *get_ksymbol(struct module *mod,
3846 unsigned long addr,
3847 unsigned long *size,
3848 unsigned long *offset)
3849 {
3850 unsigned int i, best = 0;
3851 unsigned long nextval;
3852 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3853
3854 /* At worse, next value is at end of module */
3855 if (within_module_init(addr, mod))
3856 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3857 else
3858 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3859
3860 /* Scan for closest preceding symbol, and next symbol. (ELF
3861 starts real symbols at 1). */
3862 for (i = 1; i < kallsyms->num_symtab; i++) {
3863 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3864 continue;
3865
3866 /* We ignore unnamed symbols: they're uninformative
3867 * and inserted at a whim. */
3868 if (*symname(kallsyms, i) == '\0'
3869 || is_arm_mapping_symbol(symname(kallsyms, i)))
3870 continue;
3871
3872 if (kallsyms->symtab[i].st_value <= addr
3873 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3874 best = i;
3875 if (kallsyms->symtab[i].st_value > addr
3876 && kallsyms->symtab[i].st_value < nextval)
3877 nextval = kallsyms->symtab[i].st_value;
3878 }
3879
3880 if (!best)
3881 return NULL;
3882
3883 if (size)
3884 *size = nextval - kallsyms->symtab[best].st_value;
3885 if (offset)
3886 *offset = addr - kallsyms->symtab[best].st_value;
3887 return symname(kallsyms, best);
3888 }
3889
3890 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3891 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3892 const char *module_address_lookup(unsigned long addr,
3893 unsigned long *size,
3894 unsigned long *offset,
3895 char **modname,
3896 char *namebuf)
3897 {
3898 const char *ret = NULL;
3899 struct module *mod;
3900
3901 preempt_disable();
3902 mod = __module_address(addr);
3903 if (mod) {
3904 if (modname)
3905 *modname = mod->name;
3906 ret = get_ksymbol(mod, addr, size, offset);
3907 }
3908 /* Make a copy in here where it's safe */
3909 if (ret) {
3910 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3911 ret = namebuf;
3912 }
3913 preempt_enable();
3914
3915 return ret;
3916 }
3917
3918 int lookup_module_symbol_name(unsigned long addr, char *symname)
3919 {
3920 struct module *mod;
3921
3922 preempt_disable();
3923 list_for_each_entry_rcu(mod, &modules, list) {
3924 if (mod->state == MODULE_STATE_UNFORMED)
3925 continue;
3926 if (within_module(addr, mod)) {
3927 const char *sym;
3928
3929 sym = get_ksymbol(mod, addr, NULL, NULL);
3930 if (!sym)
3931 goto out;
3932 strlcpy(symname, sym, KSYM_NAME_LEN);
3933 preempt_enable();
3934 return 0;
3935 }
3936 }
3937 out:
3938 preempt_enable();
3939 return -ERANGE;
3940 }
3941
3942 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3943 unsigned long *offset, char *modname, char *name)
3944 {
3945 struct module *mod;
3946
3947 preempt_disable();
3948 list_for_each_entry_rcu(mod, &modules, list) {
3949 if (mod->state == MODULE_STATE_UNFORMED)
3950 continue;
3951 if (within_module(addr, mod)) {
3952 const char *sym;
3953
3954 sym = get_ksymbol(mod, addr, size, offset);
3955 if (!sym)
3956 goto out;
3957 if (modname)
3958 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3959 if (name)
3960 strlcpy(name, sym, KSYM_NAME_LEN);
3961 preempt_enable();
3962 return 0;
3963 }
3964 }
3965 out:
3966 preempt_enable();
3967 return -ERANGE;
3968 }
3969
3970 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3971 char *name, char *module_name, int *exported)
3972 {
3973 struct module *mod;
3974
3975 preempt_disable();
3976 list_for_each_entry_rcu(mod, &modules, list) {
3977 struct mod_kallsyms *kallsyms;
3978
3979 if (mod->state == MODULE_STATE_UNFORMED)
3980 continue;
3981 kallsyms = rcu_dereference_sched(mod->kallsyms);
3982 if (symnum < kallsyms->num_symtab) {
3983 *value = kallsyms->symtab[symnum].st_value;
3984 *type = kallsyms->symtab[symnum].st_info;
3985 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3986 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3987 *exported = is_exported(name, *value, mod);
3988 preempt_enable();
3989 return 0;
3990 }
3991 symnum -= kallsyms->num_symtab;
3992 }
3993 preempt_enable();
3994 return -ERANGE;
3995 }
3996
3997 static unsigned long mod_find_symname(struct module *mod, const char *name)
3998 {
3999 unsigned int i;
4000 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4001
4002 for (i = 0; i < kallsyms->num_symtab; i++)
4003 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4004 kallsyms->symtab[i].st_info != 'U')
4005 return kallsyms->symtab[i].st_value;
4006 return 0;
4007 }
4008
4009 /* Look for this name: can be of form module:name. */
4010 unsigned long module_kallsyms_lookup_name(const char *name)
4011 {
4012 struct module *mod;
4013 char *colon;
4014 unsigned long ret = 0;
4015
4016 /* Don't lock: we're in enough trouble already. */
4017 preempt_disable();
4018 if ((colon = strchr(name, ':')) != NULL) {
4019 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4020 ret = mod_find_symname(mod, colon+1);
4021 } else {
4022 list_for_each_entry_rcu(mod, &modules, list) {
4023 if (mod->state == MODULE_STATE_UNFORMED)
4024 continue;
4025 if ((ret = mod_find_symname(mod, name)) != 0)
4026 break;
4027 }
4028 }
4029 preempt_enable();
4030 return ret;
4031 }
4032
4033 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4034 struct module *, unsigned long),
4035 void *data)
4036 {
4037 struct module *mod;
4038 unsigned int i;
4039 int ret;
4040
4041 module_assert_mutex();
4042
4043 list_for_each_entry(mod, &modules, list) {
4044 /* We hold module_mutex: no need for rcu_dereference_sched */
4045 struct mod_kallsyms *kallsyms = mod->kallsyms;
4046
4047 if (mod->state == MODULE_STATE_UNFORMED)
4048 continue;
4049 for (i = 0; i < kallsyms->num_symtab; i++) {
4050 ret = fn(data, symname(kallsyms, i),
4051 mod, kallsyms->symtab[i].st_value);
4052 if (ret != 0)
4053 return ret;
4054 }
4055 }
4056 return 0;
4057 }
4058 #endif /* CONFIG_KALLSYMS */
4059
4060 /* Maximum number of characters written by module_flags() */
4061 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4062
4063 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4064 static char *module_flags(struct module *mod, char *buf)
4065 {
4066 int bx = 0;
4067
4068 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4069 if (mod->taints ||
4070 mod->state == MODULE_STATE_GOING ||
4071 mod->state == MODULE_STATE_COMING) {
4072 buf[bx++] = '(';
4073 bx += module_flags_taint(mod, buf + bx);
4074 /* Show a - for module-is-being-unloaded */
4075 if (mod->state == MODULE_STATE_GOING)
4076 buf[bx++] = '-';
4077 /* Show a + for module-is-being-loaded */
4078 if (mod->state == MODULE_STATE_COMING)
4079 buf[bx++] = '+';
4080 buf[bx++] = ')';
4081 }
4082 buf[bx] = '\0';
4083
4084 return buf;
4085 }
4086
4087 #ifdef CONFIG_PROC_FS
4088 /* Called by the /proc file system to return a list of modules. */
4089 static void *m_start(struct seq_file *m, loff_t *pos)
4090 {
4091 mutex_lock(&module_mutex);
4092 return seq_list_start(&modules, *pos);
4093 }
4094
4095 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4096 {
4097 return seq_list_next(p, &modules, pos);
4098 }
4099
4100 static void m_stop(struct seq_file *m, void *p)
4101 {
4102 mutex_unlock(&module_mutex);
4103 }
4104
4105 static int m_show(struct seq_file *m, void *p)
4106 {
4107 struct module *mod = list_entry(p, struct module, list);
4108 char buf[MODULE_FLAGS_BUF_SIZE];
4109
4110 /* We always ignore unformed modules. */
4111 if (mod->state == MODULE_STATE_UNFORMED)
4112 return 0;
4113
4114 seq_printf(m, "%s %u",
4115 mod->name, mod->init_layout.size + mod->core_layout.size);
4116 print_unload_info(m, mod);
4117
4118 /* Informative for users. */
4119 seq_printf(m, " %s",
4120 mod->state == MODULE_STATE_GOING ? "Unloading" :
4121 mod->state == MODULE_STATE_COMING ? "Loading" :
4122 "Live");
4123 /* Used by oprofile and other similar tools. */
4124 seq_printf(m, " 0x%pK", mod->core_layout.base);
4125
4126 /* Taints info */
4127 if (mod->taints)
4128 seq_printf(m, " %s", module_flags(mod, buf));
4129
4130 seq_puts(m, "\n");
4131 return 0;
4132 }
4133
4134 /* Format: modulename size refcount deps address
4135
4136 Where refcount is a number or -, and deps is a comma-separated list
4137 of depends or -.
4138 */
4139 static const struct seq_operations modules_op = {
4140 .start = m_start,
4141 .next = m_next,
4142 .stop = m_stop,
4143 .show = m_show
4144 };
4145
4146 static int modules_open(struct inode *inode, struct file *file)
4147 {
4148 return seq_open(file, &modules_op);
4149 }
4150
4151 static const struct file_operations proc_modules_operations = {
4152 .open = modules_open,
4153 .read = seq_read,
4154 .llseek = seq_lseek,
4155 .release = seq_release,
4156 };
4157
4158 static int __init proc_modules_init(void)
4159 {
4160 proc_create("modules", 0, NULL, &proc_modules_operations);
4161 return 0;
4162 }
4163 module_init(proc_modules_init);
4164 #endif
4165
4166 /* Given an address, look for it in the module exception tables. */
4167 const struct exception_table_entry *search_module_extables(unsigned long addr)
4168 {
4169 const struct exception_table_entry *e = NULL;
4170 struct module *mod;
4171
4172 preempt_disable();
4173 list_for_each_entry_rcu(mod, &modules, list) {
4174 if (mod->state == MODULE_STATE_UNFORMED)
4175 continue;
4176 if (mod->num_exentries == 0)
4177 continue;
4178
4179 e = search_extable(mod->extable,
4180 mod->extable + mod->num_exentries - 1,
4181 addr);
4182 if (e)
4183 break;
4184 }
4185 preempt_enable();
4186
4187 /* Now, if we found one, we are running inside it now, hence
4188 we cannot unload the module, hence no refcnt needed. */
4189 return e;
4190 }
4191
4192 /*
4193 * is_module_address - is this address inside a module?
4194 * @addr: the address to check.
4195 *
4196 * See is_module_text_address() if you simply want to see if the address
4197 * is code (not data).
4198 */
4199 bool is_module_address(unsigned long addr)
4200 {
4201 bool ret;
4202
4203 preempt_disable();
4204 ret = __module_address(addr) != NULL;
4205 preempt_enable();
4206
4207 return ret;
4208 }
4209
4210 /*
4211 * __module_address - get the module which contains an address.
4212 * @addr: the address.
4213 *
4214 * Must be called with preempt disabled or module mutex held so that
4215 * module doesn't get freed during this.
4216 */
4217 struct module *__module_address(unsigned long addr)
4218 {
4219 struct module *mod;
4220
4221 if (addr < module_addr_min || addr > module_addr_max)
4222 return NULL;
4223
4224 module_assert_mutex_or_preempt();
4225
4226 mod = mod_find(addr);
4227 if (mod) {
4228 BUG_ON(!within_module(addr, mod));
4229 if (mod->state == MODULE_STATE_UNFORMED)
4230 mod = NULL;
4231 }
4232 return mod;
4233 }
4234 EXPORT_SYMBOL_GPL(__module_address);
4235
4236 /*
4237 * is_module_text_address - is this address inside module code?
4238 * @addr: the address to check.
4239 *
4240 * See is_module_address() if you simply want to see if the address is
4241 * anywhere in a module. See kernel_text_address() for testing if an
4242 * address corresponds to kernel or module code.
4243 */
4244 bool is_module_text_address(unsigned long addr)
4245 {
4246 bool ret;
4247
4248 preempt_disable();
4249 ret = __module_text_address(addr) != NULL;
4250 preempt_enable();
4251
4252 return ret;
4253 }
4254
4255 /*
4256 * __module_text_address - get the module whose code contains an address.
4257 * @addr: the address.
4258 *
4259 * Must be called with preempt disabled or module mutex held so that
4260 * module doesn't get freed during this.
4261 */
4262 struct module *__module_text_address(unsigned long addr)
4263 {
4264 struct module *mod = __module_address(addr);
4265 if (mod) {
4266 /* Make sure it's within the text section. */
4267 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4268 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4269 mod = NULL;
4270 }
4271 return mod;
4272 }
4273 EXPORT_SYMBOL_GPL(__module_text_address);
4274
4275 /* Don't grab lock, we're oopsing. */
4276 void print_modules(void)
4277 {
4278 struct module *mod;
4279 char buf[MODULE_FLAGS_BUF_SIZE];
4280
4281 printk(KERN_DEFAULT "Modules linked in:");
4282 /* Most callers should already have preempt disabled, but make sure */
4283 preempt_disable();
4284 list_for_each_entry_rcu(mod, &modules, list) {
4285 if (mod->state == MODULE_STATE_UNFORMED)
4286 continue;
4287 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4288 }
4289 preempt_enable();
4290 if (last_unloaded_module[0])
4291 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4292 pr_cont("\n");
4293 }
4294
4295 #ifdef CONFIG_MODVERSIONS
4296 /* Generate the signature for all relevant module structures here.
4297 * If these change, we don't want to try to parse the module. */
4298 void module_layout(struct module *mod,
4299 struct modversion_info *ver,
4300 struct kernel_param *kp,
4301 struct kernel_symbol *ks,
4302 struct tracepoint * const *tp)
4303 {
4304 }
4305 EXPORT_SYMBOL(module_layout);
4306 #endif