]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/module.c
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /*
282 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
283 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
284 */
285 bool is_module_sig_enforced(void)
286 {
287 return sig_enforce;
288 }
289 EXPORT_SYMBOL(is_module_sig_enforced);
290
291 /* Block module loading/unloading? */
292 int modules_disabled = 0;
293 core_param(nomodule, modules_disabled, bint, 0);
294
295 /* Waiting for a module to finish initializing? */
296 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
297
298 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
299
300 int register_module_notifier(struct notifier_block *nb)
301 {
302 return blocking_notifier_chain_register(&module_notify_list, nb);
303 }
304 EXPORT_SYMBOL(register_module_notifier);
305
306 int unregister_module_notifier(struct notifier_block *nb)
307 {
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
309 }
310 EXPORT_SYMBOL(unregister_module_notifier);
311
312 struct load_info {
313 const char *name;
314 Elf_Ehdr *hdr;
315 unsigned long len;
316 Elf_Shdr *sechdrs;
317 char *secstrings, *strtab;
318 unsigned long symoffs, stroffs;
319 struct _ddebug *debug;
320 unsigned int num_debug;
321 bool sig_ok;
322 #ifdef CONFIG_KALLSYMS
323 unsigned long mod_kallsyms_init_off;
324 #endif
325 struct {
326 unsigned int sym, str, mod, vers, info, pcpu;
327 } index;
328 };
329
330 /*
331 * We require a truly strong try_module_get(): 0 means success.
332 * Otherwise an error is returned due to ongoing or failed
333 * initialization etc.
334 */
335 static inline int strong_try_module_get(struct module *mod)
336 {
337 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
338 if (mod && mod->state == MODULE_STATE_COMING)
339 return -EBUSY;
340 if (try_module_get(mod))
341 return 0;
342 else
343 return -ENOENT;
344 }
345
346 static inline void add_taint_module(struct module *mod, unsigned flag,
347 enum lockdep_ok lockdep_ok)
348 {
349 add_taint(flag, lockdep_ok);
350 set_bit(flag, &mod->taints);
351 }
352
353 /*
354 * A thread that wants to hold a reference to a module only while it
355 * is running can call this to safely exit. nfsd and lockd use this.
356 */
357 void __noreturn __module_put_and_exit(struct module *mod, long code)
358 {
359 module_put(mod);
360 do_exit(code);
361 }
362 EXPORT_SYMBOL(__module_put_and_exit);
363
364 /* Find a module section: 0 means not found. */
365 static unsigned int find_sec(const struct load_info *info, const char *name)
366 {
367 unsigned int i;
368
369 for (i = 1; i < info->hdr->e_shnum; i++) {
370 Elf_Shdr *shdr = &info->sechdrs[i];
371 /* Alloc bit cleared means "ignore it." */
372 if ((shdr->sh_flags & SHF_ALLOC)
373 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
374 return i;
375 }
376 return 0;
377 }
378
379 /* Find a module section, or NULL. */
380 static void *section_addr(const struct load_info *info, const char *name)
381 {
382 /* Section 0 has sh_addr 0. */
383 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
384 }
385
386 /* Find a module section, or NULL. Fill in number of "objects" in section. */
387 static void *section_objs(const struct load_info *info,
388 const char *name,
389 size_t object_size,
390 unsigned int *num)
391 {
392 unsigned int sec = find_sec(info, name);
393
394 /* Section 0 has sh_addr 0 and sh_size 0. */
395 *num = info->sechdrs[sec].sh_size / object_size;
396 return (void *)info->sechdrs[sec].sh_addr;
397 }
398
399 /* Provided by the linker */
400 extern const struct kernel_symbol __start___ksymtab[];
401 extern const struct kernel_symbol __stop___ksymtab[];
402 extern const struct kernel_symbol __start___ksymtab_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_gpl[];
404 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
405 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
406 extern const s32 __start___kcrctab[];
407 extern const s32 __start___kcrctab_gpl[];
408 extern const s32 __start___kcrctab_gpl_future[];
409 #ifdef CONFIG_UNUSED_SYMBOLS
410 extern const struct kernel_symbol __start___ksymtab_unused[];
411 extern const struct kernel_symbol __stop___ksymtab_unused[];
412 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
413 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
414 extern const s32 __start___kcrctab_unused[];
415 extern const s32 __start___kcrctab_unused_gpl[];
416 #endif
417
418 #ifndef CONFIG_MODVERSIONS
419 #define symversion(base, idx) NULL
420 #else
421 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
422 #endif
423
424 static bool each_symbol_in_section(const struct symsearch *arr,
425 unsigned int arrsize,
426 struct module *owner,
427 bool (*fn)(const struct symsearch *syms,
428 struct module *owner,
429 void *data),
430 void *data)
431 {
432 unsigned int j;
433
434 for (j = 0; j < arrsize; j++) {
435 if (fn(&arr[j], owner, data))
436 return true;
437 }
438
439 return false;
440 }
441
442 /* Returns true as soon as fn returns true, otherwise false. */
443 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
444 struct module *owner,
445 void *data),
446 void *data)
447 {
448 struct module *mod;
449 static const struct symsearch arr[] = {
450 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
451 NOT_GPL_ONLY, false },
452 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
453 __start___kcrctab_gpl,
454 GPL_ONLY, false },
455 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
456 __start___kcrctab_gpl_future,
457 WILL_BE_GPL_ONLY, false },
458 #ifdef CONFIG_UNUSED_SYMBOLS
459 { __start___ksymtab_unused, __stop___ksymtab_unused,
460 __start___kcrctab_unused,
461 NOT_GPL_ONLY, true },
462 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
463 __start___kcrctab_unused_gpl,
464 GPL_ONLY, true },
465 #endif
466 };
467
468 module_assert_mutex_or_preempt();
469
470 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
471 return true;
472
473 list_for_each_entry_rcu(mod, &modules, list) {
474 struct symsearch arr[] = {
475 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
476 NOT_GPL_ONLY, false },
477 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
478 mod->gpl_crcs,
479 GPL_ONLY, false },
480 { mod->gpl_future_syms,
481 mod->gpl_future_syms + mod->num_gpl_future_syms,
482 mod->gpl_future_crcs,
483 WILL_BE_GPL_ONLY, false },
484 #ifdef CONFIG_UNUSED_SYMBOLS
485 { mod->unused_syms,
486 mod->unused_syms + mod->num_unused_syms,
487 mod->unused_crcs,
488 NOT_GPL_ONLY, true },
489 { mod->unused_gpl_syms,
490 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
491 mod->unused_gpl_crcs,
492 GPL_ONLY, true },
493 #endif
494 };
495
496 if (mod->state == MODULE_STATE_UNFORMED)
497 continue;
498
499 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
500 return true;
501 }
502 return false;
503 }
504 EXPORT_SYMBOL_GPL(each_symbol_section);
505
506 struct find_symbol_arg {
507 /* Input */
508 const char *name;
509 bool gplok;
510 bool warn;
511
512 /* Output */
513 struct module *owner;
514 const s32 *crc;
515 const struct kernel_symbol *sym;
516 };
517
518 static bool check_symbol(const struct symsearch *syms,
519 struct module *owner,
520 unsigned int symnum, void *data)
521 {
522 struct find_symbol_arg *fsa = data;
523
524 if (!fsa->gplok) {
525 if (syms->licence == GPL_ONLY)
526 return false;
527 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
528 pr_warn("Symbol %s is being used by a non-GPL module, "
529 "which will not be allowed in the future\n",
530 fsa->name);
531 }
532 }
533
534 #ifdef CONFIG_UNUSED_SYMBOLS
535 if (syms->unused && fsa->warn) {
536 pr_warn("Symbol %s is marked as UNUSED, however this module is "
537 "using it.\n", fsa->name);
538 pr_warn("This symbol will go away in the future.\n");
539 pr_warn("Please evaluate if this is the right api to use and "
540 "if it really is, submit a report to the linux kernel "
541 "mailing list together with submitting your code for "
542 "inclusion.\n");
543 }
544 #endif
545
546 fsa->owner = owner;
547 fsa->crc = symversion(syms->crcs, symnum);
548 fsa->sym = &syms->start[symnum];
549 return true;
550 }
551
552 static int cmp_name(const void *va, const void *vb)
553 {
554 const char *a;
555 const struct kernel_symbol *b;
556 a = va; b = vb;
557 return strcmp(a, b->name);
558 }
559
560 static bool find_symbol_in_section(const struct symsearch *syms,
561 struct module *owner,
562 void *data)
563 {
564 struct find_symbol_arg *fsa = data;
565 struct kernel_symbol *sym;
566
567 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
568 sizeof(struct kernel_symbol), cmp_name);
569
570 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
571 return true;
572
573 return false;
574 }
575
576 /* Find a symbol and return it, along with, (optional) crc and
577 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
578 const struct kernel_symbol *find_symbol(const char *name,
579 struct module **owner,
580 const s32 **crc,
581 bool gplok,
582 bool warn)
583 {
584 struct find_symbol_arg fsa;
585
586 fsa.name = name;
587 fsa.gplok = gplok;
588 fsa.warn = warn;
589
590 if (each_symbol_section(find_symbol_in_section, &fsa)) {
591 if (owner)
592 *owner = fsa.owner;
593 if (crc)
594 *crc = fsa.crc;
595 return fsa.sym;
596 }
597
598 pr_debug("Failed to find symbol %s\n", name);
599 return NULL;
600 }
601 EXPORT_SYMBOL_GPL(find_symbol);
602
603 /*
604 * Search for module by name: must hold module_mutex (or preempt disabled
605 * for read-only access).
606 */
607 static struct module *find_module_all(const char *name, size_t len,
608 bool even_unformed)
609 {
610 struct module *mod;
611
612 module_assert_mutex_or_preempt();
613
614 list_for_each_entry_rcu(mod, &modules, list) {
615 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
616 continue;
617 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
618 return mod;
619 }
620 return NULL;
621 }
622
623 struct module *find_module(const char *name)
624 {
625 module_assert_mutex();
626 return find_module_all(name, strlen(name), false);
627 }
628 EXPORT_SYMBOL_GPL(find_module);
629
630 #ifdef CONFIG_SMP
631
632 static inline void __percpu *mod_percpu(struct module *mod)
633 {
634 return mod->percpu;
635 }
636
637 static int percpu_modalloc(struct module *mod, struct load_info *info)
638 {
639 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
640 unsigned long align = pcpusec->sh_addralign;
641
642 if (!pcpusec->sh_size)
643 return 0;
644
645 if (align > PAGE_SIZE) {
646 pr_warn("%s: per-cpu alignment %li > %li\n",
647 mod->name, align, PAGE_SIZE);
648 align = PAGE_SIZE;
649 }
650
651 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
652 if (!mod->percpu) {
653 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
654 mod->name, (unsigned long)pcpusec->sh_size);
655 return -ENOMEM;
656 }
657 mod->percpu_size = pcpusec->sh_size;
658 return 0;
659 }
660
661 static void percpu_modfree(struct module *mod)
662 {
663 free_percpu(mod->percpu);
664 }
665
666 static unsigned int find_pcpusec(struct load_info *info)
667 {
668 return find_sec(info, ".data..percpu");
669 }
670
671 static void percpu_modcopy(struct module *mod,
672 const void *from, unsigned long size)
673 {
674 int cpu;
675
676 for_each_possible_cpu(cpu)
677 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
678 }
679
680 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
681 {
682 struct module *mod;
683 unsigned int cpu;
684
685 preempt_disable();
686
687 list_for_each_entry_rcu(mod, &modules, list) {
688 if (mod->state == MODULE_STATE_UNFORMED)
689 continue;
690 if (!mod->percpu_size)
691 continue;
692 for_each_possible_cpu(cpu) {
693 void *start = per_cpu_ptr(mod->percpu, cpu);
694 void *va = (void *)addr;
695
696 if (va >= start && va < start + mod->percpu_size) {
697 if (can_addr) {
698 *can_addr = (unsigned long) (va - start);
699 *can_addr += (unsigned long)
700 per_cpu_ptr(mod->percpu,
701 get_boot_cpu_id());
702 }
703 preempt_enable();
704 return true;
705 }
706 }
707 }
708
709 preempt_enable();
710 return false;
711 }
712
713 /**
714 * is_module_percpu_address - test whether address is from module static percpu
715 * @addr: address to test
716 *
717 * Test whether @addr belongs to module static percpu area.
718 *
719 * RETURNS:
720 * %true if @addr is from module static percpu area
721 */
722 bool is_module_percpu_address(unsigned long addr)
723 {
724 return __is_module_percpu_address(addr, NULL);
725 }
726
727 #else /* ... !CONFIG_SMP */
728
729 static inline void __percpu *mod_percpu(struct module *mod)
730 {
731 return NULL;
732 }
733 static int percpu_modalloc(struct module *mod, struct load_info *info)
734 {
735 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
736 if (info->sechdrs[info->index.pcpu].sh_size != 0)
737 return -ENOMEM;
738 return 0;
739 }
740 static inline void percpu_modfree(struct module *mod)
741 {
742 }
743 static unsigned int find_pcpusec(struct load_info *info)
744 {
745 return 0;
746 }
747 static inline void percpu_modcopy(struct module *mod,
748 const void *from, unsigned long size)
749 {
750 /* pcpusec should be 0, and size of that section should be 0. */
751 BUG_ON(size != 0);
752 }
753 bool is_module_percpu_address(unsigned long addr)
754 {
755 return false;
756 }
757
758 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
759 {
760 return false;
761 }
762
763 #endif /* CONFIG_SMP */
764
765 #define MODINFO_ATTR(field) \
766 static void setup_modinfo_##field(struct module *mod, const char *s) \
767 { \
768 mod->field = kstrdup(s, GFP_KERNEL); \
769 } \
770 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
771 struct module_kobject *mk, char *buffer) \
772 { \
773 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
774 } \
775 static int modinfo_##field##_exists(struct module *mod) \
776 { \
777 return mod->field != NULL; \
778 } \
779 static void free_modinfo_##field(struct module *mod) \
780 { \
781 kfree(mod->field); \
782 mod->field = NULL; \
783 } \
784 static struct module_attribute modinfo_##field = { \
785 .attr = { .name = __stringify(field), .mode = 0444 }, \
786 .show = show_modinfo_##field, \
787 .setup = setup_modinfo_##field, \
788 .test = modinfo_##field##_exists, \
789 .free = free_modinfo_##field, \
790 };
791
792 MODINFO_ATTR(version);
793 MODINFO_ATTR(srcversion);
794
795 static char last_unloaded_module[MODULE_NAME_LEN+1];
796
797 #ifdef CONFIG_MODULE_UNLOAD
798
799 EXPORT_TRACEPOINT_SYMBOL(module_get);
800
801 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
802 #define MODULE_REF_BASE 1
803
804 /* Init the unload section of the module. */
805 static int module_unload_init(struct module *mod)
806 {
807 /*
808 * Initialize reference counter to MODULE_REF_BASE.
809 * refcnt == 0 means module is going.
810 */
811 atomic_set(&mod->refcnt, MODULE_REF_BASE);
812
813 INIT_LIST_HEAD(&mod->source_list);
814 INIT_LIST_HEAD(&mod->target_list);
815
816 /* Hold reference count during initialization. */
817 atomic_inc(&mod->refcnt);
818
819 return 0;
820 }
821
822 /* Does a already use b? */
823 static int already_uses(struct module *a, struct module *b)
824 {
825 struct module_use *use;
826
827 list_for_each_entry(use, &b->source_list, source_list) {
828 if (use->source == a) {
829 pr_debug("%s uses %s!\n", a->name, b->name);
830 return 1;
831 }
832 }
833 pr_debug("%s does not use %s!\n", a->name, b->name);
834 return 0;
835 }
836
837 /*
838 * Module a uses b
839 * - we add 'a' as a "source", 'b' as a "target" of module use
840 * - the module_use is added to the list of 'b' sources (so
841 * 'b' can walk the list to see who sourced them), and of 'a'
842 * targets (so 'a' can see what modules it targets).
843 */
844 static int add_module_usage(struct module *a, struct module *b)
845 {
846 struct module_use *use;
847
848 pr_debug("Allocating new usage for %s.\n", a->name);
849 use = kmalloc(sizeof(*use), GFP_ATOMIC);
850 if (!use)
851 return -ENOMEM;
852
853 use->source = a;
854 use->target = b;
855 list_add(&use->source_list, &b->source_list);
856 list_add(&use->target_list, &a->target_list);
857 return 0;
858 }
859
860 /* Module a uses b: caller needs module_mutex() */
861 int ref_module(struct module *a, struct module *b)
862 {
863 int err;
864
865 if (b == NULL || already_uses(a, b))
866 return 0;
867
868 /* If module isn't available, we fail. */
869 err = strong_try_module_get(b);
870 if (err)
871 return err;
872
873 err = add_module_usage(a, b);
874 if (err) {
875 module_put(b);
876 return err;
877 }
878 return 0;
879 }
880 EXPORT_SYMBOL_GPL(ref_module);
881
882 /* Clear the unload stuff of the module. */
883 static void module_unload_free(struct module *mod)
884 {
885 struct module_use *use, *tmp;
886
887 mutex_lock(&module_mutex);
888 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
889 struct module *i = use->target;
890 pr_debug("%s unusing %s\n", mod->name, i->name);
891 module_put(i);
892 list_del(&use->source_list);
893 list_del(&use->target_list);
894 kfree(use);
895 }
896 mutex_unlock(&module_mutex);
897 }
898
899 #ifdef CONFIG_MODULE_FORCE_UNLOAD
900 static inline int try_force_unload(unsigned int flags)
901 {
902 int ret = (flags & O_TRUNC);
903 if (ret)
904 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
905 return ret;
906 }
907 #else
908 static inline int try_force_unload(unsigned int flags)
909 {
910 return 0;
911 }
912 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
913
914 /* Try to release refcount of module, 0 means success. */
915 static int try_release_module_ref(struct module *mod)
916 {
917 int ret;
918
919 /* Try to decrement refcnt which we set at loading */
920 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
921 BUG_ON(ret < 0);
922 if (ret)
923 /* Someone can put this right now, recover with checking */
924 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
925
926 return ret;
927 }
928
929 static int try_stop_module(struct module *mod, int flags, int *forced)
930 {
931 /* If it's not unused, quit unless we're forcing. */
932 if (try_release_module_ref(mod) != 0) {
933 *forced = try_force_unload(flags);
934 if (!(*forced))
935 return -EWOULDBLOCK;
936 }
937
938 /* Mark it as dying. */
939 mod->state = MODULE_STATE_GOING;
940
941 return 0;
942 }
943
944 /**
945 * module_refcount - return the refcount or -1 if unloading
946 *
947 * @mod: the module we're checking
948 *
949 * Returns:
950 * -1 if the module is in the process of unloading
951 * otherwise the number of references in the kernel to the module
952 */
953 int module_refcount(struct module *mod)
954 {
955 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
956 }
957 EXPORT_SYMBOL(module_refcount);
958
959 /* This exists whether we can unload or not */
960 static void free_module(struct module *mod);
961
962 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
963 unsigned int, flags)
964 {
965 struct module *mod;
966 char name[MODULE_NAME_LEN];
967 int ret, forced = 0;
968
969 if (!capable(CAP_SYS_MODULE) || modules_disabled)
970 return -EPERM;
971
972 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
973 return -EFAULT;
974 name[MODULE_NAME_LEN-1] = '\0';
975
976 audit_log_kern_module(name);
977
978 if (mutex_lock_interruptible(&module_mutex) != 0)
979 return -EINTR;
980
981 mod = find_module(name);
982 if (!mod) {
983 ret = -ENOENT;
984 goto out;
985 }
986
987 if (!list_empty(&mod->source_list)) {
988 /* Other modules depend on us: get rid of them first. */
989 ret = -EWOULDBLOCK;
990 goto out;
991 }
992
993 /* Doing init or already dying? */
994 if (mod->state != MODULE_STATE_LIVE) {
995 /* FIXME: if (force), slam module count damn the torpedoes */
996 pr_debug("%s already dying\n", mod->name);
997 ret = -EBUSY;
998 goto out;
999 }
1000
1001 /* If it has an init func, it must have an exit func to unload */
1002 if (mod->init && !mod->exit) {
1003 forced = try_force_unload(flags);
1004 if (!forced) {
1005 /* This module can't be removed */
1006 ret = -EBUSY;
1007 goto out;
1008 }
1009 }
1010
1011 /* Stop the machine so refcounts can't move and disable module. */
1012 ret = try_stop_module(mod, flags, &forced);
1013 if (ret != 0)
1014 goto out;
1015
1016 mutex_unlock(&module_mutex);
1017 /* Final destruction now no one is using it. */
1018 if (mod->exit != NULL)
1019 mod->exit();
1020 blocking_notifier_call_chain(&module_notify_list,
1021 MODULE_STATE_GOING, mod);
1022 klp_module_going(mod);
1023 ftrace_release_mod(mod);
1024
1025 async_synchronize_full();
1026
1027 /* Store the name of the last unloaded module for diagnostic purposes */
1028 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1029
1030 free_module(mod);
1031 return 0;
1032 out:
1033 mutex_unlock(&module_mutex);
1034 return ret;
1035 }
1036
1037 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1038 {
1039 struct module_use *use;
1040 int printed_something = 0;
1041
1042 seq_printf(m, " %i ", module_refcount(mod));
1043
1044 /*
1045 * Always include a trailing , so userspace can differentiate
1046 * between this and the old multi-field proc format.
1047 */
1048 list_for_each_entry(use, &mod->source_list, source_list) {
1049 printed_something = 1;
1050 seq_printf(m, "%s,", use->source->name);
1051 }
1052
1053 if (mod->init != NULL && mod->exit == NULL) {
1054 printed_something = 1;
1055 seq_puts(m, "[permanent],");
1056 }
1057
1058 if (!printed_something)
1059 seq_puts(m, "-");
1060 }
1061
1062 void __symbol_put(const char *symbol)
1063 {
1064 struct module *owner;
1065
1066 preempt_disable();
1067 if (!find_symbol(symbol, &owner, NULL, true, false))
1068 BUG();
1069 module_put(owner);
1070 preempt_enable();
1071 }
1072 EXPORT_SYMBOL(__symbol_put);
1073
1074 /* Note this assumes addr is a function, which it currently always is. */
1075 void symbol_put_addr(void *addr)
1076 {
1077 struct module *modaddr;
1078 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1079
1080 if (core_kernel_text(a))
1081 return;
1082
1083 /*
1084 * Even though we hold a reference on the module; we still need to
1085 * disable preemption in order to safely traverse the data structure.
1086 */
1087 preempt_disable();
1088 modaddr = __module_text_address(a);
1089 BUG_ON(!modaddr);
1090 module_put(modaddr);
1091 preempt_enable();
1092 }
1093 EXPORT_SYMBOL_GPL(symbol_put_addr);
1094
1095 static ssize_t show_refcnt(struct module_attribute *mattr,
1096 struct module_kobject *mk, char *buffer)
1097 {
1098 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1099 }
1100
1101 static struct module_attribute modinfo_refcnt =
1102 __ATTR(refcnt, 0444, show_refcnt, NULL);
1103
1104 void __module_get(struct module *module)
1105 {
1106 if (module) {
1107 preempt_disable();
1108 atomic_inc(&module->refcnt);
1109 trace_module_get(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(__module_get);
1114
1115 bool try_module_get(struct module *module)
1116 {
1117 bool ret = true;
1118
1119 if (module) {
1120 preempt_disable();
1121 /* Note: here, we can fail to get a reference */
1122 if (likely(module_is_live(module) &&
1123 atomic_inc_not_zero(&module->refcnt) != 0))
1124 trace_module_get(module, _RET_IP_);
1125 else
1126 ret = false;
1127
1128 preempt_enable();
1129 }
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(try_module_get);
1133
1134 void module_put(struct module *module)
1135 {
1136 int ret;
1137
1138 if (module) {
1139 preempt_disable();
1140 ret = atomic_dec_if_positive(&module->refcnt);
1141 WARN_ON(ret < 0); /* Failed to put refcount */
1142 trace_module_put(module, _RET_IP_);
1143 preempt_enable();
1144 }
1145 }
1146 EXPORT_SYMBOL(module_put);
1147
1148 #else /* !CONFIG_MODULE_UNLOAD */
1149 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1150 {
1151 /* We don't know the usage count, or what modules are using. */
1152 seq_puts(m, " - -");
1153 }
1154
1155 static inline void module_unload_free(struct module *mod)
1156 {
1157 }
1158
1159 int ref_module(struct module *a, struct module *b)
1160 {
1161 return strong_try_module_get(b);
1162 }
1163 EXPORT_SYMBOL_GPL(ref_module);
1164
1165 static inline int module_unload_init(struct module *mod)
1166 {
1167 return 0;
1168 }
1169 #endif /* CONFIG_MODULE_UNLOAD */
1170
1171 static size_t module_flags_taint(struct module *mod, char *buf)
1172 {
1173 size_t l = 0;
1174 int i;
1175
1176 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1177 if (taint_flags[i].module && test_bit(i, &mod->taints))
1178 buf[l++] = taint_flags[i].c_true;
1179 }
1180
1181 return l;
1182 }
1183
1184 static ssize_t show_initstate(struct module_attribute *mattr,
1185 struct module_kobject *mk, char *buffer)
1186 {
1187 const char *state = "unknown";
1188
1189 switch (mk->mod->state) {
1190 case MODULE_STATE_LIVE:
1191 state = "live";
1192 break;
1193 case MODULE_STATE_COMING:
1194 state = "coming";
1195 break;
1196 case MODULE_STATE_GOING:
1197 state = "going";
1198 break;
1199 default:
1200 BUG();
1201 }
1202 return sprintf(buffer, "%s\n", state);
1203 }
1204
1205 static struct module_attribute modinfo_initstate =
1206 __ATTR(initstate, 0444, show_initstate, NULL);
1207
1208 static ssize_t store_uevent(struct module_attribute *mattr,
1209 struct module_kobject *mk,
1210 const char *buffer, size_t count)
1211 {
1212 kobject_synth_uevent(&mk->kobj, buffer, count);
1213 return count;
1214 }
1215
1216 struct module_attribute module_uevent =
1217 __ATTR(uevent, 0200, NULL, store_uevent);
1218
1219 static ssize_t show_coresize(struct module_attribute *mattr,
1220 struct module_kobject *mk, char *buffer)
1221 {
1222 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1223 }
1224
1225 static struct module_attribute modinfo_coresize =
1226 __ATTR(coresize, 0444, show_coresize, NULL);
1227
1228 static ssize_t show_initsize(struct module_attribute *mattr,
1229 struct module_kobject *mk, char *buffer)
1230 {
1231 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1232 }
1233
1234 static struct module_attribute modinfo_initsize =
1235 __ATTR(initsize, 0444, show_initsize, NULL);
1236
1237 static ssize_t show_taint(struct module_attribute *mattr,
1238 struct module_kobject *mk, char *buffer)
1239 {
1240 size_t l;
1241
1242 l = module_flags_taint(mk->mod, buffer);
1243 buffer[l++] = '\n';
1244 return l;
1245 }
1246
1247 static struct module_attribute modinfo_taint =
1248 __ATTR(taint, 0444, show_taint, NULL);
1249
1250 static struct module_attribute *modinfo_attrs[] = {
1251 &module_uevent,
1252 &modinfo_version,
1253 &modinfo_srcversion,
1254 &modinfo_initstate,
1255 &modinfo_coresize,
1256 &modinfo_initsize,
1257 &modinfo_taint,
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 &modinfo_refcnt,
1260 #endif
1261 NULL,
1262 };
1263
1264 static const char vermagic[] = VERMAGIC_STRING;
1265
1266 static int try_to_force_load(struct module *mod, const char *reason)
1267 {
1268 #ifdef CONFIG_MODULE_FORCE_LOAD
1269 if (!test_taint(TAINT_FORCED_MODULE))
1270 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1271 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1272 return 0;
1273 #else
1274 return -ENOEXEC;
1275 #endif
1276 }
1277
1278 #ifdef CONFIG_MODVERSIONS
1279
1280 static u32 resolve_rel_crc(const s32 *crc)
1281 {
1282 return *(u32 *)((void *)crc + *crc);
1283 }
1284
1285 static int check_version(const struct load_info *info,
1286 const char *symname,
1287 struct module *mod,
1288 const s32 *crc)
1289 {
1290 Elf_Shdr *sechdrs = info->sechdrs;
1291 unsigned int versindex = info->index.vers;
1292 unsigned int i, num_versions;
1293 struct modversion_info *versions;
1294
1295 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1296 if (!crc)
1297 return 1;
1298
1299 /* No versions at all? modprobe --force does this. */
1300 if (versindex == 0)
1301 return try_to_force_load(mod, symname) == 0;
1302
1303 versions = (void *) sechdrs[versindex].sh_addr;
1304 num_versions = sechdrs[versindex].sh_size
1305 / sizeof(struct modversion_info);
1306
1307 for (i = 0; i < num_versions; i++) {
1308 u32 crcval;
1309
1310 if (strcmp(versions[i].name, symname) != 0)
1311 continue;
1312
1313 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1314 crcval = resolve_rel_crc(crc);
1315 else
1316 crcval = *crc;
1317 if (versions[i].crc == crcval)
1318 return 1;
1319 pr_debug("Found checksum %X vs module %lX\n",
1320 crcval, versions[i].crc);
1321 goto bad_version;
1322 }
1323
1324 /* Broken toolchain. Warn once, then let it go.. */
1325 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1326 return 1;
1327
1328 bad_version:
1329 pr_warn("%s: disagrees about version of symbol %s\n",
1330 info->name, symname);
1331 return 0;
1332 }
1333
1334 static inline int check_modstruct_version(const struct load_info *info,
1335 struct module *mod)
1336 {
1337 const s32 *crc;
1338
1339 /*
1340 * Since this should be found in kernel (which can't be removed), no
1341 * locking is necessary -- use preempt_disable() to placate lockdep.
1342 */
1343 preempt_disable();
1344 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1345 &crc, true, false)) {
1346 preempt_enable();
1347 BUG();
1348 }
1349 preempt_enable();
1350 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1351 mod, crc);
1352 }
1353
1354 /* First part is kernel version, which we ignore if module has crcs. */
1355 static inline int same_magic(const char *amagic, const char *bmagic,
1356 bool has_crcs)
1357 {
1358 if (has_crcs) {
1359 amagic += strcspn(amagic, " ");
1360 bmagic += strcspn(bmagic, " ");
1361 }
1362 return strcmp(amagic, bmagic) == 0;
1363 }
1364 #else
1365 static inline int check_version(const struct load_info *info,
1366 const char *symname,
1367 struct module *mod,
1368 const s32 *crc)
1369 {
1370 return 1;
1371 }
1372
1373 static inline int check_modstruct_version(const struct load_info *info,
1374 struct module *mod)
1375 {
1376 return 1;
1377 }
1378
1379 static inline int same_magic(const char *amagic, const char *bmagic,
1380 bool has_crcs)
1381 {
1382 return strcmp(amagic, bmagic) == 0;
1383 }
1384 #endif /* CONFIG_MODVERSIONS */
1385
1386 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1387 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1388 const struct load_info *info,
1389 const char *name,
1390 char ownername[])
1391 {
1392 struct module *owner;
1393 const struct kernel_symbol *sym;
1394 const s32 *crc;
1395 int err;
1396
1397 /*
1398 * The module_mutex should not be a heavily contended lock;
1399 * if we get the occasional sleep here, we'll go an extra iteration
1400 * in the wait_event_interruptible(), which is harmless.
1401 */
1402 sched_annotate_sleep();
1403 mutex_lock(&module_mutex);
1404 sym = find_symbol(name, &owner, &crc,
1405 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1406 if (!sym)
1407 goto unlock;
1408
1409 if (!check_version(info, name, mod, crc)) {
1410 sym = ERR_PTR(-EINVAL);
1411 goto getname;
1412 }
1413
1414 err = ref_module(mod, owner);
1415 if (err) {
1416 sym = ERR_PTR(err);
1417 goto getname;
1418 }
1419
1420 getname:
1421 /* We must make copy under the lock if we failed to get ref. */
1422 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1423 unlock:
1424 mutex_unlock(&module_mutex);
1425 return sym;
1426 }
1427
1428 static const struct kernel_symbol *
1429 resolve_symbol_wait(struct module *mod,
1430 const struct load_info *info,
1431 const char *name)
1432 {
1433 const struct kernel_symbol *ksym;
1434 char owner[MODULE_NAME_LEN];
1435
1436 if (wait_event_interruptible_timeout(module_wq,
1437 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1438 || PTR_ERR(ksym) != -EBUSY,
1439 30 * HZ) <= 0) {
1440 pr_warn("%s: gave up waiting for init of module %s.\n",
1441 mod->name, owner);
1442 }
1443 return ksym;
1444 }
1445
1446 /*
1447 * /sys/module/foo/sections stuff
1448 * J. Corbet <corbet@lwn.net>
1449 */
1450 #ifdef CONFIG_SYSFS
1451
1452 #ifdef CONFIG_KALLSYMS
1453 static inline bool sect_empty(const Elf_Shdr *sect)
1454 {
1455 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1456 }
1457
1458 struct module_sect_attr {
1459 struct module_attribute mattr;
1460 char *name;
1461 unsigned long address;
1462 };
1463
1464 struct module_sect_attrs {
1465 struct attribute_group grp;
1466 unsigned int nsections;
1467 struct module_sect_attr attrs[0];
1468 };
1469
1470 static ssize_t module_sect_show(struct module_attribute *mattr,
1471 struct module_kobject *mk, char *buf)
1472 {
1473 struct module_sect_attr *sattr =
1474 container_of(mattr, struct module_sect_attr, mattr);
1475 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1476 }
1477
1478 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1479 {
1480 unsigned int section;
1481
1482 for (section = 0; section < sect_attrs->nsections; section++)
1483 kfree(sect_attrs->attrs[section].name);
1484 kfree(sect_attrs);
1485 }
1486
1487 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1488 {
1489 unsigned int nloaded = 0, i, size[2];
1490 struct module_sect_attrs *sect_attrs;
1491 struct module_sect_attr *sattr;
1492 struct attribute **gattr;
1493
1494 /* Count loaded sections and allocate structures */
1495 for (i = 0; i < info->hdr->e_shnum; i++)
1496 if (!sect_empty(&info->sechdrs[i]))
1497 nloaded++;
1498 size[0] = ALIGN(sizeof(*sect_attrs)
1499 + nloaded * sizeof(sect_attrs->attrs[0]),
1500 sizeof(sect_attrs->grp.attrs[0]));
1501 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1502 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1503 if (sect_attrs == NULL)
1504 return;
1505
1506 /* Setup section attributes. */
1507 sect_attrs->grp.name = "sections";
1508 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1509
1510 sect_attrs->nsections = 0;
1511 sattr = &sect_attrs->attrs[0];
1512 gattr = &sect_attrs->grp.attrs[0];
1513 for (i = 0; i < info->hdr->e_shnum; i++) {
1514 Elf_Shdr *sec = &info->sechdrs[i];
1515 if (sect_empty(sec))
1516 continue;
1517 sattr->address = sec->sh_addr;
1518 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1519 GFP_KERNEL);
1520 if (sattr->name == NULL)
1521 goto out;
1522 sect_attrs->nsections++;
1523 sysfs_attr_init(&sattr->mattr.attr);
1524 sattr->mattr.show = module_sect_show;
1525 sattr->mattr.store = NULL;
1526 sattr->mattr.attr.name = sattr->name;
1527 sattr->mattr.attr.mode = S_IRUSR;
1528 *(gattr++) = &(sattr++)->mattr.attr;
1529 }
1530 *gattr = NULL;
1531
1532 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1533 goto out;
1534
1535 mod->sect_attrs = sect_attrs;
1536 return;
1537 out:
1538 free_sect_attrs(sect_attrs);
1539 }
1540
1541 static void remove_sect_attrs(struct module *mod)
1542 {
1543 if (mod->sect_attrs) {
1544 sysfs_remove_group(&mod->mkobj.kobj,
1545 &mod->sect_attrs->grp);
1546 /* We are positive that no one is using any sect attrs
1547 * at this point. Deallocate immediately. */
1548 free_sect_attrs(mod->sect_attrs);
1549 mod->sect_attrs = NULL;
1550 }
1551 }
1552
1553 /*
1554 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1555 */
1556
1557 struct module_notes_attrs {
1558 struct kobject *dir;
1559 unsigned int notes;
1560 struct bin_attribute attrs[0];
1561 };
1562
1563 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1564 struct bin_attribute *bin_attr,
1565 char *buf, loff_t pos, size_t count)
1566 {
1567 /*
1568 * The caller checked the pos and count against our size.
1569 */
1570 memcpy(buf, bin_attr->private + pos, count);
1571 return count;
1572 }
1573
1574 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1575 unsigned int i)
1576 {
1577 if (notes_attrs->dir) {
1578 while (i-- > 0)
1579 sysfs_remove_bin_file(notes_attrs->dir,
1580 &notes_attrs->attrs[i]);
1581 kobject_put(notes_attrs->dir);
1582 }
1583 kfree(notes_attrs);
1584 }
1585
1586 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1587 {
1588 unsigned int notes, loaded, i;
1589 struct module_notes_attrs *notes_attrs;
1590 struct bin_attribute *nattr;
1591
1592 /* failed to create section attributes, so can't create notes */
1593 if (!mod->sect_attrs)
1594 return;
1595
1596 /* Count notes sections and allocate structures. */
1597 notes = 0;
1598 for (i = 0; i < info->hdr->e_shnum; i++)
1599 if (!sect_empty(&info->sechdrs[i]) &&
1600 (info->sechdrs[i].sh_type == SHT_NOTE))
1601 ++notes;
1602
1603 if (notes == 0)
1604 return;
1605
1606 notes_attrs = kzalloc(sizeof(*notes_attrs)
1607 + notes * sizeof(notes_attrs->attrs[0]),
1608 GFP_KERNEL);
1609 if (notes_attrs == NULL)
1610 return;
1611
1612 notes_attrs->notes = notes;
1613 nattr = &notes_attrs->attrs[0];
1614 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1615 if (sect_empty(&info->sechdrs[i]))
1616 continue;
1617 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1618 sysfs_bin_attr_init(nattr);
1619 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1620 nattr->attr.mode = S_IRUGO;
1621 nattr->size = info->sechdrs[i].sh_size;
1622 nattr->private = (void *) info->sechdrs[i].sh_addr;
1623 nattr->read = module_notes_read;
1624 ++nattr;
1625 }
1626 ++loaded;
1627 }
1628
1629 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1630 if (!notes_attrs->dir)
1631 goto out;
1632
1633 for (i = 0; i < notes; ++i)
1634 if (sysfs_create_bin_file(notes_attrs->dir,
1635 &notes_attrs->attrs[i]))
1636 goto out;
1637
1638 mod->notes_attrs = notes_attrs;
1639 return;
1640
1641 out:
1642 free_notes_attrs(notes_attrs, i);
1643 }
1644
1645 static void remove_notes_attrs(struct module *mod)
1646 {
1647 if (mod->notes_attrs)
1648 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1649 }
1650
1651 #else
1652
1653 static inline void add_sect_attrs(struct module *mod,
1654 const struct load_info *info)
1655 {
1656 }
1657
1658 static inline void remove_sect_attrs(struct module *mod)
1659 {
1660 }
1661
1662 static inline void add_notes_attrs(struct module *mod,
1663 const struct load_info *info)
1664 {
1665 }
1666
1667 static inline void remove_notes_attrs(struct module *mod)
1668 {
1669 }
1670 #endif /* CONFIG_KALLSYMS */
1671
1672 static void del_usage_links(struct module *mod)
1673 {
1674 #ifdef CONFIG_MODULE_UNLOAD
1675 struct module_use *use;
1676
1677 mutex_lock(&module_mutex);
1678 list_for_each_entry(use, &mod->target_list, target_list)
1679 sysfs_remove_link(use->target->holders_dir, mod->name);
1680 mutex_unlock(&module_mutex);
1681 #endif
1682 }
1683
1684 static int add_usage_links(struct module *mod)
1685 {
1686 int ret = 0;
1687 #ifdef CONFIG_MODULE_UNLOAD
1688 struct module_use *use;
1689
1690 mutex_lock(&module_mutex);
1691 list_for_each_entry(use, &mod->target_list, target_list) {
1692 ret = sysfs_create_link(use->target->holders_dir,
1693 &mod->mkobj.kobj, mod->name);
1694 if (ret)
1695 break;
1696 }
1697 mutex_unlock(&module_mutex);
1698 if (ret)
1699 del_usage_links(mod);
1700 #endif
1701 return ret;
1702 }
1703
1704 static int module_add_modinfo_attrs(struct module *mod)
1705 {
1706 struct module_attribute *attr;
1707 struct module_attribute *temp_attr;
1708 int error = 0;
1709 int i;
1710
1711 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1712 (ARRAY_SIZE(modinfo_attrs) + 1)),
1713 GFP_KERNEL);
1714 if (!mod->modinfo_attrs)
1715 return -ENOMEM;
1716
1717 temp_attr = mod->modinfo_attrs;
1718 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1719 if (!attr->test || attr->test(mod)) {
1720 memcpy(temp_attr, attr, sizeof(*temp_attr));
1721 sysfs_attr_init(&temp_attr->attr);
1722 error = sysfs_create_file(&mod->mkobj.kobj,
1723 &temp_attr->attr);
1724 ++temp_attr;
1725 }
1726 }
1727 return error;
1728 }
1729
1730 static void module_remove_modinfo_attrs(struct module *mod)
1731 {
1732 struct module_attribute *attr;
1733 int i;
1734
1735 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1736 /* pick a field to test for end of list */
1737 if (!attr->attr.name)
1738 break;
1739 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1740 if (attr->free)
1741 attr->free(mod);
1742 }
1743 kfree(mod->modinfo_attrs);
1744 }
1745
1746 static void mod_kobject_put(struct module *mod)
1747 {
1748 DECLARE_COMPLETION_ONSTACK(c);
1749 mod->mkobj.kobj_completion = &c;
1750 kobject_put(&mod->mkobj.kobj);
1751 wait_for_completion(&c);
1752 }
1753
1754 static int mod_sysfs_init(struct module *mod)
1755 {
1756 int err;
1757 struct kobject *kobj;
1758
1759 if (!module_sysfs_initialized) {
1760 pr_err("%s: module sysfs not initialized\n", mod->name);
1761 err = -EINVAL;
1762 goto out;
1763 }
1764
1765 kobj = kset_find_obj(module_kset, mod->name);
1766 if (kobj) {
1767 pr_err("%s: module is already loaded\n", mod->name);
1768 kobject_put(kobj);
1769 err = -EINVAL;
1770 goto out;
1771 }
1772
1773 mod->mkobj.mod = mod;
1774
1775 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1776 mod->mkobj.kobj.kset = module_kset;
1777 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1778 "%s", mod->name);
1779 if (err)
1780 mod_kobject_put(mod);
1781
1782 /* delay uevent until full sysfs population */
1783 out:
1784 return err;
1785 }
1786
1787 static int mod_sysfs_setup(struct module *mod,
1788 const struct load_info *info,
1789 struct kernel_param *kparam,
1790 unsigned int num_params)
1791 {
1792 int err;
1793
1794 err = mod_sysfs_init(mod);
1795 if (err)
1796 goto out;
1797
1798 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1799 if (!mod->holders_dir) {
1800 err = -ENOMEM;
1801 goto out_unreg;
1802 }
1803
1804 err = module_param_sysfs_setup(mod, kparam, num_params);
1805 if (err)
1806 goto out_unreg_holders;
1807
1808 err = module_add_modinfo_attrs(mod);
1809 if (err)
1810 goto out_unreg_param;
1811
1812 err = add_usage_links(mod);
1813 if (err)
1814 goto out_unreg_modinfo_attrs;
1815
1816 add_sect_attrs(mod, info);
1817 add_notes_attrs(mod, info);
1818
1819 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1820 return 0;
1821
1822 out_unreg_modinfo_attrs:
1823 module_remove_modinfo_attrs(mod);
1824 out_unreg_param:
1825 module_param_sysfs_remove(mod);
1826 out_unreg_holders:
1827 kobject_put(mod->holders_dir);
1828 out_unreg:
1829 mod_kobject_put(mod);
1830 out:
1831 return err;
1832 }
1833
1834 static void mod_sysfs_fini(struct module *mod)
1835 {
1836 remove_notes_attrs(mod);
1837 remove_sect_attrs(mod);
1838 mod_kobject_put(mod);
1839 }
1840
1841 static void init_param_lock(struct module *mod)
1842 {
1843 mutex_init(&mod->param_lock);
1844 }
1845 #else /* !CONFIG_SYSFS */
1846
1847 static int mod_sysfs_setup(struct module *mod,
1848 const struct load_info *info,
1849 struct kernel_param *kparam,
1850 unsigned int num_params)
1851 {
1852 return 0;
1853 }
1854
1855 static void mod_sysfs_fini(struct module *mod)
1856 {
1857 }
1858
1859 static void module_remove_modinfo_attrs(struct module *mod)
1860 {
1861 }
1862
1863 static void del_usage_links(struct module *mod)
1864 {
1865 }
1866
1867 static void init_param_lock(struct module *mod)
1868 {
1869 }
1870 #endif /* CONFIG_SYSFS */
1871
1872 static void mod_sysfs_teardown(struct module *mod)
1873 {
1874 del_usage_links(mod);
1875 module_remove_modinfo_attrs(mod);
1876 module_param_sysfs_remove(mod);
1877 kobject_put(mod->mkobj.drivers_dir);
1878 kobject_put(mod->holders_dir);
1879 mod_sysfs_fini(mod);
1880 }
1881
1882 #ifdef CONFIG_STRICT_MODULE_RWX
1883 /*
1884 * LKM RO/NX protection: protect module's text/ro-data
1885 * from modification and any data from execution.
1886 *
1887 * General layout of module is:
1888 * [text] [read-only-data] [ro-after-init] [writable data]
1889 * text_size -----^ ^ ^ ^
1890 * ro_size ------------------------| | |
1891 * ro_after_init_size -----------------------------| |
1892 * size -----------------------------------------------------------|
1893 *
1894 * These values are always page-aligned (as is base)
1895 */
1896 static void frob_text(const struct module_layout *layout,
1897 int (*set_memory)(unsigned long start, int num_pages))
1898 {
1899 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1900 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1901 set_memory((unsigned long)layout->base,
1902 layout->text_size >> PAGE_SHIFT);
1903 }
1904
1905 static void frob_rodata(const struct module_layout *layout,
1906 int (*set_memory)(unsigned long start, int num_pages))
1907 {
1908 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1909 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1910 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1911 set_memory((unsigned long)layout->base + layout->text_size,
1912 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1913 }
1914
1915 static void frob_ro_after_init(const struct module_layout *layout,
1916 int (*set_memory)(unsigned long start, int num_pages))
1917 {
1918 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1919 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1920 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1921 set_memory((unsigned long)layout->base + layout->ro_size,
1922 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1923 }
1924
1925 static void frob_writable_data(const struct module_layout *layout,
1926 int (*set_memory)(unsigned long start, int num_pages))
1927 {
1928 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1929 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1930 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1931 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1932 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1933 }
1934
1935 /* livepatching wants to disable read-only so it can frob module. */
1936 void module_disable_ro(const struct module *mod)
1937 {
1938 if (!rodata_enabled)
1939 return;
1940
1941 frob_text(&mod->core_layout, set_memory_rw);
1942 frob_rodata(&mod->core_layout, set_memory_rw);
1943 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1944 frob_text(&mod->init_layout, set_memory_rw);
1945 frob_rodata(&mod->init_layout, set_memory_rw);
1946 }
1947
1948 void module_enable_ro(const struct module *mod, bool after_init)
1949 {
1950 if (!rodata_enabled)
1951 return;
1952
1953 frob_text(&mod->core_layout, set_memory_ro);
1954 frob_rodata(&mod->core_layout, set_memory_ro);
1955 frob_text(&mod->init_layout, set_memory_ro);
1956 frob_rodata(&mod->init_layout, set_memory_ro);
1957
1958 if (after_init)
1959 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1960 }
1961
1962 static void module_enable_nx(const struct module *mod)
1963 {
1964 frob_rodata(&mod->core_layout, set_memory_nx);
1965 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1966 frob_writable_data(&mod->core_layout, set_memory_nx);
1967 frob_rodata(&mod->init_layout, set_memory_nx);
1968 frob_writable_data(&mod->init_layout, set_memory_nx);
1969 }
1970
1971 static void module_disable_nx(const struct module *mod)
1972 {
1973 frob_rodata(&mod->core_layout, set_memory_x);
1974 frob_ro_after_init(&mod->core_layout, set_memory_x);
1975 frob_writable_data(&mod->core_layout, set_memory_x);
1976 frob_rodata(&mod->init_layout, set_memory_x);
1977 frob_writable_data(&mod->init_layout, set_memory_x);
1978 }
1979
1980 /* Iterate through all modules and set each module's text as RW */
1981 void set_all_modules_text_rw(void)
1982 {
1983 struct module *mod;
1984
1985 if (!rodata_enabled)
1986 return;
1987
1988 mutex_lock(&module_mutex);
1989 list_for_each_entry_rcu(mod, &modules, list) {
1990 if (mod->state == MODULE_STATE_UNFORMED)
1991 continue;
1992
1993 frob_text(&mod->core_layout, set_memory_rw);
1994 frob_text(&mod->init_layout, set_memory_rw);
1995 }
1996 mutex_unlock(&module_mutex);
1997 }
1998
1999 /* Iterate through all modules and set each module's text as RO */
2000 void set_all_modules_text_ro(void)
2001 {
2002 struct module *mod;
2003
2004 if (!rodata_enabled)
2005 return;
2006
2007 mutex_lock(&module_mutex);
2008 list_for_each_entry_rcu(mod, &modules, list) {
2009 /*
2010 * Ignore going modules since it's possible that ro
2011 * protection has already been disabled, otherwise we'll
2012 * run into protection faults at module deallocation.
2013 */
2014 if (mod->state == MODULE_STATE_UNFORMED ||
2015 mod->state == MODULE_STATE_GOING)
2016 continue;
2017
2018 frob_text(&mod->core_layout, set_memory_ro);
2019 frob_text(&mod->init_layout, set_memory_ro);
2020 }
2021 mutex_unlock(&module_mutex);
2022 }
2023
2024 static void disable_ro_nx(const struct module_layout *layout)
2025 {
2026 if (rodata_enabled) {
2027 frob_text(layout, set_memory_rw);
2028 frob_rodata(layout, set_memory_rw);
2029 frob_ro_after_init(layout, set_memory_rw);
2030 }
2031 frob_rodata(layout, set_memory_x);
2032 frob_ro_after_init(layout, set_memory_x);
2033 frob_writable_data(layout, set_memory_x);
2034 }
2035
2036 #else
2037 static void disable_ro_nx(const struct module_layout *layout) { }
2038 static void module_enable_nx(const struct module *mod) { }
2039 static void module_disable_nx(const struct module *mod) { }
2040 #endif
2041
2042 #ifdef CONFIG_LIVEPATCH
2043 /*
2044 * Persist Elf information about a module. Copy the Elf header,
2045 * section header table, section string table, and symtab section
2046 * index from info to mod->klp_info.
2047 */
2048 static int copy_module_elf(struct module *mod, struct load_info *info)
2049 {
2050 unsigned int size, symndx;
2051 int ret;
2052
2053 size = sizeof(*mod->klp_info);
2054 mod->klp_info = kmalloc(size, GFP_KERNEL);
2055 if (mod->klp_info == NULL)
2056 return -ENOMEM;
2057
2058 /* Elf header */
2059 size = sizeof(mod->klp_info->hdr);
2060 memcpy(&mod->klp_info->hdr, info->hdr, size);
2061
2062 /* Elf section header table */
2063 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2064 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2065 if (mod->klp_info->sechdrs == NULL) {
2066 ret = -ENOMEM;
2067 goto free_info;
2068 }
2069 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2070
2071 /* Elf section name string table */
2072 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2073 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2074 if (mod->klp_info->secstrings == NULL) {
2075 ret = -ENOMEM;
2076 goto free_sechdrs;
2077 }
2078 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2079
2080 /* Elf symbol section index */
2081 symndx = info->index.sym;
2082 mod->klp_info->symndx = symndx;
2083
2084 /*
2085 * For livepatch modules, core_kallsyms.symtab is a complete
2086 * copy of the original symbol table. Adjust sh_addr to point
2087 * to core_kallsyms.symtab since the copy of the symtab in module
2088 * init memory is freed at the end of do_init_module().
2089 */
2090 mod->klp_info->sechdrs[symndx].sh_addr = \
2091 (unsigned long) mod->core_kallsyms.symtab;
2092
2093 return 0;
2094
2095 free_sechdrs:
2096 kfree(mod->klp_info->sechdrs);
2097 free_info:
2098 kfree(mod->klp_info);
2099 return ret;
2100 }
2101
2102 static void free_module_elf(struct module *mod)
2103 {
2104 kfree(mod->klp_info->sechdrs);
2105 kfree(mod->klp_info->secstrings);
2106 kfree(mod->klp_info);
2107 }
2108 #else /* !CONFIG_LIVEPATCH */
2109 static int copy_module_elf(struct module *mod, struct load_info *info)
2110 {
2111 return 0;
2112 }
2113
2114 static void free_module_elf(struct module *mod)
2115 {
2116 }
2117 #endif /* CONFIG_LIVEPATCH */
2118
2119 void __weak module_memfree(void *module_region)
2120 {
2121 vfree(module_region);
2122 }
2123
2124 void __weak module_arch_cleanup(struct module *mod)
2125 {
2126 }
2127
2128 void __weak module_arch_freeing_init(struct module *mod)
2129 {
2130 }
2131
2132 /* Free a module, remove from lists, etc. */
2133 static void free_module(struct module *mod)
2134 {
2135 trace_module_free(mod);
2136
2137 mod_sysfs_teardown(mod);
2138
2139 /* We leave it in list to prevent duplicate loads, but make sure
2140 * that noone uses it while it's being deconstructed. */
2141 mutex_lock(&module_mutex);
2142 mod->state = MODULE_STATE_UNFORMED;
2143 mutex_unlock(&module_mutex);
2144
2145 /* Remove dynamic debug info */
2146 ddebug_remove_module(mod->name);
2147
2148 /* Arch-specific cleanup. */
2149 module_arch_cleanup(mod);
2150
2151 /* Module unload stuff */
2152 module_unload_free(mod);
2153
2154 /* Free any allocated parameters. */
2155 destroy_params(mod->kp, mod->num_kp);
2156
2157 if (is_livepatch_module(mod))
2158 free_module_elf(mod);
2159
2160 /* Now we can delete it from the lists */
2161 mutex_lock(&module_mutex);
2162 /* Unlink carefully: kallsyms could be walking list. */
2163 list_del_rcu(&mod->list);
2164 mod_tree_remove(mod);
2165 /* Remove this module from bug list, this uses list_del_rcu */
2166 module_bug_cleanup(mod);
2167 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2168 synchronize_sched();
2169 mutex_unlock(&module_mutex);
2170
2171 /* This may be empty, but that's OK */
2172 disable_ro_nx(&mod->init_layout);
2173 module_arch_freeing_init(mod);
2174 module_memfree(mod->init_layout.base);
2175 kfree(mod->args);
2176 percpu_modfree(mod);
2177
2178 /* Free lock-classes; relies on the preceding sync_rcu(). */
2179 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2180
2181 /* Finally, free the core (containing the module structure) */
2182 disable_ro_nx(&mod->core_layout);
2183 module_memfree(mod->core_layout.base);
2184 }
2185
2186 void *__symbol_get(const char *symbol)
2187 {
2188 struct module *owner;
2189 const struct kernel_symbol *sym;
2190
2191 preempt_disable();
2192 sym = find_symbol(symbol, &owner, NULL, true, true);
2193 if (sym && strong_try_module_get(owner))
2194 sym = NULL;
2195 preempt_enable();
2196
2197 return sym ? (void *)sym->value : NULL;
2198 }
2199 EXPORT_SYMBOL_GPL(__symbol_get);
2200
2201 /*
2202 * Ensure that an exported symbol [global namespace] does not already exist
2203 * in the kernel or in some other module's exported symbol table.
2204 *
2205 * You must hold the module_mutex.
2206 */
2207 static int verify_export_symbols(struct module *mod)
2208 {
2209 unsigned int i;
2210 struct module *owner;
2211 const struct kernel_symbol *s;
2212 struct {
2213 const struct kernel_symbol *sym;
2214 unsigned int num;
2215 } arr[] = {
2216 { mod->syms, mod->num_syms },
2217 { mod->gpl_syms, mod->num_gpl_syms },
2218 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2219 #ifdef CONFIG_UNUSED_SYMBOLS
2220 { mod->unused_syms, mod->num_unused_syms },
2221 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2222 #endif
2223 };
2224
2225 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2226 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2227 if (find_symbol(s->name, &owner, NULL, true, false)) {
2228 pr_err("%s: exports duplicate symbol %s"
2229 " (owned by %s)\n",
2230 mod->name, s->name, module_name(owner));
2231 return -ENOEXEC;
2232 }
2233 }
2234 }
2235 return 0;
2236 }
2237
2238 /* Change all symbols so that st_value encodes the pointer directly. */
2239 static int simplify_symbols(struct module *mod, const struct load_info *info)
2240 {
2241 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2242 Elf_Sym *sym = (void *)symsec->sh_addr;
2243 unsigned long secbase;
2244 unsigned int i;
2245 int ret = 0;
2246 const struct kernel_symbol *ksym;
2247
2248 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2249 const char *name = info->strtab + sym[i].st_name;
2250
2251 switch (sym[i].st_shndx) {
2252 case SHN_COMMON:
2253 /* Ignore common symbols */
2254 if (!strncmp(name, "__gnu_lto", 9))
2255 break;
2256
2257 /* We compiled with -fno-common. These are not
2258 supposed to happen. */
2259 pr_debug("Common symbol: %s\n", name);
2260 pr_warn("%s: please compile with -fno-common\n",
2261 mod->name);
2262 ret = -ENOEXEC;
2263 break;
2264
2265 case SHN_ABS:
2266 /* Don't need to do anything */
2267 pr_debug("Absolute symbol: 0x%08lx\n",
2268 (long)sym[i].st_value);
2269 break;
2270
2271 case SHN_LIVEPATCH:
2272 /* Livepatch symbols are resolved by livepatch */
2273 break;
2274
2275 case SHN_UNDEF:
2276 ksym = resolve_symbol_wait(mod, info, name);
2277 /* Ok if resolved. */
2278 if (ksym && !IS_ERR(ksym)) {
2279 sym[i].st_value = ksym->value;
2280 break;
2281 }
2282
2283 /* Ok if weak. */
2284 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2285 break;
2286
2287 pr_warn("%s: Unknown symbol %s (err %li)\n",
2288 mod->name, name, PTR_ERR(ksym));
2289 ret = PTR_ERR(ksym) ?: -ENOENT;
2290 break;
2291
2292 default:
2293 /* Divert to percpu allocation if a percpu var. */
2294 if (sym[i].st_shndx == info->index.pcpu)
2295 secbase = (unsigned long)mod_percpu(mod);
2296 else
2297 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2298 sym[i].st_value += secbase;
2299 break;
2300 }
2301 }
2302
2303 return ret;
2304 }
2305
2306 static int apply_relocations(struct module *mod, const struct load_info *info)
2307 {
2308 unsigned int i;
2309 int err = 0;
2310
2311 /* Now do relocations. */
2312 for (i = 1; i < info->hdr->e_shnum; i++) {
2313 unsigned int infosec = info->sechdrs[i].sh_info;
2314
2315 /* Not a valid relocation section? */
2316 if (infosec >= info->hdr->e_shnum)
2317 continue;
2318
2319 /* Don't bother with non-allocated sections */
2320 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2321 continue;
2322
2323 /* Livepatch relocation sections are applied by livepatch */
2324 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2325 continue;
2326
2327 if (info->sechdrs[i].sh_type == SHT_REL)
2328 err = apply_relocate(info->sechdrs, info->strtab,
2329 info->index.sym, i, mod);
2330 else if (info->sechdrs[i].sh_type == SHT_RELA)
2331 err = apply_relocate_add(info->sechdrs, info->strtab,
2332 info->index.sym, i, mod);
2333 if (err < 0)
2334 break;
2335 }
2336 return err;
2337 }
2338
2339 /* Additional bytes needed by arch in front of individual sections */
2340 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2341 unsigned int section)
2342 {
2343 /* default implementation just returns zero */
2344 return 0;
2345 }
2346
2347 /* Update size with this section: return offset. */
2348 static long get_offset(struct module *mod, unsigned int *size,
2349 Elf_Shdr *sechdr, unsigned int section)
2350 {
2351 long ret;
2352
2353 *size += arch_mod_section_prepend(mod, section);
2354 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2355 *size = ret + sechdr->sh_size;
2356 return ret;
2357 }
2358
2359 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2360 might -- code, read-only data, read-write data, small data. Tally
2361 sizes, and place the offsets into sh_entsize fields: high bit means it
2362 belongs in init. */
2363 static void layout_sections(struct module *mod, struct load_info *info)
2364 {
2365 static unsigned long const masks[][2] = {
2366 /* NOTE: all executable code must be the first section
2367 * in this array; otherwise modify the text_size
2368 * finder in the two loops below */
2369 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2370 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2371 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2372 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2373 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2374 };
2375 unsigned int m, i;
2376
2377 for (i = 0; i < info->hdr->e_shnum; i++)
2378 info->sechdrs[i].sh_entsize = ~0UL;
2379
2380 pr_debug("Core section allocation order:\n");
2381 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2382 for (i = 0; i < info->hdr->e_shnum; ++i) {
2383 Elf_Shdr *s = &info->sechdrs[i];
2384 const char *sname = info->secstrings + s->sh_name;
2385
2386 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2387 || (s->sh_flags & masks[m][1])
2388 || s->sh_entsize != ~0UL
2389 || strstarts(sname, ".init"))
2390 continue;
2391 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2392 pr_debug("\t%s\n", sname);
2393 }
2394 switch (m) {
2395 case 0: /* executable */
2396 mod->core_layout.size = debug_align(mod->core_layout.size);
2397 mod->core_layout.text_size = mod->core_layout.size;
2398 break;
2399 case 1: /* RO: text and ro-data */
2400 mod->core_layout.size = debug_align(mod->core_layout.size);
2401 mod->core_layout.ro_size = mod->core_layout.size;
2402 break;
2403 case 2: /* RO after init */
2404 mod->core_layout.size = debug_align(mod->core_layout.size);
2405 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2406 break;
2407 case 4: /* whole core */
2408 mod->core_layout.size = debug_align(mod->core_layout.size);
2409 break;
2410 }
2411 }
2412
2413 pr_debug("Init section allocation order:\n");
2414 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2415 for (i = 0; i < info->hdr->e_shnum; ++i) {
2416 Elf_Shdr *s = &info->sechdrs[i];
2417 const char *sname = info->secstrings + s->sh_name;
2418
2419 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2420 || (s->sh_flags & masks[m][1])
2421 || s->sh_entsize != ~0UL
2422 || !strstarts(sname, ".init"))
2423 continue;
2424 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2425 | INIT_OFFSET_MASK);
2426 pr_debug("\t%s\n", sname);
2427 }
2428 switch (m) {
2429 case 0: /* executable */
2430 mod->init_layout.size = debug_align(mod->init_layout.size);
2431 mod->init_layout.text_size = mod->init_layout.size;
2432 break;
2433 case 1: /* RO: text and ro-data */
2434 mod->init_layout.size = debug_align(mod->init_layout.size);
2435 mod->init_layout.ro_size = mod->init_layout.size;
2436 break;
2437 case 2:
2438 /*
2439 * RO after init doesn't apply to init_layout (only
2440 * core_layout), so it just takes the value of ro_size.
2441 */
2442 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2443 break;
2444 case 4: /* whole init */
2445 mod->init_layout.size = debug_align(mod->init_layout.size);
2446 break;
2447 }
2448 }
2449 }
2450
2451 static void set_license(struct module *mod, const char *license)
2452 {
2453 if (!license)
2454 license = "unspecified";
2455
2456 if (!license_is_gpl_compatible(license)) {
2457 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2458 pr_warn("%s: module license '%s' taints kernel.\n",
2459 mod->name, license);
2460 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2461 LOCKDEP_NOW_UNRELIABLE);
2462 }
2463 }
2464
2465 /* Parse tag=value strings from .modinfo section */
2466 static char *next_string(char *string, unsigned long *secsize)
2467 {
2468 /* Skip non-zero chars */
2469 while (string[0]) {
2470 string++;
2471 if ((*secsize)-- <= 1)
2472 return NULL;
2473 }
2474
2475 /* Skip any zero padding. */
2476 while (!string[0]) {
2477 string++;
2478 if ((*secsize)-- <= 1)
2479 return NULL;
2480 }
2481 return string;
2482 }
2483
2484 static char *get_modinfo(struct load_info *info, const char *tag)
2485 {
2486 char *p;
2487 unsigned int taglen = strlen(tag);
2488 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2489 unsigned long size = infosec->sh_size;
2490
2491 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2492 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2493 return p + taglen + 1;
2494 }
2495 return NULL;
2496 }
2497
2498 static void setup_modinfo(struct module *mod, struct load_info *info)
2499 {
2500 struct module_attribute *attr;
2501 int i;
2502
2503 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2504 if (attr->setup)
2505 attr->setup(mod, get_modinfo(info, attr->attr.name));
2506 }
2507 }
2508
2509 static void free_modinfo(struct module *mod)
2510 {
2511 struct module_attribute *attr;
2512 int i;
2513
2514 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2515 if (attr->free)
2516 attr->free(mod);
2517 }
2518 }
2519
2520 #ifdef CONFIG_KALLSYMS
2521
2522 /* lookup symbol in given range of kernel_symbols */
2523 static const struct kernel_symbol *lookup_symbol(const char *name,
2524 const struct kernel_symbol *start,
2525 const struct kernel_symbol *stop)
2526 {
2527 return bsearch(name, start, stop - start,
2528 sizeof(struct kernel_symbol), cmp_name);
2529 }
2530
2531 static int is_exported(const char *name, unsigned long value,
2532 const struct module *mod)
2533 {
2534 const struct kernel_symbol *ks;
2535 if (!mod)
2536 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2537 else
2538 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2539 return ks != NULL && ks->value == value;
2540 }
2541
2542 /* As per nm */
2543 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2544 {
2545 const Elf_Shdr *sechdrs = info->sechdrs;
2546
2547 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2548 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2549 return 'v';
2550 else
2551 return 'w';
2552 }
2553 if (sym->st_shndx == SHN_UNDEF)
2554 return 'U';
2555 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2556 return 'a';
2557 if (sym->st_shndx >= SHN_LORESERVE)
2558 return '?';
2559 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2560 return 't';
2561 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2562 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2563 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2564 return 'r';
2565 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2566 return 'g';
2567 else
2568 return 'd';
2569 }
2570 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2571 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2572 return 's';
2573 else
2574 return 'b';
2575 }
2576 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2577 ".debug")) {
2578 return 'n';
2579 }
2580 return '?';
2581 }
2582
2583 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2584 unsigned int shnum, unsigned int pcpundx)
2585 {
2586 const Elf_Shdr *sec;
2587
2588 if (src->st_shndx == SHN_UNDEF
2589 || src->st_shndx >= shnum
2590 || !src->st_name)
2591 return false;
2592
2593 #ifdef CONFIG_KALLSYMS_ALL
2594 if (src->st_shndx == pcpundx)
2595 return true;
2596 #endif
2597
2598 sec = sechdrs + src->st_shndx;
2599 if (!(sec->sh_flags & SHF_ALLOC)
2600 #ifndef CONFIG_KALLSYMS_ALL
2601 || !(sec->sh_flags & SHF_EXECINSTR)
2602 #endif
2603 || (sec->sh_entsize & INIT_OFFSET_MASK))
2604 return false;
2605
2606 return true;
2607 }
2608
2609 /*
2610 * We only allocate and copy the strings needed by the parts of symtab
2611 * we keep. This is simple, but has the effect of making multiple
2612 * copies of duplicates. We could be more sophisticated, see
2613 * linux-kernel thread starting with
2614 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2615 */
2616 static void layout_symtab(struct module *mod, struct load_info *info)
2617 {
2618 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2619 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2620 const Elf_Sym *src;
2621 unsigned int i, nsrc, ndst, strtab_size = 0;
2622
2623 /* Put symbol section at end of init part of module. */
2624 symsect->sh_flags |= SHF_ALLOC;
2625 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2626 info->index.sym) | INIT_OFFSET_MASK;
2627 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2628
2629 src = (void *)info->hdr + symsect->sh_offset;
2630 nsrc = symsect->sh_size / sizeof(*src);
2631
2632 /* Compute total space required for the core symbols' strtab. */
2633 for (ndst = i = 0; i < nsrc; i++) {
2634 if (i == 0 || is_livepatch_module(mod) ||
2635 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2636 info->index.pcpu)) {
2637 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2638 ndst++;
2639 }
2640 }
2641
2642 /* Append room for core symbols at end of core part. */
2643 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2644 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2645 mod->core_layout.size += strtab_size;
2646 mod->core_layout.size = debug_align(mod->core_layout.size);
2647
2648 /* Put string table section at end of init part of module. */
2649 strsect->sh_flags |= SHF_ALLOC;
2650 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2651 info->index.str) | INIT_OFFSET_MASK;
2652 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2653
2654 /* We'll tack temporary mod_kallsyms on the end. */
2655 mod->init_layout.size = ALIGN(mod->init_layout.size,
2656 __alignof__(struct mod_kallsyms));
2657 info->mod_kallsyms_init_off = mod->init_layout.size;
2658 mod->init_layout.size += sizeof(struct mod_kallsyms);
2659 mod->init_layout.size = debug_align(mod->init_layout.size);
2660 }
2661
2662 /*
2663 * We use the full symtab and strtab which layout_symtab arranged to
2664 * be appended to the init section. Later we switch to the cut-down
2665 * core-only ones.
2666 */
2667 static void add_kallsyms(struct module *mod, const struct load_info *info)
2668 {
2669 unsigned int i, ndst;
2670 const Elf_Sym *src;
2671 Elf_Sym *dst;
2672 char *s;
2673 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2674
2675 /* Set up to point into init section. */
2676 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2677
2678 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2679 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2680 /* Make sure we get permanent strtab: don't use info->strtab. */
2681 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2682
2683 /* Set types up while we still have access to sections. */
2684 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2685 mod->kallsyms->symtab[i].st_info
2686 = elf_type(&mod->kallsyms->symtab[i], info);
2687
2688 /* Now populate the cut down core kallsyms for after init. */
2689 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2690 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2691 src = mod->kallsyms->symtab;
2692 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2693 if (i == 0 || is_livepatch_module(mod) ||
2694 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2695 info->index.pcpu)) {
2696 dst[ndst] = src[i];
2697 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2698 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2699 KSYM_NAME_LEN) + 1;
2700 }
2701 }
2702 mod->core_kallsyms.num_symtab = ndst;
2703 }
2704 #else
2705 static inline void layout_symtab(struct module *mod, struct load_info *info)
2706 {
2707 }
2708
2709 static void add_kallsyms(struct module *mod, const struct load_info *info)
2710 {
2711 }
2712 #endif /* CONFIG_KALLSYMS */
2713
2714 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2715 {
2716 if (!debug)
2717 return;
2718 #ifdef CONFIG_DYNAMIC_DEBUG
2719 if (ddebug_add_module(debug, num, mod->name))
2720 pr_err("dynamic debug error adding module: %s\n",
2721 debug->modname);
2722 #endif
2723 }
2724
2725 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2726 {
2727 if (debug)
2728 ddebug_remove_module(mod->name);
2729 }
2730
2731 void * __weak module_alloc(unsigned long size)
2732 {
2733 return vmalloc_exec(size);
2734 }
2735
2736 #ifdef CONFIG_DEBUG_KMEMLEAK
2737 static void kmemleak_load_module(const struct module *mod,
2738 const struct load_info *info)
2739 {
2740 unsigned int i;
2741
2742 /* only scan the sections containing data */
2743 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2744
2745 for (i = 1; i < info->hdr->e_shnum; i++) {
2746 /* Scan all writable sections that's not executable */
2747 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2748 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2749 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2750 continue;
2751
2752 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2753 info->sechdrs[i].sh_size, GFP_KERNEL);
2754 }
2755 }
2756 #else
2757 static inline void kmemleak_load_module(const struct module *mod,
2758 const struct load_info *info)
2759 {
2760 }
2761 #endif
2762
2763 #ifdef CONFIG_MODULE_SIG
2764 static int module_sig_check(struct load_info *info, int flags)
2765 {
2766 int err = -ENOKEY;
2767 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2768 const void *mod = info->hdr;
2769
2770 /*
2771 * Require flags == 0, as a module with version information
2772 * removed is no longer the module that was signed
2773 */
2774 if (flags == 0 &&
2775 info->len > markerlen &&
2776 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2777 /* We truncate the module to discard the signature */
2778 info->len -= markerlen;
2779 err = mod_verify_sig(mod, &info->len);
2780 }
2781
2782 if (!err) {
2783 info->sig_ok = true;
2784 return 0;
2785 }
2786
2787 /* Not having a signature is only an error if we're strict. */
2788 if (err == -ENOKEY && !sig_enforce)
2789 err = 0;
2790
2791 return err;
2792 }
2793 #else /* !CONFIG_MODULE_SIG */
2794 static int module_sig_check(struct load_info *info, int flags)
2795 {
2796 return 0;
2797 }
2798 #endif /* !CONFIG_MODULE_SIG */
2799
2800 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2801 static int elf_header_check(struct load_info *info)
2802 {
2803 if (info->len < sizeof(*(info->hdr)))
2804 return -ENOEXEC;
2805
2806 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2807 || info->hdr->e_type != ET_REL
2808 || !elf_check_arch(info->hdr)
2809 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2810 return -ENOEXEC;
2811
2812 if (info->hdr->e_shoff >= info->len
2813 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2814 info->len - info->hdr->e_shoff))
2815 return -ENOEXEC;
2816
2817 return 0;
2818 }
2819
2820 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2821
2822 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2823 {
2824 do {
2825 unsigned long n = min(len, COPY_CHUNK_SIZE);
2826
2827 if (copy_from_user(dst, usrc, n) != 0)
2828 return -EFAULT;
2829 cond_resched();
2830 dst += n;
2831 usrc += n;
2832 len -= n;
2833 } while (len);
2834 return 0;
2835 }
2836
2837 #ifdef CONFIG_LIVEPATCH
2838 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2839 {
2840 if (get_modinfo(info, "livepatch")) {
2841 mod->klp = true;
2842 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2843 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2844 mod->name);
2845 }
2846
2847 return 0;
2848 }
2849 #else /* !CONFIG_LIVEPATCH */
2850 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2851 {
2852 if (get_modinfo(info, "livepatch")) {
2853 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2854 mod->name);
2855 return -ENOEXEC;
2856 }
2857
2858 return 0;
2859 }
2860 #endif /* CONFIG_LIVEPATCH */
2861
2862 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2863 {
2864 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2865 return;
2866
2867 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2868 mod->name);
2869 }
2870
2871 /* Sets info->hdr and info->len. */
2872 static int copy_module_from_user(const void __user *umod, unsigned long len,
2873 struct load_info *info)
2874 {
2875 int err;
2876
2877 info->len = len;
2878 if (info->len < sizeof(*(info->hdr)))
2879 return -ENOEXEC;
2880
2881 err = security_kernel_read_file(NULL, READING_MODULE);
2882 if (err)
2883 return err;
2884
2885 /* Suck in entire file: we'll want most of it. */
2886 info->hdr = __vmalloc(info->len,
2887 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2888 if (!info->hdr)
2889 return -ENOMEM;
2890
2891 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2892 vfree(info->hdr);
2893 return -EFAULT;
2894 }
2895
2896 return 0;
2897 }
2898
2899 static void free_copy(struct load_info *info)
2900 {
2901 vfree(info->hdr);
2902 }
2903
2904 static int rewrite_section_headers(struct load_info *info, int flags)
2905 {
2906 unsigned int i;
2907
2908 /* This should always be true, but let's be sure. */
2909 info->sechdrs[0].sh_addr = 0;
2910
2911 for (i = 1; i < info->hdr->e_shnum; i++) {
2912 Elf_Shdr *shdr = &info->sechdrs[i];
2913 if (shdr->sh_type != SHT_NOBITS
2914 && info->len < shdr->sh_offset + shdr->sh_size) {
2915 pr_err("Module len %lu truncated\n", info->len);
2916 return -ENOEXEC;
2917 }
2918
2919 /* Mark all sections sh_addr with their address in the
2920 temporary image. */
2921 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2922
2923 #ifndef CONFIG_MODULE_UNLOAD
2924 /* Don't load .exit sections */
2925 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2926 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2927 #endif
2928 }
2929
2930 /* Track but don't keep modinfo and version sections. */
2931 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2932 info->index.vers = 0; /* Pretend no __versions section! */
2933 else
2934 info->index.vers = find_sec(info, "__versions");
2935 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2936
2937 info->index.info = find_sec(info, ".modinfo");
2938 if (!info->index.info)
2939 info->name = "(missing .modinfo section)";
2940 else
2941 info->name = get_modinfo(info, "name");
2942 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2943
2944 return 0;
2945 }
2946
2947 /*
2948 * Set up our basic convenience variables (pointers to section headers,
2949 * search for module section index etc), and do some basic section
2950 * verification.
2951 *
2952 * Return the temporary module pointer (we'll replace it with the final
2953 * one when we move the module sections around).
2954 */
2955 static struct module *setup_load_info(struct load_info *info, int flags)
2956 {
2957 unsigned int i;
2958 int err;
2959 struct module *mod;
2960
2961 /* Set up the convenience variables */
2962 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2963 info->secstrings = (void *)info->hdr
2964 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2965
2966 err = rewrite_section_headers(info, flags);
2967 if (err)
2968 return ERR_PTR(err);
2969
2970 /* Find internal symbols and strings. */
2971 for (i = 1; i < info->hdr->e_shnum; i++) {
2972 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2973 info->index.sym = i;
2974 info->index.str = info->sechdrs[i].sh_link;
2975 info->strtab = (char *)info->hdr
2976 + info->sechdrs[info->index.str].sh_offset;
2977 break;
2978 }
2979 }
2980
2981 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2982 if (!info->index.mod) {
2983 pr_warn("%s: No module found in object\n",
2984 info->name ?: "(missing .modinfo name field)");
2985 return ERR_PTR(-ENOEXEC);
2986 }
2987 /* This is temporary: point mod into copy of data. */
2988 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2989
2990 /*
2991 * If we didn't load the .modinfo 'name' field, fall back to
2992 * on-disk struct mod 'name' field.
2993 */
2994 if (!info->name)
2995 info->name = mod->name;
2996
2997 if (info->index.sym == 0) {
2998 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2999 return ERR_PTR(-ENOEXEC);
3000 }
3001
3002 info->index.pcpu = find_pcpusec(info);
3003
3004 /* Check module struct version now, before we try to use module. */
3005 if (!check_modstruct_version(info, mod))
3006 return ERR_PTR(-ENOEXEC);
3007
3008 return mod;
3009 }
3010
3011 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3012 {
3013 const char *modmagic = get_modinfo(info, "vermagic");
3014 int err;
3015
3016 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3017 modmagic = NULL;
3018
3019 /* This is allowed: modprobe --force will invalidate it. */
3020 if (!modmagic) {
3021 err = try_to_force_load(mod, "bad vermagic");
3022 if (err)
3023 return err;
3024 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3025 pr_err("%s: version magic '%s' should be '%s'\n",
3026 info->name, modmagic, vermagic);
3027 return -ENOEXEC;
3028 }
3029
3030 if (!get_modinfo(info, "intree")) {
3031 if (!test_taint(TAINT_OOT_MODULE))
3032 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3033 mod->name);
3034 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3035 }
3036
3037 check_modinfo_retpoline(mod, info);
3038
3039 if (get_modinfo(info, "staging")) {
3040 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3041 pr_warn("%s: module is from the staging directory, the quality "
3042 "is unknown, you have been warned.\n", mod->name);
3043 }
3044
3045 err = check_modinfo_livepatch(mod, info);
3046 if (err)
3047 return err;
3048
3049 /* Set up license info based on the info section */
3050 set_license(mod, get_modinfo(info, "license"));
3051
3052 return 0;
3053 }
3054
3055 static int find_module_sections(struct module *mod, struct load_info *info)
3056 {
3057 mod->kp = section_objs(info, "__param",
3058 sizeof(*mod->kp), &mod->num_kp);
3059 mod->syms = section_objs(info, "__ksymtab",
3060 sizeof(*mod->syms), &mod->num_syms);
3061 mod->crcs = section_addr(info, "__kcrctab");
3062 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3063 sizeof(*mod->gpl_syms),
3064 &mod->num_gpl_syms);
3065 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3066 mod->gpl_future_syms = section_objs(info,
3067 "__ksymtab_gpl_future",
3068 sizeof(*mod->gpl_future_syms),
3069 &mod->num_gpl_future_syms);
3070 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3071
3072 #ifdef CONFIG_UNUSED_SYMBOLS
3073 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3074 sizeof(*mod->unused_syms),
3075 &mod->num_unused_syms);
3076 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3077 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3078 sizeof(*mod->unused_gpl_syms),
3079 &mod->num_unused_gpl_syms);
3080 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3081 #endif
3082 #ifdef CONFIG_CONSTRUCTORS
3083 mod->ctors = section_objs(info, ".ctors",
3084 sizeof(*mod->ctors), &mod->num_ctors);
3085 if (!mod->ctors)
3086 mod->ctors = section_objs(info, ".init_array",
3087 sizeof(*mod->ctors), &mod->num_ctors);
3088 else if (find_sec(info, ".init_array")) {
3089 /*
3090 * This shouldn't happen with same compiler and binutils
3091 * building all parts of the module.
3092 */
3093 pr_warn("%s: has both .ctors and .init_array.\n",
3094 mod->name);
3095 return -EINVAL;
3096 }
3097 #endif
3098
3099 #ifdef CONFIG_TRACEPOINTS
3100 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3101 sizeof(*mod->tracepoints_ptrs),
3102 &mod->num_tracepoints);
3103 #endif
3104 #ifdef HAVE_JUMP_LABEL
3105 mod->jump_entries = section_objs(info, "__jump_table",
3106 sizeof(*mod->jump_entries),
3107 &mod->num_jump_entries);
3108 #endif
3109 #ifdef CONFIG_EVENT_TRACING
3110 mod->trace_events = section_objs(info, "_ftrace_events",
3111 sizeof(*mod->trace_events),
3112 &mod->num_trace_events);
3113 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3114 sizeof(*mod->trace_evals),
3115 &mod->num_trace_evals);
3116 #endif
3117 #ifdef CONFIG_TRACING
3118 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3119 sizeof(*mod->trace_bprintk_fmt_start),
3120 &mod->num_trace_bprintk_fmt);
3121 #endif
3122 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3123 /* sechdrs[0].sh_size is always zero */
3124 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3125 sizeof(*mod->ftrace_callsites),
3126 &mod->num_ftrace_callsites);
3127 #endif
3128 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3129 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3130 sizeof(*mod->ei_funcs),
3131 &mod->num_ei_funcs);
3132 #endif
3133 mod->extable = section_objs(info, "__ex_table",
3134 sizeof(*mod->extable), &mod->num_exentries);
3135
3136 if (section_addr(info, "__obsparm"))
3137 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3138
3139 info->debug = section_objs(info, "__verbose",
3140 sizeof(*info->debug), &info->num_debug);
3141
3142 return 0;
3143 }
3144
3145 static int move_module(struct module *mod, struct load_info *info)
3146 {
3147 int i;
3148 void *ptr;
3149
3150 /* Do the allocs. */
3151 ptr = module_alloc(mod->core_layout.size);
3152 /*
3153 * The pointer to this block is stored in the module structure
3154 * which is inside the block. Just mark it as not being a
3155 * leak.
3156 */
3157 kmemleak_not_leak(ptr);
3158 if (!ptr)
3159 return -ENOMEM;
3160
3161 memset(ptr, 0, mod->core_layout.size);
3162 mod->core_layout.base = ptr;
3163
3164 if (mod->init_layout.size) {
3165 ptr = module_alloc(mod->init_layout.size);
3166 /*
3167 * The pointer to this block is stored in the module structure
3168 * which is inside the block. This block doesn't need to be
3169 * scanned as it contains data and code that will be freed
3170 * after the module is initialized.
3171 */
3172 kmemleak_ignore(ptr);
3173 if (!ptr) {
3174 module_memfree(mod->core_layout.base);
3175 return -ENOMEM;
3176 }
3177 memset(ptr, 0, mod->init_layout.size);
3178 mod->init_layout.base = ptr;
3179 } else
3180 mod->init_layout.base = NULL;
3181
3182 /* Transfer each section which specifies SHF_ALLOC */
3183 pr_debug("final section addresses:\n");
3184 for (i = 0; i < info->hdr->e_shnum; i++) {
3185 void *dest;
3186 Elf_Shdr *shdr = &info->sechdrs[i];
3187
3188 if (!(shdr->sh_flags & SHF_ALLOC))
3189 continue;
3190
3191 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3192 dest = mod->init_layout.base
3193 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3194 else
3195 dest = mod->core_layout.base + shdr->sh_entsize;
3196
3197 if (shdr->sh_type != SHT_NOBITS)
3198 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3199 /* Update sh_addr to point to copy in image. */
3200 shdr->sh_addr = (unsigned long)dest;
3201 pr_debug("\t0x%lx %s\n",
3202 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3203 }
3204
3205 return 0;
3206 }
3207
3208 static int check_module_license_and_versions(struct module *mod)
3209 {
3210 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3211
3212 /*
3213 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3214 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3215 * using GPL-only symbols it needs.
3216 */
3217 if (strcmp(mod->name, "ndiswrapper") == 0)
3218 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3219
3220 /* driverloader was caught wrongly pretending to be under GPL */
3221 if (strcmp(mod->name, "driverloader") == 0)
3222 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3223 LOCKDEP_NOW_UNRELIABLE);
3224
3225 /* lve claims to be GPL but upstream won't provide source */
3226 if (strcmp(mod->name, "lve") == 0)
3227 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3228 LOCKDEP_NOW_UNRELIABLE);
3229
3230 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3231 pr_warn("%s: module license taints kernel.\n", mod->name);
3232
3233 #ifdef CONFIG_MODVERSIONS
3234 if ((mod->num_syms && !mod->crcs)
3235 || (mod->num_gpl_syms && !mod->gpl_crcs)
3236 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3237 #ifdef CONFIG_UNUSED_SYMBOLS
3238 || (mod->num_unused_syms && !mod->unused_crcs)
3239 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3240 #endif
3241 ) {
3242 return try_to_force_load(mod,
3243 "no versions for exported symbols");
3244 }
3245 #endif
3246 return 0;
3247 }
3248
3249 static void flush_module_icache(const struct module *mod)
3250 {
3251 mm_segment_t old_fs;
3252
3253 /* flush the icache in correct context */
3254 old_fs = get_fs();
3255 set_fs(KERNEL_DS);
3256
3257 /*
3258 * Flush the instruction cache, since we've played with text.
3259 * Do it before processing of module parameters, so the module
3260 * can provide parameter accessor functions of its own.
3261 */
3262 if (mod->init_layout.base)
3263 flush_icache_range((unsigned long)mod->init_layout.base,
3264 (unsigned long)mod->init_layout.base
3265 + mod->init_layout.size);
3266 flush_icache_range((unsigned long)mod->core_layout.base,
3267 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3268
3269 set_fs(old_fs);
3270 }
3271
3272 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3273 Elf_Shdr *sechdrs,
3274 char *secstrings,
3275 struct module *mod)
3276 {
3277 return 0;
3278 }
3279
3280 /* module_blacklist is a comma-separated list of module names */
3281 static char *module_blacklist;
3282 static bool blacklisted(const char *module_name)
3283 {
3284 const char *p;
3285 size_t len;
3286
3287 if (!module_blacklist)
3288 return false;
3289
3290 for (p = module_blacklist; *p; p += len) {
3291 len = strcspn(p, ",");
3292 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3293 return true;
3294 if (p[len] == ',')
3295 len++;
3296 }
3297 return false;
3298 }
3299 core_param(module_blacklist, module_blacklist, charp, 0400);
3300
3301 static struct module *layout_and_allocate(struct load_info *info, int flags)
3302 {
3303 /* Module within temporary copy. */
3304 struct module *mod;
3305 unsigned int ndx;
3306 int err;
3307
3308 mod = setup_load_info(info, flags);
3309 if (IS_ERR(mod))
3310 return mod;
3311
3312 if (blacklisted(info->name))
3313 return ERR_PTR(-EPERM);
3314
3315 err = check_modinfo(mod, info, flags);
3316 if (err)
3317 return ERR_PTR(err);
3318
3319 /* Allow arches to frob section contents and sizes. */
3320 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3321 info->secstrings, mod);
3322 if (err < 0)
3323 return ERR_PTR(err);
3324
3325 /* We will do a special allocation for per-cpu sections later. */
3326 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3327
3328 /*
3329 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3330 * layout_sections() can put it in the right place.
3331 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3332 */
3333 ndx = find_sec(info, ".data..ro_after_init");
3334 if (ndx)
3335 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3336
3337 /* Determine total sizes, and put offsets in sh_entsize. For now
3338 this is done generically; there doesn't appear to be any
3339 special cases for the architectures. */
3340 layout_sections(mod, info);
3341 layout_symtab(mod, info);
3342
3343 /* Allocate and move to the final place */
3344 err = move_module(mod, info);
3345 if (err)
3346 return ERR_PTR(err);
3347
3348 /* Module has been copied to its final place now: return it. */
3349 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3350 kmemleak_load_module(mod, info);
3351 return mod;
3352 }
3353
3354 /* mod is no longer valid after this! */
3355 static void module_deallocate(struct module *mod, struct load_info *info)
3356 {
3357 percpu_modfree(mod);
3358 module_arch_freeing_init(mod);
3359 module_memfree(mod->init_layout.base);
3360 module_memfree(mod->core_layout.base);
3361 }
3362
3363 int __weak module_finalize(const Elf_Ehdr *hdr,
3364 const Elf_Shdr *sechdrs,
3365 struct module *me)
3366 {
3367 return 0;
3368 }
3369
3370 static int post_relocation(struct module *mod, const struct load_info *info)
3371 {
3372 /* Sort exception table now relocations are done. */
3373 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3374
3375 /* Copy relocated percpu area over. */
3376 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3377 info->sechdrs[info->index.pcpu].sh_size);
3378
3379 /* Setup kallsyms-specific fields. */
3380 add_kallsyms(mod, info);
3381
3382 /* Arch-specific module finalizing. */
3383 return module_finalize(info->hdr, info->sechdrs, mod);
3384 }
3385
3386 /* Is this module of this name done loading? No locks held. */
3387 static bool finished_loading(const char *name)
3388 {
3389 struct module *mod;
3390 bool ret;
3391
3392 /*
3393 * The module_mutex should not be a heavily contended lock;
3394 * if we get the occasional sleep here, we'll go an extra iteration
3395 * in the wait_event_interruptible(), which is harmless.
3396 */
3397 sched_annotate_sleep();
3398 mutex_lock(&module_mutex);
3399 mod = find_module_all(name, strlen(name), true);
3400 ret = !mod || mod->state == MODULE_STATE_LIVE
3401 || mod->state == MODULE_STATE_GOING;
3402 mutex_unlock(&module_mutex);
3403
3404 return ret;
3405 }
3406
3407 /* Call module constructors. */
3408 static void do_mod_ctors(struct module *mod)
3409 {
3410 #ifdef CONFIG_CONSTRUCTORS
3411 unsigned long i;
3412
3413 for (i = 0; i < mod->num_ctors; i++)
3414 mod->ctors[i]();
3415 #endif
3416 }
3417
3418 /* For freeing module_init on success, in case kallsyms traversing */
3419 struct mod_initfree {
3420 struct rcu_head rcu;
3421 void *module_init;
3422 };
3423
3424 static void do_free_init(struct rcu_head *head)
3425 {
3426 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3427 module_memfree(m->module_init);
3428 kfree(m);
3429 }
3430
3431 /*
3432 * This is where the real work happens.
3433 *
3434 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3435 * helper command 'lx-symbols'.
3436 */
3437 static noinline int do_init_module(struct module *mod)
3438 {
3439 int ret = 0;
3440 struct mod_initfree *freeinit;
3441
3442 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3443 if (!freeinit) {
3444 ret = -ENOMEM;
3445 goto fail;
3446 }
3447 freeinit->module_init = mod->init_layout.base;
3448
3449 /*
3450 * We want to find out whether @mod uses async during init. Clear
3451 * PF_USED_ASYNC. async_schedule*() will set it.
3452 */
3453 current->flags &= ~PF_USED_ASYNC;
3454
3455 do_mod_ctors(mod);
3456 /* Start the module */
3457 if (mod->init != NULL)
3458 ret = do_one_initcall(mod->init);
3459 if (ret < 0) {
3460 goto fail_free_freeinit;
3461 }
3462 if (ret > 0) {
3463 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3464 "follow 0/-E convention\n"
3465 "%s: loading module anyway...\n",
3466 __func__, mod->name, ret, __func__);
3467 dump_stack();
3468 }
3469
3470 /* Now it's a first class citizen! */
3471 mod->state = MODULE_STATE_LIVE;
3472 blocking_notifier_call_chain(&module_notify_list,
3473 MODULE_STATE_LIVE, mod);
3474
3475 /*
3476 * We need to finish all async code before the module init sequence
3477 * is done. This has potential to deadlock. For example, a newly
3478 * detected block device can trigger request_module() of the
3479 * default iosched from async probing task. Once userland helper
3480 * reaches here, async_synchronize_full() will wait on the async
3481 * task waiting on request_module() and deadlock.
3482 *
3483 * This deadlock is avoided by perfomring async_synchronize_full()
3484 * iff module init queued any async jobs. This isn't a full
3485 * solution as it will deadlock the same if module loading from
3486 * async jobs nests more than once; however, due to the various
3487 * constraints, this hack seems to be the best option for now.
3488 * Please refer to the following thread for details.
3489 *
3490 * http://thread.gmane.org/gmane.linux.kernel/1420814
3491 */
3492 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3493 async_synchronize_full();
3494
3495 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3496 mod->init_layout.size);
3497 mutex_lock(&module_mutex);
3498 /* Drop initial reference. */
3499 module_put(mod);
3500 trim_init_extable(mod);
3501 #ifdef CONFIG_KALLSYMS
3502 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3503 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3504 #endif
3505 module_enable_ro(mod, true);
3506 mod_tree_remove_init(mod);
3507 disable_ro_nx(&mod->init_layout);
3508 module_arch_freeing_init(mod);
3509 mod->init_layout.base = NULL;
3510 mod->init_layout.size = 0;
3511 mod->init_layout.ro_size = 0;
3512 mod->init_layout.ro_after_init_size = 0;
3513 mod->init_layout.text_size = 0;
3514 /*
3515 * We want to free module_init, but be aware that kallsyms may be
3516 * walking this with preempt disabled. In all the failure paths, we
3517 * call synchronize_sched(), but we don't want to slow down the success
3518 * path, so use actual RCU here.
3519 */
3520 call_rcu_sched(&freeinit->rcu, do_free_init);
3521 mutex_unlock(&module_mutex);
3522 wake_up_all(&module_wq);
3523
3524 return 0;
3525
3526 fail_free_freeinit:
3527 kfree(freeinit);
3528 fail:
3529 /* Try to protect us from buggy refcounters. */
3530 mod->state = MODULE_STATE_GOING;
3531 synchronize_sched();
3532 module_put(mod);
3533 blocking_notifier_call_chain(&module_notify_list,
3534 MODULE_STATE_GOING, mod);
3535 klp_module_going(mod);
3536 ftrace_release_mod(mod);
3537 free_module(mod);
3538 wake_up_all(&module_wq);
3539 return ret;
3540 }
3541
3542 static int may_init_module(void)
3543 {
3544 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3545 return -EPERM;
3546
3547 return 0;
3548 }
3549
3550 /*
3551 * We try to place it in the list now to make sure it's unique before
3552 * we dedicate too many resources. In particular, temporary percpu
3553 * memory exhaustion.
3554 */
3555 static int add_unformed_module(struct module *mod)
3556 {
3557 int err;
3558 struct module *old;
3559
3560 mod->state = MODULE_STATE_UNFORMED;
3561
3562 again:
3563 mutex_lock(&module_mutex);
3564 old = find_module_all(mod->name, strlen(mod->name), true);
3565 if (old != NULL) {
3566 if (old->state == MODULE_STATE_COMING
3567 || old->state == MODULE_STATE_UNFORMED) {
3568 /* Wait in case it fails to load. */
3569 mutex_unlock(&module_mutex);
3570 err = wait_event_interruptible(module_wq,
3571 finished_loading(mod->name));
3572 if (err)
3573 goto out_unlocked;
3574 goto again;
3575 }
3576 err = -EEXIST;
3577 goto out;
3578 }
3579 mod_update_bounds(mod);
3580 list_add_rcu(&mod->list, &modules);
3581 mod_tree_insert(mod);
3582 err = 0;
3583
3584 out:
3585 mutex_unlock(&module_mutex);
3586 out_unlocked:
3587 return err;
3588 }
3589
3590 static int complete_formation(struct module *mod, struct load_info *info)
3591 {
3592 int err;
3593
3594 mutex_lock(&module_mutex);
3595
3596 /* Find duplicate symbols (must be called under lock). */
3597 err = verify_export_symbols(mod);
3598 if (err < 0)
3599 goto out;
3600
3601 /* This relies on module_mutex for list integrity. */
3602 module_bug_finalize(info->hdr, info->sechdrs, mod);
3603
3604 module_enable_ro(mod, false);
3605 module_enable_nx(mod);
3606
3607 /* Mark state as coming so strong_try_module_get() ignores us,
3608 * but kallsyms etc. can see us. */
3609 mod->state = MODULE_STATE_COMING;
3610 mutex_unlock(&module_mutex);
3611
3612 return 0;
3613
3614 out:
3615 mutex_unlock(&module_mutex);
3616 return err;
3617 }
3618
3619 static int prepare_coming_module(struct module *mod)
3620 {
3621 int err;
3622
3623 ftrace_module_enable(mod);
3624 err = klp_module_coming(mod);
3625 if (err)
3626 return err;
3627
3628 blocking_notifier_call_chain(&module_notify_list,
3629 MODULE_STATE_COMING, mod);
3630 return 0;
3631 }
3632
3633 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3634 void *arg)
3635 {
3636 struct module *mod = arg;
3637 int ret;
3638
3639 if (strcmp(param, "async_probe") == 0) {
3640 mod->async_probe_requested = true;
3641 return 0;
3642 }
3643
3644 /* Check for magic 'dyndbg' arg */
3645 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3646 if (ret != 0)
3647 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3648 return 0;
3649 }
3650
3651 /* Allocate and load the module: note that size of section 0 is always
3652 zero, and we rely on this for optional sections. */
3653 static int load_module(struct load_info *info, const char __user *uargs,
3654 int flags)
3655 {
3656 struct module *mod;
3657 long err;
3658 char *after_dashes;
3659
3660 err = module_sig_check(info, flags);
3661 if (err)
3662 goto free_copy;
3663
3664 err = elf_header_check(info);
3665 if (err)
3666 goto free_copy;
3667
3668 /* Figure out module layout, and allocate all the memory. */
3669 mod = layout_and_allocate(info, flags);
3670 if (IS_ERR(mod)) {
3671 err = PTR_ERR(mod);
3672 goto free_copy;
3673 }
3674
3675 audit_log_kern_module(mod->name);
3676
3677 /* Reserve our place in the list. */
3678 err = add_unformed_module(mod);
3679 if (err)
3680 goto free_module;
3681
3682 #ifdef CONFIG_MODULE_SIG
3683 mod->sig_ok = info->sig_ok;
3684 if (!mod->sig_ok) {
3685 pr_notice_once("%s: module verification failed: signature "
3686 "and/or required key missing - tainting "
3687 "kernel\n", mod->name);
3688 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3689 }
3690 #endif
3691
3692 /* To avoid stressing percpu allocator, do this once we're unique. */
3693 err = percpu_modalloc(mod, info);
3694 if (err)
3695 goto unlink_mod;
3696
3697 /* Now module is in final location, initialize linked lists, etc. */
3698 err = module_unload_init(mod);
3699 if (err)
3700 goto unlink_mod;
3701
3702 init_param_lock(mod);
3703
3704 /* Now we've got everything in the final locations, we can
3705 * find optional sections. */
3706 err = find_module_sections(mod, info);
3707 if (err)
3708 goto free_unload;
3709
3710 err = check_module_license_and_versions(mod);
3711 if (err)
3712 goto free_unload;
3713
3714 /* Set up MODINFO_ATTR fields */
3715 setup_modinfo(mod, info);
3716
3717 /* Fix up syms, so that st_value is a pointer to location. */
3718 err = simplify_symbols(mod, info);
3719 if (err < 0)
3720 goto free_modinfo;
3721
3722 err = apply_relocations(mod, info);
3723 if (err < 0)
3724 goto free_modinfo;
3725
3726 err = post_relocation(mod, info);
3727 if (err < 0)
3728 goto free_modinfo;
3729
3730 flush_module_icache(mod);
3731
3732 /* Now copy in args */
3733 mod->args = strndup_user(uargs, ~0UL >> 1);
3734 if (IS_ERR(mod->args)) {
3735 err = PTR_ERR(mod->args);
3736 goto free_arch_cleanup;
3737 }
3738
3739 dynamic_debug_setup(mod, info->debug, info->num_debug);
3740
3741 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3742 ftrace_module_init(mod);
3743
3744 /* Finally it's fully formed, ready to start executing. */
3745 err = complete_formation(mod, info);
3746 if (err)
3747 goto ddebug_cleanup;
3748
3749 err = prepare_coming_module(mod);
3750 if (err)
3751 goto bug_cleanup;
3752
3753 /* Module is ready to execute: parsing args may do that. */
3754 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3755 -32768, 32767, mod,
3756 unknown_module_param_cb);
3757 if (IS_ERR(after_dashes)) {
3758 err = PTR_ERR(after_dashes);
3759 goto coming_cleanup;
3760 } else if (after_dashes) {
3761 pr_warn("%s: parameters '%s' after `--' ignored\n",
3762 mod->name, after_dashes);
3763 }
3764
3765 /* Link in to sysfs. */
3766 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3767 if (err < 0)
3768 goto coming_cleanup;
3769
3770 if (is_livepatch_module(mod)) {
3771 err = copy_module_elf(mod, info);
3772 if (err < 0)
3773 goto sysfs_cleanup;
3774 }
3775
3776 /* Get rid of temporary copy. */
3777 free_copy(info);
3778
3779 /* Done! */
3780 trace_module_load(mod);
3781
3782 return do_init_module(mod);
3783
3784 sysfs_cleanup:
3785 mod_sysfs_teardown(mod);
3786 coming_cleanup:
3787 mod->state = MODULE_STATE_GOING;
3788 destroy_params(mod->kp, mod->num_kp);
3789 blocking_notifier_call_chain(&module_notify_list,
3790 MODULE_STATE_GOING, mod);
3791 klp_module_going(mod);
3792 bug_cleanup:
3793 /* module_bug_cleanup needs module_mutex protection */
3794 mutex_lock(&module_mutex);
3795 module_bug_cleanup(mod);
3796 mutex_unlock(&module_mutex);
3797
3798 /* we can't deallocate the module until we clear memory protection */
3799 module_disable_ro(mod);
3800 module_disable_nx(mod);
3801
3802 ddebug_cleanup:
3803 ftrace_release_mod(mod);
3804 dynamic_debug_remove(mod, info->debug);
3805 synchronize_sched();
3806 kfree(mod->args);
3807 free_arch_cleanup:
3808 module_arch_cleanup(mod);
3809 free_modinfo:
3810 free_modinfo(mod);
3811 free_unload:
3812 module_unload_free(mod);
3813 unlink_mod:
3814 mutex_lock(&module_mutex);
3815 /* Unlink carefully: kallsyms could be walking list. */
3816 list_del_rcu(&mod->list);
3817 mod_tree_remove(mod);
3818 wake_up_all(&module_wq);
3819 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3820 synchronize_sched();
3821 mutex_unlock(&module_mutex);
3822 free_module:
3823 /* Free lock-classes; relies on the preceding sync_rcu() */
3824 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3825
3826 module_deallocate(mod, info);
3827 free_copy:
3828 free_copy(info);
3829 return err;
3830 }
3831
3832 SYSCALL_DEFINE3(init_module, void __user *, umod,
3833 unsigned long, len, const char __user *, uargs)
3834 {
3835 int err;
3836 struct load_info info = { };
3837
3838 err = may_init_module();
3839 if (err)
3840 return err;
3841
3842 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3843 umod, len, uargs);
3844
3845 err = copy_module_from_user(umod, len, &info);
3846 if (err)
3847 return err;
3848
3849 return load_module(&info, uargs, 0);
3850 }
3851
3852 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3853 {
3854 struct load_info info = { };
3855 loff_t size;
3856 void *hdr;
3857 int err;
3858
3859 err = may_init_module();
3860 if (err)
3861 return err;
3862
3863 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3864
3865 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3866 |MODULE_INIT_IGNORE_VERMAGIC))
3867 return -EINVAL;
3868
3869 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3870 READING_MODULE);
3871 if (err)
3872 return err;
3873 info.hdr = hdr;
3874 info.len = size;
3875
3876 return load_module(&info, uargs, flags);
3877 }
3878
3879 static inline int within(unsigned long addr, void *start, unsigned long size)
3880 {
3881 return ((void *)addr >= start && (void *)addr < start + size);
3882 }
3883
3884 #ifdef CONFIG_KALLSYMS
3885 /*
3886 * This ignores the intensely annoying "mapping symbols" found
3887 * in ARM ELF files: $a, $t and $d.
3888 */
3889 static inline int is_arm_mapping_symbol(const char *str)
3890 {
3891 if (str[0] == '.' && str[1] == 'L')
3892 return true;
3893 return str[0] == '$' && strchr("axtd", str[1])
3894 && (str[2] == '\0' || str[2] == '.');
3895 }
3896
3897 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3898 {
3899 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3900 }
3901
3902 static const char *get_ksymbol(struct module *mod,
3903 unsigned long addr,
3904 unsigned long *size,
3905 unsigned long *offset)
3906 {
3907 unsigned int i, best = 0;
3908 unsigned long nextval;
3909 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3910
3911 /* At worse, next value is at end of module */
3912 if (within_module_init(addr, mod))
3913 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3914 else
3915 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3916
3917 /* Scan for closest preceding symbol, and next symbol. (ELF
3918 starts real symbols at 1). */
3919 for (i = 1; i < kallsyms->num_symtab; i++) {
3920 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3921 continue;
3922
3923 /* We ignore unnamed symbols: they're uninformative
3924 * and inserted at a whim. */
3925 if (*symname(kallsyms, i) == '\0'
3926 || is_arm_mapping_symbol(symname(kallsyms, i)))
3927 continue;
3928
3929 if (kallsyms->symtab[i].st_value <= addr
3930 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3931 best = i;
3932 if (kallsyms->symtab[i].st_value > addr
3933 && kallsyms->symtab[i].st_value < nextval)
3934 nextval = kallsyms->symtab[i].st_value;
3935 }
3936
3937 if (!best)
3938 return NULL;
3939
3940 if (size)
3941 *size = nextval - kallsyms->symtab[best].st_value;
3942 if (offset)
3943 *offset = addr - kallsyms->symtab[best].st_value;
3944 return symname(kallsyms, best);
3945 }
3946
3947 void * __weak dereference_module_function_descriptor(struct module *mod,
3948 void *ptr)
3949 {
3950 return ptr;
3951 }
3952
3953 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3954 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3955 const char *module_address_lookup(unsigned long addr,
3956 unsigned long *size,
3957 unsigned long *offset,
3958 char **modname,
3959 char *namebuf)
3960 {
3961 const char *ret = NULL;
3962 struct module *mod;
3963
3964 preempt_disable();
3965 mod = __module_address(addr);
3966 if (mod) {
3967 if (modname)
3968 *modname = mod->name;
3969 ret = get_ksymbol(mod, addr, size, offset);
3970 }
3971 /* Make a copy in here where it's safe */
3972 if (ret) {
3973 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3974 ret = namebuf;
3975 }
3976 preempt_enable();
3977
3978 return ret;
3979 }
3980
3981 int lookup_module_symbol_name(unsigned long addr, char *symname)
3982 {
3983 struct module *mod;
3984
3985 preempt_disable();
3986 list_for_each_entry_rcu(mod, &modules, list) {
3987 if (mod->state == MODULE_STATE_UNFORMED)
3988 continue;
3989 if (within_module(addr, mod)) {
3990 const char *sym;
3991
3992 sym = get_ksymbol(mod, addr, NULL, NULL);
3993 if (!sym)
3994 goto out;
3995 strlcpy(symname, sym, KSYM_NAME_LEN);
3996 preempt_enable();
3997 return 0;
3998 }
3999 }
4000 out:
4001 preempt_enable();
4002 return -ERANGE;
4003 }
4004
4005 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4006 unsigned long *offset, char *modname, char *name)
4007 {
4008 struct module *mod;
4009
4010 preempt_disable();
4011 list_for_each_entry_rcu(mod, &modules, list) {
4012 if (mod->state == MODULE_STATE_UNFORMED)
4013 continue;
4014 if (within_module(addr, mod)) {
4015 const char *sym;
4016
4017 sym = get_ksymbol(mod, addr, size, offset);
4018 if (!sym)
4019 goto out;
4020 if (modname)
4021 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4022 if (name)
4023 strlcpy(name, sym, KSYM_NAME_LEN);
4024 preempt_enable();
4025 return 0;
4026 }
4027 }
4028 out:
4029 preempt_enable();
4030 return -ERANGE;
4031 }
4032
4033 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4034 char *name, char *module_name, int *exported)
4035 {
4036 struct module *mod;
4037
4038 preempt_disable();
4039 list_for_each_entry_rcu(mod, &modules, list) {
4040 struct mod_kallsyms *kallsyms;
4041
4042 if (mod->state == MODULE_STATE_UNFORMED)
4043 continue;
4044 kallsyms = rcu_dereference_sched(mod->kallsyms);
4045 if (symnum < kallsyms->num_symtab) {
4046 *value = kallsyms->symtab[symnum].st_value;
4047 *type = kallsyms->symtab[symnum].st_info;
4048 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4049 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4050 *exported = is_exported(name, *value, mod);
4051 preempt_enable();
4052 return 0;
4053 }
4054 symnum -= kallsyms->num_symtab;
4055 }
4056 preempt_enable();
4057 return -ERANGE;
4058 }
4059
4060 static unsigned long mod_find_symname(struct module *mod, const char *name)
4061 {
4062 unsigned int i;
4063 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4064
4065 for (i = 0; i < kallsyms->num_symtab; i++)
4066 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4067 kallsyms->symtab[i].st_info != 'U')
4068 return kallsyms->symtab[i].st_value;
4069 return 0;
4070 }
4071
4072 /* Look for this name: can be of form module:name. */
4073 unsigned long module_kallsyms_lookup_name(const char *name)
4074 {
4075 struct module *mod;
4076 char *colon;
4077 unsigned long ret = 0;
4078
4079 /* Don't lock: we're in enough trouble already. */
4080 preempt_disable();
4081 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4082 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4083 ret = mod_find_symname(mod, colon+1);
4084 } else {
4085 list_for_each_entry_rcu(mod, &modules, list) {
4086 if (mod->state == MODULE_STATE_UNFORMED)
4087 continue;
4088 if ((ret = mod_find_symname(mod, name)) != 0)
4089 break;
4090 }
4091 }
4092 preempt_enable();
4093 return ret;
4094 }
4095
4096 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4097 struct module *, unsigned long),
4098 void *data)
4099 {
4100 struct module *mod;
4101 unsigned int i;
4102 int ret;
4103
4104 module_assert_mutex();
4105
4106 list_for_each_entry(mod, &modules, list) {
4107 /* We hold module_mutex: no need for rcu_dereference_sched */
4108 struct mod_kallsyms *kallsyms = mod->kallsyms;
4109
4110 if (mod->state == MODULE_STATE_UNFORMED)
4111 continue;
4112 for (i = 0; i < kallsyms->num_symtab; i++) {
4113 ret = fn(data, symname(kallsyms, i),
4114 mod, kallsyms->symtab[i].st_value);
4115 if (ret != 0)
4116 return ret;
4117 }
4118 }
4119 return 0;
4120 }
4121 #endif /* CONFIG_KALLSYMS */
4122
4123 /* Maximum number of characters written by module_flags() */
4124 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4125
4126 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4127 static char *module_flags(struct module *mod, char *buf)
4128 {
4129 int bx = 0;
4130
4131 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4132 if (mod->taints ||
4133 mod->state == MODULE_STATE_GOING ||
4134 mod->state == MODULE_STATE_COMING) {
4135 buf[bx++] = '(';
4136 bx += module_flags_taint(mod, buf + bx);
4137 /* Show a - for module-is-being-unloaded */
4138 if (mod->state == MODULE_STATE_GOING)
4139 buf[bx++] = '-';
4140 /* Show a + for module-is-being-loaded */
4141 if (mod->state == MODULE_STATE_COMING)
4142 buf[bx++] = '+';
4143 buf[bx++] = ')';
4144 }
4145 buf[bx] = '\0';
4146
4147 return buf;
4148 }
4149
4150 #ifdef CONFIG_PROC_FS
4151 /* Called by the /proc file system to return a list of modules. */
4152 static void *m_start(struct seq_file *m, loff_t *pos)
4153 {
4154 mutex_lock(&module_mutex);
4155 return seq_list_start(&modules, *pos);
4156 }
4157
4158 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4159 {
4160 return seq_list_next(p, &modules, pos);
4161 }
4162
4163 static void m_stop(struct seq_file *m, void *p)
4164 {
4165 mutex_unlock(&module_mutex);
4166 }
4167
4168 static int m_show(struct seq_file *m, void *p)
4169 {
4170 struct module *mod = list_entry(p, struct module, list);
4171 char buf[MODULE_FLAGS_BUF_SIZE];
4172 void *value;
4173
4174 /* We always ignore unformed modules. */
4175 if (mod->state == MODULE_STATE_UNFORMED)
4176 return 0;
4177
4178 seq_printf(m, "%s %u",
4179 mod->name, mod->init_layout.size + mod->core_layout.size);
4180 print_unload_info(m, mod);
4181
4182 /* Informative for users. */
4183 seq_printf(m, " %s",
4184 mod->state == MODULE_STATE_GOING ? "Unloading" :
4185 mod->state == MODULE_STATE_COMING ? "Loading" :
4186 "Live");
4187 /* Used by oprofile and other similar tools. */
4188 value = m->private ? NULL : mod->core_layout.base;
4189 seq_printf(m, " 0x%px", value);
4190
4191 /* Taints info */
4192 if (mod->taints)
4193 seq_printf(m, " %s", module_flags(mod, buf));
4194
4195 seq_puts(m, "\n");
4196 return 0;
4197 }
4198
4199 /* Format: modulename size refcount deps address
4200
4201 Where refcount is a number or -, and deps is a comma-separated list
4202 of depends or -.
4203 */
4204 static const struct seq_operations modules_op = {
4205 .start = m_start,
4206 .next = m_next,
4207 .stop = m_stop,
4208 .show = m_show
4209 };
4210
4211 /*
4212 * This also sets the "private" pointer to non-NULL if the
4213 * kernel pointers should be hidden (so you can just test
4214 * "m->private" to see if you should keep the values private).
4215 *
4216 * We use the same logic as for /proc/kallsyms.
4217 */
4218 static int modules_open(struct inode *inode, struct file *file)
4219 {
4220 int err = seq_open(file, &modules_op);
4221
4222 if (!err) {
4223 struct seq_file *m = file->private_data;
4224 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4225 }
4226
4227 return err;
4228 }
4229
4230 static const struct file_operations proc_modules_operations = {
4231 .open = modules_open,
4232 .read = seq_read,
4233 .llseek = seq_lseek,
4234 .release = seq_release,
4235 };
4236
4237 static int __init proc_modules_init(void)
4238 {
4239 proc_create("modules", 0, NULL, &proc_modules_operations);
4240 return 0;
4241 }
4242 module_init(proc_modules_init);
4243 #endif
4244
4245 /* Given an address, look for it in the module exception tables. */
4246 const struct exception_table_entry *search_module_extables(unsigned long addr)
4247 {
4248 const struct exception_table_entry *e = NULL;
4249 struct module *mod;
4250
4251 preempt_disable();
4252 mod = __module_address(addr);
4253 if (!mod)
4254 goto out;
4255
4256 if (!mod->num_exentries)
4257 goto out;
4258
4259 e = search_extable(mod->extable,
4260 mod->num_exentries,
4261 addr);
4262 out:
4263 preempt_enable();
4264
4265 /*
4266 * Now, if we found one, we are running inside it now, hence
4267 * we cannot unload the module, hence no refcnt needed.
4268 */
4269 return e;
4270 }
4271
4272 /*
4273 * is_module_address - is this address inside a module?
4274 * @addr: the address to check.
4275 *
4276 * See is_module_text_address() if you simply want to see if the address
4277 * is code (not data).
4278 */
4279 bool is_module_address(unsigned long addr)
4280 {
4281 bool ret;
4282
4283 preempt_disable();
4284 ret = __module_address(addr) != NULL;
4285 preempt_enable();
4286
4287 return ret;
4288 }
4289
4290 /*
4291 * __module_address - get the module which contains an address.
4292 * @addr: the address.
4293 *
4294 * Must be called with preempt disabled or module mutex held so that
4295 * module doesn't get freed during this.
4296 */
4297 struct module *__module_address(unsigned long addr)
4298 {
4299 struct module *mod;
4300
4301 if (addr < module_addr_min || addr > module_addr_max)
4302 return NULL;
4303
4304 module_assert_mutex_or_preempt();
4305
4306 mod = mod_find(addr);
4307 if (mod) {
4308 BUG_ON(!within_module(addr, mod));
4309 if (mod->state == MODULE_STATE_UNFORMED)
4310 mod = NULL;
4311 }
4312 return mod;
4313 }
4314 EXPORT_SYMBOL_GPL(__module_address);
4315
4316 /*
4317 * is_module_text_address - is this address inside module code?
4318 * @addr: the address to check.
4319 *
4320 * See is_module_address() if you simply want to see if the address is
4321 * anywhere in a module. See kernel_text_address() for testing if an
4322 * address corresponds to kernel or module code.
4323 */
4324 bool is_module_text_address(unsigned long addr)
4325 {
4326 bool ret;
4327
4328 preempt_disable();
4329 ret = __module_text_address(addr) != NULL;
4330 preempt_enable();
4331
4332 return ret;
4333 }
4334
4335 /*
4336 * __module_text_address - get the module whose code contains an address.
4337 * @addr: the address.
4338 *
4339 * Must be called with preempt disabled or module mutex held so that
4340 * module doesn't get freed during this.
4341 */
4342 struct module *__module_text_address(unsigned long addr)
4343 {
4344 struct module *mod = __module_address(addr);
4345 if (mod) {
4346 /* Make sure it's within the text section. */
4347 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4348 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4349 mod = NULL;
4350 }
4351 return mod;
4352 }
4353 EXPORT_SYMBOL_GPL(__module_text_address);
4354
4355 /* Don't grab lock, we're oopsing. */
4356 void print_modules(void)
4357 {
4358 struct module *mod;
4359 char buf[MODULE_FLAGS_BUF_SIZE];
4360
4361 printk(KERN_DEFAULT "Modules linked in:");
4362 /* Most callers should already have preempt disabled, but make sure */
4363 preempt_disable();
4364 list_for_each_entry_rcu(mod, &modules, list) {
4365 if (mod->state == MODULE_STATE_UNFORMED)
4366 continue;
4367 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4368 }
4369 preempt_enable();
4370 if (last_unloaded_module[0])
4371 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4372 pr_cont("\n");
4373 }
4374
4375 #ifdef CONFIG_MODVERSIONS
4376 /* Generate the signature for all relevant module structures here.
4377 * If these change, we don't want to try to parse the module. */
4378 void module_layout(struct module *mod,
4379 struct modversion_info *ver,
4380 struct kernel_param *kp,
4381 struct kernel_symbol *ks,
4382 struct tracepoint * const *tp)
4383 {
4384 }
4385 EXPORT_SYMBOL(module_layout);
4386 #endif