]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/module.c
b99dcebc980d035d97e354f967500cbe2f905107
[mirror_ubuntu-bionic-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/module.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58 #include <linux/jump_label.h>
59 #include <linux/pfn.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/module.h>
63
64 #if 0
65 #define DEBUGP printk
66 #else
67 #define DEBUGP(fmt , a...)
68 #endif
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110
111 /* Block module loading/unloading? */
112 int modules_disabled = 0;
113
114 /* Waiting for a module to finish initializing? */
115 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
116
117 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
118
119 /* Bounds of module allocation, for speeding __module_address.
120 * Protected by module_mutex. */
121 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
122
123 int register_module_notifier(struct notifier_block * nb)
124 {
125 return blocking_notifier_chain_register(&module_notify_list, nb);
126 }
127 EXPORT_SYMBOL(register_module_notifier);
128
129 int unregister_module_notifier(struct notifier_block * nb)
130 {
131 return blocking_notifier_chain_unregister(&module_notify_list, nb);
132 }
133 EXPORT_SYMBOL(unregister_module_notifier);
134
135 struct load_info {
136 Elf_Ehdr *hdr;
137 unsigned long len;
138 Elf_Shdr *sechdrs;
139 char *secstrings, *strtab;
140 unsigned long *strmap;
141 unsigned long symoffs, stroffs;
142 struct _ddebug *debug;
143 unsigned int num_debug;
144 struct {
145 unsigned int sym, str, mod, vers, info, pcpu;
146 } index;
147 };
148
149 /* We require a truly strong try_module_get(): 0 means failure due to
150 ongoing or failed initialization etc. */
151 static inline int strong_try_module_get(struct module *mod)
152 {
153 if (mod && mod->state == MODULE_STATE_COMING)
154 return -EBUSY;
155 if (try_module_get(mod))
156 return 0;
157 else
158 return -ENOENT;
159 }
160
161 static inline void add_taint_module(struct module *mod, unsigned flag)
162 {
163 add_taint(flag);
164 mod->taints |= (1U << flag);
165 }
166
167 /*
168 * A thread that wants to hold a reference to a module only while it
169 * is running can call this to safely exit. nfsd and lockd use this.
170 */
171 void __module_put_and_exit(struct module *mod, long code)
172 {
173 module_put(mod);
174 do_exit(code);
175 }
176 EXPORT_SYMBOL(__module_put_and_exit);
177
178 /* Find a module section: 0 means not found. */
179 static unsigned int find_sec(const struct load_info *info, const char *name)
180 {
181 unsigned int i;
182
183 for (i = 1; i < info->hdr->e_shnum; i++) {
184 Elf_Shdr *shdr = &info->sechdrs[i];
185 /* Alloc bit cleared means "ignore it." */
186 if ((shdr->sh_flags & SHF_ALLOC)
187 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
188 return i;
189 }
190 return 0;
191 }
192
193 /* Find a module section, or NULL. */
194 static void *section_addr(const struct load_info *info, const char *name)
195 {
196 /* Section 0 has sh_addr 0. */
197 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
198 }
199
200 /* Find a module section, or NULL. Fill in number of "objects" in section. */
201 static void *section_objs(const struct load_info *info,
202 const char *name,
203 size_t object_size,
204 unsigned int *num)
205 {
206 unsigned int sec = find_sec(info, name);
207
208 /* Section 0 has sh_addr 0 and sh_size 0. */
209 *num = info->sechdrs[sec].sh_size / object_size;
210 return (void *)info->sechdrs[sec].sh_addr;
211 }
212
213 /* Provided by the linker */
214 extern const struct kernel_symbol __start___ksymtab[];
215 extern const struct kernel_symbol __stop___ksymtab[];
216 extern const struct kernel_symbol __start___ksymtab_gpl[];
217 extern const struct kernel_symbol __stop___ksymtab_gpl[];
218 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
219 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
220 extern const unsigned long __start___kcrctab[];
221 extern const unsigned long __start___kcrctab_gpl[];
222 extern const unsigned long __start___kcrctab_gpl_future[];
223 #ifdef CONFIG_UNUSED_SYMBOLS
224 extern const struct kernel_symbol __start___ksymtab_unused[];
225 extern const struct kernel_symbol __stop___ksymtab_unused[];
226 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
227 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
228 extern const unsigned long __start___kcrctab_unused[];
229 extern const unsigned long __start___kcrctab_unused_gpl[];
230 #endif
231
232 #ifndef CONFIG_MODVERSIONS
233 #define symversion(base, idx) NULL
234 #else
235 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
236 #endif
237
238 static bool each_symbol_in_section(const struct symsearch *arr,
239 unsigned int arrsize,
240 struct module *owner,
241 bool (*fn)(const struct symsearch *syms,
242 struct module *owner,
243 unsigned int symnum, void *data),
244 void *data)
245 {
246 unsigned int i, j;
247
248 for (j = 0; j < arrsize; j++) {
249 for (i = 0; i < arr[j].stop - arr[j].start; i++)
250 if (fn(&arr[j], owner, i, data))
251 return true;
252 }
253
254 return false;
255 }
256
257 /* Returns true as soon as fn returns true, otherwise false. */
258 bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
259 unsigned int symnum, void *data), void *data)
260 {
261 struct module *mod;
262 static const struct symsearch arr[] = {
263 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
264 NOT_GPL_ONLY, false },
265 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
266 __start___kcrctab_gpl,
267 GPL_ONLY, false },
268 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
269 __start___kcrctab_gpl_future,
270 WILL_BE_GPL_ONLY, false },
271 #ifdef CONFIG_UNUSED_SYMBOLS
272 { __start___ksymtab_unused, __stop___ksymtab_unused,
273 __start___kcrctab_unused,
274 NOT_GPL_ONLY, true },
275 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
276 __start___kcrctab_unused_gpl,
277 GPL_ONLY, true },
278 #endif
279 };
280
281 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
282 return true;
283
284 list_for_each_entry_rcu(mod, &modules, list) {
285 struct symsearch arr[] = {
286 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
287 NOT_GPL_ONLY, false },
288 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
289 mod->gpl_crcs,
290 GPL_ONLY, false },
291 { mod->gpl_future_syms,
292 mod->gpl_future_syms + mod->num_gpl_future_syms,
293 mod->gpl_future_crcs,
294 WILL_BE_GPL_ONLY, false },
295 #ifdef CONFIG_UNUSED_SYMBOLS
296 { mod->unused_syms,
297 mod->unused_syms + mod->num_unused_syms,
298 mod->unused_crcs,
299 NOT_GPL_ONLY, true },
300 { mod->unused_gpl_syms,
301 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
302 mod->unused_gpl_crcs,
303 GPL_ONLY, true },
304 #endif
305 };
306
307 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
308 return true;
309 }
310 return false;
311 }
312 EXPORT_SYMBOL_GPL(each_symbol);
313
314 struct find_symbol_arg {
315 /* Input */
316 const char *name;
317 bool gplok;
318 bool warn;
319
320 /* Output */
321 struct module *owner;
322 const unsigned long *crc;
323 const struct kernel_symbol *sym;
324 };
325
326 static bool find_symbol_in_section(const struct symsearch *syms,
327 struct module *owner,
328 unsigned int symnum, void *data)
329 {
330 struct find_symbol_arg *fsa = data;
331
332 if (strcmp(syms->start[symnum].name, fsa->name) != 0)
333 return false;
334
335 if (!fsa->gplok) {
336 if (syms->licence == GPL_ONLY)
337 return false;
338 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
339 printk(KERN_WARNING "Symbol %s is being used "
340 "by a non-GPL module, which will not "
341 "be allowed in the future\n", fsa->name);
342 printk(KERN_WARNING "Please see the file "
343 "Documentation/feature-removal-schedule.txt "
344 "in the kernel source tree for more details.\n");
345 }
346 }
347
348 #ifdef CONFIG_UNUSED_SYMBOLS
349 if (syms->unused && fsa->warn) {
350 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
351 "however this module is using it.\n", fsa->name);
352 printk(KERN_WARNING
353 "This symbol will go away in the future.\n");
354 printk(KERN_WARNING
355 "Please evalute if this is the right api to use and if "
356 "it really is, submit a report the linux kernel "
357 "mailinglist together with submitting your code for "
358 "inclusion.\n");
359 }
360 #endif
361
362 fsa->owner = owner;
363 fsa->crc = symversion(syms->crcs, symnum);
364 fsa->sym = &syms->start[symnum];
365 return true;
366 }
367
368 /* Find a symbol and return it, along with, (optional) crc and
369 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
370 const struct kernel_symbol *find_symbol(const char *name,
371 struct module **owner,
372 const unsigned long **crc,
373 bool gplok,
374 bool warn)
375 {
376 struct find_symbol_arg fsa;
377
378 fsa.name = name;
379 fsa.gplok = gplok;
380 fsa.warn = warn;
381
382 if (each_symbol(find_symbol_in_section, &fsa)) {
383 if (owner)
384 *owner = fsa.owner;
385 if (crc)
386 *crc = fsa.crc;
387 return fsa.sym;
388 }
389
390 DEBUGP("Failed to find symbol %s\n", name);
391 return NULL;
392 }
393 EXPORT_SYMBOL_GPL(find_symbol);
394
395 /* Search for module by name: must hold module_mutex. */
396 struct module *find_module(const char *name)
397 {
398 struct module *mod;
399
400 list_for_each_entry(mod, &modules, list) {
401 if (strcmp(mod->name, name) == 0)
402 return mod;
403 }
404 return NULL;
405 }
406 EXPORT_SYMBOL_GPL(find_module);
407
408 #ifdef CONFIG_SMP
409
410 static inline void __percpu *mod_percpu(struct module *mod)
411 {
412 return mod->percpu;
413 }
414
415 static int percpu_modalloc(struct module *mod,
416 unsigned long size, unsigned long align)
417 {
418 if (align > PAGE_SIZE) {
419 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
420 mod->name, align, PAGE_SIZE);
421 align = PAGE_SIZE;
422 }
423
424 mod->percpu = __alloc_reserved_percpu(size, align);
425 if (!mod->percpu) {
426 printk(KERN_WARNING
427 "%s: Could not allocate %lu bytes percpu data\n",
428 mod->name, size);
429 return -ENOMEM;
430 }
431 mod->percpu_size = size;
432 return 0;
433 }
434
435 static void percpu_modfree(struct module *mod)
436 {
437 free_percpu(mod->percpu);
438 }
439
440 static unsigned int find_pcpusec(struct load_info *info)
441 {
442 return find_sec(info, ".data..percpu");
443 }
444
445 static void percpu_modcopy(struct module *mod,
446 const void *from, unsigned long size)
447 {
448 int cpu;
449
450 for_each_possible_cpu(cpu)
451 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
452 }
453
454 /**
455 * is_module_percpu_address - test whether address is from module static percpu
456 * @addr: address to test
457 *
458 * Test whether @addr belongs to module static percpu area.
459 *
460 * RETURNS:
461 * %true if @addr is from module static percpu area
462 */
463 bool is_module_percpu_address(unsigned long addr)
464 {
465 struct module *mod;
466 unsigned int cpu;
467
468 preempt_disable();
469
470 list_for_each_entry_rcu(mod, &modules, list) {
471 if (!mod->percpu_size)
472 continue;
473 for_each_possible_cpu(cpu) {
474 void *start = per_cpu_ptr(mod->percpu, cpu);
475
476 if ((void *)addr >= start &&
477 (void *)addr < start + mod->percpu_size) {
478 preempt_enable();
479 return true;
480 }
481 }
482 }
483
484 preempt_enable();
485 return false;
486 }
487
488 #else /* ... !CONFIG_SMP */
489
490 static inline void __percpu *mod_percpu(struct module *mod)
491 {
492 return NULL;
493 }
494 static inline int percpu_modalloc(struct module *mod,
495 unsigned long size, unsigned long align)
496 {
497 return -ENOMEM;
498 }
499 static inline void percpu_modfree(struct module *mod)
500 {
501 }
502 static unsigned int find_pcpusec(struct load_info *info)
503 {
504 return 0;
505 }
506 static inline void percpu_modcopy(struct module *mod,
507 const void *from, unsigned long size)
508 {
509 /* pcpusec should be 0, and size of that section should be 0. */
510 BUG_ON(size != 0);
511 }
512 bool is_module_percpu_address(unsigned long addr)
513 {
514 return false;
515 }
516
517 #endif /* CONFIG_SMP */
518
519 #define MODINFO_ATTR(field) \
520 static void setup_modinfo_##field(struct module *mod, const char *s) \
521 { \
522 mod->field = kstrdup(s, GFP_KERNEL); \
523 } \
524 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
525 struct module *mod, char *buffer) \
526 { \
527 return sprintf(buffer, "%s\n", mod->field); \
528 } \
529 static int modinfo_##field##_exists(struct module *mod) \
530 { \
531 return mod->field != NULL; \
532 } \
533 static void free_modinfo_##field(struct module *mod) \
534 { \
535 kfree(mod->field); \
536 mod->field = NULL; \
537 } \
538 static struct module_attribute modinfo_##field = { \
539 .attr = { .name = __stringify(field), .mode = 0444 }, \
540 .show = show_modinfo_##field, \
541 .setup = setup_modinfo_##field, \
542 .test = modinfo_##field##_exists, \
543 .free = free_modinfo_##field, \
544 };
545
546 MODINFO_ATTR(version);
547 MODINFO_ATTR(srcversion);
548
549 static char last_unloaded_module[MODULE_NAME_LEN+1];
550
551 #ifdef CONFIG_MODULE_UNLOAD
552
553 EXPORT_TRACEPOINT_SYMBOL(module_get);
554
555 /* Init the unload section of the module. */
556 static int module_unload_init(struct module *mod)
557 {
558 mod->refptr = alloc_percpu(struct module_ref);
559 if (!mod->refptr)
560 return -ENOMEM;
561
562 INIT_LIST_HEAD(&mod->source_list);
563 INIT_LIST_HEAD(&mod->target_list);
564
565 /* Hold reference count during initialization. */
566 __this_cpu_write(mod->refptr->incs, 1);
567 /* Backwards compatibility macros put refcount during init. */
568 mod->waiter = current;
569
570 return 0;
571 }
572
573 /* Does a already use b? */
574 static int already_uses(struct module *a, struct module *b)
575 {
576 struct module_use *use;
577
578 list_for_each_entry(use, &b->source_list, source_list) {
579 if (use->source == a) {
580 DEBUGP("%s uses %s!\n", a->name, b->name);
581 return 1;
582 }
583 }
584 DEBUGP("%s does not use %s!\n", a->name, b->name);
585 return 0;
586 }
587
588 /*
589 * Module a uses b
590 * - we add 'a' as a "source", 'b' as a "target" of module use
591 * - the module_use is added to the list of 'b' sources (so
592 * 'b' can walk the list to see who sourced them), and of 'a'
593 * targets (so 'a' can see what modules it targets).
594 */
595 static int add_module_usage(struct module *a, struct module *b)
596 {
597 struct module_use *use;
598
599 DEBUGP("Allocating new usage for %s.\n", a->name);
600 use = kmalloc(sizeof(*use), GFP_ATOMIC);
601 if (!use) {
602 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
603 return -ENOMEM;
604 }
605
606 use->source = a;
607 use->target = b;
608 list_add(&use->source_list, &b->source_list);
609 list_add(&use->target_list, &a->target_list);
610 return 0;
611 }
612
613 /* Module a uses b: caller needs module_mutex() */
614 int ref_module(struct module *a, struct module *b)
615 {
616 int err;
617
618 if (b == NULL || already_uses(a, b))
619 return 0;
620
621 /* If module isn't available, we fail. */
622 err = strong_try_module_get(b);
623 if (err)
624 return err;
625
626 err = add_module_usage(a, b);
627 if (err) {
628 module_put(b);
629 return err;
630 }
631 return 0;
632 }
633 EXPORT_SYMBOL_GPL(ref_module);
634
635 /* Clear the unload stuff of the module. */
636 static void module_unload_free(struct module *mod)
637 {
638 struct module_use *use, *tmp;
639
640 mutex_lock(&module_mutex);
641 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
642 struct module *i = use->target;
643 DEBUGP("%s unusing %s\n", mod->name, i->name);
644 module_put(i);
645 list_del(&use->source_list);
646 list_del(&use->target_list);
647 kfree(use);
648 }
649 mutex_unlock(&module_mutex);
650
651 free_percpu(mod->refptr);
652 }
653
654 #ifdef CONFIG_MODULE_FORCE_UNLOAD
655 static inline int try_force_unload(unsigned int flags)
656 {
657 int ret = (flags & O_TRUNC);
658 if (ret)
659 add_taint(TAINT_FORCED_RMMOD);
660 return ret;
661 }
662 #else
663 static inline int try_force_unload(unsigned int flags)
664 {
665 return 0;
666 }
667 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
668
669 struct stopref
670 {
671 struct module *mod;
672 int flags;
673 int *forced;
674 };
675
676 /* Whole machine is stopped with interrupts off when this runs. */
677 static int __try_stop_module(void *_sref)
678 {
679 struct stopref *sref = _sref;
680
681 /* If it's not unused, quit unless we're forcing. */
682 if (module_refcount(sref->mod) != 0) {
683 if (!(*sref->forced = try_force_unload(sref->flags)))
684 return -EWOULDBLOCK;
685 }
686
687 /* Mark it as dying. */
688 sref->mod->state = MODULE_STATE_GOING;
689 return 0;
690 }
691
692 static int try_stop_module(struct module *mod, int flags, int *forced)
693 {
694 if (flags & O_NONBLOCK) {
695 struct stopref sref = { mod, flags, forced };
696
697 return stop_machine(__try_stop_module, &sref, NULL);
698 } else {
699 /* We don't need to stop the machine for this. */
700 mod->state = MODULE_STATE_GOING;
701 synchronize_sched();
702 return 0;
703 }
704 }
705
706 unsigned int module_refcount(struct module *mod)
707 {
708 unsigned int incs = 0, decs = 0;
709 int cpu;
710
711 for_each_possible_cpu(cpu)
712 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
713 /*
714 * ensure the incs are added up after the decs.
715 * module_put ensures incs are visible before decs with smp_wmb.
716 *
717 * This 2-count scheme avoids the situation where the refcount
718 * for CPU0 is read, then CPU0 increments the module refcount,
719 * then CPU1 drops that refcount, then the refcount for CPU1 is
720 * read. We would record a decrement but not its corresponding
721 * increment so we would see a low count (disaster).
722 *
723 * Rare situation? But module_refcount can be preempted, and we
724 * might be tallying up 4096+ CPUs. So it is not impossible.
725 */
726 smp_rmb();
727 for_each_possible_cpu(cpu)
728 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
729 return incs - decs;
730 }
731 EXPORT_SYMBOL(module_refcount);
732
733 /* This exists whether we can unload or not */
734 static void free_module(struct module *mod);
735
736 static void wait_for_zero_refcount(struct module *mod)
737 {
738 /* Since we might sleep for some time, release the mutex first */
739 mutex_unlock(&module_mutex);
740 for (;;) {
741 DEBUGP("Looking at refcount...\n");
742 set_current_state(TASK_UNINTERRUPTIBLE);
743 if (module_refcount(mod) == 0)
744 break;
745 schedule();
746 }
747 current->state = TASK_RUNNING;
748 mutex_lock(&module_mutex);
749 }
750
751 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
752 unsigned int, flags)
753 {
754 struct module *mod;
755 char name[MODULE_NAME_LEN];
756 int ret, forced = 0;
757
758 if (!capable(CAP_SYS_MODULE) || modules_disabled)
759 return -EPERM;
760
761 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
762 return -EFAULT;
763 name[MODULE_NAME_LEN-1] = '\0';
764
765 if (mutex_lock_interruptible(&module_mutex) != 0)
766 return -EINTR;
767
768 mod = find_module(name);
769 if (!mod) {
770 ret = -ENOENT;
771 goto out;
772 }
773
774 if (!list_empty(&mod->source_list)) {
775 /* Other modules depend on us: get rid of them first. */
776 ret = -EWOULDBLOCK;
777 goto out;
778 }
779
780 /* Doing init or already dying? */
781 if (mod->state != MODULE_STATE_LIVE) {
782 /* FIXME: if (force), slam module count and wake up
783 waiter --RR */
784 DEBUGP("%s already dying\n", mod->name);
785 ret = -EBUSY;
786 goto out;
787 }
788
789 /* If it has an init func, it must have an exit func to unload */
790 if (mod->init && !mod->exit) {
791 forced = try_force_unload(flags);
792 if (!forced) {
793 /* This module can't be removed */
794 ret = -EBUSY;
795 goto out;
796 }
797 }
798
799 /* Set this up before setting mod->state */
800 mod->waiter = current;
801
802 /* Stop the machine so refcounts can't move and disable module. */
803 ret = try_stop_module(mod, flags, &forced);
804 if (ret != 0)
805 goto out;
806
807 /* Never wait if forced. */
808 if (!forced && module_refcount(mod) != 0)
809 wait_for_zero_refcount(mod);
810
811 mutex_unlock(&module_mutex);
812 /* Final destruction now no one is using it. */
813 if (mod->exit != NULL)
814 mod->exit();
815 blocking_notifier_call_chain(&module_notify_list,
816 MODULE_STATE_GOING, mod);
817 async_synchronize_full();
818
819 /* Store the name of the last unloaded module for diagnostic purposes */
820 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
821
822 free_module(mod);
823 return 0;
824 out:
825 mutex_unlock(&module_mutex);
826 return ret;
827 }
828
829 static inline void print_unload_info(struct seq_file *m, struct module *mod)
830 {
831 struct module_use *use;
832 int printed_something = 0;
833
834 seq_printf(m, " %u ", module_refcount(mod));
835
836 /* Always include a trailing , so userspace can differentiate
837 between this and the old multi-field proc format. */
838 list_for_each_entry(use, &mod->source_list, source_list) {
839 printed_something = 1;
840 seq_printf(m, "%s,", use->source->name);
841 }
842
843 if (mod->init != NULL && mod->exit == NULL) {
844 printed_something = 1;
845 seq_printf(m, "[permanent],");
846 }
847
848 if (!printed_something)
849 seq_printf(m, "-");
850 }
851
852 void __symbol_put(const char *symbol)
853 {
854 struct module *owner;
855
856 preempt_disable();
857 if (!find_symbol(symbol, &owner, NULL, true, false))
858 BUG();
859 module_put(owner);
860 preempt_enable();
861 }
862 EXPORT_SYMBOL(__symbol_put);
863
864 /* Note this assumes addr is a function, which it currently always is. */
865 void symbol_put_addr(void *addr)
866 {
867 struct module *modaddr;
868 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
869
870 if (core_kernel_text(a))
871 return;
872
873 /* module_text_address is safe here: we're supposed to have reference
874 * to module from symbol_get, so it can't go away. */
875 modaddr = __module_text_address(a);
876 BUG_ON(!modaddr);
877 module_put(modaddr);
878 }
879 EXPORT_SYMBOL_GPL(symbol_put_addr);
880
881 static ssize_t show_refcnt(struct module_attribute *mattr,
882 struct module *mod, char *buffer)
883 {
884 return sprintf(buffer, "%u\n", module_refcount(mod));
885 }
886
887 static struct module_attribute refcnt = {
888 .attr = { .name = "refcnt", .mode = 0444 },
889 .show = show_refcnt,
890 };
891
892 void module_put(struct module *module)
893 {
894 if (module) {
895 preempt_disable();
896 smp_wmb(); /* see comment in module_refcount */
897 __this_cpu_inc(module->refptr->decs);
898
899 trace_module_put(module, _RET_IP_);
900 /* Maybe they're waiting for us to drop reference? */
901 if (unlikely(!module_is_live(module)))
902 wake_up_process(module->waiter);
903 preempt_enable();
904 }
905 }
906 EXPORT_SYMBOL(module_put);
907
908 #else /* !CONFIG_MODULE_UNLOAD */
909 static inline void print_unload_info(struct seq_file *m, struct module *mod)
910 {
911 /* We don't know the usage count, or what modules are using. */
912 seq_printf(m, " - -");
913 }
914
915 static inline void module_unload_free(struct module *mod)
916 {
917 }
918
919 int ref_module(struct module *a, struct module *b)
920 {
921 return strong_try_module_get(b);
922 }
923 EXPORT_SYMBOL_GPL(ref_module);
924
925 static inline int module_unload_init(struct module *mod)
926 {
927 return 0;
928 }
929 #endif /* CONFIG_MODULE_UNLOAD */
930
931 static ssize_t show_initstate(struct module_attribute *mattr,
932 struct module *mod, char *buffer)
933 {
934 const char *state = "unknown";
935
936 switch (mod->state) {
937 case MODULE_STATE_LIVE:
938 state = "live";
939 break;
940 case MODULE_STATE_COMING:
941 state = "coming";
942 break;
943 case MODULE_STATE_GOING:
944 state = "going";
945 break;
946 }
947 return sprintf(buffer, "%s\n", state);
948 }
949
950 static struct module_attribute initstate = {
951 .attr = { .name = "initstate", .mode = 0444 },
952 .show = show_initstate,
953 };
954
955 static struct module_attribute *modinfo_attrs[] = {
956 &modinfo_version,
957 &modinfo_srcversion,
958 &initstate,
959 #ifdef CONFIG_MODULE_UNLOAD
960 &refcnt,
961 #endif
962 NULL,
963 };
964
965 static const char vermagic[] = VERMAGIC_STRING;
966
967 static int try_to_force_load(struct module *mod, const char *reason)
968 {
969 #ifdef CONFIG_MODULE_FORCE_LOAD
970 if (!test_taint(TAINT_FORCED_MODULE))
971 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
972 mod->name, reason);
973 add_taint_module(mod, TAINT_FORCED_MODULE);
974 return 0;
975 #else
976 return -ENOEXEC;
977 #endif
978 }
979
980 #ifdef CONFIG_MODVERSIONS
981 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
982 static unsigned long maybe_relocated(unsigned long crc,
983 const struct module *crc_owner)
984 {
985 #ifdef ARCH_RELOCATES_KCRCTAB
986 if (crc_owner == NULL)
987 return crc - (unsigned long)reloc_start;
988 #endif
989 return crc;
990 }
991
992 static int check_version(Elf_Shdr *sechdrs,
993 unsigned int versindex,
994 const char *symname,
995 struct module *mod,
996 const unsigned long *crc,
997 const struct module *crc_owner)
998 {
999 unsigned int i, num_versions;
1000 struct modversion_info *versions;
1001
1002 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1003 if (!crc)
1004 return 1;
1005
1006 /* No versions at all? modprobe --force does this. */
1007 if (versindex == 0)
1008 return try_to_force_load(mod, symname) == 0;
1009
1010 versions = (void *) sechdrs[versindex].sh_addr;
1011 num_versions = sechdrs[versindex].sh_size
1012 / sizeof(struct modversion_info);
1013
1014 for (i = 0; i < num_versions; i++) {
1015 if (strcmp(versions[i].name, symname) != 0)
1016 continue;
1017
1018 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1019 return 1;
1020 DEBUGP("Found checksum %lX vs module %lX\n",
1021 maybe_relocated(*crc, crc_owner), versions[i].crc);
1022 goto bad_version;
1023 }
1024
1025 printk(KERN_WARNING "%s: no symbol version for %s\n",
1026 mod->name, symname);
1027 return 0;
1028
1029 bad_version:
1030 printk("%s: disagrees about version of symbol %s\n",
1031 mod->name, symname);
1032 return 0;
1033 }
1034
1035 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1036 unsigned int versindex,
1037 struct module *mod)
1038 {
1039 const unsigned long *crc;
1040
1041 /* Since this should be found in kernel (which can't be removed),
1042 * no locking is necessary. */
1043 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1044 &crc, true, false))
1045 BUG();
1046 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1047 NULL);
1048 }
1049
1050 /* First part is kernel version, which we ignore if module has crcs. */
1051 static inline int same_magic(const char *amagic, const char *bmagic,
1052 bool has_crcs)
1053 {
1054 if (has_crcs) {
1055 amagic += strcspn(amagic, " ");
1056 bmagic += strcspn(bmagic, " ");
1057 }
1058 return strcmp(amagic, bmagic) == 0;
1059 }
1060 #else
1061 static inline int check_version(Elf_Shdr *sechdrs,
1062 unsigned int versindex,
1063 const char *symname,
1064 struct module *mod,
1065 const unsigned long *crc,
1066 const struct module *crc_owner)
1067 {
1068 return 1;
1069 }
1070
1071 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1072 unsigned int versindex,
1073 struct module *mod)
1074 {
1075 return 1;
1076 }
1077
1078 static inline int same_magic(const char *amagic, const char *bmagic,
1079 bool has_crcs)
1080 {
1081 return strcmp(amagic, bmagic) == 0;
1082 }
1083 #endif /* CONFIG_MODVERSIONS */
1084
1085 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1086 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1087 const struct load_info *info,
1088 const char *name,
1089 char ownername[])
1090 {
1091 struct module *owner;
1092 const struct kernel_symbol *sym;
1093 const unsigned long *crc;
1094 int err;
1095
1096 mutex_lock(&module_mutex);
1097 sym = find_symbol(name, &owner, &crc,
1098 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1099 if (!sym)
1100 goto unlock;
1101
1102 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1103 owner)) {
1104 sym = ERR_PTR(-EINVAL);
1105 goto getname;
1106 }
1107
1108 err = ref_module(mod, owner);
1109 if (err) {
1110 sym = ERR_PTR(err);
1111 goto getname;
1112 }
1113
1114 getname:
1115 /* We must make copy under the lock if we failed to get ref. */
1116 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1117 unlock:
1118 mutex_unlock(&module_mutex);
1119 return sym;
1120 }
1121
1122 static const struct kernel_symbol *
1123 resolve_symbol_wait(struct module *mod,
1124 const struct load_info *info,
1125 const char *name)
1126 {
1127 const struct kernel_symbol *ksym;
1128 char owner[MODULE_NAME_LEN];
1129
1130 if (wait_event_interruptible_timeout(module_wq,
1131 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1132 || PTR_ERR(ksym) != -EBUSY,
1133 30 * HZ) <= 0) {
1134 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1135 mod->name, owner);
1136 }
1137 return ksym;
1138 }
1139
1140 /*
1141 * /sys/module/foo/sections stuff
1142 * J. Corbet <corbet@lwn.net>
1143 */
1144 #ifdef CONFIG_SYSFS
1145
1146 #ifdef CONFIG_KALLSYMS
1147 static inline bool sect_empty(const Elf_Shdr *sect)
1148 {
1149 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1150 }
1151
1152 struct module_sect_attr
1153 {
1154 struct module_attribute mattr;
1155 char *name;
1156 unsigned long address;
1157 };
1158
1159 struct module_sect_attrs
1160 {
1161 struct attribute_group grp;
1162 unsigned int nsections;
1163 struct module_sect_attr attrs[0];
1164 };
1165
1166 static ssize_t module_sect_show(struct module_attribute *mattr,
1167 struct module *mod, char *buf)
1168 {
1169 struct module_sect_attr *sattr =
1170 container_of(mattr, struct module_sect_attr, mattr);
1171 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1172 }
1173
1174 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1175 {
1176 unsigned int section;
1177
1178 for (section = 0; section < sect_attrs->nsections; section++)
1179 kfree(sect_attrs->attrs[section].name);
1180 kfree(sect_attrs);
1181 }
1182
1183 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1184 {
1185 unsigned int nloaded = 0, i, size[2];
1186 struct module_sect_attrs *sect_attrs;
1187 struct module_sect_attr *sattr;
1188 struct attribute **gattr;
1189
1190 /* Count loaded sections and allocate structures */
1191 for (i = 0; i < info->hdr->e_shnum; i++)
1192 if (!sect_empty(&info->sechdrs[i]))
1193 nloaded++;
1194 size[0] = ALIGN(sizeof(*sect_attrs)
1195 + nloaded * sizeof(sect_attrs->attrs[0]),
1196 sizeof(sect_attrs->grp.attrs[0]));
1197 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1198 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1199 if (sect_attrs == NULL)
1200 return;
1201
1202 /* Setup section attributes. */
1203 sect_attrs->grp.name = "sections";
1204 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1205
1206 sect_attrs->nsections = 0;
1207 sattr = &sect_attrs->attrs[0];
1208 gattr = &sect_attrs->grp.attrs[0];
1209 for (i = 0; i < info->hdr->e_shnum; i++) {
1210 Elf_Shdr *sec = &info->sechdrs[i];
1211 if (sect_empty(sec))
1212 continue;
1213 sattr->address = sec->sh_addr;
1214 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1215 GFP_KERNEL);
1216 if (sattr->name == NULL)
1217 goto out;
1218 sect_attrs->nsections++;
1219 sysfs_attr_init(&sattr->mattr.attr);
1220 sattr->mattr.show = module_sect_show;
1221 sattr->mattr.store = NULL;
1222 sattr->mattr.attr.name = sattr->name;
1223 sattr->mattr.attr.mode = S_IRUGO;
1224 *(gattr++) = &(sattr++)->mattr.attr;
1225 }
1226 *gattr = NULL;
1227
1228 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1229 goto out;
1230
1231 mod->sect_attrs = sect_attrs;
1232 return;
1233 out:
1234 free_sect_attrs(sect_attrs);
1235 }
1236
1237 static void remove_sect_attrs(struct module *mod)
1238 {
1239 if (mod->sect_attrs) {
1240 sysfs_remove_group(&mod->mkobj.kobj,
1241 &mod->sect_attrs->grp);
1242 /* We are positive that no one is using any sect attrs
1243 * at this point. Deallocate immediately. */
1244 free_sect_attrs(mod->sect_attrs);
1245 mod->sect_attrs = NULL;
1246 }
1247 }
1248
1249 /*
1250 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1251 */
1252
1253 struct module_notes_attrs {
1254 struct kobject *dir;
1255 unsigned int notes;
1256 struct bin_attribute attrs[0];
1257 };
1258
1259 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1260 struct bin_attribute *bin_attr,
1261 char *buf, loff_t pos, size_t count)
1262 {
1263 /*
1264 * The caller checked the pos and count against our size.
1265 */
1266 memcpy(buf, bin_attr->private + pos, count);
1267 return count;
1268 }
1269
1270 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1271 unsigned int i)
1272 {
1273 if (notes_attrs->dir) {
1274 while (i-- > 0)
1275 sysfs_remove_bin_file(notes_attrs->dir,
1276 &notes_attrs->attrs[i]);
1277 kobject_put(notes_attrs->dir);
1278 }
1279 kfree(notes_attrs);
1280 }
1281
1282 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1283 {
1284 unsigned int notes, loaded, i;
1285 struct module_notes_attrs *notes_attrs;
1286 struct bin_attribute *nattr;
1287
1288 /* failed to create section attributes, so can't create notes */
1289 if (!mod->sect_attrs)
1290 return;
1291
1292 /* Count notes sections and allocate structures. */
1293 notes = 0;
1294 for (i = 0; i < info->hdr->e_shnum; i++)
1295 if (!sect_empty(&info->sechdrs[i]) &&
1296 (info->sechdrs[i].sh_type == SHT_NOTE))
1297 ++notes;
1298
1299 if (notes == 0)
1300 return;
1301
1302 notes_attrs = kzalloc(sizeof(*notes_attrs)
1303 + notes * sizeof(notes_attrs->attrs[0]),
1304 GFP_KERNEL);
1305 if (notes_attrs == NULL)
1306 return;
1307
1308 notes_attrs->notes = notes;
1309 nattr = &notes_attrs->attrs[0];
1310 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1311 if (sect_empty(&info->sechdrs[i]))
1312 continue;
1313 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1314 sysfs_bin_attr_init(nattr);
1315 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1316 nattr->attr.mode = S_IRUGO;
1317 nattr->size = info->sechdrs[i].sh_size;
1318 nattr->private = (void *) info->sechdrs[i].sh_addr;
1319 nattr->read = module_notes_read;
1320 ++nattr;
1321 }
1322 ++loaded;
1323 }
1324
1325 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1326 if (!notes_attrs->dir)
1327 goto out;
1328
1329 for (i = 0; i < notes; ++i)
1330 if (sysfs_create_bin_file(notes_attrs->dir,
1331 &notes_attrs->attrs[i]))
1332 goto out;
1333
1334 mod->notes_attrs = notes_attrs;
1335 return;
1336
1337 out:
1338 free_notes_attrs(notes_attrs, i);
1339 }
1340
1341 static void remove_notes_attrs(struct module *mod)
1342 {
1343 if (mod->notes_attrs)
1344 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1345 }
1346
1347 #else
1348
1349 static inline void add_sect_attrs(struct module *mod,
1350 const struct load_info *info)
1351 {
1352 }
1353
1354 static inline void remove_sect_attrs(struct module *mod)
1355 {
1356 }
1357
1358 static inline void add_notes_attrs(struct module *mod,
1359 const struct load_info *info)
1360 {
1361 }
1362
1363 static inline void remove_notes_attrs(struct module *mod)
1364 {
1365 }
1366 #endif /* CONFIG_KALLSYMS */
1367
1368 static void add_usage_links(struct module *mod)
1369 {
1370 #ifdef CONFIG_MODULE_UNLOAD
1371 struct module_use *use;
1372 int nowarn;
1373
1374 mutex_lock(&module_mutex);
1375 list_for_each_entry(use, &mod->target_list, target_list) {
1376 nowarn = sysfs_create_link(use->target->holders_dir,
1377 &mod->mkobj.kobj, mod->name);
1378 }
1379 mutex_unlock(&module_mutex);
1380 #endif
1381 }
1382
1383 static void del_usage_links(struct module *mod)
1384 {
1385 #ifdef CONFIG_MODULE_UNLOAD
1386 struct module_use *use;
1387
1388 mutex_lock(&module_mutex);
1389 list_for_each_entry(use, &mod->target_list, target_list)
1390 sysfs_remove_link(use->target->holders_dir, mod->name);
1391 mutex_unlock(&module_mutex);
1392 #endif
1393 }
1394
1395 static int module_add_modinfo_attrs(struct module *mod)
1396 {
1397 struct module_attribute *attr;
1398 struct module_attribute *temp_attr;
1399 int error = 0;
1400 int i;
1401
1402 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1403 (ARRAY_SIZE(modinfo_attrs) + 1)),
1404 GFP_KERNEL);
1405 if (!mod->modinfo_attrs)
1406 return -ENOMEM;
1407
1408 temp_attr = mod->modinfo_attrs;
1409 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1410 if (!attr->test ||
1411 (attr->test && attr->test(mod))) {
1412 memcpy(temp_attr, attr, sizeof(*temp_attr));
1413 sysfs_attr_init(&temp_attr->attr);
1414 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1415 ++temp_attr;
1416 }
1417 }
1418 return error;
1419 }
1420
1421 static void module_remove_modinfo_attrs(struct module *mod)
1422 {
1423 struct module_attribute *attr;
1424 int i;
1425
1426 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1427 /* pick a field to test for end of list */
1428 if (!attr->attr.name)
1429 break;
1430 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1431 if (attr->free)
1432 attr->free(mod);
1433 }
1434 kfree(mod->modinfo_attrs);
1435 }
1436
1437 static int mod_sysfs_init(struct module *mod)
1438 {
1439 int err;
1440 struct kobject *kobj;
1441
1442 if (!module_sysfs_initialized) {
1443 printk(KERN_ERR "%s: module sysfs not initialized\n",
1444 mod->name);
1445 err = -EINVAL;
1446 goto out;
1447 }
1448
1449 kobj = kset_find_obj(module_kset, mod->name);
1450 if (kobj) {
1451 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1452 kobject_put(kobj);
1453 err = -EINVAL;
1454 goto out;
1455 }
1456
1457 mod->mkobj.mod = mod;
1458
1459 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1460 mod->mkobj.kobj.kset = module_kset;
1461 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1462 "%s", mod->name);
1463 if (err)
1464 kobject_put(&mod->mkobj.kobj);
1465
1466 /* delay uevent until full sysfs population */
1467 out:
1468 return err;
1469 }
1470
1471 static int mod_sysfs_setup(struct module *mod,
1472 const struct load_info *info,
1473 struct kernel_param *kparam,
1474 unsigned int num_params)
1475 {
1476 int err;
1477
1478 err = mod_sysfs_init(mod);
1479 if (err)
1480 goto out;
1481
1482 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1483 if (!mod->holders_dir) {
1484 err = -ENOMEM;
1485 goto out_unreg;
1486 }
1487
1488 err = module_param_sysfs_setup(mod, kparam, num_params);
1489 if (err)
1490 goto out_unreg_holders;
1491
1492 err = module_add_modinfo_attrs(mod);
1493 if (err)
1494 goto out_unreg_param;
1495
1496 add_usage_links(mod);
1497 add_sect_attrs(mod, info);
1498 add_notes_attrs(mod, info);
1499
1500 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1501 return 0;
1502
1503 out_unreg_param:
1504 module_param_sysfs_remove(mod);
1505 out_unreg_holders:
1506 kobject_put(mod->holders_dir);
1507 out_unreg:
1508 kobject_put(&mod->mkobj.kobj);
1509 out:
1510 return err;
1511 }
1512
1513 static void mod_sysfs_fini(struct module *mod)
1514 {
1515 remove_notes_attrs(mod);
1516 remove_sect_attrs(mod);
1517 kobject_put(&mod->mkobj.kobj);
1518 }
1519
1520 #else /* !CONFIG_SYSFS */
1521
1522 static int mod_sysfs_setup(struct module *mod,
1523 const struct load_info *info,
1524 struct kernel_param *kparam,
1525 unsigned int num_params)
1526 {
1527 return 0;
1528 }
1529
1530 static void mod_sysfs_fini(struct module *mod)
1531 {
1532 }
1533
1534 static void module_remove_modinfo_attrs(struct module *mod)
1535 {
1536 }
1537
1538 static void del_usage_links(struct module *mod)
1539 {
1540 }
1541
1542 #endif /* CONFIG_SYSFS */
1543
1544 static void mod_sysfs_teardown(struct module *mod)
1545 {
1546 del_usage_links(mod);
1547 module_remove_modinfo_attrs(mod);
1548 module_param_sysfs_remove(mod);
1549 kobject_put(mod->mkobj.drivers_dir);
1550 kobject_put(mod->holders_dir);
1551 mod_sysfs_fini(mod);
1552 }
1553
1554 /*
1555 * unlink the module with the whole machine is stopped with interrupts off
1556 * - this defends against kallsyms not taking locks
1557 */
1558 static int __unlink_module(void *_mod)
1559 {
1560 struct module *mod = _mod;
1561 list_del(&mod->list);
1562 module_bug_cleanup(mod);
1563 return 0;
1564 }
1565
1566 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1567 /*
1568 * LKM RO/NX protection: protect module's text/ro-data
1569 * from modification and any data from execution.
1570 */
1571 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1572 {
1573 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1574 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1575
1576 if (end_pfn > begin_pfn)
1577 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1578 }
1579
1580 static void set_section_ro_nx(void *base,
1581 unsigned long text_size,
1582 unsigned long ro_size,
1583 unsigned long total_size)
1584 {
1585 /* begin and end PFNs of the current subsection */
1586 unsigned long begin_pfn;
1587 unsigned long end_pfn;
1588
1589 /*
1590 * Set RO for module text and RO-data:
1591 * - Always protect first page.
1592 * - Do not protect last partial page.
1593 */
1594 if (ro_size > 0)
1595 set_page_attributes(base, base + ro_size, set_memory_ro);
1596
1597 /*
1598 * Set NX permissions for module data:
1599 * - Do not protect first partial page.
1600 * - Always protect last page.
1601 */
1602 if (total_size > text_size) {
1603 begin_pfn = PFN_UP((unsigned long)base + text_size);
1604 end_pfn = PFN_UP((unsigned long)base + total_size);
1605 if (end_pfn > begin_pfn)
1606 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1607 }
1608 }
1609
1610 /* Setting memory back to W+X before releasing it */
1611 void unset_section_ro_nx(struct module *mod, void *module_region)
1612 {
1613 if (mod->module_core == module_region) {
1614 set_page_attributes(mod->module_core + mod->core_text_size,
1615 mod->module_core + mod->core_size,
1616 set_memory_x);
1617 set_page_attributes(mod->module_core,
1618 mod->module_core + mod->core_ro_size,
1619 set_memory_rw);
1620 } else if (mod->module_init == module_region) {
1621 set_page_attributes(mod->module_init + mod->init_text_size,
1622 mod->module_init + mod->init_size,
1623 set_memory_x);
1624 set_page_attributes(mod->module_init,
1625 mod->module_init + mod->init_ro_size,
1626 set_memory_rw);
1627 }
1628 }
1629
1630 /* Iterate through all modules and set each module's text as RW */
1631 void set_all_modules_text_rw(void)
1632 {
1633 struct module *mod;
1634
1635 mutex_lock(&module_mutex);
1636 list_for_each_entry_rcu(mod, &modules, list) {
1637 if ((mod->module_core) && (mod->core_text_size)) {
1638 set_page_attributes(mod->module_core,
1639 mod->module_core + mod->core_text_size,
1640 set_memory_rw);
1641 }
1642 if ((mod->module_init) && (mod->init_text_size)) {
1643 set_page_attributes(mod->module_init,
1644 mod->module_init + mod->init_text_size,
1645 set_memory_rw);
1646 }
1647 }
1648 mutex_unlock(&module_mutex);
1649 }
1650
1651 /* Iterate through all modules and set each module's text as RO */
1652 void set_all_modules_text_ro(void)
1653 {
1654 struct module *mod;
1655
1656 mutex_lock(&module_mutex);
1657 list_for_each_entry_rcu(mod, &modules, list) {
1658 if ((mod->module_core) && (mod->core_text_size)) {
1659 set_page_attributes(mod->module_core,
1660 mod->module_core + mod->core_text_size,
1661 set_memory_ro);
1662 }
1663 if ((mod->module_init) && (mod->init_text_size)) {
1664 set_page_attributes(mod->module_init,
1665 mod->module_init + mod->init_text_size,
1666 set_memory_ro);
1667 }
1668 }
1669 mutex_unlock(&module_mutex);
1670 }
1671 #else
1672 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1673 static inline void unset_section_ro_nx(struct module *mod, void *module_region) { }
1674 #endif
1675
1676 /* Free a module, remove from lists, etc. */
1677 static void free_module(struct module *mod)
1678 {
1679 trace_module_free(mod);
1680
1681 /* Delete from various lists */
1682 mutex_lock(&module_mutex);
1683 stop_machine(__unlink_module, mod, NULL);
1684 mutex_unlock(&module_mutex);
1685 mod_sysfs_teardown(mod);
1686
1687 /* Remove dynamic debug info */
1688 ddebug_remove_module(mod->name);
1689
1690 /* Arch-specific cleanup. */
1691 module_arch_cleanup(mod);
1692
1693 /* Module unload stuff */
1694 module_unload_free(mod);
1695
1696 /* Free any allocated parameters. */
1697 destroy_params(mod->kp, mod->num_kp);
1698
1699 /* This may be NULL, but that's OK */
1700 unset_section_ro_nx(mod, mod->module_init);
1701 module_free(mod, mod->module_init);
1702 kfree(mod->args);
1703 percpu_modfree(mod);
1704
1705 /* Free lock-classes: */
1706 lockdep_free_key_range(mod->module_core, mod->core_size);
1707
1708 /* Finally, free the core (containing the module structure) */
1709 unset_section_ro_nx(mod, mod->module_core);
1710 module_free(mod, mod->module_core);
1711
1712 #ifdef CONFIG_MPU
1713 update_protections(current->mm);
1714 #endif
1715 }
1716
1717 void *__symbol_get(const char *symbol)
1718 {
1719 struct module *owner;
1720 const struct kernel_symbol *sym;
1721
1722 preempt_disable();
1723 sym = find_symbol(symbol, &owner, NULL, true, true);
1724 if (sym && strong_try_module_get(owner))
1725 sym = NULL;
1726 preempt_enable();
1727
1728 return sym ? (void *)sym->value : NULL;
1729 }
1730 EXPORT_SYMBOL_GPL(__symbol_get);
1731
1732 /*
1733 * Ensure that an exported symbol [global namespace] does not already exist
1734 * in the kernel or in some other module's exported symbol table.
1735 *
1736 * You must hold the module_mutex.
1737 */
1738 static int verify_export_symbols(struct module *mod)
1739 {
1740 unsigned int i;
1741 struct module *owner;
1742 const struct kernel_symbol *s;
1743 struct {
1744 const struct kernel_symbol *sym;
1745 unsigned int num;
1746 } arr[] = {
1747 { mod->syms, mod->num_syms },
1748 { mod->gpl_syms, mod->num_gpl_syms },
1749 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1750 #ifdef CONFIG_UNUSED_SYMBOLS
1751 { mod->unused_syms, mod->num_unused_syms },
1752 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1753 #endif
1754 };
1755
1756 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1757 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1758 if (find_symbol(s->name, &owner, NULL, true, false)) {
1759 printk(KERN_ERR
1760 "%s: exports duplicate symbol %s"
1761 " (owned by %s)\n",
1762 mod->name, s->name, module_name(owner));
1763 return -ENOEXEC;
1764 }
1765 }
1766 }
1767 return 0;
1768 }
1769
1770 /* Change all symbols so that st_value encodes the pointer directly. */
1771 static int simplify_symbols(struct module *mod, const struct load_info *info)
1772 {
1773 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1774 Elf_Sym *sym = (void *)symsec->sh_addr;
1775 unsigned long secbase;
1776 unsigned int i;
1777 int ret = 0;
1778 const struct kernel_symbol *ksym;
1779
1780 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1781 const char *name = info->strtab + sym[i].st_name;
1782
1783 switch (sym[i].st_shndx) {
1784 case SHN_COMMON:
1785 /* We compiled with -fno-common. These are not
1786 supposed to happen. */
1787 DEBUGP("Common symbol: %s\n", name);
1788 printk("%s: please compile with -fno-common\n",
1789 mod->name);
1790 ret = -ENOEXEC;
1791 break;
1792
1793 case SHN_ABS:
1794 /* Don't need to do anything */
1795 DEBUGP("Absolute symbol: 0x%08lx\n",
1796 (long)sym[i].st_value);
1797 break;
1798
1799 case SHN_UNDEF:
1800 ksym = resolve_symbol_wait(mod, info, name);
1801 /* Ok if resolved. */
1802 if (ksym && !IS_ERR(ksym)) {
1803 sym[i].st_value = ksym->value;
1804 break;
1805 }
1806
1807 /* Ok if weak. */
1808 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1809 break;
1810
1811 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1812 mod->name, name, PTR_ERR(ksym));
1813 ret = PTR_ERR(ksym) ?: -ENOENT;
1814 break;
1815
1816 default:
1817 /* Divert to percpu allocation if a percpu var. */
1818 if (sym[i].st_shndx == info->index.pcpu)
1819 secbase = (unsigned long)mod_percpu(mod);
1820 else
1821 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1822 sym[i].st_value += secbase;
1823 break;
1824 }
1825 }
1826
1827 return ret;
1828 }
1829
1830 static int apply_relocations(struct module *mod, const struct load_info *info)
1831 {
1832 unsigned int i;
1833 int err = 0;
1834
1835 /* Now do relocations. */
1836 for (i = 1; i < info->hdr->e_shnum; i++) {
1837 unsigned int infosec = info->sechdrs[i].sh_info;
1838
1839 /* Not a valid relocation section? */
1840 if (infosec >= info->hdr->e_shnum)
1841 continue;
1842
1843 /* Don't bother with non-allocated sections */
1844 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1845 continue;
1846
1847 if (info->sechdrs[i].sh_type == SHT_REL)
1848 err = apply_relocate(info->sechdrs, info->strtab,
1849 info->index.sym, i, mod);
1850 else if (info->sechdrs[i].sh_type == SHT_RELA)
1851 err = apply_relocate_add(info->sechdrs, info->strtab,
1852 info->index.sym, i, mod);
1853 if (err < 0)
1854 break;
1855 }
1856 return err;
1857 }
1858
1859 /* Additional bytes needed by arch in front of individual sections */
1860 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1861 unsigned int section)
1862 {
1863 /* default implementation just returns zero */
1864 return 0;
1865 }
1866
1867 /* Update size with this section: return offset. */
1868 static long get_offset(struct module *mod, unsigned int *size,
1869 Elf_Shdr *sechdr, unsigned int section)
1870 {
1871 long ret;
1872
1873 *size += arch_mod_section_prepend(mod, section);
1874 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1875 *size = ret + sechdr->sh_size;
1876 return ret;
1877 }
1878
1879 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1880 might -- code, read-only data, read-write data, small data. Tally
1881 sizes, and place the offsets into sh_entsize fields: high bit means it
1882 belongs in init. */
1883 static void layout_sections(struct module *mod, struct load_info *info)
1884 {
1885 static unsigned long const masks[][2] = {
1886 /* NOTE: all executable code must be the first section
1887 * in this array; otherwise modify the text_size
1888 * finder in the two loops below */
1889 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1890 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1891 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1892 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1893 };
1894 unsigned int m, i;
1895
1896 for (i = 0; i < info->hdr->e_shnum; i++)
1897 info->sechdrs[i].sh_entsize = ~0UL;
1898
1899 DEBUGP("Core section allocation order:\n");
1900 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1901 for (i = 0; i < info->hdr->e_shnum; ++i) {
1902 Elf_Shdr *s = &info->sechdrs[i];
1903 const char *sname = info->secstrings + s->sh_name;
1904
1905 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1906 || (s->sh_flags & masks[m][1])
1907 || s->sh_entsize != ~0UL
1908 || strstarts(sname, ".init"))
1909 continue;
1910 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1911 DEBUGP("\t%s\n", name);
1912 }
1913 switch (m) {
1914 case 0: /* executable */
1915 mod->core_size = debug_align(mod->core_size);
1916 mod->core_text_size = mod->core_size;
1917 break;
1918 case 1: /* RO: text and ro-data */
1919 mod->core_size = debug_align(mod->core_size);
1920 mod->core_ro_size = mod->core_size;
1921 break;
1922 case 3: /* whole core */
1923 mod->core_size = debug_align(mod->core_size);
1924 break;
1925 }
1926 }
1927
1928 DEBUGP("Init section allocation order:\n");
1929 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1930 for (i = 0; i < info->hdr->e_shnum; ++i) {
1931 Elf_Shdr *s = &info->sechdrs[i];
1932 const char *sname = info->secstrings + s->sh_name;
1933
1934 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1935 || (s->sh_flags & masks[m][1])
1936 || s->sh_entsize != ~0UL
1937 || !strstarts(sname, ".init"))
1938 continue;
1939 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1940 | INIT_OFFSET_MASK);
1941 DEBUGP("\t%s\n", sname);
1942 }
1943 switch (m) {
1944 case 0: /* executable */
1945 mod->init_size = debug_align(mod->init_size);
1946 mod->init_text_size = mod->init_size;
1947 break;
1948 case 1: /* RO: text and ro-data */
1949 mod->init_size = debug_align(mod->init_size);
1950 mod->init_ro_size = mod->init_size;
1951 break;
1952 case 3: /* whole init */
1953 mod->init_size = debug_align(mod->init_size);
1954 break;
1955 }
1956 }
1957 }
1958
1959 static void set_license(struct module *mod, const char *license)
1960 {
1961 if (!license)
1962 license = "unspecified";
1963
1964 if (!license_is_gpl_compatible(license)) {
1965 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1966 printk(KERN_WARNING "%s: module license '%s' taints "
1967 "kernel.\n", mod->name, license);
1968 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1969 }
1970 }
1971
1972 /* Parse tag=value strings from .modinfo section */
1973 static char *next_string(char *string, unsigned long *secsize)
1974 {
1975 /* Skip non-zero chars */
1976 while (string[0]) {
1977 string++;
1978 if ((*secsize)-- <= 1)
1979 return NULL;
1980 }
1981
1982 /* Skip any zero padding. */
1983 while (!string[0]) {
1984 string++;
1985 if ((*secsize)-- <= 1)
1986 return NULL;
1987 }
1988 return string;
1989 }
1990
1991 static char *get_modinfo(struct load_info *info, const char *tag)
1992 {
1993 char *p;
1994 unsigned int taglen = strlen(tag);
1995 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1996 unsigned long size = infosec->sh_size;
1997
1998 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
1999 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2000 return p + taglen + 1;
2001 }
2002 return NULL;
2003 }
2004
2005 static void setup_modinfo(struct module *mod, struct load_info *info)
2006 {
2007 struct module_attribute *attr;
2008 int i;
2009
2010 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2011 if (attr->setup)
2012 attr->setup(mod, get_modinfo(info, attr->attr.name));
2013 }
2014 }
2015
2016 static void free_modinfo(struct module *mod)
2017 {
2018 struct module_attribute *attr;
2019 int i;
2020
2021 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2022 if (attr->free)
2023 attr->free(mod);
2024 }
2025 }
2026
2027 #ifdef CONFIG_KALLSYMS
2028
2029 /* lookup symbol in given range of kernel_symbols */
2030 static const struct kernel_symbol *lookup_symbol(const char *name,
2031 const struct kernel_symbol *start,
2032 const struct kernel_symbol *stop)
2033 {
2034 const struct kernel_symbol *ks = start;
2035 for (; ks < stop; ks++)
2036 if (strcmp(ks->name, name) == 0)
2037 return ks;
2038 return NULL;
2039 }
2040
2041 static int is_exported(const char *name, unsigned long value,
2042 const struct module *mod)
2043 {
2044 const struct kernel_symbol *ks;
2045 if (!mod)
2046 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2047 else
2048 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2049 return ks != NULL && ks->value == value;
2050 }
2051
2052 /* As per nm */
2053 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2054 {
2055 const Elf_Shdr *sechdrs = info->sechdrs;
2056
2057 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2058 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2059 return 'v';
2060 else
2061 return 'w';
2062 }
2063 if (sym->st_shndx == SHN_UNDEF)
2064 return 'U';
2065 if (sym->st_shndx == SHN_ABS)
2066 return 'a';
2067 if (sym->st_shndx >= SHN_LORESERVE)
2068 return '?';
2069 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2070 return 't';
2071 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2072 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2073 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2074 return 'r';
2075 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2076 return 'g';
2077 else
2078 return 'd';
2079 }
2080 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2081 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2082 return 's';
2083 else
2084 return 'b';
2085 }
2086 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2087 ".debug")) {
2088 return 'n';
2089 }
2090 return '?';
2091 }
2092
2093 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2094 unsigned int shnum)
2095 {
2096 const Elf_Shdr *sec;
2097
2098 if (src->st_shndx == SHN_UNDEF
2099 || src->st_shndx >= shnum
2100 || !src->st_name)
2101 return false;
2102
2103 sec = sechdrs + src->st_shndx;
2104 if (!(sec->sh_flags & SHF_ALLOC)
2105 #ifndef CONFIG_KALLSYMS_ALL
2106 || !(sec->sh_flags & SHF_EXECINSTR)
2107 #endif
2108 || (sec->sh_entsize & INIT_OFFSET_MASK))
2109 return false;
2110
2111 return true;
2112 }
2113
2114 static void layout_symtab(struct module *mod, struct load_info *info)
2115 {
2116 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2117 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2118 const Elf_Sym *src;
2119 unsigned int i, nsrc, ndst;
2120
2121 /* Put symbol section at end of init part of module. */
2122 symsect->sh_flags |= SHF_ALLOC;
2123 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2124 info->index.sym) | INIT_OFFSET_MASK;
2125 DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
2126
2127 src = (void *)info->hdr + symsect->sh_offset;
2128 nsrc = symsect->sh_size / sizeof(*src);
2129 for (ndst = i = 1; i < nsrc; ++i, ++src)
2130 if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2131 unsigned int j = src->st_name;
2132
2133 while (!__test_and_set_bit(j, info->strmap)
2134 && info->strtab[j])
2135 ++j;
2136 ++ndst;
2137 }
2138
2139 /* Append room for core symbols at end of core part. */
2140 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2141 mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2142
2143 /* Put string table section at end of init part of module. */
2144 strsect->sh_flags |= SHF_ALLOC;
2145 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2146 info->index.str) | INIT_OFFSET_MASK;
2147 DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
2148
2149 /* Append room for core symbols' strings at end of core part. */
2150 info->stroffs = mod->core_size;
2151 __set_bit(0, info->strmap);
2152 mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
2153 }
2154
2155 static void add_kallsyms(struct module *mod, const struct load_info *info)
2156 {
2157 unsigned int i, ndst;
2158 const Elf_Sym *src;
2159 Elf_Sym *dst;
2160 char *s;
2161 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2162
2163 mod->symtab = (void *)symsec->sh_addr;
2164 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2165 /* Make sure we get permanent strtab: don't use info->strtab. */
2166 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2167
2168 /* Set types up while we still have access to sections. */
2169 for (i = 0; i < mod->num_symtab; i++)
2170 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2171
2172 mod->core_symtab = dst = mod->module_core + info->symoffs;
2173 src = mod->symtab;
2174 *dst = *src;
2175 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2176 if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2177 continue;
2178 dst[ndst] = *src;
2179 dst[ndst].st_name = bitmap_weight(info->strmap,
2180 dst[ndst].st_name);
2181 ++ndst;
2182 }
2183 mod->core_num_syms = ndst;
2184
2185 mod->core_strtab = s = mod->module_core + info->stroffs;
2186 for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
2187 if (test_bit(i, info->strmap))
2188 *++s = mod->strtab[i];
2189 }
2190 #else
2191 static inline void layout_symtab(struct module *mod, struct load_info *info)
2192 {
2193 }
2194
2195 static void add_kallsyms(struct module *mod, const struct load_info *info)
2196 {
2197 }
2198 #endif /* CONFIG_KALLSYMS */
2199
2200 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2201 {
2202 if (!debug)
2203 return;
2204 #ifdef CONFIG_DYNAMIC_DEBUG
2205 if (ddebug_add_module(debug, num, debug->modname))
2206 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2207 debug->modname);
2208 #endif
2209 }
2210
2211 static void dynamic_debug_remove(struct _ddebug *debug)
2212 {
2213 if (debug)
2214 ddebug_remove_module(debug->modname);
2215 }
2216
2217 static void *module_alloc_update_bounds(unsigned long size)
2218 {
2219 void *ret = module_alloc(size);
2220
2221 if (ret) {
2222 mutex_lock(&module_mutex);
2223 /* Update module bounds. */
2224 if ((unsigned long)ret < module_addr_min)
2225 module_addr_min = (unsigned long)ret;
2226 if ((unsigned long)ret + size > module_addr_max)
2227 module_addr_max = (unsigned long)ret + size;
2228 mutex_unlock(&module_mutex);
2229 }
2230 return ret;
2231 }
2232
2233 #ifdef CONFIG_DEBUG_KMEMLEAK
2234 static void kmemleak_load_module(const struct module *mod,
2235 const struct load_info *info)
2236 {
2237 unsigned int i;
2238
2239 /* only scan the sections containing data */
2240 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2241
2242 for (i = 1; i < info->hdr->e_shnum; i++) {
2243 const char *name = info->secstrings + info->sechdrs[i].sh_name;
2244 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2245 continue;
2246 if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2247 continue;
2248
2249 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2250 info->sechdrs[i].sh_size, GFP_KERNEL);
2251 }
2252 }
2253 #else
2254 static inline void kmemleak_load_module(const struct module *mod,
2255 const struct load_info *info)
2256 {
2257 }
2258 #endif
2259
2260 /* Sets info->hdr and info->len. */
2261 static int copy_and_check(struct load_info *info,
2262 const void __user *umod, unsigned long len,
2263 const char __user *uargs)
2264 {
2265 int err;
2266 Elf_Ehdr *hdr;
2267
2268 if (len < sizeof(*hdr))
2269 return -ENOEXEC;
2270
2271 /* Suck in entire file: we'll want most of it. */
2272 /* vmalloc barfs on "unusual" numbers. Check here */
2273 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2274 return -ENOMEM;
2275
2276 if (copy_from_user(hdr, umod, len) != 0) {
2277 err = -EFAULT;
2278 goto free_hdr;
2279 }
2280
2281 /* Sanity checks against insmoding binaries or wrong arch,
2282 weird elf version */
2283 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2284 || hdr->e_type != ET_REL
2285 || !elf_check_arch(hdr)
2286 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2287 err = -ENOEXEC;
2288 goto free_hdr;
2289 }
2290
2291 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2292 err = -ENOEXEC;
2293 goto free_hdr;
2294 }
2295
2296 info->hdr = hdr;
2297 info->len = len;
2298 return 0;
2299
2300 free_hdr:
2301 vfree(hdr);
2302 return err;
2303 }
2304
2305 static void free_copy(struct load_info *info)
2306 {
2307 vfree(info->hdr);
2308 }
2309
2310 static int rewrite_section_headers(struct load_info *info)
2311 {
2312 unsigned int i;
2313
2314 /* This should always be true, but let's be sure. */
2315 info->sechdrs[0].sh_addr = 0;
2316
2317 for (i = 1; i < info->hdr->e_shnum; i++) {
2318 Elf_Shdr *shdr = &info->sechdrs[i];
2319 if (shdr->sh_type != SHT_NOBITS
2320 && info->len < shdr->sh_offset + shdr->sh_size) {
2321 printk(KERN_ERR "Module len %lu truncated\n",
2322 info->len);
2323 return -ENOEXEC;
2324 }
2325
2326 /* Mark all sections sh_addr with their address in the
2327 temporary image. */
2328 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2329
2330 #ifndef CONFIG_MODULE_UNLOAD
2331 /* Don't load .exit sections */
2332 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2333 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2334 #endif
2335 }
2336
2337 /* Track but don't keep modinfo and version sections. */
2338 info->index.vers = find_sec(info, "__versions");
2339 info->index.info = find_sec(info, ".modinfo");
2340 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2341 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2342 return 0;
2343 }
2344
2345 /*
2346 * Set up our basic convenience variables (pointers to section headers,
2347 * search for module section index etc), and do some basic section
2348 * verification.
2349 *
2350 * Return the temporary module pointer (we'll replace it with the final
2351 * one when we move the module sections around).
2352 */
2353 static struct module *setup_load_info(struct load_info *info)
2354 {
2355 unsigned int i;
2356 int err;
2357 struct module *mod;
2358
2359 /* Set up the convenience variables */
2360 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2361 info->secstrings = (void *)info->hdr
2362 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2363
2364 err = rewrite_section_headers(info);
2365 if (err)
2366 return ERR_PTR(err);
2367
2368 /* Find internal symbols and strings. */
2369 for (i = 1; i < info->hdr->e_shnum; i++) {
2370 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2371 info->index.sym = i;
2372 info->index.str = info->sechdrs[i].sh_link;
2373 info->strtab = (char *)info->hdr
2374 + info->sechdrs[info->index.str].sh_offset;
2375 break;
2376 }
2377 }
2378
2379 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2380 if (!info->index.mod) {
2381 printk(KERN_WARNING "No module found in object\n");
2382 return ERR_PTR(-ENOEXEC);
2383 }
2384 /* This is temporary: point mod into copy of data. */
2385 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2386
2387 if (info->index.sym == 0) {
2388 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2389 mod->name);
2390 return ERR_PTR(-ENOEXEC);
2391 }
2392
2393 info->index.pcpu = find_pcpusec(info);
2394
2395 /* Check module struct version now, before we try to use module. */
2396 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2397 return ERR_PTR(-ENOEXEC);
2398
2399 return mod;
2400 }
2401
2402 static int check_modinfo(struct module *mod, struct load_info *info)
2403 {
2404 const char *modmagic = get_modinfo(info, "vermagic");
2405 int err;
2406
2407 /* This is allowed: modprobe --force will invalidate it. */
2408 if (!modmagic) {
2409 err = try_to_force_load(mod, "bad vermagic");
2410 if (err)
2411 return err;
2412 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2413 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2414 mod->name, modmagic, vermagic);
2415 return -ENOEXEC;
2416 }
2417
2418 if (get_modinfo(info, "staging")) {
2419 add_taint_module(mod, TAINT_CRAP);
2420 printk(KERN_WARNING "%s: module is from the staging directory,"
2421 " the quality is unknown, you have been warned.\n",
2422 mod->name);
2423 }
2424
2425 /* Set up license info based on the info section */
2426 set_license(mod, get_modinfo(info, "license"));
2427
2428 return 0;
2429 }
2430
2431 static void find_module_sections(struct module *mod, struct load_info *info)
2432 {
2433 mod->kp = section_objs(info, "__param",
2434 sizeof(*mod->kp), &mod->num_kp);
2435 mod->syms = section_objs(info, "__ksymtab",
2436 sizeof(*mod->syms), &mod->num_syms);
2437 mod->crcs = section_addr(info, "__kcrctab");
2438 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2439 sizeof(*mod->gpl_syms),
2440 &mod->num_gpl_syms);
2441 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2442 mod->gpl_future_syms = section_objs(info,
2443 "__ksymtab_gpl_future",
2444 sizeof(*mod->gpl_future_syms),
2445 &mod->num_gpl_future_syms);
2446 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2447
2448 #ifdef CONFIG_UNUSED_SYMBOLS
2449 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2450 sizeof(*mod->unused_syms),
2451 &mod->num_unused_syms);
2452 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2453 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2454 sizeof(*mod->unused_gpl_syms),
2455 &mod->num_unused_gpl_syms);
2456 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2457 #endif
2458 #ifdef CONFIG_CONSTRUCTORS
2459 mod->ctors = section_objs(info, ".ctors",
2460 sizeof(*mod->ctors), &mod->num_ctors);
2461 #endif
2462
2463 #ifdef CONFIG_TRACEPOINTS
2464 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2465 sizeof(*mod->tracepoints_ptrs),
2466 &mod->num_tracepoints);
2467 #endif
2468 #ifdef HAVE_JUMP_LABEL
2469 mod->jump_entries = section_objs(info, "__jump_table",
2470 sizeof(*mod->jump_entries),
2471 &mod->num_jump_entries);
2472 #endif
2473 #ifdef CONFIG_EVENT_TRACING
2474 mod->trace_events = section_objs(info, "_ftrace_events",
2475 sizeof(*mod->trace_events),
2476 &mod->num_trace_events);
2477 /*
2478 * This section contains pointers to allocated objects in the trace
2479 * code and not scanning it leads to false positives.
2480 */
2481 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2482 mod->num_trace_events, GFP_KERNEL);
2483 #endif
2484 #ifdef CONFIG_TRACING
2485 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2486 sizeof(*mod->trace_bprintk_fmt_start),
2487 &mod->num_trace_bprintk_fmt);
2488 /*
2489 * This section contains pointers to allocated objects in the trace
2490 * code and not scanning it leads to false positives.
2491 */
2492 kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2493 sizeof(*mod->trace_bprintk_fmt_start) *
2494 mod->num_trace_bprintk_fmt, GFP_KERNEL);
2495 #endif
2496 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2497 /* sechdrs[0].sh_size is always zero */
2498 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2499 sizeof(*mod->ftrace_callsites),
2500 &mod->num_ftrace_callsites);
2501 #endif
2502
2503 mod->extable = section_objs(info, "__ex_table",
2504 sizeof(*mod->extable), &mod->num_exentries);
2505
2506 if (section_addr(info, "__obsparm"))
2507 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2508 mod->name);
2509
2510 info->debug = section_objs(info, "__verbose",
2511 sizeof(*info->debug), &info->num_debug);
2512 }
2513
2514 static int move_module(struct module *mod, struct load_info *info)
2515 {
2516 int i;
2517 void *ptr;
2518
2519 /* Do the allocs. */
2520 ptr = module_alloc_update_bounds(mod->core_size);
2521 /*
2522 * The pointer to this block is stored in the module structure
2523 * which is inside the block. Just mark it as not being a
2524 * leak.
2525 */
2526 kmemleak_not_leak(ptr);
2527 if (!ptr)
2528 return -ENOMEM;
2529
2530 memset(ptr, 0, mod->core_size);
2531 mod->module_core = ptr;
2532
2533 ptr = module_alloc_update_bounds(mod->init_size);
2534 /*
2535 * The pointer to this block is stored in the module structure
2536 * which is inside the block. This block doesn't need to be
2537 * scanned as it contains data and code that will be freed
2538 * after the module is initialized.
2539 */
2540 kmemleak_ignore(ptr);
2541 if (!ptr && mod->init_size) {
2542 module_free(mod, mod->module_core);
2543 return -ENOMEM;
2544 }
2545 memset(ptr, 0, mod->init_size);
2546 mod->module_init = ptr;
2547
2548 /* Transfer each section which specifies SHF_ALLOC */
2549 DEBUGP("final section addresses:\n");
2550 for (i = 0; i < info->hdr->e_shnum; i++) {
2551 void *dest;
2552 Elf_Shdr *shdr = &info->sechdrs[i];
2553
2554 if (!(shdr->sh_flags & SHF_ALLOC))
2555 continue;
2556
2557 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2558 dest = mod->module_init
2559 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2560 else
2561 dest = mod->module_core + shdr->sh_entsize;
2562
2563 if (shdr->sh_type != SHT_NOBITS)
2564 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2565 /* Update sh_addr to point to copy in image. */
2566 shdr->sh_addr = (unsigned long)dest;
2567 DEBUGP("\t0x%lx %s\n",
2568 shdr->sh_addr, info->secstrings + shdr->sh_name);
2569 }
2570
2571 return 0;
2572 }
2573
2574 static int check_module_license_and_versions(struct module *mod)
2575 {
2576 /*
2577 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2578 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2579 * using GPL-only symbols it needs.
2580 */
2581 if (strcmp(mod->name, "ndiswrapper") == 0)
2582 add_taint(TAINT_PROPRIETARY_MODULE);
2583
2584 /* driverloader was caught wrongly pretending to be under GPL */
2585 if (strcmp(mod->name, "driverloader") == 0)
2586 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2587
2588 #ifdef CONFIG_MODVERSIONS
2589 if ((mod->num_syms && !mod->crcs)
2590 || (mod->num_gpl_syms && !mod->gpl_crcs)
2591 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2592 #ifdef CONFIG_UNUSED_SYMBOLS
2593 || (mod->num_unused_syms && !mod->unused_crcs)
2594 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2595 #endif
2596 ) {
2597 return try_to_force_load(mod,
2598 "no versions for exported symbols");
2599 }
2600 #endif
2601 return 0;
2602 }
2603
2604 static void flush_module_icache(const struct module *mod)
2605 {
2606 mm_segment_t old_fs;
2607
2608 /* flush the icache in correct context */
2609 old_fs = get_fs();
2610 set_fs(KERNEL_DS);
2611
2612 /*
2613 * Flush the instruction cache, since we've played with text.
2614 * Do it before processing of module parameters, so the module
2615 * can provide parameter accessor functions of its own.
2616 */
2617 if (mod->module_init)
2618 flush_icache_range((unsigned long)mod->module_init,
2619 (unsigned long)mod->module_init
2620 + mod->init_size);
2621 flush_icache_range((unsigned long)mod->module_core,
2622 (unsigned long)mod->module_core + mod->core_size);
2623
2624 set_fs(old_fs);
2625 }
2626
2627 static struct module *layout_and_allocate(struct load_info *info)
2628 {
2629 /* Module within temporary copy. */
2630 struct module *mod;
2631 Elf_Shdr *pcpusec;
2632 int err;
2633
2634 mod = setup_load_info(info);
2635 if (IS_ERR(mod))
2636 return mod;
2637
2638 err = check_modinfo(mod, info);
2639 if (err)
2640 return ERR_PTR(err);
2641
2642 /* Allow arches to frob section contents and sizes. */
2643 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2644 info->secstrings, mod);
2645 if (err < 0)
2646 goto out;
2647
2648 pcpusec = &info->sechdrs[info->index.pcpu];
2649 if (pcpusec->sh_size) {
2650 /* We have a special allocation for this section. */
2651 err = percpu_modalloc(mod,
2652 pcpusec->sh_size, pcpusec->sh_addralign);
2653 if (err)
2654 goto out;
2655 pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2656 }
2657
2658 /* Determine total sizes, and put offsets in sh_entsize. For now
2659 this is done generically; there doesn't appear to be any
2660 special cases for the architectures. */
2661 layout_sections(mod, info);
2662
2663 info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
2664 * sizeof(long), GFP_KERNEL);
2665 if (!info->strmap) {
2666 err = -ENOMEM;
2667 goto free_percpu;
2668 }
2669 layout_symtab(mod, info);
2670
2671 /* Allocate and move to the final place */
2672 err = move_module(mod, info);
2673 if (err)
2674 goto free_strmap;
2675
2676 /* Module has been copied to its final place now: return it. */
2677 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2678 kmemleak_load_module(mod, info);
2679 return mod;
2680
2681 free_strmap:
2682 kfree(info->strmap);
2683 free_percpu:
2684 percpu_modfree(mod);
2685 out:
2686 return ERR_PTR(err);
2687 }
2688
2689 /* mod is no longer valid after this! */
2690 static void module_deallocate(struct module *mod, struct load_info *info)
2691 {
2692 kfree(info->strmap);
2693 percpu_modfree(mod);
2694 module_free(mod, mod->module_init);
2695 module_free(mod, mod->module_core);
2696 }
2697
2698 static int post_relocation(struct module *mod, const struct load_info *info)
2699 {
2700 /* Sort exception table now relocations are done. */
2701 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2702
2703 /* Copy relocated percpu area over. */
2704 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2705 info->sechdrs[info->index.pcpu].sh_size);
2706
2707 /* Setup kallsyms-specific fields. */
2708 add_kallsyms(mod, info);
2709
2710 /* Arch-specific module finalizing. */
2711 return module_finalize(info->hdr, info->sechdrs, mod);
2712 }
2713
2714 /* Allocate and load the module: note that size of section 0 is always
2715 zero, and we rely on this for optional sections. */
2716 static struct module *load_module(void __user *umod,
2717 unsigned long len,
2718 const char __user *uargs)
2719 {
2720 struct load_info info = { NULL, };
2721 struct module *mod;
2722 long err;
2723
2724 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2725 umod, len, uargs);
2726
2727 /* Copy in the blobs from userspace, check they are vaguely sane. */
2728 err = copy_and_check(&info, umod, len, uargs);
2729 if (err)
2730 return ERR_PTR(err);
2731
2732 /* Figure out module layout, and allocate all the memory. */
2733 mod = layout_and_allocate(&info);
2734 if (IS_ERR(mod)) {
2735 err = PTR_ERR(mod);
2736 goto free_copy;
2737 }
2738
2739 /* Now module is in final location, initialize linked lists, etc. */
2740 err = module_unload_init(mod);
2741 if (err)
2742 goto free_module;
2743
2744 /* Now we've got everything in the final locations, we can
2745 * find optional sections. */
2746 find_module_sections(mod, &info);
2747
2748 err = check_module_license_and_versions(mod);
2749 if (err)
2750 goto free_unload;
2751
2752 /* Set up MODINFO_ATTR fields */
2753 setup_modinfo(mod, &info);
2754
2755 /* Fix up syms, so that st_value is a pointer to location. */
2756 err = simplify_symbols(mod, &info);
2757 if (err < 0)
2758 goto free_modinfo;
2759
2760 err = apply_relocations(mod, &info);
2761 if (err < 0)
2762 goto free_modinfo;
2763
2764 err = post_relocation(mod, &info);
2765 if (err < 0)
2766 goto free_modinfo;
2767
2768 flush_module_icache(mod);
2769
2770 /* Now copy in args */
2771 mod->args = strndup_user(uargs, ~0UL >> 1);
2772 if (IS_ERR(mod->args)) {
2773 err = PTR_ERR(mod->args);
2774 goto free_arch_cleanup;
2775 }
2776
2777 /* Mark state as coming so strong_try_module_get() ignores us. */
2778 mod->state = MODULE_STATE_COMING;
2779
2780 /* Now sew it into the lists so we can get lockdep and oops
2781 * info during argument parsing. No one should access us, since
2782 * strong_try_module_get() will fail.
2783 * lockdep/oops can run asynchronous, so use the RCU list insertion
2784 * function to insert in a way safe to concurrent readers.
2785 * The mutex protects against concurrent writers.
2786 */
2787 mutex_lock(&module_mutex);
2788 if (find_module(mod->name)) {
2789 err = -EEXIST;
2790 goto unlock;
2791 }
2792
2793 /* This has to be done once we're sure module name is unique. */
2794 if (!mod->taints)
2795 dynamic_debug_setup(info.debug, info.num_debug);
2796
2797 /* Find duplicate symbols */
2798 err = verify_export_symbols(mod);
2799 if (err < 0)
2800 goto ddebug;
2801
2802 module_bug_finalize(info.hdr, info.sechdrs, mod);
2803 list_add_rcu(&mod->list, &modules);
2804 mutex_unlock(&module_mutex);
2805
2806 /* Module is ready to execute: parsing args may do that. */
2807 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2808 if (err < 0)
2809 goto unlink;
2810
2811 /* Link in to syfs. */
2812 err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2813 if (err < 0)
2814 goto unlink;
2815
2816 /* Get rid of temporary copy and strmap. */
2817 kfree(info.strmap);
2818 free_copy(&info);
2819
2820 /* Done! */
2821 trace_module_load(mod);
2822 return mod;
2823
2824 unlink:
2825 mutex_lock(&module_mutex);
2826 /* Unlink carefully: kallsyms could be walking list. */
2827 list_del_rcu(&mod->list);
2828 module_bug_cleanup(mod);
2829
2830 ddebug:
2831 if (!mod->taints)
2832 dynamic_debug_remove(info.debug);
2833 unlock:
2834 mutex_unlock(&module_mutex);
2835 synchronize_sched();
2836 kfree(mod->args);
2837 free_arch_cleanup:
2838 module_arch_cleanup(mod);
2839 free_modinfo:
2840 free_modinfo(mod);
2841 free_unload:
2842 module_unload_free(mod);
2843 free_module:
2844 module_deallocate(mod, &info);
2845 free_copy:
2846 free_copy(&info);
2847 return ERR_PTR(err);
2848 }
2849
2850 /* Call module constructors. */
2851 static void do_mod_ctors(struct module *mod)
2852 {
2853 #ifdef CONFIG_CONSTRUCTORS
2854 unsigned long i;
2855
2856 for (i = 0; i < mod->num_ctors; i++)
2857 mod->ctors[i]();
2858 #endif
2859 }
2860
2861 /* This is where the real work happens */
2862 SYSCALL_DEFINE3(init_module, void __user *, umod,
2863 unsigned long, len, const char __user *, uargs)
2864 {
2865 struct module *mod;
2866 int ret = 0;
2867
2868 /* Must have permission */
2869 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2870 return -EPERM;
2871
2872 /* Do all the hard work */
2873 mod = load_module(umod, len, uargs);
2874 if (IS_ERR(mod))
2875 return PTR_ERR(mod);
2876
2877 blocking_notifier_call_chain(&module_notify_list,
2878 MODULE_STATE_COMING, mod);
2879
2880 /* Set RO and NX regions for core */
2881 set_section_ro_nx(mod->module_core,
2882 mod->core_text_size,
2883 mod->core_ro_size,
2884 mod->core_size);
2885
2886 /* Set RO and NX regions for init */
2887 set_section_ro_nx(mod->module_init,
2888 mod->init_text_size,
2889 mod->init_ro_size,
2890 mod->init_size);
2891
2892 do_mod_ctors(mod);
2893 /* Start the module */
2894 if (mod->init != NULL)
2895 ret = do_one_initcall(mod->init);
2896 if (ret < 0) {
2897 /* Init routine failed: abort. Try to protect us from
2898 buggy refcounters. */
2899 mod->state = MODULE_STATE_GOING;
2900 synchronize_sched();
2901 module_put(mod);
2902 blocking_notifier_call_chain(&module_notify_list,
2903 MODULE_STATE_GOING, mod);
2904 free_module(mod);
2905 wake_up(&module_wq);
2906 return ret;
2907 }
2908 if (ret > 0) {
2909 printk(KERN_WARNING
2910 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2911 "%s: loading module anyway...\n",
2912 __func__, mod->name, ret,
2913 __func__);
2914 dump_stack();
2915 }
2916
2917 /* Now it's a first class citizen! Wake up anyone waiting for it. */
2918 mod->state = MODULE_STATE_LIVE;
2919 wake_up(&module_wq);
2920 blocking_notifier_call_chain(&module_notify_list,
2921 MODULE_STATE_LIVE, mod);
2922
2923 /* We need to finish all async code before the module init sequence is done */
2924 async_synchronize_full();
2925
2926 mutex_lock(&module_mutex);
2927 /* Drop initial reference. */
2928 module_put(mod);
2929 trim_init_extable(mod);
2930 #ifdef CONFIG_KALLSYMS
2931 mod->num_symtab = mod->core_num_syms;
2932 mod->symtab = mod->core_symtab;
2933 mod->strtab = mod->core_strtab;
2934 #endif
2935 unset_section_ro_nx(mod, mod->module_init);
2936 module_free(mod, mod->module_init);
2937 mod->module_init = NULL;
2938 mod->init_size = 0;
2939 mod->init_ro_size = 0;
2940 mod->init_text_size = 0;
2941 mutex_unlock(&module_mutex);
2942
2943 return 0;
2944 }
2945
2946 static inline int within(unsigned long addr, void *start, unsigned long size)
2947 {
2948 return ((void *)addr >= start && (void *)addr < start + size);
2949 }
2950
2951 #ifdef CONFIG_KALLSYMS
2952 /*
2953 * This ignores the intensely annoying "mapping symbols" found
2954 * in ARM ELF files: $a, $t and $d.
2955 */
2956 static inline int is_arm_mapping_symbol(const char *str)
2957 {
2958 return str[0] == '$' && strchr("atd", str[1])
2959 && (str[2] == '\0' || str[2] == '.');
2960 }
2961
2962 static const char *get_ksymbol(struct module *mod,
2963 unsigned long addr,
2964 unsigned long *size,
2965 unsigned long *offset)
2966 {
2967 unsigned int i, best = 0;
2968 unsigned long nextval;
2969
2970 /* At worse, next value is at end of module */
2971 if (within_module_init(addr, mod))
2972 nextval = (unsigned long)mod->module_init+mod->init_text_size;
2973 else
2974 nextval = (unsigned long)mod->module_core+mod->core_text_size;
2975
2976 /* Scan for closest preceding symbol, and next symbol. (ELF
2977 starts real symbols at 1). */
2978 for (i = 1; i < mod->num_symtab; i++) {
2979 if (mod->symtab[i].st_shndx == SHN_UNDEF)
2980 continue;
2981
2982 /* We ignore unnamed symbols: they're uninformative
2983 * and inserted at a whim. */
2984 if (mod->symtab[i].st_value <= addr
2985 && mod->symtab[i].st_value > mod->symtab[best].st_value
2986 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2987 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2988 best = i;
2989 if (mod->symtab[i].st_value > addr
2990 && mod->symtab[i].st_value < nextval
2991 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2992 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2993 nextval = mod->symtab[i].st_value;
2994 }
2995
2996 if (!best)
2997 return NULL;
2998
2999 if (size)
3000 *size = nextval - mod->symtab[best].st_value;
3001 if (offset)
3002 *offset = addr - mod->symtab[best].st_value;
3003 return mod->strtab + mod->symtab[best].st_name;
3004 }
3005
3006 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3007 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3008 const char *module_address_lookup(unsigned long addr,
3009 unsigned long *size,
3010 unsigned long *offset,
3011 char **modname,
3012 char *namebuf)
3013 {
3014 struct module *mod;
3015 const char *ret = NULL;
3016
3017 preempt_disable();
3018 list_for_each_entry_rcu(mod, &modules, list) {
3019 if (within_module_init(addr, mod) ||
3020 within_module_core(addr, mod)) {
3021 if (modname)
3022 *modname = mod->name;
3023 ret = get_ksymbol(mod, addr, size, offset);
3024 break;
3025 }
3026 }
3027 /* Make a copy in here where it's safe */
3028 if (ret) {
3029 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3030 ret = namebuf;
3031 }
3032 preempt_enable();
3033 return ret;
3034 }
3035
3036 int lookup_module_symbol_name(unsigned long addr, char *symname)
3037 {
3038 struct module *mod;
3039
3040 preempt_disable();
3041 list_for_each_entry_rcu(mod, &modules, list) {
3042 if (within_module_init(addr, mod) ||
3043 within_module_core(addr, mod)) {
3044 const char *sym;
3045
3046 sym = get_ksymbol(mod, addr, NULL, NULL);
3047 if (!sym)
3048 goto out;
3049 strlcpy(symname, sym, KSYM_NAME_LEN);
3050 preempt_enable();
3051 return 0;
3052 }
3053 }
3054 out:
3055 preempt_enable();
3056 return -ERANGE;
3057 }
3058
3059 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3060 unsigned long *offset, char *modname, char *name)
3061 {
3062 struct module *mod;
3063
3064 preempt_disable();
3065 list_for_each_entry_rcu(mod, &modules, list) {
3066 if (within_module_init(addr, mod) ||
3067 within_module_core(addr, mod)) {
3068 const char *sym;
3069
3070 sym = get_ksymbol(mod, addr, size, offset);
3071 if (!sym)
3072 goto out;
3073 if (modname)
3074 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3075 if (name)
3076 strlcpy(name, sym, KSYM_NAME_LEN);
3077 preempt_enable();
3078 return 0;
3079 }
3080 }
3081 out:
3082 preempt_enable();
3083 return -ERANGE;
3084 }
3085
3086 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3087 char *name, char *module_name, int *exported)
3088 {
3089 struct module *mod;
3090
3091 preempt_disable();
3092 list_for_each_entry_rcu(mod, &modules, list) {
3093 if (symnum < mod->num_symtab) {
3094 *value = mod->symtab[symnum].st_value;
3095 *type = mod->symtab[symnum].st_info;
3096 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3097 KSYM_NAME_LEN);
3098 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3099 *exported = is_exported(name, *value, mod);
3100 preempt_enable();
3101 return 0;
3102 }
3103 symnum -= mod->num_symtab;
3104 }
3105 preempt_enable();
3106 return -ERANGE;
3107 }
3108
3109 static unsigned long mod_find_symname(struct module *mod, const char *name)
3110 {
3111 unsigned int i;
3112
3113 for (i = 0; i < mod->num_symtab; i++)
3114 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3115 mod->symtab[i].st_info != 'U')
3116 return mod->symtab[i].st_value;
3117 return 0;
3118 }
3119
3120 /* Look for this name: can be of form module:name. */
3121 unsigned long module_kallsyms_lookup_name(const char *name)
3122 {
3123 struct module *mod;
3124 char *colon;
3125 unsigned long ret = 0;
3126
3127 /* Don't lock: we're in enough trouble already. */
3128 preempt_disable();
3129 if ((colon = strchr(name, ':')) != NULL) {
3130 *colon = '\0';
3131 if ((mod = find_module(name)) != NULL)
3132 ret = mod_find_symname(mod, colon+1);
3133 *colon = ':';
3134 } else {
3135 list_for_each_entry_rcu(mod, &modules, list)
3136 if ((ret = mod_find_symname(mod, name)) != 0)
3137 break;
3138 }
3139 preempt_enable();
3140 return ret;
3141 }
3142
3143 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3144 struct module *, unsigned long),
3145 void *data)
3146 {
3147 struct module *mod;
3148 unsigned int i;
3149 int ret;
3150
3151 list_for_each_entry(mod, &modules, list) {
3152 for (i = 0; i < mod->num_symtab; i++) {
3153 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3154 mod, mod->symtab[i].st_value);
3155 if (ret != 0)
3156 return ret;
3157 }
3158 }
3159 return 0;
3160 }
3161 #endif /* CONFIG_KALLSYMS */
3162
3163 static char *module_flags(struct module *mod, char *buf)
3164 {
3165 int bx = 0;
3166
3167 if (mod->taints ||
3168 mod->state == MODULE_STATE_GOING ||
3169 mod->state == MODULE_STATE_COMING) {
3170 buf[bx++] = '(';
3171 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
3172 buf[bx++] = 'P';
3173 if (mod->taints & (1 << TAINT_FORCED_MODULE))
3174 buf[bx++] = 'F';
3175 if (mod->taints & (1 << TAINT_CRAP))
3176 buf[bx++] = 'C';
3177 /*
3178 * TAINT_FORCED_RMMOD: could be added.
3179 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
3180 * apply to modules.
3181 */
3182
3183 /* Show a - for module-is-being-unloaded */
3184 if (mod->state == MODULE_STATE_GOING)
3185 buf[bx++] = '-';
3186 /* Show a + for module-is-being-loaded */
3187 if (mod->state == MODULE_STATE_COMING)
3188 buf[bx++] = '+';
3189 buf[bx++] = ')';
3190 }
3191 buf[bx] = '\0';
3192
3193 return buf;
3194 }
3195
3196 #ifdef CONFIG_PROC_FS
3197 /* Called by the /proc file system to return a list of modules. */
3198 static void *m_start(struct seq_file *m, loff_t *pos)
3199 {
3200 mutex_lock(&module_mutex);
3201 return seq_list_start(&modules, *pos);
3202 }
3203
3204 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3205 {
3206 return seq_list_next(p, &modules, pos);
3207 }
3208
3209 static void m_stop(struct seq_file *m, void *p)
3210 {
3211 mutex_unlock(&module_mutex);
3212 }
3213
3214 static int m_show(struct seq_file *m, void *p)
3215 {
3216 struct module *mod = list_entry(p, struct module, list);
3217 char buf[8];
3218
3219 seq_printf(m, "%s %u",
3220 mod->name, mod->init_size + mod->core_size);
3221 print_unload_info(m, mod);
3222
3223 /* Informative for users. */
3224 seq_printf(m, " %s",
3225 mod->state == MODULE_STATE_GOING ? "Unloading":
3226 mod->state == MODULE_STATE_COMING ? "Loading":
3227 "Live");
3228 /* Used by oprofile and other similar tools. */
3229 seq_printf(m, " 0x%pK", mod->module_core);
3230
3231 /* Taints info */
3232 if (mod->taints)
3233 seq_printf(m, " %s", module_flags(mod, buf));
3234
3235 seq_printf(m, "\n");
3236 return 0;
3237 }
3238
3239 /* Format: modulename size refcount deps address
3240
3241 Where refcount is a number or -, and deps is a comma-separated list
3242 of depends or -.
3243 */
3244 static const struct seq_operations modules_op = {
3245 .start = m_start,
3246 .next = m_next,
3247 .stop = m_stop,
3248 .show = m_show
3249 };
3250
3251 static int modules_open(struct inode *inode, struct file *file)
3252 {
3253 return seq_open(file, &modules_op);
3254 }
3255
3256 static const struct file_operations proc_modules_operations = {
3257 .open = modules_open,
3258 .read = seq_read,
3259 .llseek = seq_lseek,
3260 .release = seq_release,
3261 };
3262
3263 static int __init proc_modules_init(void)
3264 {
3265 proc_create("modules", 0, NULL, &proc_modules_operations);
3266 return 0;
3267 }
3268 module_init(proc_modules_init);
3269 #endif
3270
3271 /* Given an address, look for it in the module exception tables. */
3272 const struct exception_table_entry *search_module_extables(unsigned long addr)
3273 {
3274 const struct exception_table_entry *e = NULL;
3275 struct module *mod;
3276
3277 preempt_disable();
3278 list_for_each_entry_rcu(mod, &modules, list) {
3279 if (mod->num_exentries == 0)
3280 continue;
3281
3282 e = search_extable(mod->extable,
3283 mod->extable + mod->num_exentries - 1,
3284 addr);
3285 if (e)
3286 break;
3287 }
3288 preempt_enable();
3289
3290 /* Now, if we found one, we are running inside it now, hence
3291 we cannot unload the module, hence no refcnt needed. */
3292 return e;
3293 }
3294
3295 /*
3296 * is_module_address - is this address inside a module?
3297 * @addr: the address to check.
3298 *
3299 * See is_module_text_address() if you simply want to see if the address
3300 * is code (not data).
3301 */
3302 bool is_module_address(unsigned long addr)
3303 {
3304 bool ret;
3305
3306 preempt_disable();
3307 ret = __module_address(addr) != NULL;
3308 preempt_enable();
3309
3310 return ret;
3311 }
3312
3313 /*
3314 * __module_address - get the module which contains an address.
3315 * @addr: the address.
3316 *
3317 * Must be called with preempt disabled or module mutex held so that
3318 * module doesn't get freed during this.
3319 */
3320 struct module *__module_address(unsigned long addr)
3321 {
3322 struct module *mod;
3323
3324 if (addr < module_addr_min || addr > module_addr_max)
3325 return NULL;
3326
3327 list_for_each_entry_rcu(mod, &modules, list)
3328 if (within_module_core(addr, mod)
3329 || within_module_init(addr, mod))
3330 return mod;
3331 return NULL;
3332 }
3333 EXPORT_SYMBOL_GPL(__module_address);
3334
3335 /*
3336 * is_module_text_address - is this address inside module code?
3337 * @addr: the address to check.
3338 *
3339 * See is_module_address() if you simply want to see if the address is
3340 * anywhere in a module. See kernel_text_address() for testing if an
3341 * address corresponds to kernel or module code.
3342 */
3343 bool is_module_text_address(unsigned long addr)
3344 {
3345 bool ret;
3346
3347 preempt_disable();
3348 ret = __module_text_address(addr) != NULL;
3349 preempt_enable();
3350
3351 return ret;
3352 }
3353
3354 /*
3355 * __module_text_address - get the module whose code contains an address.
3356 * @addr: the address.
3357 *
3358 * Must be called with preempt disabled or module mutex held so that
3359 * module doesn't get freed during this.
3360 */
3361 struct module *__module_text_address(unsigned long addr)
3362 {
3363 struct module *mod = __module_address(addr);
3364 if (mod) {
3365 /* Make sure it's within the text section. */
3366 if (!within(addr, mod->module_init, mod->init_text_size)
3367 && !within(addr, mod->module_core, mod->core_text_size))
3368 mod = NULL;
3369 }
3370 return mod;
3371 }
3372 EXPORT_SYMBOL_GPL(__module_text_address);
3373
3374 /* Don't grab lock, we're oopsing. */
3375 void print_modules(void)
3376 {
3377 struct module *mod;
3378 char buf[8];
3379
3380 printk(KERN_DEFAULT "Modules linked in:");
3381 /* Most callers should already have preempt disabled, but make sure */
3382 preempt_disable();
3383 list_for_each_entry_rcu(mod, &modules, list)
3384 printk(" %s%s", mod->name, module_flags(mod, buf));
3385 preempt_enable();
3386 if (last_unloaded_module[0])
3387 printk(" [last unloaded: %s]", last_unloaded_module);
3388 printk("\n");
3389 }
3390
3391 #ifdef CONFIG_MODVERSIONS
3392 /* Generate the signature for all relevant module structures here.
3393 * If these change, we don't want to try to parse the module. */
3394 void module_layout(struct module *mod,
3395 struct modversion_info *ver,
3396 struct kernel_param *kp,
3397 struct kernel_symbol *ks,
3398 struct tracepoint * const *tp)
3399 {
3400 }
3401 EXPORT_SYMBOL(module_layout);
3402 #endif
3403
3404 #ifdef CONFIG_TRACEPOINTS
3405 void module_update_tracepoints(void)
3406 {
3407 struct module *mod;
3408
3409 mutex_lock(&module_mutex);
3410 list_for_each_entry(mod, &modules, list)
3411 if (!mod->taints)
3412 tracepoint_update_probe_range(mod->tracepoints_ptrs,
3413 mod->tracepoints_ptrs + mod->num_tracepoints);
3414 mutex_unlock(&module_mutex);
3415 }
3416
3417 /*
3418 * Returns 0 if current not found.
3419 * Returns 1 if current found.
3420 */
3421 int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3422 {
3423 struct module *iter_mod;
3424 int found = 0;
3425
3426 mutex_lock(&module_mutex);
3427 list_for_each_entry(iter_mod, &modules, list) {
3428 if (!iter_mod->taints) {
3429 /*
3430 * Sorted module list
3431 */
3432 if (iter_mod < iter->module)
3433 continue;
3434 else if (iter_mod > iter->module)
3435 iter->tracepoint = NULL;
3436 found = tracepoint_get_iter_range(&iter->tracepoint,
3437 iter_mod->tracepoints_ptrs,
3438 iter_mod->tracepoints_ptrs
3439 + iter_mod->num_tracepoints);
3440 if (found) {
3441 iter->module = iter_mod;
3442 break;
3443 }
3444 }
3445 }
3446 mutex_unlock(&module_mutex);
3447 return found;
3448 }
3449 #endif