]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/module.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1050.54
[mirror_ubuntu-artful-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /*
73 * Modules' sections will be aligned on page boundaries
74 * to ensure complete separation of code and data, but
75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76 */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82
83 /* If this is set, the section belongs in the init part of the module */
84 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
85
86 /*
87 * Mutex protects:
88 * 1) List of modules (also safely readable with preempt_disable),
89 * 2) module_use links,
90 * 3) module_addr_min/module_addr_max.
91 * (delete and add uses RCU list operations). */
92 DEFINE_MUTEX(module_mutex);
93 EXPORT_SYMBOL_GPL(module_mutex);
94 static LIST_HEAD(modules);
95
96 #ifdef CONFIG_MODULES_TREE_LOOKUP
97
98 /*
99 * Use a latched RB-tree for __module_address(); this allows us to use
100 * RCU-sched lookups of the address from any context.
101 *
102 * This is conditional on PERF_EVENTS || TRACING because those can really hit
103 * __module_address() hard by doing a lot of stack unwinding; potentially from
104 * NMI context.
105 */
106
107 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
108 {
109 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
110
111 return (unsigned long)layout->base;
112 }
113
114 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
115 {
116 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
117
118 return (unsigned long)layout->size;
119 }
120
121 static __always_inline bool
122 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
123 {
124 return __mod_tree_val(a) < __mod_tree_val(b);
125 }
126
127 static __always_inline int
128 mod_tree_comp(void *key, struct latch_tree_node *n)
129 {
130 unsigned long val = (unsigned long)key;
131 unsigned long start, end;
132
133 start = __mod_tree_val(n);
134 if (val < start)
135 return -1;
136
137 end = start + __mod_tree_size(n);
138 if (val >= end)
139 return 1;
140
141 return 0;
142 }
143
144 static const struct latch_tree_ops mod_tree_ops = {
145 .less = mod_tree_less,
146 .comp = mod_tree_comp,
147 };
148
149 static struct mod_tree_root {
150 struct latch_tree_root root;
151 unsigned long addr_min;
152 unsigned long addr_max;
153 } mod_tree __cacheline_aligned = {
154 .addr_min = -1UL,
155 };
156
157 #define module_addr_min mod_tree.addr_min
158 #define module_addr_max mod_tree.addr_max
159
160 static noinline void __mod_tree_insert(struct mod_tree_node *node)
161 {
162 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
163 }
164
165 static void __mod_tree_remove(struct mod_tree_node *node)
166 {
167 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 /*
171 * These modifications: insert, remove_init and remove; are serialized by the
172 * module_mutex.
173 */
174 static void mod_tree_insert(struct module *mod)
175 {
176 mod->core_layout.mtn.mod = mod;
177 mod->init_layout.mtn.mod = mod;
178
179 __mod_tree_insert(&mod->core_layout.mtn);
180 if (mod->init_layout.size)
181 __mod_tree_insert(&mod->init_layout.mtn);
182 }
183
184 static void mod_tree_remove_init(struct module *mod)
185 {
186 if (mod->init_layout.size)
187 __mod_tree_remove(&mod->init_layout.mtn);
188 }
189
190 static void mod_tree_remove(struct module *mod)
191 {
192 __mod_tree_remove(&mod->core_layout.mtn);
193 mod_tree_remove_init(mod);
194 }
195
196 static struct module *mod_find(unsigned long addr)
197 {
198 struct latch_tree_node *ltn;
199
200 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
201 if (!ltn)
202 return NULL;
203
204 return container_of(ltn, struct mod_tree_node, node)->mod;
205 }
206
207 #else /* MODULES_TREE_LOOKUP */
208
209 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
210
211 static void mod_tree_insert(struct module *mod) { }
212 static void mod_tree_remove_init(struct module *mod) { }
213 static void mod_tree_remove(struct module *mod) { }
214
215 static struct module *mod_find(unsigned long addr)
216 {
217 struct module *mod;
218
219 list_for_each_entry_rcu(mod, &modules, list) {
220 if (within_module(addr, mod))
221 return mod;
222 }
223
224 return NULL;
225 }
226
227 #endif /* MODULES_TREE_LOOKUP */
228
229 /*
230 * Bounds of module text, for speeding up __module_address.
231 * Protected by module_mutex.
232 */
233 static void __mod_update_bounds(void *base, unsigned int size)
234 {
235 unsigned long min = (unsigned long)base;
236 unsigned long max = min + size;
237
238 if (min < module_addr_min)
239 module_addr_min = min;
240 if (max > module_addr_max)
241 module_addr_max = max;
242 }
243
244 static void mod_update_bounds(struct module *mod)
245 {
246 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
247 if (mod->init_layout.size)
248 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
249 }
250
251 #ifdef CONFIG_KGDB_KDB
252 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
253 #endif /* CONFIG_KGDB_KDB */
254
255 static void module_assert_mutex(void)
256 {
257 lockdep_assert_held(&module_mutex);
258 }
259
260 static void module_assert_mutex_or_preempt(void)
261 {
262 #ifdef CONFIG_LOCKDEP
263 if (unlikely(!debug_locks))
264 return;
265
266 WARN_ON(!rcu_read_lock_sched_held() &&
267 !lockdep_is_held(&module_mutex));
268 #endif
269 }
270
271 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272 #ifndef CONFIG_MODULE_SIG_FORCE
273 module_param(sig_enforce, bool_enable_only, 0644);
274 #endif /* !CONFIG_MODULE_SIG_FORCE */
275
276 /* Block module loading/unloading? */
277 int modules_disabled = 0;
278 core_param(nomodule, modules_disabled, bint, 0);
279
280 /* Waiting for a module to finish initializing? */
281 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
282
283 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
284
285 int register_module_notifier(struct notifier_block *nb)
286 {
287 return blocking_notifier_chain_register(&module_notify_list, nb);
288 }
289 EXPORT_SYMBOL(register_module_notifier);
290
291 int unregister_module_notifier(struct notifier_block *nb)
292 {
293 return blocking_notifier_chain_unregister(&module_notify_list, nb);
294 }
295 EXPORT_SYMBOL(unregister_module_notifier);
296
297 struct load_info {
298 Elf_Ehdr *hdr;
299 unsigned long len;
300 Elf_Shdr *sechdrs;
301 char *secstrings, *strtab;
302 unsigned long symoffs, stroffs;
303 struct _ddebug *debug;
304 unsigned int num_debug;
305 bool sig_ok;
306 #ifdef CONFIG_KALLSYMS
307 unsigned long mod_kallsyms_init_off;
308 #endif
309 struct {
310 unsigned int sym, str, mod, vers, info, pcpu;
311 } index;
312 };
313
314 /* We require a truly strong try_module_get(): 0 means failure due to
315 ongoing or failed initialization etc. */
316 static inline int strong_try_module_get(struct module *mod)
317 {
318 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
319 if (mod && mod->state == MODULE_STATE_COMING)
320 return -EBUSY;
321 if (try_module_get(mod))
322 return 0;
323 else
324 return -ENOENT;
325 }
326
327 static inline void add_taint_module(struct module *mod, unsigned flag,
328 enum lockdep_ok lockdep_ok)
329 {
330 add_taint(flag, lockdep_ok);
331 mod->taints |= (1U << flag);
332 }
333
334 /*
335 * A thread that wants to hold a reference to a module only while it
336 * is running can call this to safely exit. nfsd and lockd use this.
337 */
338 void __module_put_and_exit(struct module *mod, long code)
339 {
340 module_put(mod);
341 do_exit(code);
342 }
343 EXPORT_SYMBOL(__module_put_and_exit);
344
345 /* Find a module section: 0 means not found. */
346 static unsigned int find_sec(const struct load_info *info, const char *name)
347 {
348 unsigned int i;
349
350 for (i = 1; i < info->hdr->e_shnum; i++) {
351 Elf_Shdr *shdr = &info->sechdrs[i];
352 /* Alloc bit cleared means "ignore it." */
353 if ((shdr->sh_flags & SHF_ALLOC)
354 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
355 return i;
356 }
357 return 0;
358 }
359
360 /* Find a module section, or NULL. */
361 static void *section_addr(const struct load_info *info, const char *name)
362 {
363 /* Section 0 has sh_addr 0. */
364 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
365 }
366
367 /* Find a module section, or NULL. Fill in number of "objects" in section. */
368 static void *section_objs(const struct load_info *info,
369 const char *name,
370 size_t object_size,
371 unsigned int *num)
372 {
373 unsigned int sec = find_sec(info, name);
374
375 /* Section 0 has sh_addr 0 and sh_size 0. */
376 *num = info->sechdrs[sec].sh_size / object_size;
377 return (void *)info->sechdrs[sec].sh_addr;
378 }
379
380 /* Provided by the linker */
381 extern const struct kernel_symbol __start___ksymtab[];
382 extern const struct kernel_symbol __stop___ksymtab[];
383 extern const struct kernel_symbol __start___ksymtab_gpl[];
384 extern const struct kernel_symbol __stop___ksymtab_gpl[];
385 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
386 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
387 extern const unsigned long __start___kcrctab[];
388 extern const unsigned long __start___kcrctab_gpl[];
389 extern const unsigned long __start___kcrctab_gpl_future[];
390 #ifdef CONFIG_UNUSED_SYMBOLS
391 extern const struct kernel_symbol __start___ksymtab_unused[];
392 extern const struct kernel_symbol __stop___ksymtab_unused[];
393 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
394 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
395 extern const unsigned long __start___kcrctab_unused[];
396 extern const unsigned long __start___kcrctab_unused_gpl[];
397 #endif
398
399 #ifndef CONFIG_MODVERSIONS
400 #define symversion(base, idx) NULL
401 #else
402 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
403 #endif
404
405 static bool each_symbol_in_section(const struct symsearch *arr,
406 unsigned int arrsize,
407 struct module *owner,
408 bool (*fn)(const struct symsearch *syms,
409 struct module *owner,
410 void *data),
411 void *data)
412 {
413 unsigned int j;
414
415 for (j = 0; j < arrsize; j++) {
416 if (fn(&arr[j], owner, data))
417 return true;
418 }
419
420 return false;
421 }
422
423 /* Returns true as soon as fn returns true, otherwise false. */
424 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
425 struct module *owner,
426 void *data),
427 void *data)
428 {
429 struct module *mod;
430 static const struct symsearch arr[] = {
431 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
432 NOT_GPL_ONLY, false },
433 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
434 __start___kcrctab_gpl,
435 GPL_ONLY, false },
436 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
437 __start___kcrctab_gpl_future,
438 WILL_BE_GPL_ONLY, false },
439 #ifdef CONFIG_UNUSED_SYMBOLS
440 { __start___ksymtab_unused, __stop___ksymtab_unused,
441 __start___kcrctab_unused,
442 NOT_GPL_ONLY, true },
443 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
444 __start___kcrctab_unused_gpl,
445 GPL_ONLY, true },
446 #endif
447 };
448
449 module_assert_mutex_or_preempt();
450
451 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
452 return true;
453
454 list_for_each_entry_rcu(mod, &modules, list) {
455 struct symsearch arr[] = {
456 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
457 NOT_GPL_ONLY, false },
458 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
459 mod->gpl_crcs,
460 GPL_ONLY, false },
461 { mod->gpl_future_syms,
462 mod->gpl_future_syms + mod->num_gpl_future_syms,
463 mod->gpl_future_crcs,
464 WILL_BE_GPL_ONLY, false },
465 #ifdef CONFIG_UNUSED_SYMBOLS
466 { mod->unused_syms,
467 mod->unused_syms + mod->num_unused_syms,
468 mod->unused_crcs,
469 NOT_GPL_ONLY, true },
470 { mod->unused_gpl_syms,
471 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
472 mod->unused_gpl_crcs,
473 GPL_ONLY, true },
474 #endif
475 };
476
477 if (mod->state == MODULE_STATE_UNFORMED)
478 continue;
479
480 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
481 return true;
482 }
483 return false;
484 }
485 EXPORT_SYMBOL_GPL(each_symbol_section);
486
487 struct find_symbol_arg {
488 /* Input */
489 const char *name;
490 bool gplok;
491 bool warn;
492
493 /* Output */
494 struct module *owner;
495 const unsigned long *crc;
496 const struct kernel_symbol *sym;
497 };
498
499 static bool check_symbol(const struct symsearch *syms,
500 struct module *owner,
501 unsigned int symnum, void *data)
502 {
503 struct find_symbol_arg *fsa = data;
504
505 if (!fsa->gplok) {
506 if (syms->licence == GPL_ONLY)
507 return false;
508 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
509 pr_warn("Symbol %s is being used by a non-GPL module, "
510 "which will not be allowed in the future\n",
511 fsa->name);
512 }
513 }
514
515 #ifdef CONFIG_UNUSED_SYMBOLS
516 if (syms->unused && fsa->warn) {
517 pr_warn("Symbol %s is marked as UNUSED, however this module is "
518 "using it.\n", fsa->name);
519 pr_warn("This symbol will go away in the future.\n");
520 pr_warn("Please evaluate if this is the right api to use and "
521 "if it really is, submit a report to the linux kernel "
522 "mailing list together with submitting your code for "
523 "inclusion.\n");
524 }
525 #endif
526
527 fsa->owner = owner;
528 fsa->crc = symversion(syms->crcs, symnum);
529 fsa->sym = &syms->start[symnum];
530 return true;
531 }
532
533 static int cmp_name(const void *va, const void *vb)
534 {
535 const char *a;
536 const struct kernel_symbol *b;
537 a = va; b = vb;
538 return strcmp(a, b->name);
539 }
540
541 static bool find_symbol_in_section(const struct symsearch *syms,
542 struct module *owner,
543 void *data)
544 {
545 struct find_symbol_arg *fsa = data;
546 struct kernel_symbol *sym;
547
548 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
549 sizeof(struct kernel_symbol), cmp_name);
550
551 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
552 return true;
553
554 return false;
555 }
556
557 /* Find a symbol and return it, along with, (optional) crc and
558 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
559 const struct kernel_symbol *find_symbol(const char *name,
560 struct module **owner,
561 const unsigned long **crc,
562 bool gplok,
563 bool warn)
564 {
565 struct find_symbol_arg fsa;
566
567 fsa.name = name;
568 fsa.gplok = gplok;
569 fsa.warn = warn;
570
571 if (each_symbol_section(find_symbol_in_section, &fsa)) {
572 if (owner)
573 *owner = fsa.owner;
574 if (crc)
575 *crc = fsa.crc;
576 return fsa.sym;
577 }
578
579 pr_debug("Failed to find symbol %s\n", name);
580 return NULL;
581 }
582 EXPORT_SYMBOL_GPL(find_symbol);
583
584 /*
585 * Search for module by name: must hold module_mutex (or preempt disabled
586 * for read-only access).
587 */
588 static struct module *find_module_all(const char *name, size_t len,
589 bool even_unformed)
590 {
591 struct module *mod;
592
593 module_assert_mutex_or_preempt();
594
595 list_for_each_entry(mod, &modules, list) {
596 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
597 continue;
598 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
599 return mod;
600 }
601 return NULL;
602 }
603
604 struct module *find_module(const char *name)
605 {
606 module_assert_mutex();
607 return find_module_all(name, strlen(name), false);
608 }
609 EXPORT_SYMBOL_GPL(find_module);
610
611 #ifdef CONFIG_SMP
612
613 static inline void __percpu *mod_percpu(struct module *mod)
614 {
615 return mod->percpu;
616 }
617
618 static int percpu_modalloc(struct module *mod, struct load_info *info)
619 {
620 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
621 unsigned long align = pcpusec->sh_addralign;
622
623 if (!pcpusec->sh_size)
624 return 0;
625
626 if (align > PAGE_SIZE) {
627 pr_warn("%s: per-cpu alignment %li > %li\n",
628 mod->name, align, PAGE_SIZE);
629 align = PAGE_SIZE;
630 }
631
632 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
633 if (!mod->percpu) {
634 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
635 mod->name, (unsigned long)pcpusec->sh_size);
636 return -ENOMEM;
637 }
638 mod->percpu_size = pcpusec->sh_size;
639 return 0;
640 }
641
642 static void percpu_modfree(struct module *mod)
643 {
644 free_percpu(mod->percpu);
645 }
646
647 static unsigned int find_pcpusec(struct load_info *info)
648 {
649 return find_sec(info, ".data..percpu");
650 }
651
652 static void percpu_modcopy(struct module *mod,
653 const void *from, unsigned long size)
654 {
655 int cpu;
656
657 for_each_possible_cpu(cpu)
658 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
659 }
660
661 /**
662 * is_module_percpu_address - test whether address is from module static percpu
663 * @addr: address to test
664 *
665 * Test whether @addr belongs to module static percpu area.
666 *
667 * RETURNS:
668 * %true if @addr is from module static percpu area
669 */
670 bool is_module_percpu_address(unsigned long addr)
671 {
672 struct module *mod;
673 unsigned int cpu;
674
675 preempt_disable();
676
677 list_for_each_entry_rcu(mod, &modules, list) {
678 if (mod->state == MODULE_STATE_UNFORMED)
679 continue;
680 if (!mod->percpu_size)
681 continue;
682 for_each_possible_cpu(cpu) {
683 void *start = per_cpu_ptr(mod->percpu, cpu);
684
685 if ((void *)addr >= start &&
686 (void *)addr < start + mod->percpu_size) {
687 preempt_enable();
688 return true;
689 }
690 }
691 }
692
693 preempt_enable();
694 return false;
695 }
696
697 #else /* ... !CONFIG_SMP */
698
699 static inline void __percpu *mod_percpu(struct module *mod)
700 {
701 return NULL;
702 }
703 static int percpu_modalloc(struct module *mod, struct load_info *info)
704 {
705 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
706 if (info->sechdrs[info->index.pcpu].sh_size != 0)
707 return -ENOMEM;
708 return 0;
709 }
710 static inline void percpu_modfree(struct module *mod)
711 {
712 }
713 static unsigned int find_pcpusec(struct load_info *info)
714 {
715 return 0;
716 }
717 static inline void percpu_modcopy(struct module *mod,
718 const void *from, unsigned long size)
719 {
720 /* pcpusec should be 0, and size of that section should be 0. */
721 BUG_ON(size != 0);
722 }
723 bool is_module_percpu_address(unsigned long addr)
724 {
725 return false;
726 }
727
728 #endif /* CONFIG_SMP */
729
730 #define MODINFO_ATTR(field) \
731 static void setup_modinfo_##field(struct module *mod, const char *s) \
732 { \
733 mod->field = kstrdup(s, GFP_KERNEL); \
734 } \
735 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
736 struct module_kobject *mk, char *buffer) \
737 { \
738 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
739 } \
740 static int modinfo_##field##_exists(struct module *mod) \
741 { \
742 return mod->field != NULL; \
743 } \
744 static void free_modinfo_##field(struct module *mod) \
745 { \
746 kfree(mod->field); \
747 mod->field = NULL; \
748 } \
749 static struct module_attribute modinfo_##field = { \
750 .attr = { .name = __stringify(field), .mode = 0444 }, \
751 .show = show_modinfo_##field, \
752 .setup = setup_modinfo_##field, \
753 .test = modinfo_##field##_exists, \
754 .free = free_modinfo_##field, \
755 };
756
757 MODINFO_ATTR(version);
758 MODINFO_ATTR(srcversion);
759
760 static char last_unloaded_module[MODULE_NAME_LEN+1];
761
762 #ifdef CONFIG_MODULE_UNLOAD
763
764 EXPORT_TRACEPOINT_SYMBOL(module_get);
765
766 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
767 #define MODULE_REF_BASE 1
768
769 /* Init the unload section of the module. */
770 static int module_unload_init(struct module *mod)
771 {
772 /*
773 * Initialize reference counter to MODULE_REF_BASE.
774 * refcnt == 0 means module is going.
775 */
776 atomic_set(&mod->refcnt, MODULE_REF_BASE);
777
778 INIT_LIST_HEAD(&mod->source_list);
779 INIT_LIST_HEAD(&mod->target_list);
780
781 /* Hold reference count during initialization. */
782 atomic_inc(&mod->refcnt);
783
784 return 0;
785 }
786
787 /* Does a already use b? */
788 static int already_uses(struct module *a, struct module *b)
789 {
790 struct module_use *use;
791
792 list_for_each_entry(use, &b->source_list, source_list) {
793 if (use->source == a) {
794 pr_debug("%s uses %s!\n", a->name, b->name);
795 return 1;
796 }
797 }
798 pr_debug("%s does not use %s!\n", a->name, b->name);
799 return 0;
800 }
801
802 /*
803 * Module a uses b
804 * - we add 'a' as a "source", 'b' as a "target" of module use
805 * - the module_use is added to the list of 'b' sources (so
806 * 'b' can walk the list to see who sourced them), and of 'a'
807 * targets (so 'a' can see what modules it targets).
808 */
809 static int add_module_usage(struct module *a, struct module *b)
810 {
811 struct module_use *use;
812
813 pr_debug("Allocating new usage for %s.\n", a->name);
814 use = kmalloc(sizeof(*use), GFP_ATOMIC);
815 if (!use) {
816 pr_warn("%s: out of memory loading\n", a->name);
817 return -ENOMEM;
818 }
819
820 use->source = a;
821 use->target = b;
822 list_add(&use->source_list, &b->source_list);
823 list_add(&use->target_list, &a->target_list);
824 return 0;
825 }
826
827 /* Module a uses b: caller needs module_mutex() */
828 int ref_module(struct module *a, struct module *b)
829 {
830 int err;
831
832 if (b == NULL || already_uses(a, b))
833 return 0;
834
835 /* If module isn't available, we fail. */
836 err = strong_try_module_get(b);
837 if (err)
838 return err;
839
840 err = add_module_usage(a, b);
841 if (err) {
842 module_put(b);
843 return err;
844 }
845 return 0;
846 }
847 EXPORT_SYMBOL_GPL(ref_module);
848
849 /* Clear the unload stuff of the module. */
850 static void module_unload_free(struct module *mod)
851 {
852 struct module_use *use, *tmp;
853
854 mutex_lock(&module_mutex);
855 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
856 struct module *i = use->target;
857 pr_debug("%s unusing %s\n", mod->name, i->name);
858 module_put(i);
859 list_del(&use->source_list);
860 list_del(&use->target_list);
861 kfree(use);
862 }
863 mutex_unlock(&module_mutex);
864 }
865
866 #ifdef CONFIG_MODULE_FORCE_UNLOAD
867 static inline int try_force_unload(unsigned int flags)
868 {
869 int ret = (flags & O_TRUNC);
870 if (ret)
871 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
872 return ret;
873 }
874 #else
875 static inline int try_force_unload(unsigned int flags)
876 {
877 return 0;
878 }
879 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
880
881 /* Try to release refcount of module, 0 means success. */
882 static int try_release_module_ref(struct module *mod)
883 {
884 int ret;
885
886 /* Try to decrement refcnt which we set at loading */
887 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
888 BUG_ON(ret < 0);
889 if (ret)
890 /* Someone can put this right now, recover with checking */
891 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
892
893 return ret;
894 }
895
896 static int try_stop_module(struct module *mod, int flags, int *forced)
897 {
898 /* If it's not unused, quit unless we're forcing. */
899 if (try_release_module_ref(mod) != 0) {
900 *forced = try_force_unload(flags);
901 if (!(*forced))
902 return -EWOULDBLOCK;
903 }
904
905 /* Mark it as dying. */
906 mod->state = MODULE_STATE_GOING;
907
908 return 0;
909 }
910
911 /**
912 * module_refcount - return the refcount or -1 if unloading
913 *
914 * @mod: the module we're checking
915 *
916 * Returns:
917 * -1 if the module is in the process of unloading
918 * otherwise the number of references in the kernel to the module
919 */
920 int module_refcount(struct module *mod)
921 {
922 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
923 }
924 EXPORT_SYMBOL(module_refcount);
925
926 /* This exists whether we can unload or not */
927 static void free_module(struct module *mod);
928
929 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
930 unsigned int, flags)
931 {
932 struct module *mod;
933 char name[MODULE_NAME_LEN];
934 int ret, forced = 0;
935
936 if (!capable(CAP_SYS_MODULE) || modules_disabled)
937 return -EPERM;
938
939 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
940 return -EFAULT;
941 name[MODULE_NAME_LEN-1] = '\0';
942
943 if (mutex_lock_interruptible(&module_mutex) != 0)
944 return -EINTR;
945
946 mod = find_module(name);
947 if (!mod) {
948 ret = -ENOENT;
949 goto out;
950 }
951
952 if (!list_empty(&mod->source_list)) {
953 /* Other modules depend on us: get rid of them first. */
954 ret = -EWOULDBLOCK;
955 goto out;
956 }
957
958 /* Doing init or already dying? */
959 if (mod->state != MODULE_STATE_LIVE) {
960 /* FIXME: if (force), slam module count damn the torpedoes */
961 pr_debug("%s already dying\n", mod->name);
962 ret = -EBUSY;
963 goto out;
964 }
965
966 /* If it has an init func, it must have an exit func to unload */
967 if (mod->init && !mod->exit) {
968 forced = try_force_unload(flags);
969 if (!forced) {
970 /* This module can't be removed */
971 ret = -EBUSY;
972 goto out;
973 }
974 }
975
976 /* Stop the machine so refcounts can't move and disable module. */
977 ret = try_stop_module(mod, flags, &forced);
978 if (ret != 0)
979 goto out;
980
981 mutex_unlock(&module_mutex);
982 /* Final destruction now no one is using it. */
983 if (mod->exit != NULL)
984 mod->exit();
985 blocking_notifier_call_chain(&module_notify_list,
986 MODULE_STATE_GOING, mod);
987 async_synchronize_full();
988
989 /* Store the name of the last unloaded module for diagnostic purposes */
990 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
991
992 free_module(mod);
993 return 0;
994 out:
995 mutex_unlock(&module_mutex);
996 return ret;
997 }
998
999 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1000 {
1001 struct module_use *use;
1002 int printed_something = 0;
1003
1004 seq_printf(m, " %i ", module_refcount(mod));
1005
1006 /*
1007 * Always include a trailing , so userspace can differentiate
1008 * between this and the old multi-field proc format.
1009 */
1010 list_for_each_entry(use, &mod->source_list, source_list) {
1011 printed_something = 1;
1012 seq_printf(m, "%s,", use->source->name);
1013 }
1014
1015 if (mod->init != NULL && mod->exit == NULL) {
1016 printed_something = 1;
1017 seq_puts(m, "[permanent],");
1018 }
1019
1020 if (!printed_something)
1021 seq_puts(m, "-");
1022 }
1023
1024 void __symbol_put(const char *symbol)
1025 {
1026 struct module *owner;
1027
1028 preempt_disable();
1029 if (!find_symbol(symbol, &owner, NULL, true, false))
1030 BUG();
1031 module_put(owner);
1032 preempt_enable();
1033 }
1034 EXPORT_SYMBOL(__symbol_put);
1035
1036 /* Note this assumes addr is a function, which it currently always is. */
1037 void symbol_put_addr(void *addr)
1038 {
1039 struct module *modaddr;
1040 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1041
1042 if (core_kernel_text(a))
1043 return;
1044
1045 /*
1046 * Even though we hold a reference on the module; we still need to
1047 * disable preemption in order to safely traverse the data structure.
1048 */
1049 preempt_disable();
1050 modaddr = __module_text_address(a);
1051 BUG_ON(!modaddr);
1052 module_put(modaddr);
1053 preempt_enable();
1054 }
1055 EXPORT_SYMBOL_GPL(symbol_put_addr);
1056
1057 static ssize_t show_refcnt(struct module_attribute *mattr,
1058 struct module_kobject *mk, char *buffer)
1059 {
1060 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1061 }
1062
1063 static struct module_attribute modinfo_refcnt =
1064 __ATTR(refcnt, 0444, show_refcnt, NULL);
1065
1066 void __module_get(struct module *module)
1067 {
1068 if (module) {
1069 preempt_disable();
1070 atomic_inc(&module->refcnt);
1071 trace_module_get(module, _RET_IP_);
1072 preempt_enable();
1073 }
1074 }
1075 EXPORT_SYMBOL(__module_get);
1076
1077 bool try_module_get(struct module *module)
1078 {
1079 bool ret = true;
1080
1081 if (module) {
1082 preempt_disable();
1083 /* Note: here, we can fail to get a reference */
1084 if (likely(module_is_live(module) &&
1085 atomic_inc_not_zero(&module->refcnt) != 0))
1086 trace_module_get(module, _RET_IP_);
1087 else
1088 ret = false;
1089
1090 preempt_enable();
1091 }
1092 return ret;
1093 }
1094 EXPORT_SYMBOL(try_module_get);
1095
1096 void module_put(struct module *module)
1097 {
1098 int ret;
1099
1100 if (module) {
1101 preempt_disable();
1102 ret = atomic_dec_if_positive(&module->refcnt);
1103 WARN_ON(ret < 0); /* Failed to put refcount */
1104 trace_module_put(module, _RET_IP_);
1105 preempt_enable();
1106 }
1107 }
1108 EXPORT_SYMBOL(module_put);
1109
1110 #else /* !CONFIG_MODULE_UNLOAD */
1111 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1112 {
1113 /* We don't know the usage count, or what modules are using. */
1114 seq_puts(m, " - -");
1115 }
1116
1117 static inline void module_unload_free(struct module *mod)
1118 {
1119 }
1120
1121 int ref_module(struct module *a, struct module *b)
1122 {
1123 return strong_try_module_get(b);
1124 }
1125 EXPORT_SYMBOL_GPL(ref_module);
1126
1127 static inline int module_unload_init(struct module *mod)
1128 {
1129 return 0;
1130 }
1131 #endif /* CONFIG_MODULE_UNLOAD */
1132
1133 static size_t module_flags_taint(struct module *mod, char *buf)
1134 {
1135 size_t l = 0;
1136
1137 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1138 buf[l++] = 'P';
1139 if (mod->taints & (1 << TAINT_OOT_MODULE))
1140 buf[l++] = 'O';
1141 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1142 buf[l++] = 'F';
1143 if (mod->taints & (1 << TAINT_CRAP))
1144 buf[l++] = 'C';
1145 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1146 buf[l++] = 'E';
1147 /*
1148 * TAINT_FORCED_RMMOD: could be added.
1149 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1150 * apply to modules.
1151 */
1152 return l;
1153 }
1154
1155 static ssize_t show_initstate(struct module_attribute *mattr,
1156 struct module_kobject *mk, char *buffer)
1157 {
1158 const char *state = "unknown";
1159
1160 switch (mk->mod->state) {
1161 case MODULE_STATE_LIVE:
1162 state = "live";
1163 break;
1164 case MODULE_STATE_COMING:
1165 state = "coming";
1166 break;
1167 case MODULE_STATE_GOING:
1168 state = "going";
1169 break;
1170 default:
1171 BUG();
1172 }
1173 return sprintf(buffer, "%s\n", state);
1174 }
1175
1176 static struct module_attribute modinfo_initstate =
1177 __ATTR(initstate, 0444, show_initstate, NULL);
1178
1179 static ssize_t store_uevent(struct module_attribute *mattr,
1180 struct module_kobject *mk,
1181 const char *buffer, size_t count)
1182 {
1183 enum kobject_action action;
1184
1185 if (kobject_action_type(buffer, count, &action) == 0)
1186 kobject_uevent(&mk->kobj, action);
1187 return count;
1188 }
1189
1190 struct module_attribute module_uevent =
1191 __ATTR(uevent, 0200, NULL, store_uevent);
1192
1193 static ssize_t show_coresize(struct module_attribute *mattr,
1194 struct module_kobject *mk, char *buffer)
1195 {
1196 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1197 }
1198
1199 static struct module_attribute modinfo_coresize =
1200 __ATTR(coresize, 0444, show_coresize, NULL);
1201
1202 static ssize_t show_initsize(struct module_attribute *mattr,
1203 struct module_kobject *mk, char *buffer)
1204 {
1205 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1206 }
1207
1208 static struct module_attribute modinfo_initsize =
1209 __ATTR(initsize, 0444, show_initsize, NULL);
1210
1211 static ssize_t show_taint(struct module_attribute *mattr,
1212 struct module_kobject *mk, char *buffer)
1213 {
1214 size_t l;
1215
1216 l = module_flags_taint(mk->mod, buffer);
1217 buffer[l++] = '\n';
1218 return l;
1219 }
1220
1221 static struct module_attribute modinfo_taint =
1222 __ATTR(taint, 0444, show_taint, NULL);
1223
1224 static struct module_attribute *modinfo_attrs[] = {
1225 &module_uevent,
1226 &modinfo_version,
1227 &modinfo_srcversion,
1228 &modinfo_initstate,
1229 &modinfo_coresize,
1230 &modinfo_initsize,
1231 &modinfo_taint,
1232 #ifdef CONFIG_MODULE_UNLOAD
1233 &modinfo_refcnt,
1234 #endif
1235 NULL,
1236 };
1237
1238 static const char vermagic[] = VERMAGIC_STRING;
1239
1240 static int try_to_force_load(struct module *mod, const char *reason)
1241 {
1242 #ifdef CONFIG_MODULE_FORCE_LOAD
1243 if (!test_taint(TAINT_FORCED_MODULE))
1244 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1245 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1246 return 0;
1247 #else
1248 return -ENOEXEC;
1249 #endif
1250 }
1251
1252 #ifdef CONFIG_MODVERSIONS
1253 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1254 static unsigned long maybe_relocated(unsigned long crc,
1255 const struct module *crc_owner)
1256 {
1257 #ifdef ARCH_RELOCATES_KCRCTAB
1258 if (crc_owner == NULL)
1259 return crc - (unsigned long)reloc_start;
1260 #endif
1261 return crc;
1262 }
1263
1264 static int check_version(Elf_Shdr *sechdrs,
1265 unsigned int versindex,
1266 const char *symname,
1267 struct module *mod,
1268 const unsigned long *crc,
1269 const struct module *crc_owner)
1270 {
1271 unsigned int i, num_versions;
1272 struct modversion_info *versions;
1273
1274 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1275 if (!crc)
1276 return 1;
1277
1278 /* No versions at all? modprobe --force does this. */
1279 if (versindex == 0)
1280 return try_to_force_load(mod, symname) == 0;
1281
1282 versions = (void *) sechdrs[versindex].sh_addr;
1283 num_versions = sechdrs[versindex].sh_size
1284 / sizeof(struct modversion_info);
1285
1286 for (i = 0; i < num_versions; i++) {
1287 if (strcmp(versions[i].name, symname) != 0)
1288 continue;
1289
1290 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1291 return 1;
1292 pr_debug("Found checksum %lX vs module %lX\n",
1293 maybe_relocated(*crc, crc_owner), versions[i].crc);
1294 goto bad_version;
1295 }
1296
1297 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1298 return 0;
1299
1300 bad_version:
1301 pr_warn("%s: disagrees about version of symbol %s\n",
1302 mod->name, symname);
1303 return 0;
1304 }
1305
1306 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1307 unsigned int versindex,
1308 struct module *mod)
1309 {
1310 const unsigned long *crc;
1311
1312 /*
1313 * Since this should be found in kernel (which can't be removed), no
1314 * locking is necessary -- use preempt_disable() to placate lockdep.
1315 */
1316 preempt_disable();
1317 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1318 &crc, true, false)) {
1319 preempt_enable();
1320 BUG();
1321 }
1322 preempt_enable();
1323 return check_version(sechdrs, versindex,
1324 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1325 NULL);
1326 }
1327
1328 /* First part is kernel version, which we ignore if module has crcs. */
1329 static inline int same_magic(const char *amagic, const char *bmagic,
1330 bool has_crcs)
1331 {
1332 if (has_crcs) {
1333 amagic += strcspn(amagic, " ");
1334 bmagic += strcspn(bmagic, " ");
1335 }
1336 return strcmp(amagic, bmagic) == 0;
1337 }
1338 #else
1339 static inline int check_version(Elf_Shdr *sechdrs,
1340 unsigned int versindex,
1341 const char *symname,
1342 struct module *mod,
1343 const unsigned long *crc,
1344 const struct module *crc_owner)
1345 {
1346 return 1;
1347 }
1348
1349 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1350 unsigned int versindex,
1351 struct module *mod)
1352 {
1353 return 1;
1354 }
1355
1356 static inline int same_magic(const char *amagic, const char *bmagic,
1357 bool has_crcs)
1358 {
1359 return strcmp(amagic, bmagic) == 0;
1360 }
1361 #endif /* CONFIG_MODVERSIONS */
1362
1363 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1364 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1365 const struct load_info *info,
1366 const char *name,
1367 char ownername[])
1368 {
1369 struct module *owner;
1370 const struct kernel_symbol *sym;
1371 const unsigned long *crc;
1372 int err;
1373
1374 /*
1375 * The module_mutex should not be a heavily contended lock;
1376 * if we get the occasional sleep here, we'll go an extra iteration
1377 * in the wait_event_interruptible(), which is harmless.
1378 */
1379 sched_annotate_sleep();
1380 mutex_lock(&module_mutex);
1381 sym = find_symbol(name, &owner, &crc,
1382 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1383 if (!sym)
1384 goto unlock;
1385
1386 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1387 owner)) {
1388 sym = ERR_PTR(-EINVAL);
1389 goto getname;
1390 }
1391
1392 err = ref_module(mod, owner);
1393 if (err) {
1394 sym = ERR_PTR(err);
1395 goto getname;
1396 }
1397
1398 getname:
1399 /* We must make copy under the lock if we failed to get ref. */
1400 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1401 unlock:
1402 mutex_unlock(&module_mutex);
1403 return sym;
1404 }
1405
1406 static const struct kernel_symbol *
1407 resolve_symbol_wait(struct module *mod,
1408 const struct load_info *info,
1409 const char *name)
1410 {
1411 const struct kernel_symbol *ksym;
1412 char owner[MODULE_NAME_LEN];
1413
1414 if (wait_event_interruptible_timeout(module_wq,
1415 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1416 || PTR_ERR(ksym) != -EBUSY,
1417 30 * HZ) <= 0) {
1418 pr_warn("%s: gave up waiting for init of module %s.\n",
1419 mod->name, owner);
1420 }
1421 return ksym;
1422 }
1423
1424 /*
1425 * /sys/module/foo/sections stuff
1426 * J. Corbet <corbet@lwn.net>
1427 */
1428 #ifdef CONFIG_SYSFS
1429
1430 #ifdef CONFIG_KALLSYMS
1431 static inline bool sect_empty(const Elf_Shdr *sect)
1432 {
1433 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1434 }
1435
1436 struct module_sect_attr {
1437 struct module_attribute mattr;
1438 char *name;
1439 unsigned long address;
1440 };
1441
1442 struct module_sect_attrs {
1443 struct attribute_group grp;
1444 unsigned int nsections;
1445 struct module_sect_attr attrs[0];
1446 };
1447
1448 static ssize_t module_sect_show(struct module_attribute *mattr,
1449 struct module_kobject *mk, char *buf)
1450 {
1451 struct module_sect_attr *sattr =
1452 container_of(mattr, struct module_sect_attr, mattr);
1453 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1454 }
1455
1456 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1457 {
1458 unsigned int section;
1459
1460 for (section = 0; section < sect_attrs->nsections; section++)
1461 kfree(sect_attrs->attrs[section].name);
1462 kfree(sect_attrs);
1463 }
1464
1465 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1466 {
1467 unsigned int nloaded = 0, i, size[2];
1468 struct module_sect_attrs *sect_attrs;
1469 struct module_sect_attr *sattr;
1470 struct attribute **gattr;
1471
1472 /* Count loaded sections and allocate structures */
1473 for (i = 0; i < info->hdr->e_shnum; i++)
1474 if (!sect_empty(&info->sechdrs[i]))
1475 nloaded++;
1476 size[0] = ALIGN(sizeof(*sect_attrs)
1477 + nloaded * sizeof(sect_attrs->attrs[0]),
1478 sizeof(sect_attrs->grp.attrs[0]));
1479 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1480 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1481 if (sect_attrs == NULL)
1482 return;
1483
1484 /* Setup section attributes. */
1485 sect_attrs->grp.name = "sections";
1486 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1487
1488 sect_attrs->nsections = 0;
1489 sattr = &sect_attrs->attrs[0];
1490 gattr = &sect_attrs->grp.attrs[0];
1491 for (i = 0; i < info->hdr->e_shnum; i++) {
1492 Elf_Shdr *sec = &info->sechdrs[i];
1493 if (sect_empty(sec))
1494 continue;
1495 sattr->address = sec->sh_addr;
1496 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1497 GFP_KERNEL);
1498 if (sattr->name == NULL)
1499 goto out;
1500 sect_attrs->nsections++;
1501 sysfs_attr_init(&sattr->mattr.attr);
1502 sattr->mattr.show = module_sect_show;
1503 sattr->mattr.store = NULL;
1504 sattr->mattr.attr.name = sattr->name;
1505 sattr->mattr.attr.mode = S_IRUGO;
1506 *(gattr++) = &(sattr++)->mattr.attr;
1507 }
1508 *gattr = NULL;
1509
1510 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1511 goto out;
1512
1513 mod->sect_attrs = sect_attrs;
1514 return;
1515 out:
1516 free_sect_attrs(sect_attrs);
1517 }
1518
1519 static void remove_sect_attrs(struct module *mod)
1520 {
1521 if (mod->sect_attrs) {
1522 sysfs_remove_group(&mod->mkobj.kobj,
1523 &mod->sect_attrs->grp);
1524 /* We are positive that no one is using any sect attrs
1525 * at this point. Deallocate immediately. */
1526 free_sect_attrs(mod->sect_attrs);
1527 mod->sect_attrs = NULL;
1528 }
1529 }
1530
1531 /*
1532 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1533 */
1534
1535 struct module_notes_attrs {
1536 struct kobject *dir;
1537 unsigned int notes;
1538 struct bin_attribute attrs[0];
1539 };
1540
1541 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1542 struct bin_attribute *bin_attr,
1543 char *buf, loff_t pos, size_t count)
1544 {
1545 /*
1546 * The caller checked the pos and count against our size.
1547 */
1548 memcpy(buf, bin_attr->private + pos, count);
1549 return count;
1550 }
1551
1552 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1553 unsigned int i)
1554 {
1555 if (notes_attrs->dir) {
1556 while (i-- > 0)
1557 sysfs_remove_bin_file(notes_attrs->dir,
1558 &notes_attrs->attrs[i]);
1559 kobject_put(notes_attrs->dir);
1560 }
1561 kfree(notes_attrs);
1562 }
1563
1564 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1565 {
1566 unsigned int notes, loaded, i;
1567 struct module_notes_attrs *notes_attrs;
1568 struct bin_attribute *nattr;
1569
1570 /* failed to create section attributes, so can't create notes */
1571 if (!mod->sect_attrs)
1572 return;
1573
1574 /* Count notes sections and allocate structures. */
1575 notes = 0;
1576 for (i = 0; i < info->hdr->e_shnum; i++)
1577 if (!sect_empty(&info->sechdrs[i]) &&
1578 (info->sechdrs[i].sh_type == SHT_NOTE))
1579 ++notes;
1580
1581 if (notes == 0)
1582 return;
1583
1584 notes_attrs = kzalloc(sizeof(*notes_attrs)
1585 + notes * sizeof(notes_attrs->attrs[0]),
1586 GFP_KERNEL);
1587 if (notes_attrs == NULL)
1588 return;
1589
1590 notes_attrs->notes = notes;
1591 nattr = &notes_attrs->attrs[0];
1592 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1593 if (sect_empty(&info->sechdrs[i]))
1594 continue;
1595 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1596 sysfs_bin_attr_init(nattr);
1597 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1598 nattr->attr.mode = S_IRUGO;
1599 nattr->size = info->sechdrs[i].sh_size;
1600 nattr->private = (void *) info->sechdrs[i].sh_addr;
1601 nattr->read = module_notes_read;
1602 ++nattr;
1603 }
1604 ++loaded;
1605 }
1606
1607 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1608 if (!notes_attrs->dir)
1609 goto out;
1610
1611 for (i = 0; i < notes; ++i)
1612 if (sysfs_create_bin_file(notes_attrs->dir,
1613 &notes_attrs->attrs[i]))
1614 goto out;
1615
1616 mod->notes_attrs = notes_attrs;
1617 return;
1618
1619 out:
1620 free_notes_attrs(notes_attrs, i);
1621 }
1622
1623 static void remove_notes_attrs(struct module *mod)
1624 {
1625 if (mod->notes_attrs)
1626 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1627 }
1628
1629 #else
1630
1631 static inline void add_sect_attrs(struct module *mod,
1632 const struct load_info *info)
1633 {
1634 }
1635
1636 static inline void remove_sect_attrs(struct module *mod)
1637 {
1638 }
1639
1640 static inline void add_notes_attrs(struct module *mod,
1641 const struct load_info *info)
1642 {
1643 }
1644
1645 static inline void remove_notes_attrs(struct module *mod)
1646 {
1647 }
1648 #endif /* CONFIG_KALLSYMS */
1649
1650 static void add_usage_links(struct module *mod)
1651 {
1652 #ifdef CONFIG_MODULE_UNLOAD
1653 struct module_use *use;
1654 int nowarn;
1655
1656 mutex_lock(&module_mutex);
1657 list_for_each_entry(use, &mod->target_list, target_list) {
1658 nowarn = sysfs_create_link(use->target->holders_dir,
1659 &mod->mkobj.kobj, mod->name);
1660 }
1661 mutex_unlock(&module_mutex);
1662 #endif
1663 }
1664
1665 static void del_usage_links(struct module *mod)
1666 {
1667 #ifdef CONFIG_MODULE_UNLOAD
1668 struct module_use *use;
1669
1670 mutex_lock(&module_mutex);
1671 list_for_each_entry(use, &mod->target_list, target_list)
1672 sysfs_remove_link(use->target->holders_dir, mod->name);
1673 mutex_unlock(&module_mutex);
1674 #endif
1675 }
1676
1677 static int module_add_modinfo_attrs(struct module *mod)
1678 {
1679 struct module_attribute *attr;
1680 struct module_attribute *temp_attr;
1681 int error = 0;
1682 int i;
1683
1684 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1685 (ARRAY_SIZE(modinfo_attrs) + 1)),
1686 GFP_KERNEL);
1687 if (!mod->modinfo_attrs)
1688 return -ENOMEM;
1689
1690 temp_attr = mod->modinfo_attrs;
1691 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1692 if (!attr->test ||
1693 (attr->test && attr->test(mod))) {
1694 memcpy(temp_attr, attr, sizeof(*temp_attr));
1695 sysfs_attr_init(&temp_attr->attr);
1696 error = sysfs_create_file(&mod->mkobj.kobj,
1697 &temp_attr->attr);
1698 ++temp_attr;
1699 }
1700 }
1701 return error;
1702 }
1703
1704 static void module_remove_modinfo_attrs(struct module *mod)
1705 {
1706 struct module_attribute *attr;
1707 int i;
1708
1709 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1710 /* pick a field to test for end of list */
1711 if (!attr->attr.name)
1712 break;
1713 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1714 if (attr->free)
1715 attr->free(mod);
1716 }
1717 kfree(mod->modinfo_attrs);
1718 }
1719
1720 static void mod_kobject_put(struct module *mod)
1721 {
1722 DECLARE_COMPLETION_ONSTACK(c);
1723 mod->mkobj.kobj_completion = &c;
1724 kobject_put(&mod->mkobj.kobj);
1725 wait_for_completion(&c);
1726 }
1727
1728 static int mod_sysfs_init(struct module *mod)
1729 {
1730 int err;
1731 struct kobject *kobj;
1732
1733 if (!module_sysfs_initialized) {
1734 pr_err("%s: module sysfs not initialized\n", mod->name);
1735 err = -EINVAL;
1736 goto out;
1737 }
1738
1739 kobj = kset_find_obj(module_kset, mod->name);
1740 if (kobj) {
1741 pr_err("%s: module is already loaded\n", mod->name);
1742 kobject_put(kobj);
1743 err = -EINVAL;
1744 goto out;
1745 }
1746
1747 mod->mkobj.mod = mod;
1748
1749 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1750 mod->mkobj.kobj.kset = module_kset;
1751 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1752 "%s", mod->name);
1753 if (err)
1754 mod_kobject_put(mod);
1755
1756 /* delay uevent until full sysfs population */
1757 out:
1758 return err;
1759 }
1760
1761 static int mod_sysfs_setup(struct module *mod,
1762 const struct load_info *info,
1763 struct kernel_param *kparam,
1764 unsigned int num_params)
1765 {
1766 int err;
1767
1768 err = mod_sysfs_init(mod);
1769 if (err)
1770 goto out;
1771
1772 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1773 if (!mod->holders_dir) {
1774 err = -ENOMEM;
1775 goto out_unreg;
1776 }
1777
1778 err = module_param_sysfs_setup(mod, kparam, num_params);
1779 if (err)
1780 goto out_unreg_holders;
1781
1782 err = module_add_modinfo_attrs(mod);
1783 if (err)
1784 goto out_unreg_param;
1785
1786 add_usage_links(mod);
1787 add_sect_attrs(mod, info);
1788 add_notes_attrs(mod, info);
1789
1790 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1791 return 0;
1792
1793 out_unreg_param:
1794 module_param_sysfs_remove(mod);
1795 out_unreg_holders:
1796 kobject_put(mod->holders_dir);
1797 out_unreg:
1798 mod_kobject_put(mod);
1799 out:
1800 return err;
1801 }
1802
1803 static void mod_sysfs_fini(struct module *mod)
1804 {
1805 remove_notes_attrs(mod);
1806 remove_sect_attrs(mod);
1807 mod_kobject_put(mod);
1808 }
1809
1810 static void init_param_lock(struct module *mod)
1811 {
1812 mutex_init(&mod->param_lock);
1813 }
1814 #else /* !CONFIG_SYSFS */
1815
1816 static int mod_sysfs_setup(struct module *mod,
1817 const struct load_info *info,
1818 struct kernel_param *kparam,
1819 unsigned int num_params)
1820 {
1821 return 0;
1822 }
1823
1824 static void mod_sysfs_fini(struct module *mod)
1825 {
1826 }
1827
1828 static void module_remove_modinfo_attrs(struct module *mod)
1829 {
1830 }
1831
1832 static void del_usage_links(struct module *mod)
1833 {
1834 }
1835
1836 static void init_param_lock(struct module *mod)
1837 {
1838 }
1839 #endif /* CONFIG_SYSFS */
1840
1841 static void mod_sysfs_teardown(struct module *mod)
1842 {
1843 del_usage_links(mod);
1844 module_remove_modinfo_attrs(mod);
1845 module_param_sysfs_remove(mod);
1846 kobject_put(mod->mkobj.drivers_dir);
1847 kobject_put(mod->holders_dir);
1848 mod_sysfs_fini(mod);
1849 }
1850
1851 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1852 /*
1853 * LKM RO/NX protection: protect module's text/ro-data
1854 * from modification and any data from execution.
1855 *
1856 * General layout of module is:
1857 * [text] [read-only-data] [writable data]
1858 * text_size -----^ ^ ^
1859 * ro_size ------------------------| |
1860 * size -------------------------------------------|
1861 *
1862 * These values are always page-aligned (as is base)
1863 */
1864 static void frob_text(const struct module_layout *layout,
1865 int (*set_memory)(unsigned long start, int num_pages))
1866 {
1867 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1868 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1869 set_memory((unsigned long)layout->base,
1870 layout->text_size >> PAGE_SHIFT);
1871 }
1872
1873 static void frob_rodata(const struct module_layout *layout,
1874 int (*set_memory)(unsigned long start, int num_pages))
1875 {
1876 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1877 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1878 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1879 set_memory((unsigned long)layout->base + layout->text_size,
1880 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1881 }
1882
1883 static void frob_writable_data(const struct module_layout *layout,
1884 int (*set_memory)(unsigned long start, int num_pages))
1885 {
1886 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1887 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1888 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1889 set_memory((unsigned long)layout->base + layout->ro_size,
1890 (layout->size - layout->ro_size) >> PAGE_SHIFT);
1891 }
1892
1893 /* livepatching wants to disable read-only so it can frob module. */
1894 void module_disable_ro(const struct module *mod)
1895 {
1896 frob_text(&mod->core_layout, set_memory_rw);
1897 frob_rodata(&mod->core_layout, set_memory_rw);
1898 frob_text(&mod->init_layout, set_memory_rw);
1899 frob_rodata(&mod->init_layout, set_memory_rw);
1900 }
1901
1902 void module_enable_ro(const struct module *mod)
1903 {
1904 frob_text(&mod->core_layout, set_memory_ro);
1905 frob_rodata(&mod->core_layout, set_memory_ro);
1906 frob_text(&mod->init_layout, set_memory_ro);
1907 frob_rodata(&mod->init_layout, set_memory_ro);
1908 }
1909
1910 static void module_enable_nx(const struct module *mod)
1911 {
1912 frob_rodata(&mod->core_layout, set_memory_nx);
1913 frob_writable_data(&mod->core_layout, set_memory_nx);
1914 frob_rodata(&mod->init_layout, set_memory_nx);
1915 frob_writable_data(&mod->init_layout, set_memory_nx);
1916 }
1917
1918 static void module_disable_nx(const struct module *mod)
1919 {
1920 frob_rodata(&mod->core_layout, set_memory_x);
1921 frob_writable_data(&mod->core_layout, set_memory_x);
1922 frob_rodata(&mod->init_layout, set_memory_x);
1923 frob_writable_data(&mod->init_layout, set_memory_x);
1924 }
1925
1926 /* Iterate through all modules and set each module's text as RW */
1927 void set_all_modules_text_rw(void)
1928 {
1929 struct module *mod;
1930
1931 mutex_lock(&module_mutex);
1932 list_for_each_entry_rcu(mod, &modules, list) {
1933 if (mod->state == MODULE_STATE_UNFORMED)
1934 continue;
1935
1936 frob_text(&mod->core_layout, set_memory_rw);
1937 frob_text(&mod->init_layout, set_memory_rw);
1938 }
1939 mutex_unlock(&module_mutex);
1940 }
1941
1942 /* Iterate through all modules and set each module's text as RO */
1943 void set_all_modules_text_ro(void)
1944 {
1945 struct module *mod;
1946
1947 mutex_lock(&module_mutex);
1948 list_for_each_entry_rcu(mod, &modules, list) {
1949 if (mod->state == MODULE_STATE_UNFORMED)
1950 continue;
1951
1952 frob_text(&mod->core_layout, set_memory_ro);
1953 frob_text(&mod->init_layout, set_memory_ro);
1954 }
1955 mutex_unlock(&module_mutex);
1956 }
1957
1958 static void disable_ro_nx(const struct module_layout *layout)
1959 {
1960 frob_text(layout, set_memory_rw);
1961 frob_rodata(layout, set_memory_rw);
1962 frob_rodata(layout, set_memory_x);
1963 frob_writable_data(layout, set_memory_x);
1964 }
1965
1966 #else
1967 static void disable_ro_nx(const struct module_layout *layout) { }
1968 static void module_enable_nx(const struct module *mod) { }
1969 static void module_disable_nx(const struct module *mod) { }
1970 #endif
1971
1972 void __weak module_memfree(void *module_region)
1973 {
1974 vfree(module_region);
1975 }
1976
1977 void __weak module_arch_cleanup(struct module *mod)
1978 {
1979 }
1980
1981 void __weak module_arch_freeing_init(struct module *mod)
1982 {
1983 }
1984
1985 /* Free a module, remove from lists, etc. */
1986 static void free_module(struct module *mod)
1987 {
1988 trace_module_free(mod);
1989
1990 mod_sysfs_teardown(mod);
1991
1992 /* We leave it in list to prevent duplicate loads, but make sure
1993 * that noone uses it while it's being deconstructed. */
1994 mutex_lock(&module_mutex);
1995 mod->state = MODULE_STATE_UNFORMED;
1996 mutex_unlock(&module_mutex);
1997
1998 /* Remove dynamic debug info */
1999 ddebug_remove_module(mod->name);
2000
2001 /* Arch-specific cleanup. */
2002 module_arch_cleanup(mod);
2003
2004 /* Module unload stuff */
2005 module_unload_free(mod);
2006
2007 /* Free any allocated parameters. */
2008 destroy_params(mod->kp, mod->num_kp);
2009
2010 /* Now we can delete it from the lists */
2011 mutex_lock(&module_mutex);
2012 /* Unlink carefully: kallsyms could be walking list. */
2013 list_del_rcu(&mod->list);
2014 mod_tree_remove(mod);
2015 /* Remove this module from bug list, this uses list_del_rcu */
2016 module_bug_cleanup(mod);
2017 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2018 synchronize_sched();
2019 mutex_unlock(&module_mutex);
2020
2021 /* This may be empty, but that's OK */
2022 disable_ro_nx(&mod->init_layout);
2023 module_arch_freeing_init(mod);
2024 module_memfree(mod->init_layout.base);
2025 kfree(mod->args);
2026 percpu_modfree(mod);
2027
2028 /* Free lock-classes; relies on the preceding sync_rcu(). */
2029 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2030
2031 /* Finally, free the core (containing the module structure) */
2032 disable_ro_nx(&mod->core_layout);
2033 module_memfree(mod->core_layout.base);
2034
2035 #ifdef CONFIG_MPU
2036 update_protections(current->mm);
2037 #endif
2038 }
2039
2040 void *__symbol_get(const char *symbol)
2041 {
2042 struct module *owner;
2043 const struct kernel_symbol *sym;
2044
2045 preempt_disable();
2046 sym = find_symbol(symbol, &owner, NULL, true, true);
2047 if (sym && strong_try_module_get(owner))
2048 sym = NULL;
2049 preempt_enable();
2050
2051 return sym ? (void *)sym->value : NULL;
2052 }
2053 EXPORT_SYMBOL_GPL(__symbol_get);
2054
2055 /*
2056 * Ensure that an exported symbol [global namespace] does not already exist
2057 * in the kernel or in some other module's exported symbol table.
2058 *
2059 * You must hold the module_mutex.
2060 */
2061 static int verify_export_symbols(struct module *mod)
2062 {
2063 unsigned int i;
2064 struct module *owner;
2065 const struct kernel_symbol *s;
2066 struct {
2067 const struct kernel_symbol *sym;
2068 unsigned int num;
2069 } arr[] = {
2070 { mod->syms, mod->num_syms },
2071 { mod->gpl_syms, mod->num_gpl_syms },
2072 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2073 #ifdef CONFIG_UNUSED_SYMBOLS
2074 { mod->unused_syms, mod->num_unused_syms },
2075 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2076 #endif
2077 };
2078
2079 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2080 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2081 if (find_symbol(s->name, &owner, NULL, true, false)) {
2082 pr_err("%s: exports duplicate symbol %s"
2083 " (owned by %s)\n",
2084 mod->name, s->name, module_name(owner));
2085 return -ENOEXEC;
2086 }
2087 }
2088 }
2089 return 0;
2090 }
2091
2092 /* Change all symbols so that st_value encodes the pointer directly. */
2093 static int simplify_symbols(struct module *mod, const struct load_info *info)
2094 {
2095 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2096 Elf_Sym *sym = (void *)symsec->sh_addr;
2097 unsigned long secbase;
2098 unsigned int i;
2099 int ret = 0;
2100 const struct kernel_symbol *ksym;
2101
2102 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2103 const char *name = info->strtab + sym[i].st_name;
2104
2105 switch (sym[i].st_shndx) {
2106 case SHN_COMMON:
2107 /* Ignore common symbols */
2108 if (!strncmp(name, "__gnu_lto", 9))
2109 break;
2110
2111 /* We compiled with -fno-common. These are not
2112 supposed to happen. */
2113 pr_debug("Common symbol: %s\n", name);
2114 pr_warn("%s: please compile with -fno-common\n",
2115 mod->name);
2116 ret = -ENOEXEC;
2117 break;
2118
2119 case SHN_ABS:
2120 /* Don't need to do anything */
2121 pr_debug("Absolute symbol: 0x%08lx\n",
2122 (long)sym[i].st_value);
2123 break;
2124
2125 case SHN_UNDEF:
2126 ksym = resolve_symbol_wait(mod, info, name);
2127 /* Ok if resolved. */
2128 if (ksym && !IS_ERR(ksym)) {
2129 sym[i].st_value = ksym->value;
2130 break;
2131 }
2132
2133 /* Ok if weak. */
2134 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2135 break;
2136
2137 pr_warn("%s: Unknown symbol %s (err %li)\n",
2138 mod->name, name, PTR_ERR(ksym));
2139 ret = PTR_ERR(ksym) ?: -ENOENT;
2140 break;
2141
2142 default:
2143 /* Divert to percpu allocation if a percpu var. */
2144 if (sym[i].st_shndx == info->index.pcpu)
2145 secbase = (unsigned long)mod_percpu(mod);
2146 else
2147 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2148 sym[i].st_value += secbase;
2149 break;
2150 }
2151 }
2152
2153 return ret;
2154 }
2155
2156 static int apply_relocations(struct module *mod, const struct load_info *info)
2157 {
2158 unsigned int i;
2159 int err = 0;
2160
2161 /* Now do relocations. */
2162 for (i = 1; i < info->hdr->e_shnum; i++) {
2163 unsigned int infosec = info->sechdrs[i].sh_info;
2164
2165 /* Not a valid relocation section? */
2166 if (infosec >= info->hdr->e_shnum)
2167 continue;
2168
2169 /* Don't bother with non-allocated sections */
2170 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2171 continue;
2172
2173 if (info->sechdrs[i].sh_type == SHT_REL)
2174 err = apply_relocate(info->sechdrs, info->strtab,
2175 info->index.sym, i, mod);
2176 else if (info->sechdrs[i].sh_type == SHT_RELA)
2177 err = apply_relocate_add(info->sechdrs, info->strtab,
2178 info->index.sym, i, mod);
2179 if (err < 0)
2180 break;
2181 }
2182 return err;
2183 }
2184
2185 /* Additional bytes needed by arch in front of individual sections */
2186 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2187 unsigned int section)
2188 {
2189 /* default implementation just returns zero */
2190 return 0;
2191 }
2192
2193 /* Update size with this section: return offset. */
2194 static long get_offset(struct module *mod, unsigned int *size,
2195 Elf_Shdr *sechdr, unsigned int section)
2196 {
2197 long ret;
2198
2199 *size += arch_mod_section_prepend(mod, section);
2200 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2201 *size = ret + sechdr->sh_size;
2202 return ret;
2203 }
2204
2205 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2206 might -- code, read-only data, read-write data, small data. Tally
2207 sizes, and place the offsets into sh_entsize fields: high bit means it
2208 belongs in init. */
2209 static void layout_sections(struct module *mod, struct load_info *info)
2210 {
2211 static unsigned long const masks[][2] = {
2212 /* NOTE: all executable code must be the first section
2213 * in this array; otherwise modify the text_size
2214 * finder in the two loops below */
2215 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2216 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2217 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2218 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2219 };
2220 unsigned int m, i;
2221
2222 for (i = 0; i < info->hdr->e_shnum; i++)
2223 info->sechdrs[i].sh_entsize = ~0UL;
2224
2225 pr_debug("Core section allocation order:\n");
2226 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2227 for (i = 0; i < info->hdr->e_shnum; ++i) {
2228 Elf_Shdr *s = &info->sechdrs[i];
2229 const char *sname = info->secstrings + s->sh_name;
2230
2231 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2232 || (s->sh_flags & masks[m][1])
2233 || s->sh_entsize != ~0UL
2234 || strstarts(sname, ".init"))
2235 continue;
2236 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2237 pr_debug("\t%s\n", sname);
2238 }
2239 switch (m) {
2240 case 0: /* executable */
2241 mod->core_layout.size = debug_align(mod->core_layout.size);
2242 mod->core_layout.text_size = mod->core_layout.size;
2243 break;
2244 case 1: /* RO: text and ro-data */
2245 mod->core_layout.size = debug_align(mod->core_layout.size);
2246 mod->core_layout.ro_size = mod->core_layout.size;
2247 break;
2248 case 3: /* whole core */
2249 mod->core_layout.size = debug_align(mod->core_layout.size);
2250 break;
2251 }
2252 }
2253
2254 pr_debug("Init section allocation order:\n");
2255 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2256 for (i = 0; i < info->hdr->e_shnum; ++i) {
2257 Elf_Shdr *s = &info->sechdrs[i];
2258 const char *sname = info->secstrings + s->sh_name;
2259
2260 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2261 || (s->sh_flags & masks[m][1])
2262 || s->sh_entsize != ~0UL
2263 || !strstarts(sname, ".init"))
2264 continue;
2265 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2266 | INIT_OFFSET_MASK);
2267 pr_debug("\t%s\n", sname);
2268 }
2269 switch (m) {
2270 case 0: /* executable */
2271 mod->init_layout.size = debug_align(mod->init_layout.size);
2272 mod->init_layout.text_size = mod->init_layout.size;
2273 break;
2274 case 1: /* RO: text and ro-data */
2275 mod->init_layout.size = debug_align(mod->init_layout.size);
2276 mod->init_layout.ro_size = mod->init_layout.size;
2277 break;
2278 case 3: /* whole init */
2279 mod->init_layout.size = debug_align(mod->init_layout.size);
2280 break;
2281 }
2282 }
2283 }
2284
2285 static void set_license(struct module *mod, const char *license)
2286 {
2287 if (!license)
2288 license = "unspecified";
2289
2290 if (!license_is_gpl_compatible(license)) {
2291 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2292 pr_warn("%s: module license '%s' taints kernel.\n",
2293 mod->name, license);
2294 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2295 LOCKDEP_NOW_UNRELIABLE);
2296 }
2297 }
2298
2299 /* Parse tag=value strings from .modinfo section */
2300 static char *next_string(char *string, unsigned long *secsize)
2301 {
2302 /* Skip non-zero chars */
2303 while (string[0]) {
2304 string++;
2305 if ((*secsize)-- <= 1)
2306 return NULL;
2307 }
2308
2309 /* Skip any zero padding. */
2310 while (!string[0]) {
2311 string++;
2312 if ((*secsize)-- <= 1)
2313 return NULL;
2314 }
2315 return string;
2316 }
2317
2318 static char *get_modinfo(struct load_info *info, const char *tag)
2319 {
2320 char *p;
2321 unsigned int taglen = strlen(tag);
2322 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2323 unsigned long size = infosec->sh_size;
2324
2325 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2326 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2327 return p + taglen + 1;
2328 }
2329 return NULL;
2330 }
2331
2332 static void setup_modinfo(struct module *mod, struct load_info *info)
2333 {
2334 struct module_attribute *attr;
2335 int i;
2336
2337 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2338 if (attr->setup)
2339 attr->setup(mod, get_modinfo(info, attr->attr.name));
2340 }
2341 }
2342
2343 static void free_modinfo(struct module *mod)
2344 {
2345 struct module_attribute *attr;
2346 int i;
2347
2348 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2349 if (attr->free)
2350 attr->free(mod);
2351 }
2352 }
2353
2354 #ifdef CONFIG_KALLSYMS
2355
2356 /* lookup symbol in given range of kernel_symbols */
2357 static const struct kernel_symbol *lookup_symbol(const char *name,
2358 const struct kernel_symbol *start,
2359 const struct kernel_symbol *stop)
2360 {
2361 return bsearch(name, start, stop - start,
2362 sizeof(struct kernel_symbol), cmp_name);
2363 }
2364
2365 static int is_exported(const char *name, unsigned long value,
2366 const struct module *mod)
2367 {
2368 const struct kernel_symbol *ks;
2369 if (!mod)
2370 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2371 else
2372 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2373 return ks != NULL && ks->value == value;
2374 }
2375
2376 /* As per nm */
2377 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2378 {
2379 const Elf_Shdr *sechdrs = info->sechdrs;
2380
2381 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2382 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2383 return 'v';
2384 else
2385 return 'w';
2386 }
2387 if (sym->st_shndx == SHN_UNDEF)
2388 return 'U';
2389 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2390 return 'a';
2391 if (sym->st_shndx >= SHN_LORESERVE)
2392 return '?';
2393 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2394 return 't';
2395 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2396 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2397 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2398 return 'r';
2399 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2400 return 'g';
2401 else
2402 return 'd';
2403 }
2404 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2405 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2406 return 's';
2407 else
2408 return 'b';
2409 }
2410 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2411 ".debug")) {
2412 return 'n';
2413 }
2414 return '?';
2415 }
2416
2417 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2418 unsigned int shnum, unsigned int pcpundx)
2419 {
2420 const Elf_Shdr *sec;
2421
2422 if (src->st_shndx == SHN_UNDEF
2423 || src->st_shndx >= shnum
2424 || !src->st_name)
2425 return false;
2426
2427 #ifdef CONFIG_KALLSYMS_ALL
2428 if (src->st_shndx == pcpundx)
2429 return true;
2430 #endif
2431
2432 sec = sechdrs + src->st_shndx;
2433 if (!(sec->sh_flags & SHF_ALLOC)
2434 #ifndef CONFIG_KALLSYMS_ALL
2435 || !(sec->sh_flags & SHF_EXECINSTR)
2436 #endif
2437 || (sec->sh_entsize & INIT_OFFSET_MASK))
2438 return false;
2439
2440 return true;
2441 }
2442
2443 /*
2444 * We only allocate and copy the strings needed by the parts of symtab
2445 * we keep. This is simple, but has the effect of making multiple
2446 * copies of duplicates. We could be more sophisticated, see
2447 * linux-kernel thread starting with
2448 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2449 */
2450 static void layout_symtab(struct module *mod, struct load_info *info)
2451 {
2452 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2453 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2454 const Elf_Sym *src;
2455 unsigned int i, nsrc, ndst, strtab_size = 0;
2456
2457 /* Put symbol section at end of init part of module. */
2458 symsect->sh_flags |= SHF_ALLOC;
2459 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2460 info->index.sym) | INIT_OFFSET_MASK;
2461 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2462
2463 src = (void *)info->hdr + symsect->sh_offset;
2464 nsrc = symsect->sh_size / sizeof(*src);
2465
2466 /* Compute total space required for the core symbols' strtab. */
2467 for (ndst = i = 0; i < nsrc; i++) {
2468 if (i == 0 ||
2469 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2470 info->index.pcpu)) {
2471 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2472 ndst++;
2473 }
2474 }
2475
2476 /* Append room for core symbols at end of core part. */
2477 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2478 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2479 mod->core_layout.size += strtab_size;
2480 mod->core_layout.size = debug_align(mod->core_layout.size);
2481
2482 /* Put string table section at end of init part of module. */
2483 strsect->sh_flags |= SHF_ALLOC;
2484 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2485 info->index.str) | INIT_OFFSET_MASK;
2486 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2487
2488 /* We'll tack temporary mod_kallsyms on the end. */
2489 mod->init_layout.size = ALIGN(mod->init_layout.size,
2490 __alignof__(struct mod_kallsyms));
2491 info->mod_kallsyms_init_off = mod->init_layout.size;
2492 mod->init_layout.size += sizeof(struct mod_kallsyms);
2493 mod->init_layout.size = debug_align(mod->init_layout.size);
2494 }
2495
2496 /*
2497 * We use the full symtab and strtab which layout_symtab arranged to
2498 * be appended to the init section. Later we switch to the cut-down
2499 * core-only ones.
2500 */
2501 static void add_kallsyms(struct module *mod, const struct load_info *info)
2502 {
2503 unsigned int i, ndst;
2504 const Elf_Sym *src;
2505 Elf_Sym *dst;
2506 char *s;
2507 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2508
2509 /* Set up to point into init section. */
2510 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2511
2512 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2513 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2514 /* Make sure we get permanent strtab: don't use info->strtab. */
2515 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2516
2517 /* Set types up while we still have access to sections. */
2518 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2519 mod->kallsyms->symtab[i].st_info
2520 = elf_type(&mod->kallsyms->symtab[i], info);
2521
2522 /* Now populate the cut down core kallsyms for after init. */
2523 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2524 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2525 src = mod->kallsyms->symtab;
2526 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2527 if (i == 0 ||
2528 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2529 info->index.pcpu)) {
2530 dst[ndst] = src[i];
2531 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2532 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2533 KSYM_NAME_LEN) + 1;
2534 }
2535 }
2536 mod->core_kallsyms.num_symtab = ndst;
2537 }
2538 #else
2539 static inline void layout_symtab(struct module *mod, struct load_info *info)
2540 {
2541 }
2542
2543 static void add_kallsyms(struct module *mod, const struct load_info *info)
2544 {
2545 }
2546 #endif /* CONFIG_KALLSYMS */
2547
2548 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2549 {
2550 if (!debug)
2551 return;
2552 #ifdef CONFIG_DYNAMIC_DEBUG
2553 if (ddebug_add_module(debug, num, debug->modname))
2554 pr_err("dynamic debug error adding module: %s\n",
2555 debug->modname);
2556 #endif
2557 }
2558
2559 static void dynamic_debug_remove(struct _ddebug *debug)
2560 {
2561 if (debug)
2562 ddebug_remove_module(debug->modname);
2563 }
2564
2565 void * __weak module_alloc(unsigned long size)
2566 {
2567 return vmalloc_exec(size);
2568 }
2569
2570 #ifdef CONFIG_DEBUG_KMEMLEAK
2571 static void kmemleak_load_module(const struct module *mod,
2572 const struct load_info *info)
2573 {
2574 unsigned int i;
2575
2576 /* only scan the sections containing data */
2577 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2578
2579 for (i = 1; i < info->hdr->e_shnum; i++) {
2580 /* Scan all writable sections that's not executable */
2581 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2582 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2583 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2584 continue;
2585
2586 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2587 info->sechdrs[i].sh_size, GFP_KERNEL);
2588 }
2589 }
2590 #else
2591 static inline void kmemleak_load_module(const struct module *mod,
2592 const struct load_info *info)
2593 {
2594 }
2595 #endif
2596
2597 #ifdef CONFIG_MODULE_SIG
2598 static int module_sig_check(struct load_info *info, int flags)
2599 {
2600 int err = -ENOKEY;
2601 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2602 const void *mod = info->hdr;
2603
2604 /*
2605 * Require flags == 0, as a module with version information
2606 * removed is no longer the module that was signed
2607 */
2608 if (flags == 0 &&
2609 info->len > markerlen &&
2610 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2611 /* We truncate the module to discard the signature */
2612 info->len -= markerlen;
2613 err = mod_verify_sig(mod, &info->len);
2614 }
2615
2616 if (!err) {
2617 info->sig_ok = true;
2618 return 0;
2619 }
2620
2621 /* Not having a signature is only an error if we're strict. */
2622 if (err == -ENOKEY && !sig_enforce)
2623 err = 0;
2624
2625 return err;
2626 }
2627 #else /* !CONFIG_MODULE_SIG */
2628 static int module_sig_check(struct load_info *info, int flags)
2629 {
2630 return 0;
2631 }
2632 #endif /* !CONFIG_MODULE_SIG */
2633
2634 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2635 static int elf_header_check(struct load_info *info)
2636 {
2637 if (info->len < sizeof(*(info->hdr)))
2638 return -ENOEXEC;
2639
2640 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2641 || info->hdr->e_type != ET_REL
2642 || !elf_check_arch(info->hdr)
2643 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2644 return -ENOEXEC;
2645
2646 if (info->hdr->e_shoff >= info->len
2647 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2648 info->len - info->hdr->e_shoff))
2649 return -ENOEXEC;
2650
2651 return 0;
2652 }
2653
2654 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2655
2656 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2657 {
2658 do {
2659 unsigned long n = min(len, COPY_CHUNK_SIZE);
2660
2661 if (copy_from_user(dst, usrc, n) != 0)
2662 return -EFAULT;
2663 cond_resched();
2664 dst += n;
2665 usrc += n;
2666 len -= n;
2667 } while (len);
2668 return 0;
2669 }
2670
2671 /* Sets info->hdr and info->len. */
2672 static int copy_module_from_user(const void __user *umod, unsigned long len,
2673 struct load_info *info)
2674 {
2675 int err;
2676
2677 info->len = len;
2678 if (info->len < sizeof(*(info->hdr)))
2679 return -ENOEXEC;
2680
2681 err = security_kernel_module_from_file(NULL);
2682 if (err)
2683 return err;
2684
2685 /* Suck in entire file: we'll want most of it. */
2686 info->hdr = __vmalloc(info->len,
2687 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2688 if (!info->hdr)
2689 return -ENOMEM;
2690
2691 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2692 vfree(info->hdr);
2693 return -EFAULT;
2694 }
2695
2696 return 0;
2697 }
2698
2699 /* Sets info->hdr and info->len. */
2700 static int copy_module_from_fd(int fd, struct load_info *info)
2701 {
2702 struct fd f = fdget(fd);
2703 int err;
2704 struct kstat stat;
2705 loff_t pos;
2706 ssize_t bytes = 0;
2707
2708 if (!f.file)
2709 return -ENOEXEC;
2710
2711 err = security_kernel_module_from_file(f.file);
2712 if (err)
2713 goto out;
2714
2715 err = vfs_getattr(&f.file->f_path, &stat);
2716 if (err)
2717 goto out;
2718
2719 if (stat.size > INT_MAX) {
2720 err = -EFBIG;
2721 goto out;
2722 }
2723
2724 /* Don't hand 0 to vmalloc, it whines. */
2725 if (stat.size == 0) {
2726 err = -EINVAL;
2727 goto out;
2728 }
2729
2730 info->hdr = vmalloc(stat.size);
2731 if (!info->hdr) {
2732 err = -ENOMEM;
2733 goto out;
2734 }
2735
2736 pos = 0;
2737 while (pos < stat.size) {
2738 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2739 stat.size - pos);
2740 if (bytes < 0) {
2741 vfree(info->hdr);
2742 err = bytes;
2743 goto out;
2744 }
2745 if (bytes == 0)
2746 break;
2747 pos += bytes;
2748 }
2749 info->len = pos;
2750
2751 out:
2752 fdput(f);
2753 return err;
2754 }
2755
2756 static void free_copy(struct load_info *info)
2757 {
2758 vfree(info->hdr);
2759 }
2760
2761 static int rewrite_section_headers(struct load_info *info, int flags)
2762 {
2763 unsigned int i;
2764
2765 /* This should always be true, but let's be sure. */
2766 info->sechdrs[0].sh_addr = 0;
2767
2768 for (i = 1; i < info->hdr->e_shnum; i++) {
2769 Elf_Shdr *shdr = &info->sechdrs[i];
2770 if (shdr->sh_type != SHT_NOBITS
2771 && info->len < shdr->sh_offset + shdr->sh_size) {
2772 pr_err("Module len %lu truncated\n", info->len);
2773 return -ENOEXEC;
2774 }
2775
2776 /* Mark all sections sh_addr with their address in the
2777 temporary image. */
2778 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2779
2780 #ifndef CONFIG_MODULE_UNLOAD
2781 /* Don't load .exit sections */
2782 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2783 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2784 #endif
2785 }
2786
2787 /* Track but don't keep modinfo and version sections. */
2788 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2789 info->index.vers = 0; /* Pretend no __versions section! */
2790 else
2791 info->index.vers = find_sec(info, "__versions");
2792 info->index.info = find_sec(info, ".modinfo");
2793 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2794 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2795 return 0;
2796 }
2797
2798 /*
2799 * Set up our basic convenience variables (pointers to section headers,
2800 * search for module section index etc), and do some basic section
2801 * verification.
2802 *
2803 * Return the temporary module pointer (we'll replace it with the final
2804 * one when we move the module sections around).
2805 */
2806 static struct module *setup_load_info(struct load_info *info, int flags)
2807 {
2808 unsigned int i;
2809 int err;
2810 struct module *mod;
2811
2812 /* Set up the convenience variables */
2813 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2814 info->secstrings = (void *)info->hdr
2815 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2816
2817 err = rewrite_section_headers(info, flags);
2818 if (err)
2819 return ERR_PTR(err);
2820
2821 /* Find internal symbols and strings. */
2822 for (i = 1; i < info->hdr->e_shnum; i++) {
2823 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2824 info->index.sym = i;
2825 info->index.str = info->sechdrs[i].sh_link;
2826 info->strtab = (char *)info->hdr
2827 + info->sechdrs[info->index.str].sh_offset;
2828 break;
2829 }
2830 }
2831
2832 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2833 if (!info->index.mod) {
2834 pr_warn("No module found in object\n");
2835 return ERR_PTR(-ENOEXEC);
2836 }
2837 /* This is temporary: point mod into copy of data. */
2838 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2839
2840 if (info->index.sym == 0) {
2841 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2842 return ERR_PTR(-ENOEXEC);
2843 }
2844
2845 info->index.pcpu = find_pcpusec(info);
2846
2847 /* Check module struct version now, before we try to use module. */
2848 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2849 return ERR_PTR(-ENOEXEC);
2850
2851 return mod;
2852 }
2853
2854 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2855 {
2856 const char *modmagic = get_modinfo(info, "vermagic");
2857 int err;
2858
2859 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2860 modmagic = NULL;
2861
2862 /* This is allowed: modprobe --force will invalidate it. */
2863 if (!modmagic) {
2864 err = try_to_force_load(mod, "bad vermagic");
2865 if (err)
2866 return err;
2867 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2868 pr_err("%s: version magic '%s' should be '%s'\n",
2869 mod->name, modmagic, vermagic);
2870 return -ENOEXEC;
2871 }
2872
2873 if (!get_modinfo(info, "intree")) {
2874 if (!test_taint(TAINT_OOT_MODULE))
2875 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2876 mod->name);
2877 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2878 }
2879
2880 if (get_modinfo(info, "staging")) {
2881 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2882 pr_warn("%s: module is from the staging directory, the quality "
2883 "is unknown, you have been warned.\n", mod->name);
2884 }
2885
2886 /* Set up license info based on the info section */
2887 set_license(mod, get_modinfo(info, "license"));
2888
2889 return 0;
2890 }
2891
2892 static int find_module_sections(struct module *mod, struct load_info *info)
2893 {
2894 mod->kp = section_objs(info, "__param",
2895 sizeof(*mod->kp), &mod->num_kp);
2896 mod->syms = section_objs(info, "__ksymtab",
2897 sizeof(*mod->syms), &mod->num_syms);
2898 mod->crcs = section_addr(info, "__kcrctab");
2899 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2900 sizeof(*mod->gpl_syms),
2901 &mod->num_gpl_syms);
2902 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2903 mod->gpl_future_syms = section_objs(info,
2904 "__ksymtab_gpl_future",
2905 sizeof(*mod->gpl_future_syms),
2906 &mod->num_gpl_future_syms);
2907 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2908
2909 #ifdef CONFIG_UNUSED_SYMBOLS
2910 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2911 sizeof(*mod->unused_syms),
2912 &mod->num_unused_syms);
2913 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2914 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2915 sizeof(*mod->unused_gpl_syms),
2916 &mod->num_unused_gpl_syms);
2917 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2918 #endif
2919 #ifdef CONFIG_CONSTRUCTORS
2920 mod->ctors = section_objs(info, ".ctors",
2921 sizeof(*mod->ctors), &mod->num_ctors);
2922 if (!mod->ctors)
2923 mod->ctors = section_objs(info, ".init_array",
2924 sizeof(*mod->ctors), &mod->num_ctors);
2925 else if (find_sec(info, ".init_array")) {
2926 /*
2927 * This shouldn't happen with same compiler and binutils
2928 * building all parts of the module.
2929 */
2930 pr_warn("%s: has both .ctors and .init_array.\n",
2931 mod->name);
2932 return -EINVAL;
2933 }
2934 #endif
2935
2936 #ifdef CONFIG_TRACEPOINTS
2937 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2938 sizeof(*mod->tracepoints_ptrs),
2939 &mod->num_tracepoints);
2940 #endif
2941 #ifdef HAVE_JUMP_LABEL
2942 mod->jump_entries = section_objs(info, "__jump_table",
2943 sizeof(*mod->jump_entries),
2944 &mod->num_jump_entries);
2945 #endif
2946 #ifdef CONFIG_EVENT_TRACING
2947 mod->trace_events = section_objs(info, "_ftrace_events",
2948 sizeof(*mod->trace_events),
2949 &mod->num_trace_events);
2950 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2951 sizeof(*mod->trace_enums),
2952 &mod->num_trace_enums);
2953 #endif
2954 #ifdef CONFIG_TRACING
2955 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2956 sizeof(*mod->trace_bprintk_fmt_start),
2957 &mod->num_trace_bprintk_fmt);
2958 #endif
2959 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2960 /* sechdrs[0].sh_size is always zero */
2961 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2962 sizeof(*mod->ftrace_callsites),
2963 &mod->num_ftrace_callsites);
2964 #endif
2965
2966 mod->extable = section_objs(info, "__ex_table",
2967 sizeof(*mod->extable), &mod->num_exentries);
2968
2969 if (section_addr(info, "__obsparm"))
2970 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2971
2972 info->debug = section_objs(info, "__verbose",
2973 sizeof(*info->debug), &info->num_debug);
2974
2975 return 0;
2976 }
2977
2978 static int move_module(struct module *mod, struct load_info *info)
2979 {
2980 int i;
2981 void *ptr;
2982
2983 /* Do the allocs. */
2984 ptr = module_alloc(mod->core_layout.size);
2985 /*
2986 * The pointer to this block is stored in the module structure
2987 * which is inside the block. Just mark it as not being a
2988 * leak.
2989 */
2990 kmemleak_not_leak(ptr);
2991 if (!ptr)
2992 return -ENOMEM;
2993
2994 memset(ptr, 0, mod->core_layout.size);
2995 mod->core_layout.base = ptr;
2996
2997 if (mod->init_layout.size) {
2998 ptr = module_alloc(mod->init_layout.size);
2999 /*
3000 * The pointer to this block is stored in the module structure
3001 * which is inside the block. This block doesn't need to be
3002 * scanned as it contains data and code that will be freed
3003 * after the module is initialized.
3004 */
3005 kmemleak_ignore(ptr);
3006 if (!ptr) {
3007 module_memfree(mod->core_layout.base);
3008 return -ENOMEM;
3009 }
3010 memset(ptr, 0, mod->init_layout.size);
3011 mod->init_layout.base = ptr;
3012 } else
3013 mod->init_layout.base = NULL;
3014
3015 /* Transfer each section which specifies SHF_ALLOC */
3016 pr_debug("final section addresses:\n");
3017 for (i = 0; i < info->hdr->e_shnum; i++) {
3018 void *dest;
3019 Elf_Shdr *shdr = &info->sechdrs[i];
3020
3021 if (!(shdr->sh_flags & SHF_ALLOC))
3022 continue;
3023
3024 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3025 dest = mod->init_layout.base
3026 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3027 else
3028 dest = mod->core_layout.base + shdr->sh_entsize;
3029
3030 if (shdr->sh_type != SHT_NOBITS)
3031 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3032 /* Update sh_addr to point to copy in image. */
3033 shdr->sh_addr = (unsigned long)dest;
3034 pr_debug("\t0x%lx %s\n",
3035 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3036 }
3037
3038 return 0;
3039 }
3040
3041 static int check_module_license_and_versions(struct module *mod)
3042 {
3043 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3044
3045 /*
3046 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3047 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3048 * using GPL-only symbols it needs.
3049 */
3050 if (strcmp(mod->name, "ndiswrapper") == 0)
3051 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3052
3053 /* driverloader was caught wrongly pretending to be under GPL */
3054 if (strcmp(mod->name, "driverloader") == 0)
3055 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3056 LOCKDEP_NOW_UNRELIABLE);
3057
3058 /* lve claims to be GPL but upstream won't provide source */
3059 if (strcmp(mod->name, "lve") == 0)
3060 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3061 LOCKDEP_NOW_UNRELIABLE);
3062
3063 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3064 pr_warn("%s: module license taints kernel.\n", mod->name);
3065
3066 #ifdef CONFIG_MODVERSIONS
3067 if ((mod->num_syms && !mod->crcs)
3068 || (mod->num_gpl_syms && !mod->gpl_crcs)
3069 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3070 #ifdef CONFIG_UNUSED_SYMBOLS
3071 || (mod->num_unused_syms && !mod->unused_crcs)
3072 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3073 #endif
3074 ) {
3075 return try_to_force_load(mod,
3076 "no versions for exported symbols");
3077 }
3078 #endif
3079 return 0;
3080 }
3081
3082 static void flush_module_icache(const struct module *mod)
3083 {
3084 mm_segment_t old_fs;
3085
3086 /* flush the icache in correct context */
3087 old_fs = get_fs();
3088 set_fs(KERNEL_DS);
3089
3090 /*
3091 * Flush the instruction cache, since we've played with text.
3092 * Do it before processing of module parameters, so the module
3093 * can provide parameter accessor functions of its own.
3094 */
3095 if (mod->init_layout.base)
3096 flush_icache_range((unsigned long)mod->init_layout.base,
3097 (unsigned long)mod->init_layout.base
3098 + mod->init_layout.size);
3099 flush_icache_range((unsigned long)mod->core_layout.base,
3100 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3101
3102 set_fs(old_fs);
3103 }
3104
3105 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3106 Elf_Shdr *sechdrs,
3107 char *secstrings,
3108 struct module *mod)
3109 {
3110 return 0;
3111 }
3112
3113 static struct module *layout_and_allocate(struct load_info *info, int flags)
3114 {
3115 /* Module within temporary copy. */
3116 struct module *mod;
3117 int err;
3118
3119 mod = setup_load_info(info, flags);
3120 if (IS_ERR(mod))
3121 return mod;
3122
3123 err = check_modinfo(mod, info, flags);
3124 if (err)
3125 return ERR_PTR(err);
3126
3127 /* Allow arches to frob section contents and sizes. */
3128 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3129 info->secstrings, mod);
3130 if (err < 0)
3131 return ERR_PTR(err);
3132
3133 /* We will do a special allocation for per-cpu sections later. */
3134 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3135
3136 /* Determine total sizes, and put offsets in sh_entsize. For now
3137 this is done generically; there doesn't appear to be any
3138 special cases for the architectures. */
3139 layout_sections(mod, info);
3140 layout_symtab(mod, info);
3141
3142 /* Allocate and move to the final place */
3143 err = move_module(mod, info);
3144 if (err)
3145 return ERR_PTR(err);
3146
3147 /* Module has been copied to its final place now: return it. */
3148 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3149 kmemleak_load_module(mod, info);
3150 return mod;
3151 }
3152
3153 /* mod is no longer valid after this! */
3154 static void module_deallocate(struct module *mod, struct load_info *info)
3155 {
3156 percpu_modfree(mod);
3157 module_arch_freeing_init(mod);
3158 module_memfree(mod->init_layout.base);
3159 module_memfree(mod->core_layout.base);
3160 }
3161
3162 int __weak module_finalize(const Elf_Ehdr *hdr,
3163 const Elf_Shdr *sechdrs,
3164 struct module *me)
3165 {
3166 return 0;
3167 }
3168
3169 static int post_relocation(struct module *mod, const struct load_info *info)
3170 {
3171 /* Sort exception table now relocations are done. */
3172 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3173
3174 /* Copy relocated percpu area over. */
3175 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3176 info->sechdrs[info->index.pcpu].sh_size);
3177
3178 /* Setup kallsyms-specific fields. */
3179 add_kallsyms(mod, info);
3180
3181 /* Arch-specific module finalizing. */
3182 return module_finalize(info->hdr, info->sechdrs, mod);
3183 }
3184
3185 /* Is this module of this name done loading? No locks held. */
3186 static bool finished_loading(const char *name)
3187 {
3188 struct module *mod;
3189 bool ret;
3190
3191 /*
3192 * The module_mutex should not be a heavily contended lock;
3193 * if we get the occasional sleep here, we'll go an extra iteration
3194 * in the wait_event_interruptible(), which is harmless.
3195 */
3196 sched_annotate_sleep();
3197 mutex_lock(&module_mutex);
3198 mod = find_module_all(name, strlen(name), true);
3199 ret = !mod || mod->state == MODULE_STATE_LIVE
3200 || mod->state == MODULE_STATE_GOING;
3201 mutex_unlock(&module_mutex);
3202
3203 return ret;
3204 }
3205
3206 /* Call module constructors. */
3207 static void do_mod_ctors(struct module *mod)
3208 {
3209 #ifdef CONFIG_CONSTRUCTORS
3210 unsigned long i;
3211
3212 for (i = 0; i < mod->num_ctors; i++)
3213 mod->ctors[i]();
3214 #endif
3215 }
3216
3217 /* For freeing module_init on success, in case kallsyms traversing */
3218 struct mod_initfree {
3219 struct rcu_head rcu;
3220 void *module_init;
3221 };
3222
3223 static void do_free_init(struct rcu_head *head)
3224 {
3225 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3226 module_memfree(m->module_init);
3227 kfree(m);
3228 }
3229
3230 /*
3231 * This is where the real work happens.
3232 *
3233 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3234 * helper command 'lx-symbols'.
3235 */
3236 static noinline int do_init_module(struct module *mod)
3237 {
3238 int ret = 0;
3239 struct mod_initfree *freeinit;
3240
3241 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3242 if (!freeinit) {
3243 ret = -ENOMEM;
3244 goto fail;
3245 }
3246 freeinit->module_init = mod->init_layout.base;
3247
3248 /*
3249 * We want to find out whether @mod uses async during init. Clear
3250 * PF_USED_ASYNC. async_schedule*() will set it.
3251 */
3252 current->flags &= ~PF_USED_ASYNC;
3253
3254 do_mod_ctors(mod);
3255 /* Start the module */
3256 if (mod->init != NULL)
3257 ret = do_one_initcall(mod->init);
3258 if (ret < 0) {
3259 goto fail_free_freeinit;
3260 }
3261 if (ret > 0) {
3262 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3263 "follow 0/-E convention\n"
3264 "%s: loading module anyway...\n",
3265 __func__, mod->name, ret, __func__);
3266 dump_stack();
3267 }
3268
3269 /* Now it's a first class citizen! */
3270 mod->state = MODULE_STATE_LIVE;
3271 blocking_notifier_call_chain(&module_notify_list,
3272 MODULE_STATE_LIVE, mod);
3273
3274 /*
3275 * We need to finish all async code before the module init sequence
3276 * is done. This has potential to deadlock. For example, a newly
3277 * detected block device can trigger request_module() of the
3278 * default iosched from async probing task. Once userland helper
3279 * reaches here, async_synchronize_full() will wait on the async
3280 * task waiting on request_module() and deadlock.
3281 *
3282 * This deadlock is avoided by perfomring async_synchronize_full()
3283 * iff module init queued any async jobs. This isn't a full
3284 * solution as it will deadlock the same if module loading from
3285 * async jobs nests more than once; however, due to the various
3286 * constraints, this hack seems to be the best option for now.
3287 * Please refer to the following thread for details.
3288 *
3289 * http://thread.gmane.org/gmane.linux.kernel/1420814
3290 */
3291 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3292 async_synchronize_full();
3293
3294 mutex_lock(&module_mutex);
3295 /* Drop initial reference. */
3296 module_put(mod);
3297 trim_init_extable(mod);
3298 #ifdef CONFIG_KALLSYMS
3299 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3300 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3301 #endif
3302 mod_tree_remove_init(mod);
3303 disable_ro_nx(&mod->init_layout);
3304 module_arch_freeing_init(mod);
3305 mod->init_layout.base = NULL;
3306 mod->init_layout.size = 0;
3307 mod->init_layout.ro_size = 0;
3308 mod->init_layout.text_size = 0;
3309 /*
3310 * We want to free module_init, but be aware that kallsyms may be
3311 * walking this with preempt disabled. In all the failure paths, we
3312 * call synchronize_sched(), but we don't want to slow down the success
3313 * path, so use actual RCU here.
3314 */
3315 call_rcu_sched(&freeinit->rcu, do_free_init);
3316 mutex_unlock(&module_mutex);
3317 wake_up_all(&module_wq);
3318
3319 return 0;
3320
3321 fail_free_freeinit:
3322 kfree(freeinit);
3323 fail:
3324 /* Try to protect us from buggy refcounters. */
3325 mod->state = MODULE_STATE_GOING;
3326 synchronize_sched();
3327 module_put(mod);
3328 blocking_notifier_call_chain(&module_notify_list,
3329 MODULE_STATE_GOING, mod);
3330 free_module(mod);
3331 wake_up_all(&module_wq);
3332 return ret;
3333 }
3334
3335 static int may_init_module(void)
3336 {
3337 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3338 return -EPERM;
3339
3340 return 0;
3341 }
3342
3343 /*
3344 * We try to place it in the list now to make sure it's unique before
3345 * we dedicate too many resources. In particular, temporary percpu
3346 * memory exhaustion.
3347 */
3348 static int add_unformed_module(struct module *mod)
3349 {
3350 int err;
3351 struct module *old;
3352
3353 mod->state = MODULE_STATE_UNFORMED;
3354
3355 again:
3356 mutex_lock(&module_mutex);
3357 old = find_module_all(mod->name, strlen(mod->name), true);
3358 if (old != NULL) {
3359 if (old->state == MODULE_STATE_COMING
3360 || old->state == MODULE_STATE_UNFORMED) {
3361 /* Wait in case it fails to load. */
3362 mutex_unlock(&module_mutex);
3363 err = wait_event_interruptible(module_wq,
3364 finished_loading(mod->name));
3365 if (err)
3366 goto out_unlocked;
3367 goto again;
3368 }
3369 err = -EEXIST;
3370 goto out;
3371 }
3372 mod_update_bounds(mod);
3373 list_add_rcu(&mod->list, &modules);
3374 mod_tree_insert(mod);
3375 err = 0;
3376
3377 out:
3378 mutex_unlock(&module_mutex);
3379 out_unlocked:
3380 return err;
3381 }
3382
3383 static int complete_formation(struct module *mod, struct load_info *info)
3384 {
3385 int err;
3386
3387 mutex_lock(&module_mutex);
3388
3389 /* Find duplicate symbols (must be called under lock). */
3390 err = verify_export_symbols(mod);
3391 if (err < 0)
3392 goto out;
3393
3394 /* This relies on module_mutex for list integrity. */
3395 module_bug_finalize(info->hdr, info->sechdrs, mod);
3396
3397 /* Set RO and NX regions */
3398 module_enable_ro(mod);
3399 module_enable_nx(mod);
3400
3401 /* Mark state as coming so strong_try_module_get() ignores us,
3402 * but kallsyms etc. can see us. */
3403 mod->state = MODULE_STATE_COMING;
3404 mutex_unlock(&module_mutex);
3405
3406 blocking_notifier_call_chain(&module_notify_list,
3407 MODULE_STATE_COMING, mod);
3408 return 0;
3409
3410 out:
3411 mutex_unlock(&module_mutex);
3412 return err;
3413 }
3414
3415 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3416 void *arg)
3417 {
3418 struct module *mod = arg;
3419 int ret;
3420
3421 if (strcmp(param, "async_probe") == 0) {
3422 mod->async_probe_requested = true;
3423 return 0;
3424 }
3425
3426 /* Check for magic 'dyndbg' arg */
3427 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3428 if (ret != 0)
3429 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3430 return 0;
3431 }
3432
3433 /* Allocate and load the module: note that size of section 0 is always
3434 zero, and we rely on this for optional sections. */
3435 static int load_module(struct load_info *info, const char __user *uargs,
3436 int flags)
3437 {
3438 struct module *mod;
3439 long err;
3440 char *after_dashes;
3441
3442 err = module_sig_check(info, flags);
3443 if (err)
3444 goto free_copy;
3445
3446 err = elf_header_check(info);
3447 if (err)
3448 goto free_copy;
3449
3450 /* Figure out module layout, and allocate all the memory. */
3451 mod = layout_and_allocate(info, flags);
3452 if (IS_ERR(mod)) {
3453 err = PTR_ERR(mod);
3454 goto free_copy;
3455 }
3456
3457 /* Reserve our place in the list. */
3458 err = add_unformed_module(mod);
3459 if (err)
3460 goto free_module;
3461
3462 #ifdef CONFIG_MODULE_SIG
3463 mod->sig_ok = info->sig_ok;
3464 if (!mod->sig_ok) {
3465 pr_notice_once("%s: module verification failed: signature "
3466 "and/or required key missing - tainting "
3467 "kernel\n", mod->name);
3468 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3469 }
3470 #endif
3471
3472 /* To avoid stressing percpu allocator, do this once we're unique. */
3473 err = percpu_modalloc(mod, info);
3474 if (err)
3475 goto unlink_mod;
3476
3477 /* Now module is in final location, initialize linked lists, etc. */
3478 err = module_unload_init(mod);
3479 if (err)
3480 goto unlink_mod;
3481
3482 init_param_lock(mod);
3483
3484 /* Now we've got everything in the final locations, we can
3485 * find optional sections. */
3486 err = find_module_sections(mod, info);
3487 if (err)
3488 goto free_unload;
3489
3490 err = check_module_license_and_versions(mod);
3491 if (err)
3492 goto free_unload;
3493
3494 /* Set up MODINFO_ATTR fields */
3495 setup_modinfo(mod, info);
3496
3497 /* Fix up syms, so that st_value is a pointer to location. */
3498 err = simplify_symbols(mod, info);
3499 if (err < 0)
3500 goto free_modinfo;
3501
3502 err = apply_relocations(mod, info);
3503 if (err < 0)
3504 goto free_modinfo;
3505
3506 err = post_relocation(mod, info);
3507 if (err < 0)
3508 goto free_modinfo;
3509
3510 flush_module_icache(mod);
3511
3512 /* Now copy in args */
3513 mod->args = strndup_user(uargs, ~0UL >> 1);
3514 if (IS_ERR(mod->args)) {
3515 err = PTR_ERR(mod->args);
3516 goto free_arch_cleanup;
3517 }
3518
3519 dynamic_debug_setup(info->debug, info->num_debug);
3520
3521 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3522 ftrace_module_init(mod);
3523
3524 /* Finally it's fully formed, ready to start executing. */
3525 err = complete_formation(mod, info);
3526 if (err)
3527 goto ddebug_cleanup;
3528
3529 /* Module is ready to execute: parsing args may do that. */
3530 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3531 -32768, 32767, mod,
3532 unknown_module_param_cb);
3533 if (IS_ERR(after_dashes)) {
3534 err = PTR_ERR(after_dashes);
3535 goto bug_cleanup;
3536 } else if (after_dashes) {
3537 pr_warn("%s: parameters '%s' after `--' ignored\n",
3538 mod->name, after_dashes);
3539 }
3540
3541 /* Link in to syfs. */
3542 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3543 if (err < 0)
3544 goto bug_cleanup;
3545
3546 /* Get rid of temporary copy. */
3547 free_copy(info);
3548
3549 /* Done! */
3550 trace_module_load(mod);
3551
3552 return do_init_module(mod);
3553
3554 bug_cleanup:
3555 /* module_bug_cleanup needs module_mutex protection */
3556 mutex_lock(&module_mutex);
3557 module_bug_cleanup(mod);
3558 mutex_unlock(&module_mutex);
3559
3560 blocking_notifier_call_chain(&module_notify_list,
3561 MODULE_STATE_GOING, mod);
3562
3563 /* we can't deallocate the module until we clear memory protection */
3564 module_disable_ro(mod);
3565 module_disable_nx(mod);
3566
3567 ddebug_cleanup:
3568 dynamic_debug_remove(info->debug);
3569 synchronize_sched();
3570 kfree(mod->args);
3571 free_arch_cleanup:
3572 module_arch_cleanup(mod);
3573 free_modinfo:
3574 free_modinfo(mod);
3575 free_unload:
3576 module_unload_free(mod);
3577 unlink_mod:
3578 mutex_lock(&module_mutex);
3579 /* Unlink carefully: kallsyms could be walking list. */
3580 list_del_rcu(&mod->list);
3581 mod_tree_remove(mod);
3582 wake_up_all(&module_wq);
3583 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3584 synchronize_sched();
3585 mutex_unlock(&module_mutex);
3586 free_module:
3587 /*
3588 * Ftrace needs to clean up what it initialized.
3589 * This does nothing if ftrace_module_init() wasn't called,
3590 * but it must be called outside of module_mutex.
3591 */
3592 ftrace_release_mod(mod);
3593 /* Free lock-classes; relies on the preceding sync_rcu() */
3594 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3595
3596 module_deallocate(mod, info);
3597 free_copy:
3598 free_copy(info);
3599 return err;
3600 }
3601
3602 SYSCALL_DEFINE3(init_module, void __user *, umod,
3603 unsigned long, len, const char __user *, uargs)
3604 {
3605 int err;
3606 struct load_info info = { };
3607
3608 err = may_init_module();
3609 if (err)
3610 return err;
3611
3612 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3613 umod, len, uargs);
3614
3615 err = copy_module_from_user(umod, len, &info);
3616 if (err)
3617 return err;
3618
3619 return load_module(&info, uargs, 0);
3620 }
3621
3622 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3623 {
3624 int err;
3625 struct load_info info = { };
3626
3627 err = may_init_module();
3628 if (err)
3629 return err;
3630
3631 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3632
3633 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3634 |MODULE_INIT_IGNORE_VERMAGIC))
3635 return -EINVAL;
3636
3637 err = copy_module_from_fd(fd, &info);
3638 if (err)
3639 return err;
3640
3641 return load_module(&info, uargs, flags);
3642 }
3643
3644 static inline int within(unsigned long addr, void *start, unsigned long size)
3645 {
3646 return ((void *)addr >= start && (void *)addr < start + size);
3647 }
3648
3649 #ifdef CONFIG_KALLSYMS
3650 /*
3651 * This ignores the intensely annoying "mapping symbols" found
3652 * in ARM ELF files: $a, $t and $d.
3653 */
3654 static inline int is_arm_mapping_symbol(const char *str)
3655 {
3656 if (str[0] == '.' && str[1] == 'L')
3657 return true;
3658 return str[0] == '$' && strchr("axtd", str[1])
3659 && (str[2] == '\0' || str[2] == '.');
3660 }
3661
3662 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3663 {
3664 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3665 }
3666
3667 static const char *get_ksymbol(struct module *mod,
3668 unsigned long addr,
3669 unsigned long *size,
3670 unsigned long *offset)
3671 {
3672 unsigned int i, best = 0;
3673 unsigned long nextval;
3674 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3675
3676 /* At worse, next value is at end of module */
3677 if (within_module_init(addr, mod))
3678 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3679 else
3680 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3681
3682 /* Scan for closest preceding symbol, and next symbol. (ELF
3683 starts real symbols at 1). */
3684 for (i = 1; i < kallsyms->num_symtab; i++) {
3685 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3686 continue;
3687
3688 /* We ignore unnamed symbols: they're uninformative
3689 * and inserted at a whim. */
3690 if (*symname(kallsyms, i) == '\0'
3691 || is_arm_mapping_symbol(symname(kallsyms, i)))
3692 continue;
3693
3694 if (kallsyms->symtab[i].st_value <= addr
3695 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3696 best = i;
3697 if (kallsyms->symtab[i].st_value > addr
3698 && kallsyms->symtab[i].st_value < nextval)
3699 nextval = kallsyms->symtab[i].st_value;
3700 }
3701
3702 if (!best)
3703 return NULL;
3704
3705 if (size)
3706 *size = nextval - kallsyms->symtab[best].st_value;
3707 if (offset)
3708 *offset = addr - kallsyms->symtab[best].st_value;
3709 return symname(kallsyms, best);
3710 }
3711
3712 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3713 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3714 const char *module_address_lookup(unsigned long addr,
3715 unsigned long *size,
3716 unsigned long *offset,
3717 char **modname,
3718 char *namebuf)
3719 {
3720 const char *ret = NULL;
3721 struct module *mod;
3722
3723 preempt_disable();
3724 mod = __module_address(addr);
3725 if (mod) {
3726 if (modname)
3727 *modname = mod->name;
3728 ret = get_ksymbol(mod, addr, size, offset);
3729 }
3730 /* Make a copy in here where it's safe */
3731 if (ret) {
3732 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3733 ret = namebuf;
3734 }
3735 preempt_enable();
3736
3737 return ret;
3738 }
3739
3740 int lookup_module_symbol_name(unsigned long addr, char *symname)
3741 {
3742 struct module *mod;
3743
3744 preempt_disable();
3745 list_for_each_entry_rcu(mod, &modules, list) {
3746 if (mod->state == MODULE_STATE_UNFORMED)
3747 continue;
3748 if (within_module(addr, mod)) {
3749 const char *sym;
3750
3751 sym = get_ksymbol(mod, addr, NULL, NULL);
3752 if (!sym)
3753 goto out;
3754 strlcpy(symname, sym, KSYM_NAME_LEN);
3755 preempt_enable();
3756 return 0;
3757 }
3758 }
3759 out:
3760 preempt_enable();
3761 return -ERANGE;
3762 }
3763
3764 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3765 unsigned long *offset, char *modname, char *name)
3766 {
3767 struct module *mod;
3768
3769 preempt_disable();
3770 list_for_each_entry_rcu(mod, &modules, list) {
3771 if (mod->state == MODULE_STATE_UNFORMED)
3772 continue;
3773 if (within_module(addr, mod)) {
3774 const char *sym;
3775
3776 sym = get_ksymbol(mod, addr, size, offset);
3777 if (!sym)
3778 goto out;
3779 if (modname)
3780 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3781 if (name)
3782 strlcpy(name, sym, KSYM_NAME_LEN);
3783 preempt_enable();
3784 return 0;
3785 }
3786 }
3787 out:
3788 preempt_enable();
3789 return -ERANGE;
3790 }
3791
3792 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3793 char *name, char *module_name, int *exported)
3794 {
3795 struct module *mod;
3796
3797 preempt_disable();
3798 list_for_each_entry_rcu(mod, &modules, list) {
3799 struct mod_kallsyms *kallsyms;
3800
3801 if (mod->state == MODULE_STATE_UNFORMED)
3802 continue;
3803 kallsyms = rcu_dereference_sched(mod->kallsyms);
3804 if (symnum < kallsyms->num_symtab) {
3805 *value = kallsyms->symtab[symnum].st_value;
3806 *type = kallsyms->symtab[symnum].st_info;
3807 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3808 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3809 *exported = is_exported(name, *value, mod);
3810 preempt_enable();
3811 return 0;
3812 }
3813 symnum -= kallsyms->num_symtab;
3814 }
3815 preempt_enable();
3816 return -ERANGE;
3817 }
3818
3819 static unsigned long mod_find_symname(struct module *mod, const char *name)
3820 {
3821 unsigned int i;
3822 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3823
3824 for (i = 0; i < kallsyms->num_symtab; i++)
3825 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3826 kallsyms->symtab[i].st_info != 'U')
3827 return kallsyms->symtab[i].st_value;
3828 return 0;
3829 }
3830
3831 /* Look for this name: can be of form module:name. */
3832 unsigned long module_kallsyms_lookup_name(const char *name)
3833 {
3834 struct module *mod;
3835 char *colon;
3836 unsigned long ret = 0;
3837
3838 /* Don't lock: we're in enough trouble already. */
3839 preempt_disable();
3840 if ((colon = strchr(name, ':')) != NULL) {
3841 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3842 ret = mod_find_symname(mod, colon+1);
3843 } else {
3844 list_for_each_entry_rcu(mod, &modules, list) {
3845 if (mod->state == MODULE_STATE_UNFORMED)
3846 continue;
3847 if ((ret = mod_find_symname(mod, name)) != 0)
3848 break;
3849 }
3850 }
3851 preempt_enable();
3852 return ret;
3853 }
3854
3855 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3856 struct module *, unsigned long),
3857 void *data)
3858 {
3859 struct module *mod;
3860 unsigned int i;
3861 int ret;
3862
3863 module_assert_mutex();
3864
3865 list_for_each_entry(mod, &modules, list) {
3866 /* We hold module_mutex: no need for rcu_dereference_sched */
3867 struct mod_kallsyms *kallsyms = mod->kallsyms;
3868
3869 if (mod->state == MODULE_STATE_UNFORMED)
3870 continue;
3871 for (i = 0; i < kallsyms->num_symtab; i++) {
3872 ret = fn(data, symname(kallsyms, i),
3873 mod, kallsyms->symtab[i].st_value);
3874 if (ret != 0)
3875 return ret;
3876 }
3877 }
3878 return 0;
3879 }
3880 #endif /* CONFIG_KALLSYMS */
3881
3882 static char *module_flags(struct module *mod, char *buf)
3883 {
3884 int bx = 0;
3885
3886 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3887 if (mod->taints ||
3888 mod->state == MODULE_STATE_GOING ||
3889 mod->state == MODULE_STATE_COMING) {
3890 buf[bx++] = '(';
3891 bx += module_flags_taint(mod, buf + bx);
3892 /* Show a - for module-is-being-unloaded */
3893 if (mod->state == MODULE_STATE_GOING)
3894 buf[bx++] = '-';
3895 /* Show a + for module-is-being-loaded */
3896 if (mod->state == MODULE_STATE_COMING)
3897 buf[bx++] = '+';
3898 buf[bx++] = ')';
3899 }
3900 buf[bx] = '\0';
3901
3902 return buf;
3903 }
3904
3905 #ifdef CONFIG_PROC_FS
3906 /* Called by the /proc file system to return a list of modules. */
3907 static void *m_start(struct seq_file *m, loff_t *pos)
3908 {
3909 mutex_lock(&module_mutex);
3910 return seq_list_start(&modules, *pos);
3911 }
3912
3913 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3914 {
3915 return seq_list_next(p, &modules, pos);
3916 }
3917
3918 static void m_stop(struct seq_file *m, void *p)
3919 {
3920 mutex_unlock(&module_mutex);
3921 }
3922
3923 static int m_show(struct seq_file *m, void *p)
3924 {
3925 struct module *mod = list_entry(p, struct module, list);
3926 char buf[8];
3927
3928 /* We always ignore unformed modules. */
3929 if (mod->state == MODULE_STATE_UNFORMED)
3930 return 0;
3931
3932 seq_printf(m, "%s %u",
3933 mod->name, mod->init_layout.size + mod->core_layout.size);
3934 print_unload_info(m, mod);
3935
3936 /* Informative for users. */
3937 seq_printf(m, " %s",
3938 mod->state == MODULE_STATE_GOING ? "Unloading" :
3939 mod->state == MODULE_STATE_COMING ? "Loading" :
3940 "Live");
3941 /* Used by oprofile and other similar tools. */
3942 seq_printf(m, " 0x%pK", mod->core_layout.base);
3943
3944 /* Taints info */
3945 if (mod->taints)
3946 seq_printf(m, " %s", module_flags(mod, buf));
3947
3948 seq_puts(m, "\n");
3949 return 0;
3950 }
3951
3952 /* Format: modulename size refcount deps address
3953
3954 Where refcount is a number or -, and deps is a comma-separated list
3955 of depends or -.
3956 */
3957 static const struct seq_operations modules_op = {
3958 .start = m_start,
3959 .next = m_next,
3960 .stop = m_stop,
3961 .show = m_show
3962 };
3963
3964 static int modules_open(struct inode *inode, struct file *file)
3965 {
3966 return seq_open(file, &modules_op);
3967 }
3968
3969 static const struct file_operations proc_modules_operations = {
3970 .open = modules_open,
3971 .read = seq_read,
3972 .llseek = seq_lseek,
3973 .release = seq_release,
3974 };
3975
3976 static int __init proc_modules_init(void)
3977 {
3978 proc_create("modules", 0, NULL, &proc_modules_operations);
3979 return 0;
3980 }
3981 module_init(proc_modules_init);
3982 #endif
3983
3984 /* Given an address, look for it in the module exception tables. */
3985 const struct exception_table_entry *search_module_extables(unsigned long addr)
3986 {
3987 const struct exception_table_entry *e = NULL;
3988 struct module *mod;
3989
3990 preempt_disable();
3991 list_for_each_entry_rcu(mod, &modules, list) {
3992 if (mod->state == MODULE_STATE_UNFORMED)
3993 continue;
3994 if (mod->num_exentries == 0)
3995 continue;
3996
3997 e = search_extable(mod->extable,
3998 mod->extable + mod->num_exentries - 1,
3999 addr);
4000 if (e)
4001 break;
4002 }
4003 preempt_enable();
4004
4005 /* Now, if we found one, we are running inside it now, hence
4006 we cannot unload the module, hence no refcnt needed. */
4007 return e;
4008 }
4009
4010 /*
4011 * is_module_address - is this address inside a module?
4012 * @addr: the address to check.
4013 *
4014 * See is_module_text_address() if you simply want to see if the address
4015 * is code (not data).
4016 */
4017 bool is_module_address(unsigned long addr)
4018 {
4019 bool ret;
4020
4021 preempt_disable();
4022 ret = __module_address(addr) != NULL;
4023 preempt_enable();
4024
4025 return ret;
4026 }
4027
4028 /*
4029 * __module_address - get the module which contains an address.
4030 * @addr: the address.
4031 *
4032 * Must be called with preempt disabled or module mutex held so that
4033 * module doesn't get freed during this.
4034 */
4035 struct module *__module_address(unsigned long addr)
4036 {
4037 struct module *mod;
4038
4039 if (addr < module_addr_min || addr > module_addr_max)
4040 return NULL;
4041
4042 module_assert_mutex_or_preempt();
4043
4044 mod = mod_find(addr);
4045 if (mod) {
4046 BUG_ON(!within_module(addr, mod));
4047 if (mod->state == MODULE_STATE_UNFORMED)
4048 mod = NULL;
4049 }
4050 return mod;
4051 }
4052 EXPORT_SYMBOL_GPL(__module_address);
4053
4054 /*
4055 * is_module_text_address - is this address inside module code?
4056 * @addr: the address to check.
4057 *
4058 * See is_module_address() if you simply want to see if the address is
4059 * anywhere in a module. See kernel_text_address() for testing if an
4060 * address corresponds to kernel or module code.
4061 */
4062 bool is_module_text_address(unsigned long addr)
4063 {
4064 bool ret;
4065
4066 preempt_disable();
4067 ret = __module_text_address(addr) != NULL;
4068 preempt_enable();
4069
4070 return ret;
4071 }
4072
4073 /*
4074 * __module_text_address - get the module whose code contains an address.
4075 * @addr: the address.
4076 *
4077 * Must be called with preempt disabled or module mutex held so that
4078 * module doesn't get freed during this.
4079 */
4080 struct module *__module_text_address(unsigned long addr)
4081 {
4082 struct module *mod = __module_address(addr);
4083 if (mod) {
4084 /* Make sure it's within the text section. */
4085 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4086 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4087 mod = NULL;
4088 }
4089 return mod;
4090 }
4091 EXPORT_SYMBOL_GPL(__module_text_address);
4092
4093 /* Don't grab lock, we're oopsing. */
4094 void print_modules(void)
4095 {
4096 struct module *mod;
4097 char buf[8];
4098
4099 printk(KERN_DEFAULT "Modules linked in:");
4100 /* Most callers should already have preempt disabled, but make sure */
4101 preempt_disable();
4102 list_for_each_entry_rcu(mod, &modules, list) {
4103 if (mod->state == MODULE_STATE_UNFORMED)
4104 continue;
4105 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4106 }
4107 preempt_enable();
4108 if (last_unloaded_module[0])
4109 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4110 pr_cont("\n");
4111 }
4112
4113 #ifdef CONFIG_MODVERSIONS
4114 /* Generate the signature for all relevant module structures here.
4115 * If these change, we don't want to try to parse the module. */
4116 void module_layout(struct module *mod,
4117 struct modversion_info *ver,
4118 struct kernel_param *kp,
4119 struct kernel_symbol *ks,
4120 struct tracepoint * const *tp)
4121 {
4122 }
4123 EXPORT_SYMBOL(module_layout);
4124 #endif
4125
4126 #ifdef CONFIG_MODULE_SIG
4127 void enforce_signed_modules(void)
4128 {
4129 sig_enforce = true;
4130 }
4131 #endif
4132
4133 bool secure_modules(void)
4134 {
4135 #ifdef CONFIG_MODULE_SIG
4136 return (sig_enforce || modules_disabled);
4137 #else
4138 return modules_disabled;
4139 #endif
4140 }
4141 EXPORT_SYMBOL(secure_modules);