]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/module.c
Merge tag 'pwm/for-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-bionic-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/stop_machine.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <asm/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/mmu_context.h>
53 #include <linux/license.h>
54 #include <asm/sections.h>
55 #include <linux/tracepoint.h>
56 #include <linux/ftrace.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <linux/fips.h>
64 #include <uapi/linux/module.h>
65 #include "module-internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/module.h>
69
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73
74 /*
75 * Modules' sections will be aligned on page boundaries
76 * to ensure complete separation of code and data, but
77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78 */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84
85 /*
86 * Given BASE and SIZE this macro calculates the number of pages the
87 * memory regions occupies
88 */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
90 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
91 PFN_DOWN((unsigned long)BASE) + 1) \
92 : (0UL))
93
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96
97 /*
98 * Mutex protects:
99 * 1) List of modules (also safely readable with preempt_disable),
100 * 2) module_use links,
101 * 3) module_addr_min/module_addr_max.
102 * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109
110 #ifdef CONFIG_MODULE_SIG
111 #ifdef CONFIG_MODULE_SIG_FORCE
112 static bool sig_enforce = true;
113 #else
114 static bool sig_enforce = false;
115
116 static int param_set_bool_enable_only(const char *val,
117 const struct kernel_param *kp)
118 {
119 int err;
120 bool test;
121 struct kernel_param dummy_kp = *kp;
122
123 dummy_kp.arg = &test;
124
125 err = param_set_bool(val, &dummy_kp);
126 if (err)
127 return err;
128
129 /* Don't let them unset it once it's set! */
130 if (!test && sig_enforce)
131 return -EROFS;
132
133 if (test)
134 sig_enforce = true;
135 return 0;
136 }
137
138 static const struct kernel_param_ops param_ops_bool_enable_only = {
139 .flags = KERNEL_PARAM_FL_NOARG,
140 .set = param_set_bool_enable_only,
141 .get = param_get_bool,
142 };
143 #define param_check_bool_enable_only param_check_bool
144
145 module_param(sig_enforce, bool_enable_only, 0644);
146 #endif /* !CONFIG_MODULE_SIG_FORCE */
147 #endif /* CONFIG_MODULE_SIG */
148
149 /* Block module loading/unloading? */
150 int modules_disabled = 0;
151 core_param(nomodule, modules_disabled, bint, 0);
152
153 /* Waiting for a module to finish initializing? */
154 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
155
156 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
157
158 /* Bounds of module allocation, for speeding __module_address.
159 * Protected by module_mutex. */
160 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
161
162 int register_module_notifier(struct notifier_block * nb)
163 {
164 return blocking_notifier_chain_register(&module_notify_list, nb);
165 }
166 EXPORT_SYMBOL(register_module_notifier);
167
168 int unregister_module_notifier(struct notifier_block * nb)
169 {
170 return blocking_notifier_chain_unregister(&module_notify_list, nb);
171 }
172 EXPORT_SYMBOL(unregister_module_notifier);
173
174 struct load_info {
175 Elf_Ehdr *hdr;
176 unsigned long len;
177 Elf_Shdr *sechdrs;
178 char *secstrings, *strtab;
179 unsigned long symoffs, stroffs;
180 struct _ddebug *debug;
181 unsigned int num_debug;
182 bool sig_ok;
183 struct {
184 unsigned int sym, str, mod, vers, info, pcpu;
185 } index;
186 };
187
188 /* We require a truly strong try_module_get(): 0 means failure due to
189 ongoing or failed initialization etc. */
190 static inline int strong_try_module_get(struct module *mod)
191 {
192 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
193 if (mod && mod->state == MODULE_STATE_COMING)
194 return -EBUSY;
195 if (try_module_get(mod))
196 return 0;
197 else
198 return -ENOENT;
199 }
200
201 static inline void add_taint_module(struct module *mod, unsigned flag,
202 enum lockdep_ok lockdep_ok)
203 {
204 add_taint(flag, lockdep_ok);
205 mod->taints |= (1U << flag);
206 }
207
208 /*
209 * A thread that wants to hold a reference to a module only while it
210 * is running can call this to safely exit. nfsd and lockd use this.
211 */
212 void __module_put_and_exit(struct module *mod, long code)
213 {
214 module_put(mod);
215 do_exit(code);
216 }
217 EXPORT_SYMBOL(__module_put_and_exit);
218
219 /* Find a module section: 0 means not found. */
220 static unsigned int find_sec(const struct load_info *info, const char *name)
221 {
222 unsigned int i;
223
224 for (i = 1; i < info->hdr->e_shnum; i++) {
225 Elf_Shdr *shdr = &info->sechdrs[i];
226 /* Alloc bit cleared means "ignore it." */
227 if ((shdr->sh_flags & SHF_ALLOC)
228 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
229 return i;
230 }
231 return 0;
232 }
233
234 /* Find a module section, or NULL. */
235 static void *section_addr(const struct load_info *info, const char *name)
236 {
237 /* Section 0 has sh_addr 0. */
238 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
239 }
240
241 /* Find a module section, or NULL. Fill in number of "objects" in section. */
242 static void *section_objs(const struct load_info *info,
243 const char *name,
244 size_t object_size,
245 unsigned int *num)
246 {
247 unsigned int sec = find_sec(info, name);
248
249 /* Section 0 has sh_addr 0 and sh_size 0. */
250 *num = info->sechdrs[sec].sh_size / object_size;
251 return (void *)info->sechdrs[sec].sh_addr;
252 }
253
254 /* Provided by the linker */
255 extern const struct kernel_symbol __start___ksymtab[];
256 extern const struct kernel_symbol __stop___ksymtab[];
257 extern const struct kernel_symbol __start___ksymtab_gpl[];
258 extern const struct kernel_symbol __stop___ksymtab_gpl[];
259 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
260 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
261 extern const unsigned long __start___kcrctab[];
262 extern const unsigned long __start___kcrctab_gpl[];
263 extern const unsigned long __start___kcrctab_gpl_future[];
264 #ifdef CONFIG_UNUSED_SYMBOLS
265 extern const struct kernel_symbol __start___ksymtab_unused[];
266 extern const struct kernel_symbol __stop___ksymtab_unused[];
267 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
268 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
269 extern const unsigned long __start___kcrctab_unused[];
270 extern const unsigned long __start___kcrctab_unused_gpl[];
271 #endif
272
273 #ifndef CONFIG_MODVERSIONS
274 #define symversion(base, idx) NULL
275 #else
276 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
277 #endif
278
279 static bool each_symbol_in_section(const struct symsearch *arr,
280 unsigned int arrsize,
281 struct module *owner,
282 bool (*fn)(const struct symsearch *syms,
283 struct module *owner,
284 void *data),
285 void *data)
286 {
287 unsigned int j;
288
289 for (j = 0; j < arrsize; j++) {
290 if (fn(&arr[j], owner, data))
291 return true;
292 }
293
294 return false;
295 }
296
297 /* Returns true as soon as fn returns true, otherwise false. */
298 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
299 struct module *owner,
300 void *data),
301 void *data)
302 {
303 struct module *mod;
304 static const struct symsearch arr[] = {
305 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
306 NOT_GPL_ONLY, false },
307 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
308 __start___kcrctab_gpl,
309 GPL_ONLY, false },
310 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
311 __start___kcrctab_gpl_future,
312 WILL_BE_GPL_ONLY, false },
313 #ifdef CONFIG_UNUSED_SYMBOLS
314 { __start___ksymtab_unused, __stop___ksymtab_unused,
315 __start___kcrctab_unused,
316 NOT_GPL_ONLY, true },
317 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
318 __start___kcrctab_unused_gpl,
319 GPL_ONLY, true },
320 #endif
321 };
322
323 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
324 return true;
325
326 list_for_each_entry_rcu(mod, &modules, list) {
327 struct symsearch arr[] = {
328 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
329 NOT_GPL_ONLY, false },
330 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
331 mod->gpl_crcs,
332 GPL_ONLY, false },
333 { mod->gpl_future_syms,
334 mod->gpl_future_syms + mod->num_gpl_future_syms,
335 mod->gpl_future_crcs,
336 WILL_BE_GPL_ONLY, false },
337 #ifdef CONFIG_UNUSED_SYMBOLS
338 { mod->unused_syms,
339 mod->unused_syms + mod->num_unused_syms,
340 mod->unused_crcs,
341 NOT_GPL_ONLY, true },
342 { mod->unused_gpl_syms,
343 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
344 mod->unused_gpl_crcs,
345 GPL_ONLY, true },
346 #endif
347 };
348
349 if (mod->state == MODULE_STATE_UNFORMED)
350 continue;
351
352 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
353 return true;
354 }
355 return false;
356 }
357 EXPORT_SYMBOL_GPL(each_symbol_section);
358
359 struct find_symbol_arg {
360 /* Input */
361 const char *name;
362 bool gplok;
363 bool warn;
364
365 /* Output */
366 struct module *owner;
367 const unsigned long *crc;
368 const struct kernel_symbol *sym;
369 };
370
371 static bool check_symbol(const struct symsearch *syms,
372 struct module *owner,
373 unsigned int symnum, void *data)
374 {
375 struct find_symbol_arg *fsa = data;
376
377 if (!fsa->gplok) {
378 if (syms->licence == GPL_ONLY)
379 return false;
380 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
381 pr_warn("Symbol %s is being used by a non-GPL module, "
382 "which will not be allowed in the future\n",
383 fsa->name);
384 }
385 }
386
387 #ifdef CONFIG_UNUSED_SYMBOLS
388 if (syms->unused && fsa->warn) {
389 pr_warn("Symbol %s is marked as UNUSED, however this module is "
390 "using it.\n", fsa->name);
391 pr_warn("This symbol will go away in the future.\n");
392 pr_warn("Please evalute if this is the right api to use and if "
393 "it really is, submit a report the linux kernel "
394 "mailinglist together with submitting your code for "
395 "inclusion.\n");
396 }
397 #endif
398
399 fsa->owner = owner;
400 fsa->crc = symversion(syms->crcs, symnum);
401 fsa->sym = &syms->start[symnum];
402 return true;
403 }
404
405 static int cmp_name(const void *va, const void *vb)
406 {
407 const char *a;
408 const struct kernel_symbol *b;
409 a = va; b = vb;
410 return strcmp(a, b->name);
411 }
412
413 static bool find_symbol_in_section(const struct symsearch *syms,
414 struct module *owner,
415 void *data)
416 {
417 struct find_symbol_arg *fsa = data;
418 struct kernel_symbol *sym;
419
420 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
421 sizeof(struct kernel_symbol), cmp_name);
422
423 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
424 return true;
425
426 return false;
427 }
428
429 /* Find a symbol and return it, along with, (optional) crc and
430 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
431 const struct kernel_symbol *find_symbol(const char *name,
432 struct module **owner,
433 const unsigned long **crc,
434 bool gplok,
435 bool warn)
436 {
437 struct find_symbol_arg fsa;
438
439 fsa.name = name;
440 fsa.gplok = gplok;
441 fsa.warn = warn;
442
443 if (each_symbol_section(find_symbol_in_section, &fsa)) {
444 if (owner)
445 *owner = fsa.owner;
446 if (crc)
447 *crc = fsa.crc;
448 return fsa.sym;
449 }
450
451 pr_debug("Failed to find symbol %s\n", name);
452 return NULL;
453 }
454 EXPORT_SYMBOL_GPL(find_symbol);
455
456 /* Search for module by name: must hold module_mutex. */
457 static struct module *find_module_all(const char *name, size_t len,
458 bool even_unformed)
459 {
460 struct module *mod;
461
462 list_for_each_entry(mod, &modules, list) {
463 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
464 continue;
465 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
466 return mod;
467 }
468 return NULL;
469 }
470
471 struct module *find_module(const char *name)
472 {
473 return find_module_all(name, strlen(name), false);
474 }
475 EXPORT_SYMBOL_GPL(find_module);
476
477 #ifdef CONFIG_SMP
478
479 static inline void __percpu *mod_percpu(struct module *mod)
480 {
481 return mod->percpu;
482 }
483
484 static int percpu_modalloc(struct module *mod, struct load_info *info)
485 {
486 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
487 unsigned long align = pcpusec->sh_addralign;
488
489 if (!pcpusec->sh_size)
490 return 0;
491
492 if (align > PAGE_SIZE) {
493 pr_warn("%s: per-cpu alignment %li > %li\n",
494 mod->name, align, PAGE_SIZE);
495 align = PAGE_SIZE;
496 }
497
498 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
499 if (!mod->percpu) {
500 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
501 mod->name, (unsigned long)pcpusec->sh_size);
502 return -ENOMEM;
503 }
504 mod->percpu_size = pcpusec->sh_size;
505 return 0;
506 }
507
508 static void percpu_modfree(struct module *mod)
509 {
510 free_percpu(mod->percpu);
511 }
512
513 static unsigned int find_pcpusec(struct load_info *info)
514 {
515 return find_sec(info, ".data..percpu");
516 }
517
518 static void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520 {
521 int cpu;
522
523 for_each_possible_cpu(cpu)
524 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
525 }
526
527 /**
528 * is_module_percpu_address - test whether address is from module static percpu
529 * @addr: address to test
530 *
531 * Test whether @addr belongs to module static percpu area.
532 *
533 * RETURNS:
534 * %true if @addr is from module static percpu area
535 */
536 bool is_module_percpu_address(unsigned long addr)
537 {
538 struct module *mod;
539 unsigned int cpu;
540
541 preempt_disable();
542
543 list_for_each_entry_rcu(mod, &modules, list) {
544 if (mod->state == MODULE_STATE_UNFORMED)
545 continue;
546 if (!mod->percpu_size)
547 continue;
548 for_each_possible_cpu(cpu) {
549 void *start = per_cpu_ptr(mod->percpu, cpu);
550
551 if ((void *)addr >= start &&
552 (void *)addr < start + mod->percpu_size) {
553 preempt_enable();
554 return true;
555 }
556 }
557 }
558
559 preempt_enable();
560 return false;
561 }
562
563 #else /* ... !CONFIG_SMP */
564
565 static inline void __percpu *mod_percpu(struct module *mod)
566 {
567 return NULL;
568 }
569 static int percpu_modalloc(struct module *mod, struct load_info *info)
570 {
571 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
572 if (info->sechdrs[info->index.pcpu].sh_size != 0)
573 return -ENOMEM;
574 return 0;
575 }
576 static inline void percpu_modfree(struct module *mod)
577 {
578 }
579 static unsigned int find_pcpusec(struct load_info *info)
580 {
581 return 0;
582 }
583 static inline void percpu_modcopy(struct module *mod,
584 const void *from, unsigned long size)
585 {
586 /* pcpusec should be 0, and size of that section should be 0. */
587 BUG_ON(size != 0);
588 }
589 bool is_module_percpu_address(unsigned long addr)
590 {
591 return false;
592 }
593
594 #endif /* CONFIG_SMP */
595
596 #define MODINFO_ATTR(field) \
597 static void setup_modinfo_##field(struct module *mod, const char *s) \
598 { \
599 mod->field = kstrdup(s, GFP_KERNEL); \
600 } \
601 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
602 struct module_kobject *mk, char *buffer) \
603 { \
604 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
605 } \
606 static int modinfo_##field##_exists(struct module *mod) \
607 { \
608 return mod->field != NULL; \
609 } \
610 static void free_modinfo_##field(struct module *mod) \
611 { \
612 kfree(mod->field); \
613 mod->field = NULL; \
614 } \
615 static struct module_attribute modinfo_##field = { \
616 .attr = { .name = __stringify(field), .mode = 0444 }, \
617 .show = show_modinfo_##field, \
618 .setup = setup_modinfo_##field, \
619 .test = modinfo_##field##_exists, \
620 .free = free_modinfo_##field, \
621 };
622
623 MODINFO_ATTR(version);
624 MODINFO_ATTR(srcversion);
625
626 static char last_unloaded_module[MODULE_NAME_LEN+1];
627
628 #ifdef CONFIG_MODULE_UNLOAD
629
630 EXPORT_TRACEPOINT_SYMBOL(module_get);
631
632 /* Init the unload section of the module. */
633 static int module_unload_init(struct module *mod)
634 {
635 mod->refptr = alloc_percpu(struct module_ref);
636 if (!mod->refptr)
637 return -ENOMEM;
638
639 INIT_LIST_HEAD(&mod->source_list);
640 INIT_LIST_HEAD(&mod->target_list);
641
642 /* Hold reference count during initialization. */
643 __this_cpu_write(mod->refptr->incs, 1);
644
645 return 0;
646 }
647
648 /* Does a already use b? */
649 static int already_uses(struct module *a, struct module *b)
650 {
651 struct module_use *use;
652
653 list_for_each_entry(use, &b->source_list, source_list) {
654 if (use->source == a) {
655 pr_debug("%s uses %s!\n", a->name, b->name);
656 return 1;
657 }
658 }
659 pr_debug("%s does not use %s!\n", a->name, b->name);
660 return 0;
661 }
662
663 /*
664 * Module a uses b
665 * - we add 'a' as a "source", 'b' as a "target" of module use
666 * - the module_use is added to the list of 'b' sources (so
667 * 'b' can walk the list to see who sourced them), and of 'a'
668 * targets (so 'a' can see what modules it targets).
669 */
670 static int add_module_usage(struct module *a, struct module *b)
671 {
672 struct module_use *use;
673
674 pr_debug("Allocating new usage for %s.\n", a->name);
675 use = kmalloc(sizeof(*use), GFP_ATOMIC);
676 if (!use) {
677 pr_warn("%s: out of memory loading\n", a->name);
678 return -ENOMEM;
679 }
680
681 use->source = a;
682 use->target = b;
683 list_add(&use->source_list, &b->source_list);
684 list_add(&use->target_list, &a->target_list);
685 return 0;
686 }
687
688 /* Module a uses b: caller needs module_mutex() */
689 int ref_module(struct module *a, struct module *b)
690 {
691 int err;
692
693 if (b == NULL || already_uses(a, b))
694 return 0;
695
696 /* If module isn't available, we fail. */
697 err = strong_try_module_get(b);
698 if (err)
699 return err;
700
701 err = add_module_usage(a, b);
702 if (err) {
703 module_put(b);
704 return err;
705 }
706 return 0;
707 }
708 EXPORT_SYMBOL_GPL(ref_module);
709
710 /* Clear the unload stuff of the module. */
711 static void module_unload_free(struct module *mod)
712 {
713 struct module_use *use, *tmp;
714
715 mutex_lock(&module_mutex);
716 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
717 struct module *i = use->target;
718 pr_debug("%s unusing %s\n", mod->name, i->name);
719 module_put(i);
720 list_del(&use->source_list);
721 list_del(&use->target_list);
722 kfree(use);
723 }
724 mutex_unlock(&module_mutex);
725
726 free_percpu(mod->refptr);
727 }
728
729 #ifdef CONFIG_MODULE_FORCE_UNLOAD
730 static inline int try_force_unload(unsigned int flags)
731 {
732 int ret = (flags & O_TRUNC);
733 if (ret)
734 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
735 return ret;
736 }
737 #else
738 static inline int try_force_unload(unsigned int flags)
739 {
740 return 0;
741 }
742 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
743
744 struct stopref
745 {
746 struct module *mod;
747 int flags;
748 int *forced;
749 };
750
751 /* Whole machine is stopped with interrupts off when this runs. */
752 static int __try_stop_module(void *_sref)
753 {
754 struct stopref *sref = _sref;
755
756 /* If it's not unused, quit unless we're forcing. */
757 if (module_refcount(sref->mod) != 0) {
758 if (!(*sref->forced = try_force_unload(sref->flags)))
759 return -EWOULDBLOCK;
760 }
761
762 /* Mark it as dying. */
763 sref->mod->state = MODULE_STATE_GOING;
764 return 0;
765 }
766
767 static int try_stop_module(struct module *mod, int flags, int *forced)
768 {
769 struct stopref sref = { mod, flags, forced };
770
771 return stop_machine(__try_stop_module, &sref, NULL);
772 }
773
774 unsigned long module_refcount(struct module *mod)
775 {
776 unsigned long incs = 0, decs = 0;
777 int cpu;
778
779 for_each_possible_cpu(cpu)
780 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
781 /*
782 * ensure the incs are added up after the decs.
783 * module_put ensures incs are visible before decs with smp_wmb.
784 *
785 * This 2-count scheme avoids the situation where the refcount
786 * for CPU0 is read, then CPU0 increments the module refcount,
787 * then CPU1 drops that refcount, then the refcount for CPU1 is
788 * read. We would record a decrement but not its corresponding
789 * increment so we would see a low count (disaster).
790 *
791 * Rare situation? But module_refcount can be preempted, and we
792 * might be tallying up 4096+ CPUs. So it is not impossible.
793 */
794 smp_rmb();
795 for_each_possible_cpu(cpu)
796 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
797 return incs - decs;
798 }
799 EXPORT_SYMBOL(module_refcount);
800
801 /* This exists whether we can unload or not */
802 static void free_module(struct module *mod);
803
804 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
805 unsigned int, flags)
806 {
807 struct module *mod;
808 char name[MODULE_NAME_LEN];
809 int ret, forced = 0;
810
811 if (!capable(CAP_SYS_MODULE) || modules_disabled)
812 return -EPERM;
813
814 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
815 return -EFAULT;
816 name[MODULE_NAME_LEN-1] = '\0';
817
818 if (!(flags & O_NONBLOCK)) {
819 printk(KERN_WARNING
820 "waiting module removal not supported: please upgrade");
821 }
822
823 if (mutex_lock_interruptible(&module_mutex) != 0)
824 return -EINTR;
825
826 mod = find_module(name);
827 if (!mod) {
828 ret = -ENOENT;
829 goto out;
830 }
831
832 if (!list_empty(&mod->source_list)) {
833 /* Other modules depend on us: get rid of them first. */
834 ret = -EWOULDBLOCK;
835 goto out;
836 }
837
838 /* Doing init or already dying? */
839 if (mod->state != MODULE_STATE_LIVE) {
840 /* FIXME: if (force), slam module count damn the torpedoes */
841 pr_debug("%s already dying\n", mod->name);
842 ret = -EBUSY;
843 goto out;
844 }
845
846 /* If it has an init func, it must have an exit func to unload */
847 if (mod->init && !mod->exit) {
848 forced = try_force_unload(flags);
849 if (!forced) {
850 /* This module can't be removed */
851 ret = -EBUSY;
852 goto out;
853 }
854 }
855
856 /* Stop the machine so refcounts can't move and disable module. */
857 ret = try_stop_module(mod, flags, &forced);
858 if (ret != 0)
859 goto out;
860
861 mutex_unlock(&module_mutex);
862 /* Final destruction now no one is using it. */
863 if (mod->exit != NULL)
864 mod->exit();
865 blocking_notifier_call_chain(&module_notify_list,
866 MODULE_STATE_GOING, mod);
867 async_synchronize_full();
868
869 /* Store the name of the last unloaded module for diagnostic purposes */
870 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
871
872 free_module(mod);
873 return 0;
874 out:
875 mutex_unlock(&module_mutex);
876 return ret;
877 }
878
879 static inline void print_unload_info(struct seq_file *m, struct module *mod)
880 {
881 struct module_use *use;
882 int printed_something = 0;
883
884 seq_printf(m, " %lu ", module_refcount(mod));
885
886 /* Always include a trailing , so userspace can differentiate
887 between this and the old multi-field proc format. */
888 list_for_each_entry(use, &mod->source_list, source_list) {
889 printed_something = 1;
890 seq_printf(m, "%s,", use->source->name);
891 }
892
893 if (mod->init != NULL && mod->exit == NULL) {
894 printed_something = 1;
895 seq_printf(m, "[permanent],");
896 }
897
898 if (!printed_something)
899 seq_printf(m, "-");
900 }
901
902 void __symbol_put(const char *symbol)
903 {
904 struct module *owner;
905
906 preempt_disable();
907 if (!find_symbol(symbol, &owner, NULL, true, false))
908 BUG();
909 module_put(owner);
910 preempt_enable();
911 }
912 EXPORT_SYMBOL(__symbol_put);
913
914 /* Note this assumes addr is a function, which it currently always is. */
915 void symbol_put_addr(void *addr)
916 {
917 struct module *modaddr;
918 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
919
920 if (core_kernel_text(a))
921 return;
922
923 /* module_text_address is safe here: we're supposed to have reference
924 * to module from symbol_get, so it can't go away. */
925 modaddr = __module_text_address(a);
926 BUG_ON(!modaddr);
927 module_put(modaddr);
928 }
929 EXPORT_SYMBOL_GPL(symbol_put_addr);
930
931 static ssize_t show_refcnt(struct module_attribute *mattr,
932 struct module_kobject *mk, char *buffer)
933 {
934 return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
935 }
936
937 static struct module_attribute modinfo_refcnt =
938 __ATTR(refcnt, 0444, show_refcnt, NULL);
939
940 void __module_get(struct module *module)
941 {
942 if (module) {
943 preempt_disable();
944 __this_cpu_inc(module->refptr->incs);
945 trace_module_get(module, _RET_IP_);
946 preempt_enable();
947 }
948 }
949 EXPORT_SYMBOL(__module_get);
950
951 bool try_module_get(struct module *module)
952 {
953 bool ret = true;
954
955 if (module) {
956 preempt_disable();
957
958 if (likely(module_is_live(module))) {
959 __this_cpu_inc(module->refptr->incs);
960 trace_module_get(module, _RET_IP_);
961 } else
962 ret = false;
963
964 preempt_enable();
965 }
966 return ret;
967 }
968 EXPORT_SYMBOL(try_module_get);
969
970 void module_put(struct module *module)
971 {
972 if (module) {
973 preempt_disable();
974 smp_wmb(); /* see comment in module_refcount */
975 __this_cpu_inc(module->refptr->decs);
976
977 trace_module_put(module, _RET_IP_);
978 preempt_enable();
979 }
980 }
981 EXPORT_SYMBOL(module_put);
982
983 #else /* !CONFIG_MODULE_UNLOAD */
984 static inline void print_unload_info(struct seq_file *m, struct module *mod)
985 {
986 /* We don't know the usage count, or what modules are using. */
987 seq_printf(m, " - -");
988 }
989
990 static inline void module_unload_free(struct module *mod)
991 {
992 }
993
994 int ref_module(struct module *a, struct module *b)
995 {
996 return strong_try_module_get(b);
997 }
998 EXPORT_SYMBOL_GPL(ref_module);
999
1000 static inline int module_unload_init(struct module *mod)
1001 {
1002 return 0;
1003 }
1004 #endif /* CONFIG_MODULE_UNLOAD */
1005
1006 static size_t module_flags_taint(struct module *mod, char *buf)
1007 {
1008 size_t l = 0;
1009
1010 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1011 buf[l++] = 'P';
1012 if (mod->taints & (1 << TAINT_OOT_MODULE))
1013 buf[l++] = 'O';
1014 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1015 buf[l++] = 'F';
1016 if (mod->taints & (1 << TAINT_CRAP))
1017 buf[l++] = 'C';
1018 /*
1019 * TAINT_FORCED_RMMOD: could be added.
1020 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1021 * apply to modules.
1022 */
1023 return l;
1024 }
1025
1026 static ssize_t show_initstate(struct module_attribute *mattr,
1027 struct module_kobject *mk, char *buffer)
1028 {
1029 const char *state = "unknown";
1030
1031 switch (mk->mod->state) {
1032 case MODULE_STATE_LIVE:
1033 state = "live";
1034 break;
1035 case MODULE_STATE_COMING:
1036 state = "coming";
1037 break;
1038 case MODULE_STATE_GOING:
1039 state = "going";
1040 break;
1041 default:
1042 BUG();
1043 }
1044 return sprintf(buffer, "%s\n", state);
1045 }
1046
1047 static struct module_attribute modinfo_initstate =
1048 __ATTR(initstate, 0444, show_initstate, NULL);
1049
1050 static ssize_t store_uevent(struct module_attribute *mattr,
1051 struct module_kobject *mk,
1052 const char *buffer, size_t count)
1053 {
1054 enum kobject_action action;
1055
1056 if (kobject_action_type(buffer, count, &action) == 0)
1057 kobject_uevent(&mk->kobj, action);
1058 return count;
1059 }
1060
1061 struct module_attribute module_uevent =
1062 __ATTR(uevent, 0200, NULL, store_uevent);
1063
1064 static ssize_t show_coresize(struct module_attribute *mattr,
1065 struct module_kobject *mk, char *buffer)
1066 {
1067 return sprintf(buffer, "%u\n", mk->mod->core_size);
1068 }
1069
1070 static struct module_attribute modinfo_coresize =
1071 __ATTR(coresize, 0444, show_coresize, NULL);
1072
1073 static ssize_t show_initsize(struct module_attribute *mattr,
1074 struct module_kobject *mk, char *buffer)
1075 {
1076 return sprintf(buffer, "%u\n", mk->mod->init_size);
1077 }
1078
1079 static struct module_attribute modinfo_initsize =
1080 __ATTR(initsize, 0444, show_initsize, NULL);
1081
1082 static ssize_t show_taint(struct module_attribute *mattr,
1083 struct module_kobject *mk, char *buffer)
1084 {
1085 size_t l;
1086
1087 l = module_flags_taint(mk->mod, buffer);
1088 buffer[l++] = '\n';
1089 return l;
1090 }
1091
1092 static struct module_attribute modinfo_taint =
1093 __ATTR(taint, 0444, show_taint, NULL);
1094
1095 static struct module_attribute *modinfo_attrs[] = {
1096 &module_uevent,
1097 &modinfo_version,
1098 &modinfo_srcversion,
1099 &modinfo_initstate,
1100 &modinfo_coresize,
1101 &modinfo_initsize,
1102 &modinfo_taint,
1103 #ifdef CONFIG_MODULE_UNLOAD
1104 &modinfo_refcnt,
1105 #endif
1106 NULL,
1107 };
1108
1109 static const char vermagic[] = VERMAGIC_STRING;
1110
1111 static int try_to_force_load(struct module *mod, const char *reason)
1112 {
1113 #ifdef CONFIG_MODULE_FORCE_LOAD
1114 if (!test_taint(TAINT_FORCED_MODULE))
1115 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1116 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1117 return 0;
1118 #else
1119 return -ENOEXEC;
1120 #endif
1121 }
1122
1123 #ifdef CONFIG_MODVERSIONS
1124 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1125 static unsigned long maybe_relocated(unsigned long crc,
1126 const struct module *crc_owner)
1127 {
1128 #ifdef ARCH_RELOCATES_KCRCTAB
1129 if (crc_owner == NULL)
1130 return crc - (unsigned long)reloc_start;
1131 #endif
1132 return crc;
1133 }
1134
1135 static int check_version(Elf_Shdr *sechdrs,
1136 unsigned int versindex,
1137 const char *symname,
1138 struct module *mod,
1139 const unsigned long *crc,
1140 const struct module *crc_owner)
1141 {
1142 unsigned int i, num_versions;
1143 struct modversion_info *versions;
1144
1145 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1146 if (!crc)
1147 return 1;
1148
1149 /* No versions at all? modprobe --force does this. */
1150 if (versindex == 0)
1151 return try_to_force_load(mod, symname) == 0;
1152
1153 versions = (void *) sechdrs[versindex].sh_addr;
1154 num_versions = sechdrs[versindex].sh_size
1155 / sizeof(struct modversion_info);
1156
1157 for (i = 0; i < num_versions; i++) {
1158 if (strcmp(versions[i].name, symname) != 0)
1159 continue;
1160
1161 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1162 return 1;
1163 pr_debug("Found checksum %lX vs module %lX\n",
1164 maybe_relocated(*crc, crc_owner), versions[i].crc);
1165 goto bad_version;
1166 }
1167
1168 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1169 return 0;
1170
1171 bad_version:
1172 printk("%s: disagrees about version of symbol %s\n",
1173 mod->name, symname);
1174 return 0;
1175 }
1176
1177 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1178 unsigned int versindex,
1179 struct module *mod)
1180 {
1181 const unsigned long *crc;
1182
1183 /* Since this should be found in kernel (which can't be removed),
1184 * no locking is necessary. */
1185 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1186 &crc, true, false))
1187 BUG();
1188 return check_version(sechdrs, versindex,
1189 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1190 NULL);
1191 }
1192
1193 /* First part is kernel version, which we ignore if module has crcs. */
1194 static inline int same_magic(const char *amagic, const char *bmagic,
1195 bool has_crcs)
1196 {
1197 if (has_crcs) {
1198 amagic += strcspn(amagic, " ");
1199 bmagic += strcspn(bmagic, " ");
1200 }
1201 return strcmp(amagic, bmagic) == 0;
1202 }
1203 #else
1204 static inline int check_version(Elf_Shdr *sechdrs,
1205 unsigned int versindex,
1206 const char *symname,
1207 struct module *mod,
1208 const unsigned long *crc,
1209 const struct module *crc_owner)
1210 {
1211 return 1;
1212 }
1213
1214 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1215 unsigned int versindex,
1216 struct module *mod)
1217 {
1218 return 1;
1219 }
1220
1221 static inline int same_magic(const char *amagic, const char *bmagic,
1222 bool has_crcs)
1223 {
1224 return strcmp(amagic, bmagic) == 0;
1225 }
1226 #endif /* CONFIG_MODVERSIONS */
1227
1228 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1229 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1230 const struct load_info *info,
1231 const char *name,
1232 char ownername[])
1233 {
1234 struct module *owner;
1235 const struct kernel_symbol *sym;
1236 const unsigned long *crc;
1237 int err;
1238
1239 mutex_lock(&module_mutex);
1240 sym = find_symbol(name, &owner, &crc,
1241 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1242 if (!sym)
1243 goto unlock;
1244
1245 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1246 owner)) {
1247 sym = ERR_PTR(-EINVAL);
1248 goto getname;
1249 }
1250
1251 err = ref_module(mod, owner);
1252 if (err) {
1253 sym = ERR_PTR(err);
1254 goto getname;
1255 }
1256
1257 getname:
1258 /* We must make copy under the lock if we failed to get ref. */
1259 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1260 unlock:
1261 mutex_unlock(&module_mutex);
1262 return sym;
1263 }
1264
1265 static const struct kernel_symbol *
1266 resolve_symbol_wait(struct module *mod,
1267 const struct load_info *info,
1268 const char *name)
1269 {
1270 const struct kernel_symbol *ksym;
1271 char owner[MODULE_NAME_LEN];
1272
1273 if (wait_event_interruptible_timeout(module_wq,
1274 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1275 || PTR_ERR(ksym) != -EBUSY,
1276 30 * HZ) <= 0) {
1277 pr_warn("%s: gave up waiting for init of module %s.\n",
1278 mod->name, owner);
1279 }
1280 return ksym;
1281 }
1282
1283 /*
1284 * /sys/module/foo/sections stuff
1285 * J. Corbet <corbet@lwn.net>
1286 */
1287 #ifdef CONFIG_SYSFS
1288
1289 #ifdef CONFIG_KALLSYMS
1290 static inline bool sect_empty(const Elf_Shdr *sect)
1291 {
1292 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1293 }
1294
1295 struct module_sect_attr
1296 {
1297 struct module_attribute mattr;
1298 char *name;
1299 unsigned long address;
1300 };
1301
1302 struct module_sect_attrs
1303 {
1304 struct attribute_group grp;
1305 unsigned int nsections;
1306 struct module_sect_attr attrs[0];
1307 };
1308
1309 static ssize_t module_sect_show(struct module_attribute *mattr,
1310 struct module_kobject *mk, char *buf)
1311 {
1312 struct module_sect_attr *sattr =
1313 container_of(mattr, struct module_sect_attr, mattr);
1314 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1315 }
1316
1317 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1318 {
1319 unsigned int section;
1320
1321 for (section = 0; section < sect_attrs->nsections; section++)
1322 kfree(sect_attrs->attrs[section].name);
1323 kfree(sect_attrs);
1324 }
1325
1326 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1327 {
1328 unsigned int nloaded = 0, i, size[2];
1329 struct module_sect_attrs *sect_attrs;
1330 struct module_sect_attr *sattr;
1331 struct attribute **gattr;
1332
1333 /* Count loaded sections and allocate structures */
1334 for (i = 0; i < info->hdr->e_shnum; i++)
1335 if (!sect_empty(&info->sechdrs[i]))
1336 nloaded++;
1337 size[0] = ALIGN(sizeof(*sect_attrs)
1338 + nloaded * sizeof(sect_attrs->attrs[0]),
1339 sizeof(sect_attrs->grp.attrs[0]));
1340 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1341 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1342 if (sect_attrs == NULL)
1343 return;
1344
1345 /* Setup section attributes. */
1346 sect_attrs->grp.name = "sections";
1347 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1348
1349 sect_attrs->nsections = 0;
1350 sattr = &sect_attrs->attrs[0];
1351 gattr = &sect_attrs->grp.attrs[0];
1352 for (i = 0; i < info->hdr->e_shnum; i++) {
1353 Elf_Shdr *sec = &info->sechdrs[i];
1354 if (sect_empty(sec))
1355 continue;
1356 sattr->address = sec->sh_addr;
1357 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1358 GFP_KERNEL);
1359 if (sattr->name == NULL)
1360 goto out;
1361 sect_attrs->nsections++;
1362 sysfs_attr_init(&sattr->mattr.attr);
1363 sattr->mattr.show = module_sect_show;
1364 sattr->mattr.store = NULL;
1365 sattr->mattr.attr.name = sattr->name;
1366 sattr->mattr.attr.mode = S_IRUGO;
1367 *(gattr++) = &(sattr++)->mattr.attr;
1368 }
1369 *gattr = NULL;
1370
1371 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1372 goto out;
1373
1374 mod->sect_attrs = sect_attrs;
1375 return;
1376 out:
1377 free_sect_attrs(sect_attrs);
1378 }
1379
1380 static void remove_sect_attrs(struct module *mod)
1381 {
1382 if (mod->sect_attrs) {
1383 sysfs_remove_group(&mod->mkobj.kobj,
1384 &mod->sect_attrs->grp);
1385 /* We are positive that no one is using any sect attrs
1386 * at this point. Deallocate immediately. */
1387 free_sect_attrs(mod->sect_attrs);
1388 mod->sect_attrs = NULL;
1389 }
1390 }
1391
1392 /*
1393 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1394 */
1395
1396 struct module_notes_attrs {
1397 struct kobject *dir;
1398 unsigned int notes;
1399 struct bin_attribute attrs[0];
1400 };
1401
1402 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1403 struct bin_attribute *bin_attr,
1404 char *buf, loff_t pos, size_t count)
1405 {
1406 /*
1407 * The caller checked the pos and count against our size.
1408 */
1409 memcpy(buf, bin_attr->private + pos, count);
1410 return count;
1411 }
1412
1413 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1414 unsigned int i)
1415 {
1416 if (notes_attrs->dir) {
1417 while (i-- > 0)
1418 sysfs_remove_bin_file(notes_attrs->dir,
1419 &notes_attrs->attrs[i]);
1420 kobject_put(notes_attrs->dir);
1421 }
1422 kfree(notes_attrs);
1423 }
1424
1425 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1426 {
1427 unsigned int notes, loaded, i;
1428 struct module_notes_attrs *notes_attrs;
1429 struct bin_attribute *nattr;
1430
1431 /* failed to create section attributes, so can't create notes */
1432 if (!mod->sect_attrs)
1433 return;
1434
1435 /* Count notes sections and allocate structures. */
1436 notes = 0;
1437 for (i = 0; i < info->hdr->e_shnum; i++)
1438 if (!sect_empty(&info->sechdrs[i]) &&
1439 (info->sechdrs[i].sh_type == SHT_NOTE))
1440 ++notes;
1441
1442 if (notes == 0)
1443 return;
1444
1445 notes_attrs = kzalloc(sizeof(*notes_attrs)
1446 + notes * sizeof(notes_attrs->attrs[0]),
1447 GFP_KERNEL);
1448 if (notes_attrs == NULL)
1449 return;
1450
1451 notes_attrs->notes = notes;
1452 nattr = &notes_attrs->attrs[0];
1453 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1454 if (sect_empty(&info->sechdrs[i]))
1455 continue;
1456 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1457 sysfs_bin_attr_init(nattr);
1458 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1459 nattr->attr.mode = S_IRUGO;
1460 nattr->size = info->sechdrs[i].sh_size;
1461 nattr->private = (void *) info->sechdrs[i].sh_addr;
1462 nattr->read = module_notes_read;
1463 ++nattr;
1464 }
1465 ++loaded;
1466 }
1467
1468 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1469 if (!notes_attrs->dir)
1470 goto out;
1471
1472 for (i = 0; i < notes; ++i)
1473 if (sysfs_create_bin_file(notes_attrs->dir,
1474 &notes_attrs->attrs[i]))
1475 goto out;
1476
1477 mod->notes_attrs = notes_attrs;
1478 return;
1479
1480 out:
1481 free_notes_attrs(notes_attrs, i);
1482 }
1483
1484 static void remove_notes_attrs(struct module *mod)
1485 {
1486 if (mod->notes_attrs)
1487 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1488 }
1489
1490 #else
1491
1492 static inline void add_sect_attrs(struct module *mod,
1493 const struct load_info *info)
1494 {
1495 }
1496
1497 static inline void remove_sect_attrs(struct module *mod)
1498 {
1499 }
1500
1501 static inline void add_notes_attrs(struct module *mod,
1502 const struct load_info *info)
1503 {
1504 }
1505
1506 static inline void remove_notes_attrs(struct module *mod)
1507 {
1508 }
1509 #endif /* CONFIG_KALLSYMS */
1510
1511 static void add_usage_links(struct module *mod)
1512 {
1513 #ifdef CONFIG_MODULE_UNLOAD
1514 struct module_use *use;
1515 int nowarn;
1516
1517 mutex_lock(&module_mutex);
1518 list_for_each_entry(use, &mod->target_list, target_list) {
1519 nowarn = sysfs_create_link(use->target->holders_dir,
1520 &mod->mkobj.kobj, mod->name);
1521 }
1522 mutex_unlock(&module_mutex);
1523 #endif
1524 }
1525
1526 static void del_usage_links(struct module *mod)
1527 {
1528 #ifdef CONFIG_MODULE_UNLOAD
1529 struct module_use *use;
1530
1531 mutex_lock(&module_mutex);
1532 list_for_each_entry(use, &mod->target_list, target_list)
1533 sysfs_remove_link(use->target->holders_dir, mod->name);
1534 mutex_unlock(&module_mutex);
1535 #endif
1536 }
1537
1538 static int module_add_modinfo_attrs(struct module *mod)
1539 {
1540 struct module_attribute *attr;
1541 struct module_attribute *temp_attr;
1542 int error = 0;
1543 int i;
1544
1545 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1546 (ARRAY_SIZE(modinfo_attrs) + 1)),
1547 GFP_KERNEL);
1548 if (!mod->modinfo_attrs)
1549 return -ENOMEM;
1550
1551 temp_attr = mod->modinfo_attrs;
1552 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1553 if (!attr->test ||
1554 (attr->test && attr->test(mod))) {
1555 memcpy(temp_attr, attr, sizeof(*temp_attr));
1556 sysfs_attr_init(&temp_attr->attr);
1557 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1558 ++temp_attr;
1559 }
1560 }
1561 return error;
1562 }
1563
1564 static void module_remove_modinfo_attrs(struct module *mod)
1565 {
1566 struct module_attribute *attr;
1567 int i;
1568
1569 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1570 /* pick a field to test for end of list */
1571 if (!attr->attr.name)
1572 break;
1573 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1574 if (attr->free)
1575 attr->free(mod);
1576 }
1577 kfree(mod->modinfo_attrs);
1578 }
1579
1580 static void mod_kobject_put(struct module *mod)
1581 {
1582 DECLARE_COMPLETION_ONSTACK(c);
1583 mod->mkobj.kobj_completion = &c;
1584 kobject_put(&mod->mkobj.kobj);
1585 wait_for_completion(&c);
1586 }
1587
1588 static int mod_sysfs_init(struct module *mod)
1589 {
1590 int err;
1591 struct kobject *kobj;
1592
1593 if (!module_sysfs_initialized) {
1594 pr_err("%s: module sysfs not initialized\n", mod->name);
1595 err = -EINVAL;
1596 goto out;
1597 }
1598
1599 kobj = kset_find_obj(module_kset, mod->name);
1600 if (kobj) {
1601 pr_err("%s: module is already loaded\n", mod->name);
1602 kobject_put(kobj);
1603 err = -EINVAL;
1604 goto out;
1605 }
1606
1607 mod->mkobj.mod = mod;
1608
1609 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1610 mod->mkobj.kobj.kset = module_kset;
1611 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1612 "%s", mod->name);
1613 if (err)
1614 mod_kobject_put(mod);
1615
1616 /* delay uevent until full sysfs population */
1617 out:
1618 return err;
1619 }
1620
1621 static int mod_sysfs_setup(struct module *mod,
1622 const struct load_info *info,
1623 struct kernel_param *kparam,
1624 unsigned int num_params)
1625 {
1626 int err;
1627
1628 err = mod_sysfs_init(mod);
1629 if (err)
1630 goto out;
1631
1632 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1633 if (!mod->holders_dir) {
1634 err = -ENOMEM;
1635 goto out_unreg;
1636 }
1637
1638 err = module_param_sysfs_setup(mod, kparam, num_params);
1639 if (err)
1640 goto out_unreg_holders;
1641
1642 err = module_add_modinfo_attrs(mod);
1643 if (err)
1644 goto out_unreg_param;
1645
1646 add_usage_links(mod);
1647 add_sect_attrs(mod, info);
1648 add_notes_attrs(mod, info);
1649
1650 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1651 return 0;
1652
1653 out_unreg_param:
1654 module_param_sysfs_remove(mod);
1655 out_unreg_holders:
1656 kobject_put(mod->holders_dir);
1657 out_unreg:
1658 mod_kobject_put(mod);
1659 out:
1660 return err;
1661 }
1662
1663 static void mod_sysfs_fini(struct module *mod)
1664 {
1665 remove_notes_attrs(mod);
1666 remove_sect_attrs(mod);
1667 mod_kobject_put(mod);
1668 }
1669
1670 #else /* !CONFIG_SYSFS */
1671
1672 static int mod_sysfs_setup(struct module *mod,
1673 const struct load_info *info,
1674 struct kernel_param *kparam,
1675 unsigned int num_params)
1676 {
1677 return 0;
1678 }
1679
1680 static void mod_sysfs_fini(struct module *mod)
1681 {
1682 }
1683
1684 static void module_remove_modinfo_attrs(struct module *mod)
1685 {
1686 }
1687
1688 static void del_usage_links(struct module *mod)
1689 {
1690 }
1691
1692 #endif /* CONFIG_SYSFS */
1693
1694 static void mod_sysfs_teardown(struct module *mod)
1695 {
1696 del_usage_links(mod);
1697 module_remove_modinfo_attrs(mod);
1698 module_param_sysfs_remove(mod);
1699 kobject_put(mod->mkobj.drivers_dir);
1700 kobject_put(mod->holders_dir);
1701 mod_sysfs_fini(mod);
1702 }
1703
1704 /*
1705 * unlink the module with the whole machine is stopped with interrupts off
1706 * - this defends against kallsyms not taking locks
1707 */
1708 static int __unlink_module(void *_mod)
1709 {
1710 struct module *mod = _mod;
1711 list_del(&mod->list);
1712 module_bug_cleanup(mod);
1713 return 0;
1714 }
1715
1716 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1717 /*
1718 * LKM RO/NX protection: protect module's text/ro-data
1719 * from modification and any data from execution.
1720 */
1721 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1722 {
1723 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1724 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1725
1726 if (end_pfn > begin_pfn)
1727 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1728 }
1729
1730 static void set_section_ro_nx(void *base,
1731 unsigned long text_size,
1732 unsigned long ro_size,
1733 unsigned long total_size)
1734 {
1735 /* begin and end PFNs of the current subsection */
1736 unsigned long begin_pfn;
1737 unsigned long end_pfn;
1738
1739 /*
1740 * Set RO for module text and RO-data:
1741 * - Always protect first page.
1742 * - Do not protect last partial page.
1743 */
1744 if (ro_size > 0)
1745 set_page_attributes(base, base + ro_size, set_memory_ro);
1746
1747 /*
1748 * Set NX permissions for module data:
1749 * - Do not protect first partial page.
1750 * - Always protect last page.
1751 */
1752 if (total_size > text_size) {
1753 begin_pfn = PFN_UP((unsigned long)base + text_size);
1754 end_pfn = PFN_UP((unsigned long)base + total_size);
1755 if (end_pfn > begin_pfn)
1756 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1757 }
1758 }
1759
1760 static void unset_module_core_ro_nx(struct module *mod)
1761 {
1762 set_page_attributes(mod->module_core + mod->core_text_size,
1763 mod->module_core + mod->core_size,
1764 set_memory_x);
1765 set_page_attributes(mod->module_core,
1766 mod->module_core + mod->core_ro_size,
1767 set_memory_rw);
1768 }
1769
1770 static void unset_module_init_ro_nx(struct module *mod)
1771 {
1772 set_page_attributes(mod->module_init + mod->init_text_size,
1773 mod->module_init + mod->init_size,
1774 set_memory_x);
1775 set_page_attributes(mod->module_init,
1776 mod->module_init + mod->init_ro_size,
1777 set_memory_rw);
1778 }
1779
1780 /* Iterate through all modules and set each module's text as RW */
1781 void set_all_modules_text_rw(void)
1782 {
1783 struct module *mod;
1784
1785 mutex_lock(&module_mutex);
1786 list_for_each_entry_rcu(mod, &modules, list) {
1787 if (mod->state == MODULE_STATE_UNFORMED)
1788 continue;
1789 if ((mod->module_core) && (mod->core_text_size)) {
1790 set_page_attributes(mod->module_core,
1791 mod->module_core + mod->core_text_size,
1792 set_memory_rw);
1793 }
1794 if ((mod->module_init) && (mod->init_text_size)) {
1795 set_page_attributes(mod->module_init,
1796 mod->module_init + mod->init_text_size,
1797 set_memory_rw);
1798 }
1799 }
1800 mutex_unlock(&module_mutex);
1801 }
1802
1803 /* Iterate through all modules and set each module's text as RO */
1804 void set_all_modules_text_ro(void)
1805 {
1806 struct module *mod;
1807
1808 mutex_lock(&module_mutex);
1809 list_for_each_entry_rcu(mod, &modules, list) {
1810 if (mod->state == MODULE_STATE_UNFORMED)
1811 continue;
1812 if ((mod->module_core) && (mod->core_text_size)) {
1813 set_page_attributes(mod->module_core,
1814 mod->module_core + mod->core_text_size,
1815 set_memory_ro);
1816 }
1817 if ((mod->module_init) && (mod->init_text_size)) {
1818 set_page_attributes(mod->module_init,
1819 mod->module_init + mod->init_text_size,
1820 set_memory_ro);
1821 }
1822 }
1823 mutex_unlock(&module_mutex);
1824 }
1825 #else
1826 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1827 static void unset_module_core_ro_nx(struct module *mod) { }
1828 static void unset_module_init_ro_nx(struct module *mod) { }
1829 #endif
1830
1831 void __weak module_free(struct module *mod, void *module_region)
1832 {
1833 vfree(module_region);
1834 }
1835
1836 void __weak module_arch_cleanup(struct module *mod)
1837 {
1838 }
1839
1840 /* Free a module, remove from lists, etc. */
1841 static void free_module(struct module *mod)
1842 {
1843 trace_module_free(mod);
1844
1845 mod_sysfs_teardown(mod);
1846
1847 /* We leave it in list to prevent duplicate loads, but make sure
1848 * that noone uses it while it's being deconstructed. */
1849 mod->state = MODULE_STATE_UNFORMED;
1850
1851 /* Remove dynamic debug info */
1852 ddebug_remove_module(mod->name);
1853
1854 /* Arch-specific cleanup. */
1855 module_arch_cleanup(mod);
1856
1857 /* Module unload stuff */
1858 module_unload_free(mod);
1859
1860 /* Free any allocated parameters. */
1861 destroy_params(mod->kp, mod->num_kp);
1862
1863 /* Now we can delete it from the lists */
1864 mutex_lock(&module_mutex);
1865 stop_machine(__unlink_module, mod, NULL);
1866 mutex_unlock(&module_mutex);
1867
1868 /* This may be NULL, but that's OK */
1869 unset_module_init_ro_nx(mod);
1870 module_free(mod, mod->module_init);
1871 kfree(mod->args);
1872 percpu_modfree(mod);
1873
1874 /* Free lock-classes: */
1875 lockdep_free_key_range(mod->module_core, mod->core_size);
1876
1877 /* Finally, free the core (containing the module structure) */
1878 unset_module_core_ro_nx(mod);
1879 module_free(mod, mod->module_core);
1880
1881 #ifdef CONFIG_MPU
1882 update_protections(current->mm);
1883 #endif
1884 }
1885
1886 void *__symbol_get(const char *symbol)
1887 {
1888 struct module *owner;
1889 const struct kernel_symbol *sym;
1890
1891 preempt_disable();
1892 sym = find_symbol(symbol, &owner, NULL, true, true);
1893 if (sym && strong_try_module_get(owner))
1894 sym = NULL;
1895 preempt_enable();
1896
1897 return sym ? (void *)sym->value : NULL;
1898 }
1899 EXPORT_SYMBOL_GPL(__symbol_get);
1900
1901 /*
1902 * Ensure that an exported symbol [global namespace] does not already exist
1903 * in the kernel or in some other module's exported symbol table.
1904 *
1905 * You must hold the module_mutex.
1906 */
1907 static int verify_export_symbols(struct module *mod)
1908 {
1909 unsigned int i;
1910 struct module *owner;
1911 const struct kernel_symbol *s;
1912 struct {
1913 const struct kernel_symbol *sym;
1914 unsigned int num;
1915 } arr[] = {
1916 { mod->syms, mod->num_syms },
1917 { mod->gpl_syms, mod->num_gpl_syms },
1918 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1919 #ifdef CONFIG_UNUSED_SYMBOLS
1920 { mod->unused_syms, mod->num_unused_syms },
1921 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1922 #endif
1923 };
1924
1925 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1926 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1927 if (find_symbol(s->name, &owner, NULL, true, false)) {
1928 pr_err("%s: exports duplicate symbol %s"
1929 " (owned by %s)\n",
1930 mod->name, s->name, module_name(owner));
1931 return -ENOEXEC;
1932 }
1933 }
1934 }
1935 return 0;
1936 }
1937
1938 /* Change all symbols so that st_value encodes the pointer directly. */
1939 static int simplify_symbols(struct module *mod, const struct load_info *info)
1940 {
1941 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1942 Elf_Sym *sym = (void *)symsec->sh_addr;
1943 unsigned long secbase;
1944 unsigned int i;
1945 int ret = 0;
1946 const struct kernel_symbol *ksym;
1947
1948 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1949 const char *name = info->strtab + sym[i].st_name;
1950
1951 switch (sym[i].st_shndx) {
1952 case SHN_COMMON:
1953 /* We compiled with -fno-common. These are not
1954 supposed to happen. */
1955 pr_debug("Common symbol: %s\n", name);
1956 printk("%s: please compile with -fno-common\n",
1957 mod->name);
1958 ret = -ENOEXEC;
1959 break;
1960
1961 case SHN_ABS:
1962 /* Don't need to do anything */
1963 pr_debug("Absolute symbol: 0x%08lx\n",
1964 (long)sym[i].st_value);
1965 break;
1966
1967 case SHN_UNDEF:
1968 ksym = resolve_symbol_wait(mod, info, name);
1969 /* Ok if resolved. */
1970 if (ksym && !IS_ERR(ksym)) {
1971 sym[i].st_value = ksym->value;
1972 break;
1973 }
1974
1975 /* Ok if weak. */
1976 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1977 break;
1978
1979 pr_warn("%s: Unknown symbol %s (err %li)\n",
1980 mod->name, name, PTR_ERR(ksym));
1981 ret = PTR_ERR(ksym) ?: -ENOENT;
1982 break;
1983
1984 default:
1985 /* Divert to percpu allocation if a percpu var. */
1986 if (sym[i].st_shndx == info->index.pcpu)
1987 secbase = (unsigned long)mod_percpu(mod);
1988 else
1989 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1990 sym[i].st_value += secbase;
1991 break;
1992 }
1993 }
1994
1995 return ret;
1996 }
1997
1998 static int apply_relocations(struct module *mod, const struct load_info *info)
1999 {
2000 unsigned int i;
2001 int err = 0;
2002
2003 /* Now do relocations. */
2004 for (i = 1; i < info->hdr->e_shnum; i++) {
2005 unsigned int infosec = info->sechdrs[i].sh_info;
2006
2007 /* Not a valid relocation section? */
2008 if (infosec >= info->hdr->e_shnum)
2009 continue;
2010
2011 /* Don't bother with non-allocated sections */
2012 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2013 continue;
2014
2015 if (info->sechdrs[i].sh_type == SHT_REL)
2016 err = apply_relocate(info->sechdrs, info->strtab,
2017 info->index.sym, i, mod);
2018 else if (info->sechdrs[i].sh_type == SHT_RELA)
2019 err = apply_relocate_add(info->sechdrs, info->strtab,
2020 info->index.sym, i, mod);
2021 if (err < 0)
2022 break;
2023 }
2024 return err;
2025 }
2026
2027 /* Additional bytes needed by arch in front of individual sections */
2028 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2029 unsigned int section)
2030 {
2031 /* default implementation just returns zero */
2032 return 0;
2033 }
2034
2035 /* Update size with this section: return offset. */
2036 static long get_offset(struct module *mod, unsigned int *size,
2037 Elf_Shdr *sechdr, unsigned int section)
2038 {
2039 long ret;
2040
2041 *size += arch_mod_section_prepend(mod, section);
2042 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2043 *size = ret + sechdr->sh_size;
2044 return ret;
2045 }
2046
2047 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2048 might -- code, read-only data, read-write data, small data. Tally
2049 sizes, and place the offsets into sh_entsize fields: high bit means it
2050 belongs in init. */
2051 static void layout_sections(struct module *mod, struct load_info *info)
2052 {
2053 static unsigned long const masks[][2] = {
2054 /* NOTE: all executable code must be the first section
2055 * in this array; otherwise modify the text_size
2056 * finder in the two loops below */
2057 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2058 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2059 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2060 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2061 };
2062 unsigned int m, i;
2063
2064 for (i = 0; i < info->hdr->e_shnum; i++)
2065 info->sechdrs[i].sh_entsize = ~0UL;
2066
2067 pr_debug("Core section allocation order:\n");
2068 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2069 for (i = 0; i < info->hdr->e_shnum; ++i) {
2070 Elf_Shdr *s = &info->sechdrs[i];
2071 const char *sname = info->secstrings + s->sh_name;
2072
2073 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2074 || (s->sh_flags & masks[m][1])
2075 || s->sh_entsize != ~0UL
2076 || strstarts(sname, ".init"))
2077 continue;
2078 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2079 pr_debug("\t%s\n", sname);
2080 }
2081 switch (m) {
2082 case 0: /* executable */
2083 mod->core_size = debug_align(mod->core_size);
2084 mod->core_text_size = mod->core_size;
2085 break;
2086 case 1: /* RO: text and ro-data */
2087 mod->core_size = debug_align(mod->core_size);
2088 mod->core_ro_size = mod->core_size;
2089 break;
2090 case 3: /* whole core */
2091 mod->core_size = debug_align(mod->core_size);
2092 break;
2093 }
2094 }
2095
2096 pr_debug("Init section allocation order:\n");
2097 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2098 for (i = 0; i < info->hdr->e_shnum; ++i) {
2099 Elf_Shdr *s = &info->sechdrs[i];
2100 const char *sname = info->secstrings + s->sh_name;
2101
2102 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2103 || (s->sh_flags & masks[m][1])
2104 || s->sh_entsize != ~0UL
2105 || !strstarts(sname, ".init"))
2106 continue;
2107 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2108 | INIT_OFFSET_MASK);
2109 pr_debug("\t%s\n", sname);
2110 }
2111 switch (m) {
2112 case 0: /* executable */
2113 mod->init_size = debug_align(mod->init_size);
2114 mod->init_text_size = mod->init_size;
2115 break;
2116 case 1: /* RO: text and ro-data */
2117 mod->init_size = debug_align(mod->init_size);
2118 mod->init_ro_size = mod->init_size;
2119 break;
2120 case 3: /* whole init */
2121 mod->init_size = debug_align(mod->init_size);
2122 break;
2123 }
2124 }
2125 }
2126
2127 static void set_license(struct module *mod, const char *license)
2128 {
2129 if (!license)
2130 license = "unspecified";
2131
2132 if (!license_is_gpl_compatible(license)) {
2133 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2134 pr_warn("%s: module license '%s' taints kernel.\n",
2135 mod->name, license);
2136 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2137 LOCKDEP_NOW_UNRELIABLE);
2138 }
2139 }
2140
2141 /* Parse tag=value strings from .modinfo section */
2142 static char *next_string(char *string, unsigned long *secsize)
2143 {
2144 /* Skip non-zero chars */
2145 while (string[0]) {
2146 string++;
2147 if ((*secsize)-- <= 1)
2148 return NULL;
2149 }
2150
2151 /* Skip any zero padding. */
2152 while (!string[0]) {
2153 string++;
2154 if ((*secsize)-- <= 1)
2155 return NULL;
2156 }
2157 return string;
2158 }
2159
2160 static char *get_modinfo(struct load_info *info, const char *tag)
2161 {
2162 char *p;
2163 unsigned int taglen = strlen(tag);
2164 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2165 unsigned long size = infosec->sh_size;
2166
2167 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2168 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2169 return p + taglen + 1;
2170 }
2171 return NULL;
2172 }
2173
2174 static void setup_modinfo(struct module *mod, struct load_info *info)
2175 {
2176 struct module_attribute *attr;
2177 int i;
2178
2179 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2180 if (attr->setup)
2181 attr->setup(mod, get_modinfo(info, attr->attr.name));
2182 }
2183 }
2184
2185 static void free_modinfo(struct module *mod)
2186 {
2187 struct module_attribute *attr;
2188 int i;
2189
2190 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2191 if (attr->free)
2192 attr->free(mod);
2193 }
2194 }
2195
2196 #ifdef CONFIG_KALLSYMS
2197
2198 /* lookup symbol in given range of kernel_symbols */
2199 static const struct kernel_symbol *lookup_symbol(const char *name,
2200 const struct kernel_symbol *start,
2201 const struct kernel_symbol *stop)
2202 {
2203 return bsearch(name, start, stop - start,
2204 sizeof(struct kernel_symbol), cmp_name);
2205 }
2206
2207 static int is_exported(const char *name, unsigned long value,
2208 const struct module *mod)
2209 {
2210 const struct kernel_symbol *ks;
2211 if (!mod)
2212 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2213 else
2214 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2215 return ks != NULL && ks->value == value;
2216 }
2217
2218 /* As per nm */
2219 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2220 {
2221 const Elf_Shdr *sechdrs = info->sechdrs;
2222
2223 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2224 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2225 return 'v';
2226 else
2227 return 'w';
2228 }
2229 if (sym->st_shndx == SHN_UNDEF)
2230 return 'U';
2231 if (sym->st_shndx == SHN_ABS)
2232 return 'a';
2233 if (sym->st_shndx >= SHN_LORESERVE)
2234 return '?';
2235 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2236 return 't';
2237 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2238 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2239 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2240 return 'r';
2241 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2242 return 'g';
2243 else
2244 return 'd';
2245 }
2246 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2247 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2248 return 's';
2249 else
2250 return 'b';
2251 }
2252 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2253 ".debug")) {
2254 return 'n';
2255 }
2256 return '?';
2257 }
2258
2259 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2260 unsigned int shnum)
2261 {
2262 const Elf_Shdr *sec;
2263
2264 if (src->st_shndx == SHN_UNDEF
2265 || src->st_shndx >= shnum
2266 || !src->st_name)
2267 return false;
2268
2269 sec = sechdrs + src->st_shndx;
2270 if (!(sec->sh_flags & SHF_ALLOC)
2271 #ifndef CONFIG_KALLSYMS_ALL
2272 || !(sec->sh_flags & SHF_EXECINSTR)
2273 #endif
2274 || (sec->sh_entsize & INIT_OFFSET_MASK))
2275 return false;
2276
2277 return true;
2278 }
2279
2280 /*
2281 * We only allocate and copy the strings needed by the parts of symtab
2282 * we keep. This is simple, but has the effect of making multiple
2283 * copies of duplicates. We could be more sophisticated, see
2284 * linux-kernel thread starting with
2285 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2286 */
2287 static void layout_symtab(struct module *mod, struct load_info *info)
2288 {
2289 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2290 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2291 const Elf_Sym *src;
2292 unsigned int i, nsrc, ndst, strtab_size = 0;
2293
2294 /* Put symbol section at end of init part of module. */
2295 symsect->sh_flags |= SHF_ALLOC;
2296 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2297 info->index.sym) | INIT_OFFSET_MASK;
2298 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2299
2300 src = (void *)info->hdr + symsect->sh_offset;
2301 nsrc = symsect->sh_size / sizeof(*src);
2302
2303 /* Compute total space required for the core symbols' strtab. */
2304 for (ndst = i = 0; i < nsrc; i++) {
2305 if (i == 0 ||
2306 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2307 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2308 ndst++;
2309 }
2310 }
2311
2312 /* Append room for core symbols at end of core part. */
2313 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2314 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2315 mod->core_size += strtab_size;
2316
2317 /* Put string table section at end of init part of module. */
2318 strsect->sh_flags |= SHF_ALLOC;
2319 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2320 info->index.str) | INIT_OFFSET_MASK;
2321 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2322 }
2323
2324 static void add_kallsyms(struct module *mod, const struct load_info *info)
2325 {
2326 unsigned int i, ndst;
2327 const Elf_Sym *src;
2328 Elf_Sym *dst;
2329 char *s;
2330 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2331
2332 mod->symtab = (void *)symsec->sh_addr;
2333 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2334 /* Make sure we get permanent strtab: don't use info->strtab. */
2335 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2336
2337 /* Set types up while we still have access to sections. */
2338 for (i = 0; i < mod->num_symtab; i++)
2339 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2340
2341 mod->core_symtab = dst = mod->module_core + info->symoffs;
2342 mod->core_strtab = s = mod->module_core + info->stroffs;
2343 src = mod->symtab;
2344 for (ndst = i = 0; i < mod->num_symtab; i++) {
2345 if (i == 0 ||
2346 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2347 dst[ndst] = src[i];
2348 dst[ndst++].st_name = s - mod->core_strtab;
2349 s += strlcpy(s, &mod->strtab[src[i].st_name],
2350 KSYM_NAME_LEN) + 1;
2351 }
2352 }
2353 mod->core_num_syms = ndst;
2354 }
2355 #else
2356 static inline void layout_symtab(struct module *mod, struct load_info *info)
2357 {
2358 }
2359
2360 static void add_kallsyms(struct module *mod, const struct load_info *info)
2361 {
2362 }
2363 #endif /* CONFIG_KALLSYMS */
2364
2365 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2366 {
2367 if (!debug)
2368 return;
2369 #ifdef CONFIG_DYNAMIC_DEBUG
2370 if (ddebug_add_module(debug, num, debug->modname))
2371 pr_err("dynamic debug error adding module: %s\n",
2372 debug->modname);
2373 #endif
2374 }
2375
2376 static void dynamic_debug_remove(struct _ddebug *debug)
2377 {
2378 if (debug)
2379 ddebug_remove_module(debug->modname);
2380 }
2381
2382 void * __weak module_alloc(unsigned long size)
2383 {
2384 return vmalloc_exec(size);
2385 }
2386
2387 static void *module_alloc_update_bounds(unsigned long size)
2388 {
2389 void *ret = module_alloc(size);
2390
2391 if (ret) {
2392 mutex_lock(&module_mutex);
2393 /* Update module bounds. */
2394 if ((unsigned long)ret < module_addr_min)
2395 module_addr_min = (unsigned long)ret;
2396 if ((unsigned long)ret + size > module_addr_max)
2397 module_addr_max = (unsigned long)ret + size;
2398 mutex_unlock(&module_mutex);
2399 }
2400 return ret;
2401 }
2402
2403 #ifdef CONFIG_DEBUG_KMEMLEAK
2404 static void kmemleak_load_module(const struct module *mod,
2405 const struct load_info *info)
2406 {
2407 unsigned int i;
2408
2409 /* only scan the sections containing data */
2410 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2411
2412 for (i = 1; i < info->hdr->e_shnum; i++) {
2413 /* Scan all writable sections that's not executable */
2414 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2415 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2416 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2417 continue;
2418
2419 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2420 info->sechdrs[i].sh_size, GFP_KERNEL);
2421 }
2422 }
2423 #else
2424 static inline void kmemleak_load_module(const struct module *mod,
2425 const struct load_info *info)
2426 {
2427 }
2428 #endif
2429
2430 #ifdef CONFIG_MODULE_SIG
2431 static int module_sig_check(struct load_info *info)
2432 {
2433 int err = -ENOKEY;
2434 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2435 const void *mod = info->hdr;
2436
2437 if (info->len > markerlen &&
2438 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2439 /* We truncate the module to discard the signature */
2440 info->len -= markerlen;
2441 err = mod_verify_sig(mod, &info->len);
2442 }
2443
2444 if (!err) {
2445 info->sig_ok = true;
2446 return 0;
2447 }
2448
2449 /* Not having a signature is only an error if we're strict. */
2450 if (err < 0 && fips_enabled)
2451 panic("Module verification failed with error %d in FIPS mode\n",
2452 err);
2453 if (err == -ENOKEY && !sig_enforce)
2454 err = 0;
2455
2456 return err;
2457 }
2458 #else /* !CONFIG_MODULE_SIG */
2459 static int module_sig_check(struct load_info *info)
2460 {
2461 return 0;
2462 }
2463 #endif /* !CONFIG_MODULE_SIG */
2464
2465 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2466 static int elf_header_check(struct load_info *info)
2467 {
2468 if (info->len < sizeof(*(info->hdr)))
2469 return -ENOEXEC;
2470
2471 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2472 || info->hdr->e_type != ET_REL
2473 || !elf_check_arch(info->hdr)
2474 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2475 return -ENOEXEC;
2476
2477 if (info->hdr->e_shoff >= info->len
2478 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2479 info->len - info->hdr->e_shoff))
2480 return -ENOEXEC;
2481
2482 return 0;
2483 }
2484
2485 /* Sets info->hdr and info->len. */
2486 static int copy_module_from_user(const void __user *umod, unsigned long len,
2487 struct load_info *info)
2488 {
2489 int err;
2490
2491 info->len = len;
2492 if (info->len < sizeof(*(info->hdr)))
2493 return -ENOEXEC;
2494
2495 err = security_kernel_module_from_file(NULL);
2496 if (err)
2497 return err;
2498
2499 /* Suck in entire file: we'll want most of it. */
2500 info->hdr = vmalloc(info->len);
2501 if (!info->hdr)
2502 return -ENOMEM;
2503
2504 if (copy_from_user(info->hdr, umod, info->len) != 0) {
2505 vfree(info->hdr);
2506 return -EFAULT;
2507 }
2508
2509 return 0;
2510 }
2511
2512 /* Sets info->hdr and info->len. */
2513 static int copy_module_from_fd(int fd, struct load_info *info)
2514 {
2515 struct fd f = fdget(fd);
2516 int err;
2517 struct kstat stat;
2518 loff_t pos;
2519 ssize_t bytes = 0;
2520
2521 if (!f.file)
2522 return -ENOEXEC;
2523
2524 err = security_kernel_module_from_file(f.file);
2525 if (err)
2526 goto out;
2527
2528 err = vfs_getattr(&f.file->f_path, &stat);
2529 if (err)
2530 goto out;
2531
2532 if (stat.size > INT_MAX) {
2533 err = -EFBIG;
2534 goto out;
2535 }
2536
2537 /* Don't hand 0 to vmalloc, it whines. */
2538 if (stat.size == 0) {
2539 err = -EINVAL;
2540 goto out;
2541 }
2542
2543 info->hdr = vmalloc(stat.size);
2544 if (!info->hdr) {
2545 err = -ENOMEM;
2546 goto out;
2547 }
2548
2549 pos = 0;
2550 while (pos < stat.size) {
2551 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2552 stat.size - pos);
2553 if (bytes < 0) {
2554 vfree(info->hdr);
2555 err = bytes;
2556 goto out;
2557 }
2558 if (bytes == 0)
2559 break;
2560 pos += bytes;
2561 }
2562 info->len = pos;
2563
2564 out:
2565 fdput(f);
2566 return err;
2567 }
2568
2569 static void free_copy(struct load_info *info)
2570 {
2571 vfree(info->hdr);
2572 }
2573
2574 static int rewrite_section_headers(struct load_info *info, int flags)
2575 {
2576 unsigned int i;
2577
2578 /* This should always be true, but let's be sure. */
2579 info->sechdrs[0].sh_addr = 0;
2580
2581 for (i = 1; i < info->hdr->e_shnum; i++) {
2582 Elf_Shdr *shdr = &info->sechdrs[i];
2583 if (shdr->sh_type != SHT_NOBITS
2584 && info->len < shdr->sh_offset + shdr->sh_size) {
2585 pr_err("Module len %lu truncated\n", info->len);
2586 return -ENOEXEC;
2587 }
2588
2589 /* Mark all sections sh_addr with their address in the
2590 temporary image. */
2591 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2592
2593 #ifndef CONFIG_MODULE_UNLOAD
2594 /* Don't load .exit sections */
2595 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2596 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2597 #endif
2598 }
2599
2600 /* Track but don't keep modinfo and version sections. */
2601 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2602 info->index.vers = 0; /* Pretend no __versions section! */
2603 else
2604 info->index.vers = find_sec(info, "__versions");
2605 info->index.info = find_sec(info, ".modinfo");
2606 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2607 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2608 return 0;
2609 }
2610
2611 /*
2612 * Set up our basic convenience variables (pointers to section headers,
2613 * search for module section index etc), and do some basic section
2614 * verification.
2615 *
2616 * Return the temporary module pointer (we'll replace it with the final
2617 * one when we move the module sections around).
2618 */
2619 static struct module *setup_load_info(struct load_info *info, int flags)
2620 {
2621 unsigned int i;
2622 int err;
2623 struct module *mod;
2624
2625 /* Set up the convenience variables */
2626 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2627 info->secstrings = (void *)info->hdr
2628 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2629
2630 err = rewrite_section_headers(info, flags);
2631 if (err)
2632 return ERR_PTR(err);
2633
2634 /* Find internal symbols and strings. */
2635 for (i = 1; i < info->hdr->e_shnum; i++) {
2636 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2637 info->index.sym = i;
2638 info->index.str = info->sechdrs[i].sh_link;
2639 info->strtab = (char *)info->hdr
2640 + info->sechdrs[info->index.str].sh_offset;
2641 break;
2642 }
2643 }
2644
2645 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2646 if (!info->index.mod) {
2647 pr_warn("No module found in object\n");
2648 return ERR_PTR(-ENOEXEC);
2649 }
2650 /* This is temporary: point mod into copy of data. */
2651 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2652
2653 if (info->index.sym == 0) {
2654 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2655 return ERR_PTR(-ENOEXEC);
2656 }
2657
2658 info->index.pcpu = find_pcpusec(info);
2659
2660 /* Check module struct version now, before we try to use module. */
2661 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2662 return ERR_PTR(-ENOEXEC);
2663
2664 return mod;
2665 }
2666
2667 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2668 {
2669 const char *modmagic = get_modinfo(info, "vermagic");
2670 int err;
2671
2672 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2673 modmagic = NULL;
2674
2675 /* This is allowed: modprobe --force will invalidate it. */
2676 if (!modmagic) {
2677 err = try_to_force_load(mod, "bad vermagic");
2678 if (err)
2679 return err;
2680 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2681 pr_err("%s: version magic '%s' should be '%s'\n",
2682 mod->name, modmagic, vermagic);
2683 return -ENOEXEC;
2684 }
2685
2686 if (!get_modinfo(info, "intree"))
2687 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2688
2689 if (get_modinfo(info, "staging")) {
2690 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2691 pr_warn("%s: module is from the staging directory, the quality "
2692 "is unknown, you have been warned.\n", mod->name);
2693 }
2694
2695 /* Set up license info based on the info section */
2696 set_license(mod, get_modinfo(info, "license"));
2697
2698 return 0;
2699 }
2700
2701 static int find_module_sections(struct module *mod, struct load_info *info)
2702 {
2703 mod->kp = section_objs(info, "__param",
2704 sizeof(*mod->kp), &mod->num_kp);
2705 mod->syms = section_objs(info, "__ksymtab",
2706 sizeof(*mod->syms), &mod->num_syms);
2707 mod->crcs = section_addr(info, "__kcrctab");
2708 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2709 sizeof(*mod->gpl_syms),
2710 &mod->num_gpl_syms);
2711 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2712 mod->gpl_future_syms = section_objs(info,
2713 "__ksymtab_gpl_future",
2714 sizeof(*mod->gpl_future_syms),
2715 &mod->num_gpl_future_syms);
2716 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2717
2718 #ifdef CONFIG_UNUSED_SYMBOLS
2719 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2720 sizeof(*mod->unused_syms),
2721 &mod->num_unused_syms);
2722 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2723 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2724 sizeof(*mod->unused_gpl_syms),
2725 &mod->num_unused_gpl_syms);
2726 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2727 #endif
2728 #ifdef CONFIG_CONSTRUCTORS
2729 mod->ctors = section_objs(info, ".ctors",
2730 sizeof(*mod->ctors), &mod->num_ctors);
2731 if (!mod->ctors)
2732 mod->ctors = section_objs(info, ".init_array",
2733 sizeof(*mod->ctors), &mod->num_ctors);
2734 else if (find_sec(info, ".init_array")) {
2735 /*
2736 * This shouldn't happen with same compiler and binutils
2737 * building all parts of the module.
2738 */
2739 printk(KERN_WARNING "%s: has both .ctors and .init_array.\n",
2740 mod->name);
2741 return -EINVAL;
2742 }
2743 #endif
2744
2745 #ifdef CONFIG_TRACEPOINTS
2746 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2747 sizeof(*mod->tracepoints_ptrs),
2748 &mod->num_tracepoints);
2749 #endif
2750 #ifdef HAVE_JUMP_LABEL
2751 mod->jump_entries = section_objs(info, "__jump_table",
2752 sizeof(*mod->jump_entries),
2753 &mod->num_jump_entries);
2754 #endif
2755 #ifdef CONFIG_EVENT_TRACING
2756 mod->trace_events = section_objs(info, "_ftrace_events",
2757 sizeof(*mod->trace_events),
2758 &mod->num_trace_events);
2759 #endif
2760 #ifdef CONFIG_TRACING
2761 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2762 sizeof(*mod->trace_bprintk_fmt_start),
2763 &mod->num_trace_bprintk_fmt);
2764 #endif
2765 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2766 /* sechdrs[0].sh_size is always zero */
2767 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2768 sizeof(*mod->ftrace_callsites),
2769 &mod->num_ftrace_callsites);
2770 #endif
2771
2772 mod->extable = section_objs(info, "__ex_table",
2773 sizeof(*mod->extable), &mod->num_exentries);
2774
2775 if (section_addr(info, "__obsparm"))
2776 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2777
2778 info->debug = section_objs(info, "__verbose",
2779 sizeof(*info->debug), &info->num_debug);
2780
2781 return 0;
2782 }
2783
2784 static int move_module(struct module *mod, struct load_info *info)
2785 {
2786 int i;
2787 void *ptr;
2788
2789 /* Do the allocs. */
2790 ptr = module_alloc_update_bounds(mod->core_size);
2791 /*
2792 * The pointer to this block is stored in the module structure
2793 * which is inside the block. Just mark it as not being a
2794 * leak.
2795 */
2796 kmemleak_not_leak(ptr);
2797 if (!ptr)
2798 return -ENOMEM;
2799
2800 memset(ptr, 0, mod->core_size);
2801 mod->module_core = ptr;
2802
2803 if (mod->init_size) {
2804 ptr = module_alloc_update_bounds(mod->init_size);
2805 /*
2806 * The pointer to this block is stored in the module structure
2807 * which is inside the block. This block doesn't need to be
2808 * scanned as it contains data and code that will be freed
2809 * after the module is initialized.
2810 */
2811 kmemleak_ignore(ptr);
2812 if (!ptr) {
2813 module_free(mod, mod->module_core);
2814 return -ENOMEM;
2815 }
2816 memset(ptr, 0, mod->init_size);
2817 mod->module_init = ptr;
2818 } else
2819 mod->module_init = NULL;
2820
2821 /* Transfer each section which specifies SHF_ALLOC */
2822 pr_debug("final section addresses:\n");
2823 for (i = 0; i < info->hdr->e_shnum; i++) {
2824 void *dest;
2825 Elf_Shdr *shdr = &info->sechdrs[i];
2826
2827 if (!(shdr->sh_flags & SHF_ALLOC))
2828 continue;
2829
2830 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2831 dest = mod->module_init
2832 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2833 else
2834 dest = mod->module_core + shdr->sh_entsize;
2835
2836 if (shdr->sh_type != SHT_NOBITS)
2837 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2838 /* Update sh_addr to point to copy in image. */
2839 shdr->sh_addr = (unsigned long)dest;
2840 pr_debug("\t0x%lx %s\n",
2841 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2842 }
2843
2844 return 0;
2845 }
2846
2847 static int check_module_license_and_versions(struct module *mod)
2848 {
2849 /*
2850 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2851 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2852 * using GPL-only symbols it needs.
2853 */
2854 if (strcmp(mod->name, "ndiswrapper") == 0)
2855 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2856
2857 /* driverloader was caught wrongly pretending to be under GPL */
2858 if (strcmp(mod->name, "driverloader") == 0)
2859 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2860 LOCKDEP_NOW_UNRELIABLE);
2861
2862 /* lve claims to be GPL but upstream won't provide source */
2863 if (strcmp(mod->name, "lve") == 0)
2864 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2865 LOCKDEP_NOW_UNRELIABLE);
2866
2867 #ifdef CONFIG_MODVERSIONS
2868 if ((mod->num_syms && !mod->crcs)
2869 || (mod->num_gpl_syms && !mod->gpl_crcs)
2870 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2871 #ifdef CONFIG_UNUSED_SYMBOLS
2872 || (mod->num_unused_syms && !mod->unused_crcs)
2873 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2874 #endif
2875 ) {
2876 return try_to_force_load(mod,
2877 "no versions for exported symbols");
2878 }
2879 #endif
2880 return 0;
2881 }
2882
2883 static void flush_module_icache(const struct module *mod)
2884 {
2885 mm_segment_t old_fs;
2886
2887 /* flush the icache in correct context */
2888 old_fs = get_fs();
2889 set_fs(KERNEL_DS);
2890
2891 /*
2892 * Flush the instruction cache, since we've played with text.
2893 * Do it before processing of module parameters, so the module
2894 * can provide parameter accessor functions of its own.
2895 */
2896 if (mod->module_init)
2897 flush_icache_range((unsigned long)mod->module_init,
2898 (unsigned long)mod->module_init
2899 + mod->init_size);
2900 flush_icache_range((unsigned long)mod->module_core,
2901 (unsigned long)mod->module_core + mod->core_size);
2902
2903 set_fs(old_fs);
2904 }
2905
2906 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2907 Elf_Shdr *sechdrs,
2908 char *secstrings,
2909 struct module *mod)
2910 {
2911 return 0;
2912 }
2913
2914 static struct module *layout_and_allocate(struct load_info *info, int flags)
2915 {
2916 /* Module within temporary copy. */
2917 struct module *mod;
2918 int err;
2919
2920 mod = setup_load_info(info, flags);
2921 if (IS_ERR(mod))
2922 return mod;
2923
2924 err = check_modinfo(mod, info, flags);
2925 if (err)
2926 return ERR_PTR(err);
2927
2928 /* Allow arches to frob section contents and sizes. */
2929 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2930 info->secstrings, mod);
2931 if (err < 0)
2932 return ERR_PTR(err);
2933
2934 /* We will do a special allocation for per-cpu sections later. */
2935 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2936
2937 /* Determine total sizes, and put offsets in sh_entsize. For now
2938 this is done generically; there doesn't appear to be any
2939 special cases for the architectures. */
2940 layout_sections(mod, info);
2941 layout_symtab(mod, info);
2942
2943 /* Allocate and move to the final place */
2944 err = move_module(mod, info);
2945 if (err)
2946 return ERR_PTR(err);
2947
2948 /* Module has been copied to its final place now: return it. */
2949 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2950 kmemleak_load_module(mod, info);
2951 return mod;
2952 }
2953
2954 /* mod is no longer valid after this! */
2955 static void module_deallocate(struct module *mod, struct load_info *info)
2956 {
2957 percpu_modfree(mod);
2958 module_free(mod, mod->module_init);
2959 module_free(mod, mod->module_core);
2960 }
2961
2962 int __weak module_finalize(const Elf_Ehdr *hdr,
2963 const Elf_Shdr *sechdrs,
2964 struct module *me)
2965 {
2966 return 0;
2967 }
2968
2969 static int post_relocation(struct module *mod, const struct load_info *info)
2970 {
2971 /* Sort exception table now relocations are done. */
2972 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2973
2974 /* Copy relocated percpu area over. */
2975 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2976 info->sechdrs[info->index.pcpu].sh_size);
2977
2978 /* Setup kallsyms-specific fields. */
2979 add_kallsyms(mod, info);
2980
2981 /* Arch-specific module finalizing. */
2982 return module_finalize(info->hdr, info->sechdrs, mod);
2983 }
2984
2985 /* Is this module of this name done loading? No locks held. */
2986 static bool finished_loading(const char *name)
2987 {
2988 struct module *mod;
2989 bool ret;
2990
2991 mutex_lock(&module_mutex);
2992 mod = find_module_all(name, strlen(name), true);
2993 ret = !mod || mod->state == MODULE_STATE_LIVE
2994 || mod->state == MODULE_STATE_GOING;
2995 mutex_unlock(&module_mutex);
2996
2997 return ret;
2998 }
2999
3000 /* Call module constructors. */
3001 static void do_mod_ctors(struct module *mod)
3002 {
3003 #ifdef CONFIG_CONSTRUCTORS
3004 unsigned long i;
3005
3006 for (i = 0; i < mod->num_ctors; i++)
3007 mod->ctors[i]();
3008 #endif
3009 }
3010
3011 /* This is where the real work happens */
3012 static int do_init_module(struct module *mod)
3013 {
3014 int ret = 0;
3015
3016 /*
3017 * We want to find out whether @mod uses async during init. Clear
3018 * PF_USED_ASYNC. async_schedule*() will set it.
3019 */
3020 current->flags &= ~PF_USED_ASYNC;
3021
3022 blocking_notifier_call_chain(&module_notify_list,
3023 MODULE_STATE_COMING, mod);
3024
3025 /* Set RO and NX regions for core */
3026 set_section_ro_nx(mod->module_core,
3027 mod->core_text_size,
3028 mod->core_ro_size,
3029 mod->core_size);
3030
3031 /* Set RO and NX regions for init */
3032 set_section_ro_nx(mod->module_init,
3033 mod->init_text_size,
3034 mod->init_ro_size,
3035 mod->init_size);
3036
3037 do_mod_ctors(mod);
3038 /* Start the module */
3039 if (mod->init != NULL)
3040 ret = do_one_initcall(mod->init);
3041 if (ret < 0) {
3042 /* Init routine failed: abort. Try to protect us from
3043 buggy refcounters. */
3044 mod->state = MODULE_STATE_GOING;
3045 synchronize_sched();
3046 module_put(mod);
3047 blocking_notifier_call_chain(&module_notify_list,
3048 MODULE_STATE_GOING, mod);
3049 free_module(mod);
3050 wake_up_all(&module_wq);
3051 return ret;
3052 }
3053 if (ret > 0) {
3054 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3055 "follow 0/-E convention\n"
3056 "%s: loading module anyway...\n",
3057 __func__, mod->name, ret, __func__);
3058 dump_stack();
3059 }
3060
3061 /* Now it's a first class citizen! */
3062 mod->state = MODULE_STATE_LIVE;
3063 blocking_notifier_call_chain(&module_notify_list,
3064 MODULE_STATE_LIVE, mod);
3065
3066 /*
3067 * We need to finish all async code before the module init sequence
3068 * is done. This has potential to deadlock. For example, a newly
3069 * detected block device can trigger request_module() of the
3070 * default iosched from async probing task. Once userland helper
3071 * reaches here, async_synchronize_full() will wait on the async
3072 * task waiting on request_module() and deadlock.
3073 *
3074 * This deadlock is avoided by perfomring async_synchronize_full()
3075 * iff module init queued any async jobs. This isn't a full
3076 * solution as it will deadlock the same if module loading from
3077 * async jobs nests more than once; however, due to the various
3078 * constraints, this hack seems to be the best option for now.
3079 * Please refer to the following thread for details.
3080 *
3081 * http://thread.gmane.org/gmane.linux.kernel/1420814
3082 */
3083 if (current->flags & PF_USED_ASYNC)
3084 async_synchronize_full();
3085
3086 mutex_lock(&module_mutex);
3087 /* Drop initial reference. */
3088 module_put(mod);
3089 trim_init_extable(mod);
3090 #ifdef CONFIG_KALLSYMS
3091 mod->num_symtab = mod->core_num_syms;
3092 mod->symtab = mod->core_symtab;
3093 mod->strtab = mod->core_strtab;
3094 #endif
3095 unset_module_init_ro_nx(mod);
3096 module_free(mod, mod->module_init);
3097 mod->module_init = NULL;
3098 mod->init_size = 0;
3099 mod->init_ro_size = 0;
3100 mod->init_text_size = 0;
3101 mutex_unlock(&module_mutex);
3102 wake_up_all(&module_wq);
3103
3104 return 0;
3105 }
3106
3107 static int may_init_module(void)
3108 {
3109 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3110 return -EPERM;
3111
3112 return 0;
3113 }
3114
3115 /*
3116 * We try to place it in the list now to make sure it's unique before
3117 * we dedicate too many resources. In particular, temporary percpu
3118 * memory exhaustion.
3119 */
3120 static int add_unformed_module(struct module *mod)
3121 {
3122 int err;
3123 struct module *old;
3124
3125 mod->state = MODULE_STATE_UNFORMED;
3126
3127 again:
3128 mutex_lock(&module_mutex);
3129 old = find_module_all(mod->name, strlen(mod->name), true);
3130 if (old != NULL) {
3131 if (old->state == MODULE_STATE_COMING
3132 || old->state == MODULE_STATE_UNFORMED) {
3133 /* Wait in case it fails to load. */
3134 mutex_unlock(&module_mutex);
3135 err = wait_event_interruptible(module_wq,
3136 finished_loading(mod->name));
3137 if (err)
3138 goto out_unlocked;
3139 goto again;
3140 }
3141 err = -EEXIST;
3142 goto out;
3143 }
3144 list_add_rcu(&mod->list, &modules);
3145 err = 0;
3146
3147 out:
3148 mutex_unlock(&module_mutex);
3149 out_unlocked:
3150 return err;
3151 }
3152
3153 static int complete_formation(struct module *mod, struct load_info *info)
3154 {
3155 int err;
3156
3157 mutex_lock(&module_mutex);
3158
3159 /* Find duplicate symbols (must be called under lock). */
3160 err = verify_export_symbols(mod);
3161 if (err < 0)
3162 goto out;
3163
3164 /* This relies on module_mutex for list integrity. */
3165 module_bug_finalize(info->hdr, info->sechdrs, mod);
3166
3167 /* Mark state as coming so strong_try_module_get() ignores us,
3168 * but kallsyms etc. can see us. */
3169 mod->state = MODULE_STATE_COMING;
3170
3171 out:
3172 mutex_unlock(&module_mutex);
3173 return err;
3174 }
3175
3176 static int unknown_module_param_cb(char *param, char *val, const char *modname)
3177 {
3178 /* Check for magic 'dyndbg' arg */
3179 int ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3180 if (ret != 0)
3181 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3182 return 0;
3183 }
3184
3185 /* Allocate and load the module: note that size of section 0 is always
3186 zero, and we rely on this for optional sections. */
3187 static int load_module(struct load_info *info, const char __user *uargs,
3188 int flags)
3189 {
3190 struct module *mod;
3191 long err;
3192
3193 err = module_sig_check(info);
3194 if (err)
3195 goto free_copy;
3196
3197 err = elf_header_check(info);
3198 if (err)
3199 goto free_copy;
3200
3201 /* Figure out module layout, and allocate all the memory. */
3202 mod = layout_and_allocate(info, flags);
3203 if (IS_ERR(mod)) {
3204 err = PTR_ERR(mod);
3205 goto free_copy;
3206 }
3207
3208 /* Reserve our place in the list. */
3209 err = add_unformed_module(mod);
3210 if (err)
3211 goto free_module;
3212
3213 #ifdef CONFIG_MODULE_SIG
3214 mod->sig_ok = info->sig_ok;
3215 if (!mod->sig_ok) {
3216 pr_notice_once("%s: module verification failed: signature "
3217 "and/or required key missing - tainting "
3218 "kernel\n", mod->name);
3219 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_STILL_OK);
3220 }
3221 #endif
3222
3223 /* To avoid stressing percpu allocator, do this once we're unique. */
3224 err = percpu_modalloc(mod, info);
3225 if (err)
3226 goto unlink_mod;
3227
3228 /* Now module is in final location, initialize linked lists, etc. */
3229 err = module_unload_init(mod);
3230 if (err)
3231 goto unlink_mod;
3232
3233 /* Now we've got everything in the final locations, we can
3234 * find optional sections. */
3235 err = find_module_sections(mod, info);
3236 if (err)
3237 goto free_unload;
3238
3239 err = check_module_license_and_versions(mod);
3240 if (err)
3241 goto free_unload;
3242
3243 /* Set up MODINFO_ATTR fields */
3244 setup_modinfo(mod, info);
3245
3246 /* Fix up syms, so that st_value is a pointer to location. */
3247 err = simplify_symbols(mod, info);
3248 if (err < 0)
3249 goto free_modinfo;
3250
3251 err = apply_relocations(mod, info);
3252 if (err < 0)
3253 goto free_modinfo;
3254
3255 err = post_relocation(mod, info);
3256 if (err < 0)
3257 goto free_modinfo;
3258
3259 flush_module_icache(mod);
3260
3261 /* Now copy in args */
3262 mod->args = strndup_user(uargs, ~0UL >> 1);
3263 if (IS_ERR(mod->args)) {
3264 err = PTR_ERR(mod->args);
3265 goto free_arch_cleanup;
3266 }
3267
3268 dynamic_debug_setup(info->debug, info->num_debug);
3269
3270 /* Finally it's fully formed, ready to start executing. */
3271 err = complete_formation(mod, info);
3272 if (err)
3273 goto ddebug_cleanup;
3274
3275 /* Module is ready to execute: parsing args may do that. */
3276 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3277 -32768, 32767, unknown_module_param_cb);
3278 if (err < 0)
3279 goto bug_cleanup;
3280
3281 /* Link in to syfs. */
3282 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3283 if (err < 0)
3284 goto bug_cleanup;
3285
3286 /* Get rid of temporary copy. */
3287 free_copy(info);
3288
3289 /* Done! */
3290 trace_module_load(mod);
3291
3292 return do_init_module(mod);
3293
3294 bug_cleanup:
3295 /* module_bug_cleanup needs module_mutex protection */
3296 mutex_lock(&module_mutex);
3297 module_bug_cleanup(mod);
3298 mutex_unlock(&module_mutex);
3299 ddebug_cleanup:
3300 dynamic_debug_remove(info->debug);
3301 synchronize_sched();
3302 kfree(mod->args);
3303 free_arch_cleanup:
3304 module_arch_cleanup(mod);
3305 free_modinfo:
3306 free_modinfo(mod);
3307 free_unload:
3308 module_unload_free(mod);
3309 unlink_mod:
3310 mutex_lock(&module_mutex);
3311 /* Unlink carefully: kallsyms could be walking list. */
3312 list_del_rcu(&mod->list);
3313 wake_up_all(&module_wq);
3314 mutex_unlock(&module_mutex);
3315 free_module:
3316 module_deallocate(mod, info);
3317 free_copy:
3318 free_copy(info);
3319 return err;
3320 }
3321
3322 SYSCALL_DEFINE3(init_module, void __user *, umod,
3323 unsigned long, len, const char __user *, uargs)
3324 {
3325 int err;
3326 struct load_info info = { };
3327
3328 err = may_init_module();
3329 if (err)
3330 return err;
3331
3332 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3333 umod, len, uargs);
3334
3335 err = copy_module_from_user(umod, len, &info);
3336 if (err)
3337 return err;
3338
3339 return load_module(&info, uargs, 0);
3340 }
3341
3342 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3343 {
3344 int err;
3345 struct load_info info = { };
3346
3347 err = may_init_module();
3348 if (err)
3349 return err;
3350
3351 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3352
3353 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3354 |MODULE_INIT_IGNORE_VERMAGIC))
3355 return -EINVAL;
3356
3357 err = copy_module_from_fd(fd, &info);
3358 if (err)
3359 return err;
3360
3361 return load_module(&info, uargs, flags);
3362 }
3363
3364 static inline int within(unsigned long addr, void *start, unsigned long size)
3365 {
3366 return ((void *)addr >= start && (void *)addr < start + size);
3367 }
3368
3369 #ifdef CONFIG_KALLSYMS
3370 /*
3371 * This ignores the intensely annoying "mapping symbols" found
3372 * in ARM ELF files: $a, $t and $d.
3373 */
3374 static inline int is_arm_mapping_symbol(const char *str)
3375 {
3376 return str[0] == '$' && strchr("atd", str[1])
3377 && (str[2] == '\0' || str[2] == '.');
3378 }
3379
3380 static const char *get_ksymbol(struct module *mod,
3381 unsigned long addr,
3382 unsigned long *size,
3383 unsigned long *offset)
3384 {
3385 unsigned int i, best = 0;
3386 unsigned long nextval;
3387
3388 /* At worse, next value is at end of module */
3389 if (within_module_init(addr, mod))
3390 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3391 else
3392 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3393
3394 /* Scan for closest preceding symbol, and next symbol. (ELF
3395 starts real symbols at 1). */
3396 for (i = 1; i < mod->num_symtab; i++) {
3397 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3398 continue;
3399
3400 /* We ignore unnamed symbols: they're uninformative
3401 * and inserted at a whim. */
3402 if (mod->symtab[i].st_value <= addr
3403 && mod->symtab[i].st_value > mod->symtab[best].st_value
3404 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3405 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3406 best = i;
3407 if (mod->symtab[i].st_value > addr
3408 && mod->symtab[i].st_value < nextval
3409 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3410 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3411 nextval = mod->symtab[i].st_value;
3412 }
3413
3414 if (!best)
3415 return NULL;
3416
3417 if (size)
3418 *size = nextval - mod->symtab[best].st_value;
3419 if (offset)
3420 *offset = addr - mod->symtab[best].st_value;
3421 return mod->strtab + mod->symtab[best].st_name;
3422 }
3423
3424 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3425 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3426 const char *module_address_lookup(unsigned long addr,
3427 unsigned long *size,
3428 unsigned long *offset,
3429 char **modname,
3430 char *namebuf)
3431 {
3432 struct module *mod;
3433 const char *ret = NULL;
3434
3435 preempt_disable();
3436 list_for_each_entry_rcu(mod, &modules, list) {
3437 if (mod->state == MODULE_STATE_UNFORMED)
3438 continue;
3439 if (within_module_init(addr, mod) ||
3440 within_module_core(addr, mod)) {
3441 if (modname)
3442 *modname = mod->name;
3443 ret = get_ksymbol(mod, addr, size, offset);
3444 break;
3445 }
3446 }
3447 /* Make a copy in here where it's safe */
3448 if (ret) {
3449 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3450 ret = namebuf;
3451 }
3452 preempt_enable();
3453 return ret;
3454 }
3455
3456 int lookup_module_symbol_name(unsigned long addr, char *symname)
3457 {
3458 struct module *mod;
3459
3460 preempt_disable();
3461 list_for_each_entry_rcu(mod, &modules, list) {
3462 if (mod->state == MODULE_STATE_UNFORMED)
3463 continue;
3464 if (within_module_init(addr, mod) ||
3465 within_module_core(addr, mod)) {
3466 const char *sym;
3467
3468 sym = get_ksymbol(mod, addr, NULL, NULL);
3469 if (!sym)
3470 goto out;
3471 strlcpy(symname, sym, KSYM_NAME_LEN);
3472 preempt_enable();
3473 return 0;
3474 }
3475 }
3476 out:
3477 preempt_enable();
3478 return -ERANGE;
3479 }
3480
3481 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3482 unsigned long *offset, char *modname, char *name)
3483 {
3484 struct module *mod;
3485
3486 preempt_disable();
3487 list_for_each_entry_rcu(mod, &modules, list) {
3488 if (mod->state == MODULE_STATE_UNFORMED)
3489 continue;
3490 if (within_module_init(addr, mod) ||
3491 within_module_core(addr, mod)) {
3492 const char *sym;
3493
3494 sym = get_ksymbol(mod, addr, size, offset);
3495 if (!sym)
3496 goto out;
3497 if (modname)
3498 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3499 if (name)
3500 strlcpy(name, sym, KSYM_NAME_LEN);
3501 preempt_enable();
3502 return 0;
3503 }
3504 }
3505 out:
3506 preempt_enable();
3507 return -ERANGE;
3508 }
3509
3510 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3511 char *name, char *module_name, int *exported)
3512 {
3513 struct module *mod;
3514
3515 preempt_disable();
3516 list_for_each_entry_rcu(mod, &modules, list) {
3517 if (mod->state == MODULE_STATE_UNFORMED)
3518 continue;
3519 if (symnum < mod->num_symtab) {
3520 *value = mod->symtab[symnum].st_value;
3521 *type = mod->symtab[symnum].st_info;
3522 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3523 KSYM_NAME_LEN);
3524 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3525 *exported = is_exported(name, *value, mod);
3526 preempt_enable();
3527 return 0;
3528 }
3529 symnum -= mod->num_symtab;
3530 }
3531 preempt_enable();
3532 return -ERANGE;
3533 }
3534
3535 static unsigned long mod_find_symname(struct module *mod, const char *name)
3536 {
3537 unsigned int i;
3538
3539 for (i = 0; i < mod->num_symtab; i++)
3540 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3541 mod->symtab[i].st_info != 'U')
3542 return mod->symtab[i].st_value;
3543 return 0;
3544 }
3545
3546 /* Look for this name: can be of form module:name. */
3547 unsigned long module_kallsyms_lookup_name(const char *name)
3548 {
3549 struct module *mod;
3550 char *colon;
3551 unsigned long ret = 0;
3552
3553 /* Don't lock: we're in enough trouble already. */
3554 preempt_disable();
3555 if ((colon = strchr(name, ':')) != NULL) {
3556 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3557 ret = mod_find_symname(mod, colon+1);
3558 } else {
3559 list_for_each_entry_rcu(mod, &modules, list) {
3560 if (mod->state == MODULE_STATE_UNFORMED)
3561 continue;
3562 if ((ret = mod_find_symname(mod, name)) != 0)
3563 break;
3564 }
3565 }
3566 preempt_enable();
3567 return ret;
3568 }
3569
3570 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3571 struct module *, unsigned long),
3572 void *data)
3573 {
3574 struct module *mod;
3575 unsigned int i;
3576 int ret;
3577
3578 list_for_each_entry(mod, &modules, list) {
3579 if (mod->state == MODULE_STATE_UNFORMED)
3580 continue;
3581 for (i = 0; i < mod->num_symtab; i++) {
3582 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3583 mod, mod->symtab[i].st_value);
3584 if (ret != 0)
3585 return ret;
3586 }
3587 }
3588 return 0;
3589 }
3590 #endif /* CONFIG_KALLSYMS */
3591
3592 static char *module_flags(struct module *mod, char *buf)
3593 {
3594 int bx = 0;
3595
3596 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3597 if (mod->taints ||
3598 mod->state == MODULE_STATE_GOING ||
3599 mod->state == MODULE_STATE_COMING) {
3600 buf[bx++] = '(';
3601 bx += module_flags_taint(mod, buf + bx);
3602 /* Show a - for module-is-being-unloaded */
3603 if (mod->state == MODULE_STATE_GOING)
3604 buf[bx++] = '-';
3605 /* Show a + for module-is-being-loaded */
3606 if (mod->state == MODULE_STATE_COMING)
3607 buf[bx++] = '+';
3608 buf[bx++] = ')';
3609 }
3610 buf[bx] = '\0';
3611
3612 return buf;
3613 }
3614
3615 #ifdef CONFIG_PROC_FS
3616 /* Called by the /proc file system to return a list of modules. */
3617 static void *m_start(struct seq_file *m, loff_t *pos)
3618 {
3619 mutex_lock(&module_mutex);
3620 return seq_list_start(&modules, *pos);
3621 }
3622
3623 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3624 {
3625 return seq_list_next(p, &modules, pos);
3626 }
3627
3628 static void m_stop(struct seq_file *m, void *p)
3629 {
3630 mutex_unlock(&module_mutex);
3631 }
3632
3633 static int m_show(struct seq_file *m, void *p)
3634 {
3635 struct module *mod = list_entry(p, struct module, list);
3636 char buf[8];
3637
3638 /* We always ignore unformed modules. */
3639 if (mod->state == MODULE_STATE_UNFORMED)
3640 return 0;
3641
3642 seq_printf(m, "%s %u",
3643 mod->name, mod->init_size + mod->core_size);
3644 print_unload_info(m, mod);
3645
3646 /* Informative for users. */
3647 seq_printf(m, " %s",
3648 mod->state == MODULE_STATE_GOING ? "Unloading":
3649 mod->state == MODULE_STATE_COMING ? "Loading":
3650 "Live");
3651 /* Used by oprofile and other similar tools. */
3652 seq_printf(m, " 0x%pK", mod->module_core);
3653
3654 /* Taints info */
3655 if (mod->taints)
3656 seq_printf(m, " %s", module_flags(mod, buf));
3657
3658 seq_printf(m, "\n");
3659 return 0;
3660 }
3661
3662 /* Format: modulename size refcount deps address
3663
3664 Where refcount is a number or -, and deps is a comma-separated list
3665 of depends or -.
3666 */
3667 static const struct seq_operations modules_op = {
3668 .start = m_start,
3669 .next = m_next,
3670 .stop = m_stop,
3671 .show = m_show
3672 };
3673
3674 static int modules_open(struct inode *inode, struct file *file)
3675 {
3676 return seq_open(file, &modules_op);
3677 }
3678
3679 static const struct file_operations proc_modules_operations = {
3680 .open = modules_open,
3681 .read = seq_read,
3682 .llseek = seq_lseek,
3683 .release = seq_release,
3684 };
3685
3686 static int __init proc_modules_init(void)
3687 {
3688 proc_create("modules", 0, NULL, &proc_modules_operations);
3689 return 0;
3690 }
3691 module_init(proc_modules_init);
3692 #endif
3693
3694 /* Given an address, look for it in the module exception tables. */
3695 const struct exception_table_entry *search_module_extables(unsigned long addr)
3696 {
3697 const struct exception_table_entry *e = NULL;
3698 struct module *mod;
3699
3700 preempt_disable();
3701 list_for_each_entry_rcu(mod, &modules, list) {
3702 if (mod->state == MODULE_STATE_UNFORMED)
3703 continue;
3704 if (mod->num_exentries == 0)
3705 continue;
3706
3707 e = search_extable(mod->extable,
3708 mod->extable + mod->num_exentries - 1,
3709 addr);
3710 if (e)
3711 break;
3712 }
3713 preempt_enable();
3714
3715 /* Now, if we found one, we are running inside it now, hence
3716 we cannot unload the module, hence no refcnt needed. */
3717 return e;
3718 }
3719
3720 /*
3721 * is_module_address - is this address inside a module?
3722 * @addr: the address to check.
3723 *
3724 * See is_module_text_address() if you simply want to see if the address
3725 * is code (not data).
3726 */
3727 bool is_module_address(unsigned long addr)
3728 {
3729 bool ret;
3730
3731 preempt_disable();
3732 ret = __module_address(addr) != NULL;
3733 preempt_enable();
3734
3735 return ret;
3736 }
3737
3738 /*
3739 * __module_address - get the module which contains an address.
3740 * @addr: the address.
3741 *
3742 * Must be called with preempt disabled or module mutex held so that
3743 * module doesn't get freed during this.
3744 */
3745 struct module *__module_address(unsigned long addr)
3746 {
3747 struct module *mod;
3748
3749 if (addr < module_addr_min || addr > module_addr_max)
3750 return NULL;
3751
3752 list_for_each_entry_rcu(mod, &modules, list) {
3753 if (mod->state == MODULE_STATE_UNFORMED)
3754 continue;
3755 if (within_module_core(addr, mod)
3756 || within_module_init(addr, mod))
3757 return mod;
3758 }
3759 return NULL;
3760 }
3761 EXPORT_SYMBOL_GPL(__module_address);
3762
3763 /*
3764 * is_module_text_address - is this address inside module code?
3765 * @addr: the address to check.
3766 *
3767 * See is_module_address() if you simply want to see if the address is
3768 * anywhere in a module. See kernel_text_address() for testing if an
3769 * address corresponds to kernel or module code.
3770 */
3771 bool is_module_text_address(unsigned long addr)
3772 {
3773 bool ret;
3774
3775 preempt_disable();
3776 ret = __module_text_address(addr) != NULL;
3777 preempt_enable();
3778
3779 return ret;
3780 }
3781
3782 /*
3783 * __module_text_address - get the module whose code contains an address.
3784 * @addr: the address.
3785 *
3786 * Must be called with preempt disabled or module mutex held so that
3787 * module doesn't get freed during this.
3788 */
3789 struct module *__module_text_address(unsigned long addr)
3790 {
3791 struct module *mod = __module_address(addr);
3792 if (mod) {
3793 /* Make sure it's within the text section. */
3794 if (!within(addr, mod->module_init, mod->init_text_size)
3795 && !within(addr, mod->module_core, mod->core_text_size))
3796 mod = NULL;
3797 }
3798 return mod;
3799 }
3800 EXPORT_SYMBOL_GPL(__module_text_address);
3801
3802 /* Don't grab lock, we're oopsing. */
3803 void print_modules(void)
3804 {
3805 struct module *mod;
3806 char buf[8];
3807
3808 printk(KERN_DEFAULT "Modules linked in:");
3809 /* Most callers should already have preempt disabled, but make sure */
3810 preempt_disable();
3811 list_for_each_entry_rcu(mod, &modules, list) {
3812 if (mod->state == MODULE_STATE_UNFORMED)
3813 continue;
3814 printk(" %s%s", mod->name, module_flags(mod, buf));
3815 }
3816 preempt_enable();
3817 if (last_unloaded_module[0])
3818 printk(" [last unloaded: %s]", last_unloaded_module);
3819 printk("\n");
3820 }
3821
3822 #ifdef CONFIG_MODVERSIONS
3823 /* Generate the signature for all relevant module structures here.
3824 * If these change, we don't want to try to parse the module. */
3825 void module_layout(struct module *mod,
3826 struct modversion_info *ver,
3827 struct kernel_param *kp,
3828 struct kernel_symbol *ks,
3829 struct tracepoint * const *tp)
3830 {
3831 }
3832 EXPORT_SYMBOL(module_layout);
3833 #endif