]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/module.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /*
282 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
283 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
284 */
285 bool is_module_sig_enforced(void)
286 {
287 return sig_enforce;
288 }
289 EXPORT_SYMBOL(is_module_sig_enforced);
290
291 /* Block module loading/unloading? */
292 int modules_disabled = 0;
293 core_param(nomodule, modules_disabled, bint, 0);
294
295 /* Waiting for a module to finish initializing? */
296 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
297
298 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
299
300 int register_module_notifier(struct notifier_block *nb)
301 {
302 return blocking_notifier_chain_register(&module_notify_list, nb);
303 }
304 EXPORT_SYMBOL(register_module_notifier);
305
306 int unregister_module_notifier(struct notifier_block *nb)
307 {
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
309 }
310 EXPORT_SYMBOL(unregister_module_notifier);
311
312 struct load_info {
313 const char *name;
314 Elf_Ehdr *hdr;
315 unsigned long len;
316 Elf_Shdr *sechdrs;
317 char *secstrings, *strtab;
318 unsigned long symoffs, stroffs;
319 struct _ddebug *debug;
320 unsigned int num_debug;
321 bool sig_ok;
322 #ifdef CONFIG_KALLSYMS
323 unsigned long mod_kallsyms_init_off;
324 #endif
325 struct {
326 unsigned int sym, str, mod, vers, info, pcpu;
327 } index;
328 };
329
330 /*
331 * We require a truly strong try_module_get(): 0 means success.
332 * Otherwise an error is returned due to ongoing or failed
333 * initialization etc.
334 */
335 static inline int strong_try_module_get(struct module *mod)
336 {
337 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
338 if (mod && mod->state == MODULE_STATE_COMING)
339 return -EBUSY;
340 if (try_module_get(mod))
341 return 0;
342 else
343 return -ENOENT;
344 }
345
346 static inline void add_taint_module(struct module *mod, unsigned flag,
347 enum lockdep_ok lockdep_ok)
348 {
349 add_taint(flag, lockdep_ok);
350 set_bit(flag, &mod->taints);
351 }
352
353 /*
354 * A thread that wants to hold a reference to a module only while it
355 * is running can call this to safely exit. nfsd and lockd use this.
356 */
357 void __noreturn __module_put_and_exit(struct module *mod, long code)
358 {
359 module_put(mod);
360 do_exit(code);
361 }
362 EXPORT_SYMBOL(__module_put_and_exit);
363
364 /* Find a module section: 0 means not found. */
365 static unsigned int find_sec(const struct load_info *info, const char *name)
366 {
367 unsigned int i;
368
369 for (i = 1; i < info->hdr->e_shnum; i++) {
370 Elf_Shdr *shdr = &info->sechdrs[i];
371 /* Alloc bit cleared means "ignore it." */
372 if ((shdr->sh_flags & SHF_ALLOC)
373 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
374 return i;
375 }
376 return 0;
377 }
378
379 /* Find a module section, or NULL. */
380 static void *section_addr(const struct load_info *info, const char *name)
381 {
382 /* Section 0 has sh_addr 0. */
383 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
384 }
385
386 /* Find a module section, or NULL. Fill in number of "objects" in section. */
387 static void *section_objs(const struct load_info *info,
388 const char *name,
389 size_t object_size,
390 unsigned int *num)
391 {
392 unsigned int sec = find_sec(info, name);
393
394 /* Section 0 has sh_addr 0 and sh_size 0. */
395 *num = info->sechdrs[sec].sh_size / object_size;
396 return (void *)info->sechdrs[sec].sh_addr;
397 }
398
399 /* Provided by the linker */
400 extern const struct kernel_symbol __start___ksymtab[];
401 extern const struct kernel_symbol __stop___ksymtab[];
402 extern const struct kernel_symbol __start___ksymtab_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_gpl[];
404 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
405 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
406 extern const s32 __start___kcrctab[];
407 extern const s32 __start___kcrctab_gpl[];
408 extern const s32 __start___kcrctab_gpl_future[];
409 #ifdef CONFIG_UNUSED_SYMBOLS
410 extern const struct kernel_symbol __start___ksymtab_unused[];
411 extern const struct kernel_symbol __stop___ksymtab_unused[];
412 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
413 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
414 extern const s32 __start___kcrctab_unused[];
415 extern const s32 __start___kcrctab_unused_gpl[];
416 #endif
417
418 #ifndef CONFIG_MODVERSIONS
419 #define symversion(base, idx) NULL
420 #else
421 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
422 #endif
423
424 static bool each_symbol_in_section(const struct symsearch *arr,
425 unsigned int arrsize,
426 struct module *owner,
427 bool (*fn)(const struct symsearch *syms,
428 struct module *owner,
429 void *data),
430 void *data)
431 {
432 unsigned int j;
433
434 for (j = 0; j < arrsize; j++) {
435 if (fn(&arr[j], owner, data))
436 return true;
437 }
438
439 return false;
440 }
441
442 /* Returns true as soon as fn returns true, otherwise false. */
443 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
444 struct module *owner,
445 void *data),
446 void *data)
447 {
448 struct module *mod;
449 static const struct symsearch arr[] = {
450 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
451 NOT_GPL_ONLY, false },
452 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
453 __start___kcrctab_gpl,
454 GPL_ONLY, false },
455 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
456 __start___kcrctab_gpl_future,
457 WILL_BE_GPL_ONLY, false },
458 #ifdef CONFIG_UNUSED_SYMBOLS
459 { __start___ksymtab_unused, __stop___ksymtab_unused,
460 __start___kcrctab_unused,
461 NOT_GPL_ONLY, true },
462 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
463 __start___kcrctab_unused_gpl,
464 GPL_ONLY, true },
465 #endif
466 };
467
468 module_assert_mutex_or_preempt();
469
470 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
471 return true;
472
473 list_for_each_entry_rcu(mod, &modules, list) {
474 struct symsearch arr[] = {
475 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
476 NOT_GPL_ONLY, false },
477 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
478 mod->gpl_crcs,
479 GPL_ONLY, false },
480 { mod->gpl_future_syms,
481 mod->gpl_future_syms + mod->num_gpl_future_syms,
482 mod->gpl_future_crcs,
483 WILL_BE_GPL_ONLY, false },
484 #ifdef CONFIG_UNUSED_SYMBOLS
485 { mod->unused_syms,
486 mod->unused_syms + mod->num_unused_syms,
487 mod->unused_crcs,
488 NOT_GPL_ONLY, true },
489 { mod->unused_gpl_syms,
490 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
491 mod->unused_gpl_crcs,
492 GPL_ONLY, true },
493 #endif
494 };
495
496 if (mod->state == MODULE_STATE_UNFORMED)
497 continue;
498
499 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
500 return true;
501 }
502 return false;
503 }
504 EXPORT_SYMBOL_GPL(each_symbol_section);
505
506 struct find_symbol_arg {
507 /* Input */
508 const char *name;
509 bool gplok;
510 bool warn;
511
512 /* Output */
513 struct module *owner;
514 const s32 *crc;
515 const struct kernel_symbol *sym;
516 };
517
518 static bool check_symbol(const struct symsearch *syms,
519 struct module *owner,
520 unsigned int symnum, void *data)
521 {
522 struct find_symbol_arg *fsa = data;
523
524 if (!fsa->gplok) {
525 if (syms->licence == GPL_ONLY)
526 return false;
527 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
528 pr_warn("Symbol %s is being used by a non-GPL module, "
529 "which will not be allowed in the future\n",
530 fsa->name);
531 }
532 }
533
534 #ifdef CONFIG_UNUSED_SYMBOLS
535 if (syms->unused && fsa->warn) {
536 pr_warn("Symbol %s is marked as UNUSED, however this module is "
537 "using it.\n", fsa->name);
538 pr_warn("This symbol will go away in the future.\n");
539 pr_warn("Please evaluate if this is the right api to use and "
540 "if it really is, submit a report to the linux kernel "
541 "mailing list together with submitting your code for "
542 "inclusion.\n");
543 }
544 #endif
545
546 fsa->owner = owner;
547 fsa->crc = symversion(syms->crcs, symnum);
548 fsa->sym = &syms->start[symnum];
549 return true;
550 }
551
552 static int cmp_name(const void *va, const void *vb)
553 {
554 const char *a;
555 const struct kernel_symbol *b;
556 a = va; b = vb;
557 return strcmp(a, b->name);
558 }
559
560 static bool find_symbol_in_section(const struct symsearch *syms,
561 struct module *owner,
562 void *data)
563 {
564 struct find_symbol_arg *fsa = data;
565 struct kernel_symbol *sym;
566
567 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
568 sizeof(struct kernel_symbol), cmp_name);
569
570 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
571 return true;
572
573 return false;
574 }
575
576 /* Find a symbol and return it, along with, (optional) crc and
577 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
578 const struct kernel_symbol *find_symbol(const char *name,
579 struct module **owner,
580 const s32 **crc,
581 bool gplok,
582 bool warn)
583 {
584 struct find_symbol_arg fsa;
585
586 fsa.name = name;
587 fsa.gplok = gplok;
588 fsa.warn = warn;
589
590 if (each_symbol_section(find_symbol_in_section, &fsa)) {
591 if (owner)
592 *owner = fsa.owner;
593 if (crc)
594 *crc = fsa.crc;
595 return fsa.sym;
596 }
597
598 pr_debug("Failed to find symbol %s\n", name);
599 return NULL;
600 }
601 EXPORT_SYMBOL_GPL(find_symbol);
602
603 /*
604 * Search for module by name: must hold module_mutex (or preempt disabled
605 * for read-only access).
606 */
607 static struct module *find_module_all(const char *name, size_t len,
608 bool even_unformed)
609 {
610 struct module *mod;
611
612 module_assert_mutex_or_preempt();
613
614 list_for_each_entry_rcu(mod, &modules, list) {
615 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
616 continue;
617 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
618 return mod;
619 }
620 return NULL;
621 }
622
623 struct module *find_module(const char *name)
624 {
625 module_assert_mutex();
626 return find_module_all(name, strlen(name), false);
627 }
628 EXPORT_SYMBOL_GPL(find_module);
629
630 #ifdef CONFIG_SMP
631
632 static inline void __percpu *mod_percpu(struct module *mod)
633 {
634 return mod->percpu;
635 }
636
637 static int percpu_modalloc(struct module *mod, struct load_info *info)
638 {
639 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
640 unsigned long align = pcpusec->sh_addralign;
641
642 if (!pcpusec->sh_size)
643 return 0;
644
645 if (align > PAGE_SIZE) {
646 pr_warn("%s: per-cpu alignment %li > %li\n",
647 mod->name, align, PAGE_SIZE);
648 align = PAGE_SIZE;
649 }
650
651 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
652 if (!mod->percpu) {
653 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
654 mod->name, (unsigned long)pcpusec->sh_size);
655 return -ENOMEM;
656 }
657 mod->percpu_size = pcpusec->sh_size;
658 return 0;
659 }
660
661 static void percpu_modfree(struct module *mod)
662 {
663 free_percpu(mod->percpu);
664 }
665
666 static unsigned int find_pcpusec(struct load_info *info)
667 {
668 return find_sec(info, ".data..percpu");
669 }
670
671 static void percpu_modcopy(struct module *mod,
672 const void *from, unsigned long size)
673 {
674 int cpu;
675
676 for_each_possible_cpu(cpu)
677 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
678 }
679
680 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
681 {
682 struct module *mod;
683 unsigned int cpu;
684
685 preempt_disable();
686
687 list_for_each_entry_rcu(mod, &modules, list) {
688 if (mod->state == MODULE_STATE_UNFORMED)
689 continue;
690 if (!mod->percpu_size)
691 continue;
692 for_each_possible_cpu(cpu) {
693 void *start = per_cpu_ptr(mod->percpu, cpu);
694 void *va = (void *)addr;
695
696 if (va >= start && va < start + mod->percpu_size) {
697 if (can_addr) {
698 *can_addr = (unsigned long) (va - start);
699 *can_addr += (unsigned long)
700 per_cpu_ptr(mod->percpu,
701 get_boot_cpu_id());
702 }
703 preempt_enable();
704 return true;
705 }
706 }
707 }
708
709 preempt_enable();
710 return false;
711 }
712
713 /**
714 * is_module_percpu_address - test whether address is from module static percpu
715 * @addr: address to test
716 *
717 * Test whether @addr belongs to module static percpu area.
718 *
719 * RETURNS:
720 * %true if @addr is from module static percpu area
721 */
722 bool is_module_percpu_address(unsigned long addr)
723 {
724 return __is_module_percpu_address(addr, NULL);
725 }
726
727 #else /* ... !CONFIG_SMP */
728
729 static inline void __percpu *mod_percpu(struct module *mod)
730 {
731 return NULL;
732 }
733 static int percpu_modalloc(struct module *mod, struct load_info *info)
734 {
735 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
736 if (info->sechdrs[info->index.pcpu].sh_size != 0)
737 return -ENOMEM;
738 return 0;
739 }
740 static inline void percpu_modfree(struct module *mod)
741 {
742 }
743 static unsigned int find_pcpusec(struct load_info *info)
744 {
745 return 0;
746 }
747 static inline void percpu_modcopy(struct module *mod,
748 const void *from, unsigned long size)
749 {
750 /* pcpusec should be 0, and size of that section should be 0. */
751 BUG_ON(size != 0);
752 }
753 bool is_module_percpu_address(unsigned long addr)
754 {
755 return false;
756 }
757
758 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
759 {
760 return false;
761 }
762
763 #endif /* CONFIG_SMP */
764
765 #define MODINFO_ATTR(field) \
766 static void setup_modinfo_##field(struct module *mod, const char *s) \
767 { \
768 mod->field = kstrdup(s, GFP_KERNEL); \
769 } \
770 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
771 struct module_kobject *mk, char *buffer) \
772 { \
773 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
774 } \
775 static int modinfo_##field##_exists(struct module *mod) \
776 { \
777 return mod->field != NULL; \
778 } \
779 static void free_modinfo_##field(struct module *mod) \
780 { \
781 kfree(mod->field); \
782 mod->field = NULL; \
783 } \
784 static struct module_attribute modinfo_##field = { \
785 .attr = { .name = __stringify(field), .mode = 0444 }, \
786 .show = show_modinfo_##field, \
787 .setup = setup_modinfo_##field, \
788 .test = modinfo_##field##_exists, \
789 .free = free_modinfo_##field, \
790 };
791
792 MODINFO_ATTR(version);
793 MODINFO_ATTR(srcversion);
794
795 static char last_unloaded_module[MODULE_NAME_LEN+1];
796
797 #ifdef CONFIG_MODULE_UNLOAD
798
799 EXPORT_TRACEPOINT_SYMBOL(module_get);
800
801 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
802 #define MODULE_REF_BASE 1
803
804 /* Init the unload section of the module. */
805 static int module_unload_init(struct module *mod)
806 {
807 /*
808 * Initialize reference counter to MODULE_REF_BASE.
809 * refcnt == 0 means module is going.
810 */
811 atomic_set(&mod->refcnt, MODULE_REF_BASE);
812
813 INIT_LIST_HEAD(&mod->source_list);
814 INIT_LIST_HEAD(&mod->target_list);
815
816 /* Hold reference count during initialization. */
817 atomic_inc(&mod->refcnt);
818
819 return 0;
820 }
821
822 /* Does a already use b? */
823 static int already_uses(struct module *a, struct module *b)
824 {
825 struct module_use *use;
826
827 list_for_each_entry(use, &b->source_list, source_list) {
828 if (use->source == a) {
829 pr_debug("%s uses %s!\n", a->name, b->name);
830 return 1;
831 }
832 }
833 pr_debug("%s does not use %s!\n", a->name, b->name);
834 return 0;
835 }
836
837 /*
838 * Module a uses b
839 * - we add 'a' as a "source", 'b' as a "target" of module use
840 * - the module_use is added to the list of 'b' sources (so
841 * 'b' can walk the list to see who sourced them), and of 'a'
842 * targets (so 'a' can see what modules it targets).
843 */
844 static int add_module_usage(struct module *a, struct module *b)
845 {
846 struct module_use *use;
847
848 pr_debug("Allocating new usage for %s.\n", a->name);
849 use = kmalloc(sizeof(*use), GFP_ATOMIC);
850 if (!use)
851 return -ENOMEM;
852
853 use->source = a;
854 use->target = b;
855 list_add(&use->source_list, &b->source_list);
856 list_add(&use->target_list, &a->target_list);
857 return 0;
858 }
859
860 /* Module a uses b: caller needs module_mutex() */
861 int ref_module(struct module *a, struct module *b)
862 {
863 int err;
864
865 if (b == NULL || already_uses(a, b))
866 return 0;
867
868 /* If module isn't available, we fail. */
869 err = strong_try_module_get(b);
870 if (err)
871 return err;
872
873 err = add_module_usage(a, b);
874 if (err) {
875 module_put(b);
876 return err;
877 }
878 return 0;
879 }
880 EXPORT_SYMBOL_GPL(ref_module);
881
882 /* Clear the unload stuff of the module. */
883 static void module_unload_free(struct module *mod)
884 {
885 struct module_use *use, *tmp;
886
887 mutex_lock(&module_mutex);
888 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
889 struct module *i = use->target;
890 pr_debug("%s unusing %s\n", mod->name, i->name);
891 module_put(i);
892 list_del(&use->source_list);
893 list_del(&use->target_list);
894 kfree(use);
895 }
896 mutex_unlock(&module_mutex);
897 }
898
899 #ifdef CONFIG_MODULE_FORCE_UNLOAD
900 static inline int try_force_unload(unsigned int flags)
901 {
902 int ret = (flags & O_TRUNC);
903 if (ret)
904 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
905 return ret;
906 }
907 #else
908 static inline int try_force_unload(unsigned int flags)
909 {
910 return 0;
911 }
912 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
913
914 /* Try to release refcount of module, 0 means success. */
915 static int try_release_module_ref(struct module *mod)
916 {
917 int ret;
918
919 /* Try to decrement refcnt which we set at loading */
920 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
921 BUG_ON(ret < 0);
922 if (ret)
923 /* Someone can put this right now, recover with checking */
924 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
925
926 return ret;
927 }
928
929 static int try_stop_module(struct module *mod, int flags, int *forced)
930 {
931 /* If it's not unused, quit unless we're forcing. */
932 if (try_release_module_ref(mod) != 0) {
933 *forced = try_force_unload(flags);
934 if (!(*forced))
935 return -EWOULDBLOCK;
936 }
937
938 /* Mark it as dying. */
939 mod->state = MODULE_STATE_GOING;
940
941 return 0;
942 }
943
944 /**
945 * module_refcount - return the refcount or -1 if unloading
946 *
947 * @mod: the module we're checking
948 *
949 * Returns:
950 * -1 if the module is in the process of unloading
951 * otherwise the number of references in the kernel to the module
952 */
953 int module_refcount(struct module *mod)
954 {
955 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
956 }
957 EXPORT_SYMBOL(module_refcount);
958
959 /* This exists whether we can unload or not */
960 static void free_module(struct module *mod);
961
962 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
963 unsigned int, flags)
964 {
965 struct module *mod;
966 char name[MODULE_NAME_LEN];
967 int ret, forced = 0;
968
969 if (!capable(CAP_SYS_MODULE) || modules_disabled)
970 return -EPERM;
971
972 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
973 return -EFAULT;
974 name[MODULE_NAME_LEN-1] = '\0';
975
976 audit_log_kern_module(name);
977
978 if (mutex_lock_interruptible(&module_mutex) != 0)
979 return -EINTR;
980
981 mod = find_module(name);
982 if (!mod) {
983 ret = -ENOENT;
984 goto out;
985 }
986
987 if (!list_empty(&mod->source_list)) {
988 /* Other modules depend on us: get rid of them first. */
989 ret = -EWOULDBLOCK;
990 goto out;
991 }
992
993 /* Doing init or already dying? */
994 if (mod->state != MODULE_STATE_LIVE) {
995 /* FIXME: if (force), slam module count damn the torpedoes */
996 pr_debug("%s already dying\n", mod->name);
997 ret = -EBUSY;
998 goto out;
999 }
1000
1001 /* If it has an init func, it must have an exit func to unload */
1002 if (mod->init && !mod->exit) {
1003 forced = try_force_unload(flags);
1004 if (!forced) {
1005 /* This module can't be removed */
1006 ret = -EBUSY;
1007 goto out;
1008 }
1009 }
1010
1011 /* Stop the machine so refcounts can't move and disable module. */
1012 ret = try_stop_module(mod, flags, &forced);
1013 if (ret != 0)
1014 goto out;
1015
1016 mutex_unlock(&module_mutex);
1017 /* Final destruction now no one is using it. */
1018 if (mod->exit != NULL)
1019 mod->exit();
1020 blocking_notifier_call_chain(&module_notify_list,
1021 MODULE_STATE_GOING, mod);
1022 klp_module_going(mod);
1023 ftrace_release_mod(mod);
1024
1025 async_synchronize_full();
1026
1027 /* Store the name of the last unloaded module for diagnostic purposes */
1028 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1029
1030 free_module(mod);
1031 return 0;
1032 out:
1033 mutex_unlock(&module_mutex);
1034 return ret;
1035 }
1036
1037 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1038 {
1039 struct module_use *use;
1040 int printed_something = 0;
1041
1042 seq_printf(m, " %i ", module_refcount(mod));
1043
1044 /*
1045 * Always include a trailing , so userspace can differentiate
1046 * between this and the old multi-field proc format.
1047 */
1048 list_for_each_entry(use, &mod->source_list, source_list) {
1049 printed_something = 1;
1050 seq_printf(m, "%s,", use->source->name);
1051 }
1052
1053 if (mod->init != NULL && mod->exit == NULL) {
1054 printed_something = 1;
1055 seq_puts(m, "[permanent],");
1056 }
1057
1058 if (!printed_something)
1059 seq_puts(m, "-");
1060 }
1061
1062 void __symbol_put(const char *symbol)
1063 {
1064 struct module *owner;
1065
1066 preempt_disable();
1067 if (!find_symbol(symbol, &owner, NULL, true, false))
1068 BUG();
1069 module_put(owner);
1070 preempt_enable();
1071 }
1072 EXPORT_SYMBOL(__symbol_put);
1073
1074 /* Note this assumes addr is a function, which it currently always is. */
1075 void symbol_put_addr(void *addr)
1076 {
1077 struct module *modaddr;
1078 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1079
1080 if (core_kernel_text(a))
1081 return;
1082
1083 /*
1084 * Even though we hold a reference on the module; we still need to
1085 * disable preemption in order to safely traverse the data structure.
1086 */
1087 preempt_disable();
1088 modaddr = __module_text_address(a);
1089 BUG_ON(!modaddr);
1090 module_put(modaddr);
1091 preempt_enable();
1092 }
1093 EXPORT_SYMBOL_GPL(symbol_put_addr);
1094
1095 static ssize_t show_refcnt(struct module_attribute *mattr,
1096 struct module_kobject *mk, char *buffer)
1097 {
1098 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1099 }
1100
1101 static struct module_attribute modinfo_refcnt =
1102 __ATTR(refcnt, 0444, show_refcnt, NULL);
1103
1104 void __module_get(struct module *module)
1105 {
1106 if (module) {
1107 preempt_disable();
1108 atomic_inc(&module->refcnt);
1109 trace_module_get(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(__module_get);
1114
1115 bool try_module_get(struct module *module)
1116 {
1117 bool ret = true;
1118
1119 if (module) {
1120 preempt_disable();
1121 /* Note: here, we can fail to get a reference */
1122 if (likely(module_is_live(module) &&
1123 atomic_inc_not_zero(&module->refcnt) != 0))
1124 trace_module_get(module, _RET_IP_);
1125 else
1126 ret = false;
1127
1128 preempt_enable();
1129 }
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(try_module_get);
1133
1134 void module_put(struct module *module)
1135 {
1136 int ret;
1137
1138 if (module) {
1139 preempt_disable();
1140 ret = atomic_dec_if_positive(&module->refcnt);
1141 WARN_ON(ret < 0); /* Failed to put refcount */
1142 trace_module_put(module, _RET_IP_);
1143 preempt_enable();
1144 }
1145 }
1146 EXPORT_SYMBOL(module_put);
1147
1148 #else /* !CONFIG_MODULE_UNLOAD */
1149 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1150 {
1151 /* We don't know the usage count, or what modules are using. */
1152 seq_puts(m, " - -");
1153 }
1154
1155 static inline void module_unload_free(struct module *mod)
1156 {
1157 }
1158
1159 int ref_module(struct module *a, struct module *b)
1160 {
1161 return strong_try_module_get(b);
1162 }
1163 EXPORT_SYMBOL_GPL(ref_module);
1164
1165 static inline int module_unload_init(struct module *mod)
1166 {
1167 return 0;
1168 }
1169 #endif /* CONFIG_MODULE_UNLOAD */
1170
1171 static size_t module_flags_taint(struct module *mod, char *buf)
1172 {
1173 size_t l = 0;
1174 int i;
1175
1176 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1177 if (taint_flags[i].module && test_bit(i, &mod->taints))
1178 buf[l++] = taint_flags[i].c_true;
1179 }
1180
1181 return l;
1182 }
1183
1184 static ssize_t show_initstate(struct module_attribute *mattr,
1185 struct module_kobject *mk, char *buffer)
1186 {
1187 const char *state = "unknown";
1188
1189 switch (mk->mod->state) {
1190 case MODULE_STATE_LIVE:
1191 state = "live";
1192 break;
1193 case MODULE_STATE_COMING:
1194 state = "coming";
1195 break;
1196 case MODULE_STATE_GOING:
1197 state = "going";
1198 break;
1199 default:
1200 BUG();
1201 }
1202 return sprintf(buffer, "%s\n", state);
1203 }
1204
1205 static struct module_attribute modinfo_initstate =
1206 __ATTR(initstate, 0444, show_initstate, NULL);
1207
1208 static ssize_t store_uevent(struct module_attribute *mattr,
1209 struct module_kobject *mk,
1210 const char *buffer, size_t count)
1211 {
1212 kobject_synth_uevent(&mk->kobj, buffer, count);
1213 return count;
1214 }
1215
1216 struct module_attribute module_uevent =
1217 __ATTR(uevent, 0200, NULL, store_uevent);
1218
1219 static ssize_t show_coresize(struct module_attribute *mattr,
1220 struct module_kobject *mk, char *buffer)
1221 {
1222 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1223 }
1224
1225 static struct module_attribute modinfo_coresize =
1226 __ATTR(coresize, 0444, show_coresize, NULL);
1227
1228 static ssize_t show_initsize(struct module_attribute *mattr,
1229 struct module_kobject *mk, char *buffer)
1230 {
1231 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1232 }
1233
1234 static struct module_attribute modinfo_initsize =
1235 __ATTR(initsize, 0444, show_initsize, NULL);
1236
1237 static ssize_t show_taint(struct module_attribute *mattr,
1238 struct module_kobject *mk, char *buffer)
1239 {
1240 size_t l;
1241
1242 l = module_flags_taint(mk->mod, buffer);
1243 buffer[l++] = '\n';
1244 return l;
1245 }
1246
1247 static struct module_attribute modinfo_taint =
1248 __ATTR(taint, 0444, show_taint, NULL);
1249
1250 static struct module_attribute *modinfo_attrs[] = {
1251 &module_uevent,
1252 &modinfo_version,
1253 &modinfo_srcversion,
1254 &modinfo_initstate,
1255 &modinfo_coresize,
1256 &modinfo_initsize,
1257 &modinfo_taint,
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 &modinfo_refcnt,
1260 #endif
1261 NULL,
1262 };
1263
1264 static const char vermagic[] = VERMAGIC_STRING;
1265
1266 static int try_to_force_load(struct module *mod, const char *reason)
1267 {
1268 #ifdef CONFIG_MODULE_FORCE_LOAD
1269 if (!test_taint(TAINT_FORCED_MODULE))
1270 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1271 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1272 return 0;
1273 #else
1274 return -ENOEXEC;
1275 #endif
1276 }
1277
1278 #ifdef CONFIG_MODVERSIONS
1279
1280 static u32 resolve_rel_crc(const s32 *crc)
1281 {
1282 return *(u32 *)((void *)crc + *crc);
1283 }
1284
1285 static int check_version(const struct load_info *info,
1286 const char *symname,
1287 struct module *mod,
1288 const s32 *crc)
1289 {
1290 Elf_Shdr *sechdrs = info->sechdrs;
1291 unsigned int versindex = info->index.vers;
1292 unsigned int i, num_versions;
1293 struct modversion_info *versions;
1294
1295 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1296 if (!crc)
1297 return 1;
1298
1299 /* No versions at all? modprobe --force does this. */
1300 if (versindex == 0)
1301 return try_to_force_load(mod, symname) == 0;
1302
1303 versions = (void *) sechdrs[versindex].sh_addr;
1304 num_versions = sechdrs[versindex].sh_size
1305 / sizeof(struct modversion_info);
1306
1307 for (i = 0; i < num_versions; i++) {
1308 u32 crcval;
1309
1310 if (strcmp(versions[i].name, symname) != 0)
1311 continue;
1312
1313 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1314 crcval = resolve_rel_crc(crc);
1315 else
1316 crcval = *crc;
1317 if (versions[i].crc == crcval)
1318 return 1;
1319 pr_debug("Found checksum %X vs module %lX\n",
1320 crcval, versions[i].crc);
1321 goto bad_version;
1322 }
1323
1324 /* Broken toolchain. Warn once, then let it go.. */
1325 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1326 return 1;
1327
1328 bad_version:
1329 pr_warn("%s: disagrees about version of symbol %s\n",
1330 info->name, symname);
1331 return 0;
1332 }
1333
1334 static inline int check_modstruct_version(const struct load_info *info,
1335 struct module *mod)
1336 {
1337 const s32 *crc;
1338
1339 /*
1340 * Since this should be found in kernel (which can't be removed), no
1341 * locking is necessary -- use preempt_disable() to placate lockdep.
1342 */
1343 preempt_disable();
1344 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1345 &crc, true, false)) {
1346 preempt_enable();
1347 BUG();
1348 }
1349 preempt_enable();
1350 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1351 mod, crc);
1352 }
1353
1354 /* First part is kernel version, which we ignore if module has crcs. */
1355 static inline int same_magic(const char *amagic, const char *bmagic,
1356 bool has_crcs)
1357 {
1358 if (has_crcs) {
1359 amagic += strcspn(amagic, " ");
1360 bmagic += strcspn(bmagic, " ");
1361 }
1362 return strcmp(amagic, bmagic) == 0;
1363 }
1364 #else
1365 static inline int check_version(const struct load_info *info,
1366 const char *symname,
1367 struct module *mod,
1368 const s32 *crc)
1369 {
1370 return 1;
1371 }
1372
1373 static inline int check_modstruct_version(const struct load_info *info,
1374 struct module *mod)
1375 {
1376 return 1;
1377 }
1378
1379 static inline int same_magic(const char *amagic, const char *bmagic,
1380 bool has_crcs)
1381 {
1382 return strcmp(amagic, bmagic) == 0;
1383 }
1384 #endif /* CONFIG_MODVERSIONS */
1385
1386 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1387 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1388 const struct load_info *info,
1389 const char *name,
1390 char ownername[])
1391 {
1392 struct module *owner;
1393 const struct kernel_symbol *sym;
1394 const s32 *crc;
1395 int err;
1396
1397 /*
1398 * The module_mutex should not be a heavily contended lock;
1399 * if we get the occasional sleep here, we'll go an extra iteration
1400 * in the wait_event_interruptible(), which is harmless.
1401 */
1402 sched_annotate_sleep();
1403 mutex_lock(&module_mutex);
1404 sym = find_symbol(name, &owner, &crc,
1405 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1406 if (!sym)
1407 goto unlock;
1408
1409 if (!check_version(info, name, mod, crc)) {
1410 sym = ERR_PTR(-EINVAL);
1411 goto getname;
1412 }
1413
1414 err = ref_module(mod, owner);
1415 if (err) {
1416 sym = ERR_PTR(err);
1417 goto getname;
1418 }
1419
1420 getname:
1421 /* We must make copy under the lock if we failed to get ref. */
1422 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1423 unlock:
1424 mutex_unlock(&module_mutex);
1425 return sym;
1426 }
1427
1428 static const struct kernel_symbol *
1429 resolve_symbol_wait(struct module *mod,
1430 const struct load_info *info,
1431 const char *name)
1432 {
1433 const struct kernel_symbol *ksym;
1434 char owner[MODULE_NAME_LEN];
1435
1436 if (wait_event_interruptible_timeout(module_wq,
1437 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1438 || PTR_ERR(ksym) != -EBUSY,
1439 30 * HZ) <= 0) {
1440 pr_warn("%s: gave up waiting for init of module %s.\n",
1441 mod->name, owner);
1442 }
1443 return ksym;
1444 }
1445
1446 /*
1447 * /sys/module/foo/sections stuff
1448 * J. Corbet <corbet@lwn.net>
1449 */
1450 #ifdef CONFIG_SYSFS
1451
1452 #ifdef CONFIG_KALLSYMS
1453 static inline bool sect_empty(const Elf_Shdr *sect)
1454 {
1455 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1456 }
1457
1458 struct module_sect_attr {
1459 struct module_attribute mattr;
1460 char *name;
1461 unsigned long address;
1462 };
1463
1464 struct module_sect_attrs {
1465 struct attribute_group grp;
1466 unsigned int nsections;
1467 struct module_sect_attr attrs[0];
1468 };
1469
1470 static ssize_t module_sect_show(struct module_attribute *mattr,
1471 struct module_kobject *mk, char *buf)
1472 {
1473 struct module_sect_attr *sattr =
1474 container_of(mattr, struct module_sect_attr, mattr);
1475 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1476 }
1477
1478 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1479 {
1480 unsigned int section;
1481
1482 for (section = 0; section < sect_attrs->nsections; section++)
1483 kfree(sect_attrs->attrs[section].name);
1484 kfree(sect_attrs);
1485 }
1486
1487 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1488 {
1489 unsigned int nloaded = 0, i, size[2];
1490 struct module_sect_attrs *sect_attrs;
1491 struct module_sect_attr *sattr;
1492 struct attribute **gattr;
1493
1494 /* Count loaded sections and allocate structures */
1495 for (i = 0; i < info->hdr->e_shnum; i++)
1496 if (!sect_empty(&info->sechdrs[i]))
1497 nloaded++;
1498 size[0] = ALIGN(sizeof(*sect_attrs)
1499 + nloaded * sizeof(sect_attrs->attrs[0]),
1500 sizeof(sect_attrs->grp.attrs[0]));
1501 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1502 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1503 if (sect_attrs == NULL)
1504 return;
1505
1506 /* Setup section attributes. */
1507 sect_attrs->grp.name = "sections";
1508 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1509
1510 sect_attrs->nsections = 0;
1511 sattr = &sect_attrs->attrs[0];
1512 gattr = &sect_attrs->grp.attrs[0];
1513 for (i = 0; i < info->hdr->e_shnum; i++) {
1514 Elf_Shdr *sec = &info->sechdrs[i];
1515 if (sect_empty(sec))
1516 continue;
1517 sattr->address = sec->sh_addr;
1518 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1519 GFP_KERNEL);
1520 if (sattr->name == NULL)
1521 goto out;
1522 sect_attrs->nsections++;
1523 sysfs_attr_init(&sattr->mattr.attr);
1524 sattr->mattr.show = module_sect_show;
1525 sattr->mattr.store = NULL;
1526 sattr->mattr.attr.name = sattr->name;
1527 sattr->mattr.attr.mode = S_IRUSR;
1528 *(gattr++) = &(sattr++)->mattr.attr;
1529 }
1530 *gattr = NULL;
1531
1532 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1533 goto out;
1534
1535 mod->sect_attrs = sect_attrs;
1536 return;
1537 out:
1538 free_sect_attrs(sect_attrs);
1539 }
1540
1541 static void remove_sect_attrs(struct module *mod)
1542 {
1543 if (mod->sect_attrs) {
1544 sysfs_remove_group(&mod->mkobj.kobj,
1545 &mod->sect_attrs->grp);
1546 /* We are positive that no one is using any sect attrs
1547 * at this point. Deallocate immediately. */
1548 free_sect_attrs(mod->sect_attrs);
1549 mod->sect_attrs = NULL;
1550 }
1551 }
1552
1553 /*
1554 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1555 */
1556
1557 struct module_notes_attrs {
1558 struct kobject *dir;
1559 unsigned int notes;
1560 struct bin_attribute attrs[0];
1561 };
1562
1563 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1564 struct bin_attribute *bin_attr,
1565 char *buf, loff_t pos, size_t count)
1566 {
1567 /*
1568 * The caller checked the pos and count against our size.
1569 */
1570 memcpy(buf, bin_attr->private + pos, count);
1571 return count;
1572 }
1573
1574 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1575 unsigned int i)
1576 {
1577 if (notes_attrs->dir) {
1578 while (i-- > 0)
1579 sysfs_remove_bin_file(notes_attrs->dir,
1580 &notes_attrs->attrs[i]);
1581 kobject_put(notes_attrs->dir);
1582 }
1583 kfree(notes_attrs);
1584 }
1585
1586 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1587 {
1588 unsigned int notes, loaded, i;
1589 struct module_notes_attrs *notes_attrs;
1590 struct bin_attribute *nattr;
1591
1592 /* failed to create section attributes, so can't create notes */
1593 if (!mod->sect_attrs)
1594 return;
1595
1596 /* Count notes sections and allocate structures. */
1597 notes = 0;
1598 for (i = 0; i < info->hdr->e_shnum; i++)
1599 if (!sect_empty(&info->sechdrs[i]) &&
1600 (info->sechdrs[i].sh_type == SHT_NOTE))
1601 ++notes;
1602
1603 if (notes == 0)
1604 return;
1605
1606 notes_attrs = kzalloc(sizeof(*notes_attrs)
1607 + notes * sizeof(notes_attrs->attrs[0]),
1608 GFP_KERNEL);
1609 if (notes_attrs == NULL)
1610 return;
1611
1612 notes_attrs->notes = notes;
1613 nattr = &notes_attrs->attrs[0];
1614 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1615 if (sect_empty(&info->sechdrs[i]))
1616 continue;
1617 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1618 sysfs_bin_attr_init(nattr);
1619 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1620 nattr->attr.mode = S_IRUGO;
1621 nattr->size = info->sechdrs[i].sh_size;
1622 nattr->private = (void *) info->sechdrs[i].sh_addr;
1623 nattr->read = module_notes_read;
1624 ++nattr;
1625 }
1626 ++loaded;
1627 }
1628
1629 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1630 if (!notes_attrs->dir)
1631 goto out;
1632
1633 for (i = 0; i < notes; ++i)
1634 if (sysfs_create_bin_file(notes_attrs->dir,
1635 &notes_attrs->attrs[i]))
1636 goto out;
1637
1638 mod->notes_attrs = notes_attrs;
1639 return;
1640
1641 out:
1642 free_notes_attrs(notes_attrs, i);
1643 }
1644
1645 static void remove_notes_attrs(struct module *mod)
1646 {
1647 if (mod->notes_attrs)
1648 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1649 }
1650
1651 #else
1652
1653 static inline void add_sect_attrs(struct module *mod,
1654 const struct load_info *info)
1655 {
1656 }
1657
1658 static inline void remove_sect_attrs(struct module *mod)
1659 {
1660 }
1661
1662 static inline void add_notes_attrs(struct module *mod,
1663 const struct load_info *info)
1664 {
1665 }
1666
1667 static inline void remove_notes_attrs(struct module *mod)
1668 {
1669 }
1670 #endif /* CONFIG_KALLSYMS */
1671
1672 static void del_usage_links(struct module *mod)
1673 {
1674 #ifdef CONFIG_MODULE_UNLOAD
1675 struct module_use *use;
1676
1677 mutex_lock(&module_mutex);
1678 list_for_each_entry(use, &mod->target_list, target_list)
1679 sysfs_remove_link(use->target->holders_dir, mod->name);
1680 mutex_unlock(&module_mutex);
1681 #endif
1682 }
1683
1684 static int add_usage_links(struct module *mod)
1685 {
1686 int ret = 0;
1687 #ifdef CONFIG_MODULE_UNLOAD
1688 struct module_use *use;
1689
1690 mutex_lock(&module_mutex);
1691 list_for_each_entry(use, &mod->target_list, target_list) {
1692 ret = sysfs_create_link(use->target->holders_dir,
1693 &mod->mkobj.kobj, mod->name);
1694 if (ret)
1695 break;
1696 }
1697 mutex_unlock(&module_mutex);
1698 if (ret)
1699 del_usage_links(mod);
1700 #endif
1701 return ret;
1702 }
1703
1704 static int module_add_modinfo_attrs(struct module *mod)
1705 {
1706 struct module_attribute *attr;
1707 struct module_attribute *temp_attr;
1708 int error = 0;
1709 int i;
1710
1711 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1712 (ARRAY_SIZE(modinfo_attrs) + 1)),
1713 GFP_KERNEL);
1714 if (!mod->modinfo_attrs)
1715 return -ENOMEM;
1716
1717 temp_attr = mod->modinfo_attrs;
1718 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1719 if (!attr->test || attr->test(mod)) {
1720 memcpy(temp_attr, attr, sizeof(*temp_attr));
1721 sysfs_attr_init(&temp_attr->attr);
1722 error = sysfs_create_file(&mod->mkobj.kobj,
1723 &temp_attr->attr);
1724 ++temp_attr;
1725 }
1726 }
1727 return error;
1728 }
1729
1730 static void module_remove_modinfo_attrs(struct module *mod)
1731 {
1732 struct module_attribute *attr;
1733 int i;
1734
1735 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1736 /* pick a field to test for end of list */
1737 if (!attr->attr.name)
1738 break;
1739 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1740 if (attr->free)
1741 attr->free(mod);
1742 }
1743 kfree(mod->modinfo_attrs);
1744 }
1745
1746 static void mod_kobject_put(struct module *mod)
1747 {
1748 DECLARE_COMPLETION_ONSTACK(c);
1749 mod->mkobj.kobj_completion = &c;
1750 kobject_put(&mod->mkobj.kobj);
1751 wait_for_completion(&c);
1752 }
1753
1754 static int mod_sysfs_init(struct module *mod)
1755 {
1756 int err;
1757 struct kobject *kobj;
1758
1759 if (!module_sysfs_initialized) {
1760 pr_err("%s: module sysfs not initialized\n", mod->name);
1761 err = -EINVAL;
1762 goto out;
1763 }
1764
1765 kobj = kset_find_obj(module_kset, mod->name);
1766 if (kobj) {
1767 pr_err("%s: module is already loaded\n", mod->name);
1768 kobject_put(kobj);
1769 err = -EINVAL;
1770 goto out;
1771 }
1772
1773 mod->mkobj.mod = mod;
1774
1775 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1776 mod->mkobj.kobj.kset = module_kset;
1777 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1778 "%s", mod->name);
1779 if (err)
1780 mod_kobject_put(mod);
1781
1782 /* delay uevent until full sysfs population */
1783 out:
1784 return err;
1785 }
1786
1787 static int mod_sysfs_setup(struct module *mod,
1788 const struct load_info *info,
1789 struct kernel_param *kparam,
1790 unsigned int num_params)
1791 {
1792 int err;
1793
1794 err = mod_sysfs_init(mod);
1795 if (err)
1796 goto out;
1797
1798 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1799 if (!mod->holders_dir) {
1800 err = -ENOMEM;
1801 goto out_unreg;
1802 }
1803
1804 err = module_param_sysfs_setup(mod, kparam, num_params);
1805 if (err)
1806 goto out_unreg_holders;
1807
1808 err = module_add_modinfo_attrs(mod);
1809 if (err)
1810 goto out_unreg_param;
1811
1812 err = add_usage_links(mod);
1813 if (err)
1814 goto out_unreg_modinfo_attrs;
1815
1816 add_sect_attrs(mod, info);
1817 add_notes_attrs(mod, info);
1818
1819 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1820 return 0;
1821
1822 out_unreg_modinfo_attrs:
1823 module_remove_modinfo_attrs(mod);
1824 out_unreg_param:
1825 module_param_sysfs_remove(mod);
1826 out_unreg_holders:
1827 kobject_put(mod->holders_dir);
1828 out_unreg:
1829 mod_kobject_put(mod);
1830 out:
1831 return err;
1832 }
1833
1834 static void mod_sysfs_fini(struct module *mod)
1835 {
1836 remove_notes_attrs(mod);
1837 remove_sect_attrs(mod);
1838 mod_kobject_put(mod);
1839 }
1840
1841 static void init_param_lock(struct module *mod)
1842 {
1843 mutex_init(&mod->param_lock);
1844 }
1845 #else /* !CONFIG_SYSFS */
1846
1847 static int mod_sysfs_setup(struct module *mod,
1848 const struct load_info *info,
1849 struct kernel_param *kparam,
1850 unsigned int num_params)
1851 {
1852 return 0;
1853 }
1854
1855 static void mod_sysfs_fini(struct module *mod)
1856 {
1857 }
1858
1859 static void module_remove_modinfo_attrs(struct module *mod)
1860 {
1861 }
1862
1863 static void del_usage_links(struct module *mod)
1864 {
1865 }
1866
1867 static void init_param_lock(struct module *mod)
1868 {
1869 }
1870 #endif /* CONFIG_SYSFS */
1871
1872 static void mod_sysfs_teardown(struct module *mod)
1873 {
1874 del_usage_links(mod);
1875 module_remove_modinfo_attrs(mod);
1876 module_param_sysfs_remove(mod);
1877 kobject_put(mod->mkobj.drivers_dir);
1878 kobject_put(mod->holders_dir);
1879 mod_sysfs_fini(mod);
1880 }
1881
1882 #ifdef CONFIG_STRICT_MODULE_RWX
1883 /*
1884 * LKM RO/NX protection: protect module's text/ro-data
1885 * from modification and any data from execution.
1886 *
1887 * General layout of module is:
1888 * [text] [read-only-data] [ro-after-init] [writable data]
1889 * text_size -----^ ^ ^ ^
1890 * ro_size ------------------------| | |
1891 * ro_after_init_size -----------------------------| |
1892 * size -----------------------------------------------------------|
1893 *
1894 * These values are always page-aligned (as is base)
1895 */
1896 static void frob_text(const struct module_layout *layout,
1897 int (*set_memory)(unsigned long start, int num_pages))
1898 {
1899 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1900 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1901 set_memory((unsigned long)layout->base,
1902 layout->text_size >> PAGE_SHIFT);
1903 }
1904
1905 static void frob_rodata(const struct module_layout *layout,
1906 int (*set_memory)(unsigned long start, int num_pages))
1907 {
1908 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1909 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1910 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1911 set_memory((unsigned long)layout->base + layout->text_size,
1912 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1913 }
1914
1915 static void frob_ro_after_init(const struct module_layout *layout,
1916 int (*set_memory)(unsigned long start, int num_pages))
1917 {
1918 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1919 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1920 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1921 set_memory((unsigned long)layout->base + layout->ro_size,
1922 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1923 }
1924
1925 static void frob_writable_data(const struct module_layout *layout,
1926 int (*set_memory)(unsigned long start, int num_pages))
1927 {
1928 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1929 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1930 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1931 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1932 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1933 }
1934
1935 /* livepatching wants to disable read-only so it can frob module. */
1936 void module_disable_ro(const struct module *mod)
1937 {
1938 if (!rodata_enabled)
1939 return;
1940
1941 frob_text(&mod->core_layout, set_memory_rw);
1942 frob_rodata(&mod->core_layout, set_memory_rw);
1943 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1944 frob_text(&mod->init_layout, set_memory_rw);
1945 frob_rodata(&mod->init_layout, set_memory_rw);
1946 }
1947
1948 void module_enable_ro(const struct module *mod, bool after_init)
1949 {
1950 if (!rodata_enabled)
1951 return;
1952
1953 frob_text(&mod->core_layout, set_memory_ro);
1954 frob_rodata(&mod->core_layout, set_memory_ro);
1955 frob_text(&mod->init_layout, set_memory_ro);
1956 frob_rodata(&mod->init_layout, set_memory_ro);
1957
1958 if (after_init)
1959 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1960 }
1961
1962 static void module_enable_nx(const struct module *mod)
1963 {
1964 frob_rodata(&mod->core_layout, set_memory_nx);
1965 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1966 frob_writable_data(&mod->core_layout, set_memory_nx);
1967 frob_rodata(&mod->init_layout, set_memory_nx);
1968 frob_writable_data(&mod->init_layout, set_memory_nx);
1969 }
1970
1971 static void module_disable_nx(const struct module *mod)
1972 {
1973 frob_rodata(&mod->core_layout, set_memory_x);
1974 frob_ro_after_init(&mod->core_layout, set_memory_x);
1975 frob_writable_data(&mod->core_layout, set_memory_x);
1976 frob_rodata(&mod->init_layout, set_memory_x);
1977 frob_writable_data(&mod->init_layout, set_memory_x);
1978 }
1979
1980 /* Iterate through all modules and set each module's text as RW */
1981 void set_all_modules_text_rw(void)
1982 {
1983 struct module *mod;
1984
1985 if (!rodata_enabled)
1986 return;
1987
1988 mutex_lock(&module_mutex);
1989 list_for_each_entry_rcu(mod, &modules, list) {
1990 if (mod->state == MODULE_STATE_UNFORMED)
1991 continue;
1992
1993 frob_text(&mod->core_layout, set_memory_rw);
1994 frob_text(&mod->init_layout, set_memory_rw);
1995 }
1996 mutex_unlock(&module_mutex);
1997 }
1998
1999 /* Iterate through all modules and set each module's text as RO */
2000 void set_all_modules_text_ro(void)
2001 {
2002 struct module *mod;
2003
2004 if (!rodata_enabled)
2005 return;
2006
2007 mutex_lock(&module_mutex);
2008 list_for_each_entry_rcu(mod, &modules, list) {
2009 /*
2010 * Ignore going modules since it's possible that ro
2011 * protection has already been disabled, otherwise we'll
2012 * run into protection faults at module deallocation.
2013 */
2014 if (mod->state == MODULE_STATE_UNFORMED ||
2015 mod->state == MODULE_STATE_GOING)
2016 continue;
2017
2018 frob_text(&mod->core_layout, set_memory_ro);
2019 frob_text(&mod->init_layout, set_memory_ro);
2020 }
2021 mutex_unlock(&module_mutex);
2022 }
2023
2024 static void disable_ro_nx(const struct module_layout *layout)
2025 {
2026 if (rodata_enabled) {
2027 frob_text(layout, set_memory_rw);
2028 frob_rodata(layout, set_memory_rw);
2029 frob_ro_after_init(layout, set_memory_rw);
2030 }
2031 frob_rodata(layout, set_memory_x);
2032 frob_ro_after_init(layout, set_memory_x);
2033 frob_writable_data(layout, set_memory_x);
2034 }
2035
2036 #else
2037 static void disable_ro_nx(const struct module_layout *layout) { }
2038 static void module_enable_nx(const struct module *mod) { }
2039 static void module_disable_nx(const struct module *mod) { }
2040 #endif
2041
2042 #ifdef CONFIG_LIVEPATCH
2043 /*
2044 * Persist Elf information about a module. Copy the Elf header,
2045 * section header table, section string table, and symtab section
2046 * index from info to mod->klp_info.
2047 */
2048 static int copy_module_elf(struct module *mod, struct load_info *info)
2049 {
2050 unsigned int size, symndx;
2051 int ret;
2052
2053 size = sizeof(*mod->klp_info);
2054 mod->klp_info = kmalloc(size, GFP_KERNEL);
2055 if (mod->klp_info == NULL)
2056 return -ENOMEM;
2057
2058 /* Elf header */
2059 size = sizeof(mod->klp_info->hdr);
2060 memcpy(&mod->klp_info->hdr, info->hdr, size);
2061
2062 /* Elf section header table */
2063 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2064 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2065 if (mod->klp_info->sechdrs == NULL) {
2066 ret = -ENOMEM;
2067 goto free_info;
2068 }
2069 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2070
2071 /* Elf section name string table */
2072 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2073 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2074 if (mod->klp_info->secstrings == NULL) {
2075 ret = -ENOMEM;
2076 goto free_sechdrs;
2077 }
2078 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2079
2080 /* Elf symbol section index */
2081 symndx = info->index.sym;
2082 mod->klp_info->symndx = symndx;
2083
2084 /*
2085 * For livepatch modules, core_kallsyms.symtab is a complete
2086 * copy of the original symbol table. Adjust sh_addr to point
2087 * to core_kallsyms.symtab since the copy of the symtab in module
2088 * init memory is freed at the end of do_init_module().
2089 */
2090 mod->klp_info->sechdrs[symndx].sh_addr = \
2091 (unsigned long) mod->core_kallsyms.symtab;
2092
2093 return 0;
2094
2095 free_sechdrs:
2096 kfree(mod->klp_info->sechdrs);
2097 free_info:
2098 kfree(mod->klp_info);
2099 return ret;
2100 }
2101
2102 static void free_module_elf(struct module *mod)
2103 {
2104 kfree(mod->klp_info->sechdrs);
2105 kfree(mod->klp_info->secstrings);
2106 kfree(mod->klp_info);
2107 }
2108 #else /* !CONFIG_LIVEPATCH */
2109 static int copy_module_elf(struct module *mod, struct load_info *info)
2110 {
2111 return 0;
2112 }
2113
2114 static void free_module_elf(struct module *mod)
2115 {
2116 }
2117 #endif /* CONFIG_LIVEPATCH */
2118
2119 void __weak module_memfree(void *module_region)
2120 {
2121 vfree(module_region);
2122 }
2123
2124 void __weak module_arch_cleanup(struct module *mod)
2125 {
2126 }
2127
2128 void __weak module_arch_freeing_init(struct module *mod)
2129 {
2130 }
2131
2132 /* Free a module, remove from lists, etc. */
2133 static void free_module(struct module *mod)
2134 {
2135 trace_module_free(mod);
2136
2137 mod_sysfs_teardown(mod);
2138
2139 /* We leave it in list to prevent duplicate loads, but make sure
2140 * that noone uses it while it's being deconstructed. */
2141 mutex_lock(&module_mutex);
2142 mod->state = MODULE_STATE_UNFORMED;
2143 mutex_unlock(&module_mutex);
2144
2145 /* Remove dynamic debug info */
2146 ddebug_remove_module(mod->name);
2147
2148 /* Arch-specific cleanup. */
2149 module_arch_cleanup(mod);
2150
2151 /* Module unload stuff */
2152 module_unload_free(mod);
2153
2154 /* Free any allocated parameters. */
2155 destroy_params(mod->kp, mod->num_kp);
2156
2157 if (is_livepatch_module(mod))
2158 free_module_elf(mod);
2159
2160 /* Now we can delete it from the lists */
2161 mutex_lock(&module_mutex);
2162 /* Unlink carefully: kallsyms could be walking list. */
2163 list_del_rcu(&mod->list);
2164 mod_tree_remove(mod);
2165 /* Remove this module from bug list, this uses list_del_rcu */
2166 module_bug_cleanup(mod);
2167 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2168 synchronize_sched();
2169 mutex_unlock(&module_mutex);
2170
2171 /* This may be empty, but that's OK */
2172 disable_ro_nx(&mod->init_layout);
2173 module_arch_freeing_init(mod);
2174 module_memfree(mod->init_layout.base);
2175 kfree(mod->args);
2176 percpu_modfree(mod);
2177
2178 /* Free lock-classes; relies on the preceding sync_rcu(). */
2179 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2180
2181 /* Finally, free the core (containing the module structure) */
2182 disable_ro_nx(&mod->core_layout);
2183 module_memfree(mod->core_layout.base);
2184
2185 #ifdef CONFIG_MPU
2186 update_protections(current->mm);
2187 #endif
2188 }
2189
2190 void *__symbol_get(const char *symbol)
2191 {
2192 struct module *owner;
2193 const struct kernel_symbol *sym;
2194
2195 preempt_disable();
2196 sym = find_symbol(symbol, &owner, NULL, true, true);
2197 if (sym && strong_try_module_get(owner))
2198 sym = NULL;
2199 preempt_enable();
2200
2201 return sym ? (void *)sym->value : NULL;
2202 }
2203 EXPORT_SYMBOL_GPL(__symbol_get);
2204
2205 /*
2206 * Ensure that an exported symbol [global namespace] does not already exist
2207 * in the kernel or in some other module's exported symbol table.
2208 *
2209 * You must hold the module_mutex.
2210 */
2211 static int verify_export_symbols(struct module *mod)
2212 {
2213 unsigned int i;
2214 struct module *owner;
2215 const struct kernel_symbol *s;
2216 struct {
2217 const struct kernel_symbol *sym;
2218 unsigned int num;
2219 } arr[] = {
2220 { mod->syms, mod->num_syms },
2221 { mod->gpl_syms, mod->num_gpl_syms },
2222 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2223 #ifdef CONFIG_UNUSED_SYMBOLS
2224 { mod->unused_syms, mod->num_unused_syms },
2225 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2226 #endif
2227 };
2228
2229 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2230 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2231 if (find_symbol(s->name, &owner, NULL, true, false)) {
2232 pr_err("%s: exports duplicate symbol %s"
2233 " (owned by %s)\n",
2234 mod->name, s->name, module_name(owner));
2235 return -ENOEXEC;
2236 }
2237 }
2238 }
2239 return 0;
2240 }
2241
2242 /* Change all symbols so that st_value encodes the pointer directly. */
2243 static int simplify_symbols(struct module *mod, const struct load_info *info)
2244 {
2245 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2246 Elf_Sym *sym = (void *)symsec->sh_addr;
2247 unsigned long secbase;
2248 unsigned int i;
2249 int ret = 0;
2250 const struct kernel_symbol *ksym;
2251
2252 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2253 const char *name = info->strtab + sym[i].st_name;
2254
2255 switch (sym[i].st_shndx) {
2256 case SHN_COMMON:
2257 /* Ignore common symbols */
2258 if (!strncmp(name, "__gnu_lto", 9))
2259 break;
2260
2261 /* We compiled with -fno-common. These are not
2262 supposed to happen. */
2263 pr_debug("Common symbol: %s\n", name);
2264 pr_warn("%s: please compile with -fno-common\n",
2265 mod->name);
2266 ret = -ENOEXEC;
2267 break;
2268
2269 case SHN_ABS:
2270 /* Don't need to do anything */
2271 pr_debug("Absolute symbol: 0x%08lx\n",
2272 (long)sym[i].st_value);
2273 break;
2274
2275 case SHN_LIVEPATCH:
2276 /* Livepatch symbols are resolved by livepatch */
2277 break;
2278
2279 case SHN_UNDEF:
2280 ksym = resolve_symbol_wait(mod, info, name);
2281 /* Ok if resolved. */
2282 if (ksym && !IS_ERR(ksym)) {
2283 sym[i].st_value = ksym->value;
2284 break;
2285 }
2286
2287 /* Ok if weak. */
2288 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2289 break;
2290
2291 pr_warn("%s: Unknown symbol %s (err %li)\n",
2292 mod->name, name, PTR_ERR(ksym));
2293 ret = PTR_ERR(ksym) ?: -ENOENT;
2294 break;
2295
2296 default:
2297 /* Divert to percpu allocation if a percpu var. */
2298 if (sym[i].st_shndx == info->index.pcpu)
2299 secbase = (unsigned long)mod_percpu(mod);
2300 else
2301 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2302 sym[i].st_value += secbase;
2303 break;
2304 }
2305 }
2306
2307 return ret;
2308 }
2309
2310 static int apply_relocations(struct module *mod, const struct load_info *info)
2311 {
2312 unsigned int i;
2313 int err = 0;
2314
2315 /* Now do relocations. */
2316 for (i = 1; i < info->hdr->e_shnum; i++) {
2317 unsigned int infosec = info->sechdrs[i].sh_info;
2318
2319 /* Not a valid relocation section? */
2320 if (infosec >= info->hdr->e_shnum)
2321 continue;
2322
2323 /* Don't bother with non-allocated sections */
2324 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2325 continue;
2326
2327 /* Livepatch relocation sections are applied by livepatch */
2328 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2329 continue;
2330
2331 if (info->sechdrs[i].sh_type == SHT_REL)
2332 err = apply_relocate(info->sechdrs, info->strtab,
2333 info->index.sym, i, mod);
2334 else if (info->sechdrs[i].sh_type == SHT_RELA)
2335 err = apply_relocate_add(info->sechdrs, info->strtab,
2336 info->index.sym, i, mod);
2337 if (err < 0)
2338 break;
2339 }
2340 return err;
2341 }
2342
2343 /* Additional bytes needed by arch in front of individual sections */
2344 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2345 unsigned int section)
2346 {
2347 /* default implementation just returns zero */
2348 return 0;
2349 }
2350
2351 /* Update size with this section: return offset. */
2352 static long get_offset(struct module *mod, unsigned int *size,
2353 Elf_Shdr *sechdr, unsigned int section)
2354 {
2355 long ret;
2356
2357 *size += arch_mod_section_prepend(mod, section);
2358 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2359 *size = ret + sechdr->sh_size;
2360 return ret;
2361 }
2362
2363 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2364 might -- code, read-only data, read-write data, small data. Tally
2365 sizes, and place the offsets into sh_entsize fields: high bit means it
2366 belongs in init. */
2367 static void layout_sections(struct module *mod, struct load_info *info)
2368 {
2369 static unsigned long const masks[][2] = {
2370 /* NOTE: all executable code must be the first section
2371 * in this array; otherwise modify the text_size
2372 * finder in the two loops below */
2373 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2374 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2375 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2376 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2377 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2378 };
2379 unsigned int m, i;
2380
2381 for (i = 0; i < info->hdr->e_shnum; i++)
2382 info->sechdrs[i].sh_entsize = ~0UL;
2383
2384 pr_debug("Core section allocation order:\n");
2385 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2386 for (i = 0; i < info->hdr->e_shnum; ++i) {
2387 Elf_Shdr *s = &info->sechdrs[i];
2388 const char *sname = info->secstrings + s->sh_name;
2389
2390 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2391 || (s->sh_flags & masks[m][1])
2392 || s->sh_entsize != ~0UL
2393 || strstarts(sname, ".init"))
2394 continue;
2395 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2396 pr_debug("\t%s\n", sname);
2397 }
2398 switch (m) {
2399 case 0: /* executable */
2400 mod->core_layout.size = debug_align(mod->core_layout.size);
2401 mod->core_layout.text_size = mod->core_layout.size;
2402 break;
2403 case 1: /* RO: text and ro-data */
2404 mod->core_layout.size = debug_align(mod->core_layout.size);
2405 mod->core_layout.ro_size = mod->core_layout.size;
2406 break;
2407 case 2: /* RO after init */
2408 mod->core_layout.size = debug_align(mod->core_layout.size);
2409 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2410 break;
2411 case 4: /* whole core */
2412 mod->core_layout.size = debug_align(mod->core_layout.size);
2413 break;
2414 }
2415 }
2416
2417 pr_debug("Init section allocation order:\n");
2418 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2419 for (i = 0; i < info->hdr->e_shnum; ++i) {
2420 Elf_Shdr *s = &info->sechdrs[i];
2421 const char *sname = info->secstrings + s->sh_name;
2422
2423 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2424 || (s->sh_flags & masks[m][1])
2425 || s->sh_entsize != ~0UL
2426 || !strstarts(sname, ".init"))
2427 continue;
2428 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2429 | INIT_OFFSET_MASK);
2430 pr_debug("\t%s\n", sname);
2431 }
2432 switch (m) {
2433 case 0: /* executable */
2434 mod->init_layout.size = debug_align(mod->init_layout.size);
2435 mod->init_layout.text_size = mod->init_layout.size;
2436 break;
2437 case 1: /* RO: text and ro-data */
2438 mod->init_layout.size = debug_align(mod->init_layout.size);
2439 mod->init_layout.ro_size = mod->init_layout.size;
2440 break;
2441 case 2:
2442 /*
2443 * RO after init doesn't apply to init_layout (only
2444 * core_layout), so it just takes the value of ro_size.
2445 */
2446 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2447 break;
2448 case 4: /* whole init */
2449 mod->init_layout.size = debug_align(mod->init_layout.size);
2450 break;
2451 }
2452 }
2453 }
2454
2455 static void set_license(struct module *mod, const char *license)
2456 {
2457 if (!license)
2458 license = "unspecified";
2459
2460 if (!license_is_gpl_compatible(license)) {
2461 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2462 pr_warn("%s: module license '%s' taints kernel.\n",
2463 mod->name, license);
2464 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2465 LOCKDEP_NOW_UNRELIABLE);
2466 }
2467 }
2468
2469 /* Parse tag=value strings from .modinfo section */
2470 static char *next_string(char *string, unsigned long *secsize)
2471 {
2472 /* Skip non-zero chars */
2473 while (string[0]) {
2474 string++;
2475 if ((*secsize)-- <= 1)
2476 return NULL;
2477 }
2478
2479 /* Skip any zero padding. */
2480 while (!string[0]) {
2481 string++;
2482 if ((*secsize)-- <= 1)
2483 return NULL;
2484 }
2485 return string;
2486 }
2487
2488 static char *get_modinfo(struct load_info *info, const char *tag)
2489 {
2490 char *p;
2491 unsigned int taglen = strlen(tag);
2492 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2493 unsigned long size = infosec->sh_size;
2494
2495 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2496 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2497 return p + taglen + 1;
2498 }
2499 return NULL;
2500 }
2501
2502 static void setup_modinfo(struct module *mod, struct load_info *info)
2503 {
2504 struct module_attribute *attr;
2505 int i;
2506
2507 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2508 if (attr->setup)
2509 attr->setup(mod, get_modinfo(info, attr->attr.name));
2510 }
2511 }
2512
2513 static void free_modinfo(struct module *mod)
2514 {
2515 struct module_attribute *attr;
2516 int i;
2517
2518 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2519 if (attr->free)
2520 attr->free(mod);
2521 }
2522 }
2523
2524 #ifdef CONFIG_KALLSYMS
2525
2526 /* lookup symbol in given range of kernel_symbols */
2527 static const struct kernel_symbol *lookup_symbol(const char *name,
2528 const struct kernel_symbol *start,
2529 const struct kernel_symbol *stop)
2530 {
2531 return bsearch(name, start, stop - start,
2532 sizeof(struct kernel_symbol), cmp_name);
2533 }
2534
2535 static int is_exported(const char *name, unsigned long value,
2536 const struct module *mod)
2537 {
2538 const struct kernel_symbol *ks;
2539 if (!mod)
2540 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2541 else
2542 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2543 return ks != NULL && ks->value == value;
2544 }
2545
2546 /* As per nm */
2547 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2548 {
2549 const Elf_Shdr *sechdrs = info->sechdrs;
2550
2551 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2552 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2553 return 'v';
2554 else
2555 return 'w';
2556 }
2557 if (sym->st_shndx == SHN_UNDEF)
2558 return 'U';
2559 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2560 return 'a';
2561 if (sym->st_shndx >= SHN_LORESERVE)
2562 return '?';
2563 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2564 return 't';
2565 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2566 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2567 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2568 return 'r';
2569 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2570 return 'g';
2571 else
2572 return 'd';
2573 }
2574 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2575 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2576 return 's';
2577 else
2578 return 'b';
2579 }
2580 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2581 ".debug")) {
2582 return 'n';
2583 }
2584 return '?';
2585 }
2586
2587 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2588 unsigned int shnum, unsigned int pcpundx)
2589 {
2590 const Elf_Shdr *sec;
2591
2592 if (src->st_shndx == SHN_UNDEF
2593 || src->st_shndx >= shnum
2594 || !src->st_name)
2595 return false;
2596
2597 #ifdef CONFIG_KALLSYMS_ALL
2598 if (src->st_shndx == pcpundx)
2599 return true;
2600 #endif
2601
2602 sec = sechdrs + src->st_shndx;
2603 if (!(sec->sh_flags & SHF_ALLOC)
2604 #ifndef CONFIG_KALLSYMS_ALL
2605 || !(sec->sh_flags & SHF_EXECINSTR)
2606 #endif
2607 || (sec->sh_entsize & INIT_OFFSET_MASK))
2608 return false;
2609
2610 return true;
2611 }
2612
2613 /*
2614 * We only allocate and copy the strings needed by the parts of symtab
2615 * we keep. This is simple, but has the effect of making multiple
2616 * copies of duplicates. We could be more sophisticated, see
2617 * linux-kernel thread starting with
2618 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2619 */
2620 static void layout_symtab(struct module *mod, struct load_info *info)
2621 {
2622 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2623 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2624 const Elf_Sym *src;
2625 unsigned int i, nsrc, ndst, strtab_size = 0;
2626
2627 /* Put symbol section at end of init part of module. */
2628 symsect->sh_flags |= SHF_ALLOC;
2629 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2630 info->index.sym) | INIT_OFFSET_MASK;
2631 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2632
2633 src = (void *)info->hdr + symsect->sh_offset;
2634 nsrc = symsect->sh_size / sizeof(*src);
2635
2636 /* Compute total space required for the core symbols' strtab. */
2637 for (ndst = i = 0; i < nsrc; i++) {
2638 if (i == 0 || is_livepatch_module(mod) ||
2639 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2640 info->index.pcpu)) {
2641 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2642 ndst++;
2643 }
2644 }
2645
2646 /* Append room for core symbols at end of core part. */
2647 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2648 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2649 mod->core_layout.size += strtab_size;
2650 mod->core_layout.size = debug_align(mod->core_layout.size);
2651
2652 /* Put string table section at end of init part of module. */
2653 strsect->sh_flags |= SHF_ALLOC;
2654 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2655 info->index.str) | INIT_OFFSET_MASK;
2656 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2657
2658 /* We'll tack temporary mod_kallsyms on the end. */
2659 mod->init_layout.size = ALIGN(mod->init_layout.size,
2660 __alignof__(struct mod_kallsyms));
2661 info->mod_kallsyms_init_off = mod->init_layout.size;
2662 mod->init_layout.size += sizeof(struct mod_kallsyms);
2663 mod->init_layout.size = debug_align(mod->init_layout.size);
2664 }
2665
2666 /*
2667 * We use the full symtab and strtab which layout_symtab arranged to
2668 * be appended to the init section. Later we switch to the cut-down
2669 * core-only ones.
2670 */
2671 static void add_kallsyms(struct module *mod, const struct load_info *info)
2672 {
2673 unsigned int i, ndst;
2674 const Elf_Sym *src;
2675 Elf_Sym *dst;
2676 char *s;
2677 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2678
2679 /* Set up to point into init section. */
2680 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2681
2682 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2683 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2684 /* Make sure we get permanent strtab: don't use info->strtab. */
2685 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2686
2687 /* Set types up while we still have access to sections. */
2688 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2689 mod->kallsyms->symtab[i].st_info
2690 = elf_type(&mod->kallsyms->symtab[i], info);
2691
2692 /* Now populate the cut down core kallsyms for after init. */
2693 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2694 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2695 src = mod->kallsyms->symtab;
2696 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2697 if (i == 0 || is_livepatch_module(mod) ||
2698 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2699 info->index.pcpu)) {
2700 dst[ndst] = src[i];
2701 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2702 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2703 KSYM_NAME_LEN) + 1;
2704 }
2705 }
2706 mod->core_kallsyms.num_symtab = ndst;
2707 }
2708 #else
2709 static inline void layout_symtab(struct module *mod, struct load_info *info)
2710 {
2711 }
2712
2713 static void add_kallsyms(struct module *mod, const struct load_info *info)
2714 {
2715 }
2716 #endif /* CONFIG_KALLSYMS */
2717
2718 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2719 {
2720 if (!debug)
2721 return;
2722 #ifdef CONFIG_DYNAMIC_DEBUG
2723 if (ddebug_add_module(debug, num, mod->name))
2724 pr_err("dynamic debug error adding module: %s\n",
2725 debug->modname);
2726 #endif
2727 }
2728
2729 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2730 {
2731 if (debug)
2732 ddebug_remove_module(mod->name);
2733 }
2734
2735 void * __weak module_alloc(unsigned long size)
2736 {
2737 return vmalloc_exec(size);
2738 }
2739
2740 #ifdef CONFIG_DEBUG_KMEMLEAK
2741 static void kmemleak_load_module(const struct module *mod,
2742 const struct load_info *info)
2743 {
2744 unsigned int i;
2745
2746 /* only scan the sections containing data */
2747 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2748
2749 for (i = 1; i < info->hdr->e_shnum; i++) {
2750 /* Scan all writable sections that's not executable */
2751 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2752 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2753 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2754 continue;
2755
2756 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2757 info->sechdrs[i].sh_size, GFP_KERNEL);
2758 }
2759 }
2760 #else
2761 static inline void kmemleak_load_module(const struct module *mod,
2762 const struct load_info *info)
2763 {
2764 }
2765 #endif
2766
2767 #ifdef CONFIG_MODULE_SIG
2768 static int module_sig_check(struct load_info *info, int flags)
2769 {
2770 int err = -ENOKEY;
2771 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2772 const void *mod = info->hdr;
2773
2774 /*
2775 * Require flags == 0, as a module with version information
2776 * removed is no longer the module that was signed
2777 */
2778 if (flags == 0 &&
2779 info->len > markerlen &&
2780 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2781 /* We truncate the module to discard the signature */
2782 info->len -= markerlen;
2783 err = mod_verify_sig(mod, &info->len);
2784 }
2785
2786 if (!err) {
2787 info->sig_ok = true;
2788 return 0;
2789 }
2790
2791 /* Not having a signature is only an error if we're strict. */
2792 if (err == -ENOKEY && !sig_enforce)
2793 err = 0;
2794
2795 return err;
2796 }
2797 #else /* !CONFIG_MODULE_SIG */
2798 static int module_sig_check(struct load_info *info, int flags)
2799 {
2800 return 0;
2801 }
2802 #endif /* !CONFIG_MODULE_SIG */
2803
2804 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2805 static int elf_header_check(struct load_info *info)
2806 {
2807 if (info->len < sizeof(*(info->hdr)))
2808 return -ENOEXEC;
2809
2810 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2811 || info->hdr->e_type != ET_REL
2812 || !elf_check_arch(info->hdr)
2813 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2814 return -ENOEXEC;
2815
2816 if (info->hdr->e_shoff >= info->len
2817 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2818 info->len - info->hdr->e_shoff))
2819 return -ENOEXEC;
2820
2821 return 0;
2822 }
2823
2824 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2825
2826 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2827 {
2828 do {
2829 unsigned long n = min(len, COPY_CHUNK_SIZE);
2830
2831 if (copy_from_user(dst, usrc, n) != 0)
2832 return -EFAULT;
2833 cond_resched();
2834 dst += n;
2835 usrc += n;
2836 len -= n;
2837 } while (len);
2838 return 0;
2839 }
2840
2841 #ifdef CONFIG_LIVEPATCH
2842 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2843 {
2844 if (get_modinfo(info, "livepatch")) {
2845 mod->klp = true;
2846 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2847 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2848 mod->name);
2849 }
2850
2851 return 0;
2852 }
2853 #else /* !CONFIG_LIVEPATCH */
2854 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2855 {
2856 if (get_modinfo(info, "livepatch")) {
2857 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2858 mod->name);
2859 return -ENOEXEC;
2860 }
2861
2862 return 0;
2863 }
2864 #endif /* CONFIG_LIVEPATCH */
2865
2866 /* Sets info->hdr and info->len. */
2867 static int copy_module_from_user(const void __user *umod, unsigned long len,
2868 struct load_info *info)
2869 {
2870 int err;
2871
2872 info->len = len;
2873 if (info->len < sizeof(*(info->hdr)))
2874 return -ENOEXEC;
2875
2876 err = security_kernel_read_file(NULL, READING_MODULE);
2877 if (err)
2878 return err;
2879
2880 /* Suck in entire file: we'll want most of it. */
2881 info->hdr = __vmalloc(info->len,
2882 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2883 if (!info->hdr)
2884 return -ENOMEM;
2885
2886 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2887 vfree(info->hdr);
2888 return -EFAULT;
2889 }
2890
2891 return 0;
2892 }
2893
2894 static void free_copy(struct load_info *info)
2895 {
2896 vfree(info->hdr);
2897 }
2898
2899 static int rewrite_section_headers(struct load_info *info, int flags)
2900 {
2901 unsigned int i;
2902
2903 /* This should always be true, but let's be sure. */
2904 info->sechdrs[0].sh_addr = 0;
2905
2906 for (i = 1; i < info->hdr->e_shnum; i++) {
2907 Elf_Shdr *shdr = &info->sechdrs[i];
2908 if (shdr->sh_type != SHT_NOBITS
2909 && info->len < shdr->sh_offset + shdr->sh_size) {
2910 pr_err("Module len %lu truncated\n", info->len);
2911 return -ENOEXEC;
2912 }
2913
2914 /* Mark all sections sh_addr with their address in the
2915 temporary image. */
2916 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2917
2918 #ifndef CONFIG_MODULE_UNLOAD
2919 /* Don't load .exit sections */
2920 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2921 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2922 #endif
2923 }
2924
2925 /* Track but don't keep modinfo and version sections. */
2926 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2927 info->index.vers = 0; /* Pretend no __versions section! */
2928 else
2929 info->index.vers = find_sec(info, "__versions");
2930 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2931
2932 info->index.info = find_sec(info, ".modinfo");
2933 if (!info->index.info)
2934 info->name = "(missing .modinfo section)";
2935 else
2936 info->name = get_modinfo(info, "name");
2937 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2938
2939 return 0;
2940 }
2941
2942 /*
2943 * Set up our basic convenience variables (pointers to section headers,
2944 * search for module section index etc), and do some basic section
2945 * verification.
2946 *
2947 * Return the temporary module pointer (we'll replace it with the final
2948 * one when we move the module sections around).
2949 */
2950 static struct module *setup_load_info(struct load_info *info, int flags)
2951 {
2952 unsigned int i;
2953 int err;
2954 struct module *mod;
2955
2956 /* Set up the convenience variables */
2957 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2958 info->secstrings = (void *)info->hdr
2959 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2960
2961 err = rewrite_section_headers(info, flags);
2962 if (err)
2963 return ERR_PTR(err);
2964
2965 /* Find internal symbols and strings. */
2966 for (i = 1; i < info->hdr->e_shnum; i++) {
2967 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2968 info->index.sym = i;
2969 info->index.str = info->sechdrs[i].sh_link;
2970 info->strtab = (char *)info->hdr
2971 + info->sechdrs[info->index.str].sh_offset;
2972 break;
2973 }
2974 }
2975
2976 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2977 if (!info->index.mod) {
2978 pr_warn("%s: No module found in object\n",
2979 info->name ?: "(missing .modinfo name field)");
2980 return ERR_PTR(-ENOEXEC);
2981 }
2982 /* This is temporary: point mod into copy of data. */
2983 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2984
2985 /*
2986 * If we didn't load the .modinfo 'name' field, fall back to
2987 * on-disk struct mod 'name' field.
2988 */
2989 if (!info->name)
2990 info->name = mod->name;
2991
2992 if (info->index.sym == 0) {
2993 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2994 return ERR_PTR(-ENOEXEC);
2995 }
2996
2997 info->index.pcpu = find_pcpusec(info);
2998
2999 /* Check module struct version now, before we try to use module. */
3000 if (!check_modstruct_version(info, mod))
3001 return ERR_PTR(-ENOEXEC);
3002
3003 return mod;
3004 }
3005
3006 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3007 {
3008 const char *modmagic = get_modinfo(info, "vermagic");
3009 int err;
3010
3011 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3012 modmagic = NULL;
3013
3014 /* This is allowed: modprobe --force will invalidate it. */
3015 if (!modmagic) {
3016 err = try_to_force_load(mod, "bad vermagic");
3017 if (err)
3018 return err;
3019 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3020 pr_err("%s: version magic '%s' should be '%s'\n",
3021 info->name, modmagic, vermagic);
3022 return -ENOEXEC;
3023 }
3024
3025 if (!get_modinfo(info, "intree")) {
3026 if (!test_taint(TAINT_OOT_MODULE))
3027 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3028 mod->name);
3029 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3030 }
3031
3032 if (get_modinfo(info, "staging")) {
3033 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3034 pr_warn("%s: module is from the staging directory, the quality "
3035 "is unknown, you have been warned.\n", mod->name);
3036 }
3037
3038 err = check_modinfo_livepatch(mod, info);
3039 if (err)
3040 return err;
3041
3042 /* Set up license info based on the info section */
3043 set_license(mod, get_modinfo(info, "license"));
3044
3045 return 0;
3046 }
3047
3048 static int find_module_sections(struct module *mod, struct load_info *info)
3049 {
3050 mod->kp = section_objs(info, "__param",
3051 sizeof(*mod->kp), &mod->num_kp);
3052 mod->syms = section_objs(info, "__ksymtab",
3053 sizeof(*mod->syms), &mod->num_syms);
3054 mod->crcs = section_addr(info, "__kcrctab");
3055 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3056 sizeof(*mod->gpl_syms),
3057 &mod->num_gpl_syms);
3058 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3059 mod->gpl_future_syms = section_objs(info,
3060 "__ksymtab_gpl_future",
3061 sizeof(*mod->gpl_future_syms),
3062 &mod->num_gpl_future_syms);
3063 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3064
3065 #ifdef CONFIG_UNUSED_SYMBOLS
3066 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3067 sizeof(*mod->unused_syms),
3068 &mod->num_unused_syms);
3069 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3070 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3071 sizeof(*mod->unused_gpl_syms),
3072 &mod->num_unused_gpl_syms);
3073 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3074 #endif
3075 #ifdef CONFIG_CONSTRUCTORS
3076 mod->ctors = section_objs(info, ".ctors",
3077 sizeof(*mod->ctors), &mod->num_ctors);
3078 if (!mod->ctors)
3079 mod->ctors = section_objs(info, ".init_array",
3080 sizeof(*mod->ctors), &mod->num_ctors);
3081 else if (find_sec(info, ".init_array")) {
3082 /*
3083 * This shouldn't happen with same compiler and binutils
3084 * building all parts of the module.
3085 */
3086 pr_warn("%s: has both .ctors and .init_array.\n",
3087 mod->name);
3088 return -EINVAL;
3089 }
3090 #endif
3091
3092 #ifdef CONFIG_TRACEPOINTS
3093 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3094 sizeof(*mod->tracepoints_ptrs),
3095 &mod->num_tracepoints);
3096 #endif
3097 #ifdef HAVE_JUMP_LABEL
3098 mod->jump_entries = section_objs(info, "__jump_table",
3099 sizeof(*mod->jump_entries),
3100 &mod->num_jump_entries);
3101 #endif
3102 #ifdef CONFIG_EVENT_TRACING
3103 mod->trace_events = section_objs(info, "_ftrace_events",
3104 sizeof(*mod->trace_events),
3105 &mod->num_trace_events);
3106 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3107 sizeof(*mod->trace_evals),
3108 &mod->num_trace_evals);
3109 #endif
3110 #ifdef CONFIG_TRACING
3111 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3112 sizeof(*mod->trace_bprintk_fmt_start),
3113 &mod->num_trace_bprintk_fmt);
3114 #endif
3115 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3116 /* sechdrs[0].sh_size is always zero */
3117 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3118 sizeof(*mod->ftrace_callsites),
3119 &mod->num_ftrace_callsites);
3120 #endif
3121
3122 mod->extable = section_objs(info, "__ex_table",
3123 sizeof(*mod->extable), &mod->num_exentries);
3124
3125 if (section_addr(info, "__obsparm"))
3126 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3127
3128 info->debug = section_objs(info, "__verbose",
3129 sizeof(*info->debug), &info->num_debug);
3130
3131 return 0;
3132 }
3133
3134 static int move_module(struct module *mod, struct load_info *info)
3135 {
3136 int i;
3137 void *ptr;
3138
3139 /* Do the allocs. */
3140 ptr = module_alloc(mod->core_layout.size);
3141 /*
3142 * The pointer to this block is stored in the module structure
3143 * which is inside the block. Just mark it as not being a
3144 * leak.
3145 */
3146 kmemleak_not_leak(ptr);
3147 if (!ptr)
3148 return -ENOMEM;
3149
3150 memset(ptr, 0, mod->core_layout.size);
3151 mod->core_layout.base = ptr;
3152
3153 if (mod->init_layout.size) {
3154 ptr = module_alloc(mod->init_layout.size);
3155 /*
3156 * The pointer to this block is stored in the module structure
3157 * which is inside the block. This block doesn't need to be
3158 * scanned as it contains data and code that will be freed
3159 * after the module is initialized.
3160 */
3161 kmemleak_ignore(ptr);
3162 if (!ptr) {
3163 module_memfree(mod->core_layout.base);
3164 return -ENOMEM;
3165 }
3166 memset(ptr, 0, mod->init_layout.size);
3167 mod->init_layout.base = ptr;
3168 } else
3169 mod->init_layout.base = NULL;
3170
3171 /* Transfer each section which specifies SHF_ALLOC */
3172 pr_debug("final section addresses:\n");
3173 for (i = 0; i < info->hdr->e_shnum; i++) {
3174 void *dest;
3175 Elf_Shdr *shdr = &info->sechdrs[i];
3176
3177 if (!(shdr->sh_flags & SHF_ALLOC))
3178 continue;
3179
3180 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3181 dest = mod->init_layout.base
3182 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3183 else
3184 dest = mod->core_layout.base + shdr->sh_entsize;
3185
3186 if (shdr->sh_type != SHT_NOBITS)
3187 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3188 /* Update sh_addr to point to copy in image. */
3189 shdr->sh_addr = (unsigned long)dest;
3190 pr_debug("\t0x%lx %s\n",
3191 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3192 }
3193
3194 return 0;
3195 }
3196
3197 static int check_module_license_and_versions(struct module *mod)
3198 {
3199 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3200
3201 /*
3202 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3203 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3204 * using GPL-only symbols it needs.
3205 */
3206 if (strcmp(mod->name, "ndiswrapper") == 0)
3207 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3208
3209 /* driverloader was caught wrongly pretending to be under GPL */
3210 if (strcmp(mod->name, "driverloader") == 0)
3211 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3212 LOCKDEP_NOW_UNRELIABLE);
3213
3214 /* lve claims to be GPL but upstream won't provide source */
3215 if (strcmp(mod->name, "lve") == 0)
3216 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3217 LOCKDEP_NOW_UNRELIABLE);
3218
3219 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3220 pr_warn("%s: module license taints kernel.\n", mod->name);
3221
3222 #ifdef CONFIG_MODVERSIONS
3223 if ((mod->num_syms && !mod->crcs)
3224 || (mod->num_gpl_syms && !mod->gpl_crcs)
3225 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3226 #ifdef CONFIG_UNUSED_SYMBOLS
3227 || (mod->num_unused_syms && !mod->unused_crcs)
3228 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3229 #endif
3230 ) {
3231 return try_to_force_load(mod,
3232 "no versions for exported symbols");
3233 }
3234 #endif
3235 return 0;
3236 }
3237
3238 static void flush_module_icache(const struct module *mod)
3239 {
3240 mm_segment_t old_fs;
3241
3242 /* flush the icache in correct context */
3243 old_fs = get_fs();
3244 set_fs(KERNEL_DS);
3245
3246 /*
3247 * Flush the instruction cache, since we've played with text.
3248 * Do it before processing of module parameters, so the module
3249 * can provide parameter accessor functions of its own.
3250 */
3251 if (mod->init_layout.base)
3252 flush_icache_range((unsigned long)mod->init_layout.base,
3253 (unsigned long)mod->init_layout.base
3254 + mod->init_layout.size);
3255 flush_icache_range((unsigned long)mod->core_layout.base,
3256 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3257
3258 set_fs(old_fs);
3259 }
3260
3261 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3262 Elf_Shdr *sechdrs,
3263 char *secstrings,
3264 struct module *mod)
3265 {
3266 return 0;
3267 }
3268
3269 /* module_blacklist is a comma-separated list of module names */
3270 static char *module_blacklist;
3271 static bool blacklisted(const char *module_name)
3272 {
3273 const char *p;
3274 size_t len;
3275
3276 if (!module_blacklist)
3277 return false;
3278
3279 for (p = module_blacklist; *p; p += len) {
3280 len = strcspn(p, ",");
3281 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3282 return true;
3283 if (p[len] == ',')
3284 len++;
3285 }
3286 return false;
3287 }
3288 core_param(module_blacklist, module_blacklist, charp, 0400);
3289
3290 static struct module *layout_and_allocate(struct load_info *info, int flags)
3291 {
3292 /* Module within temporary copy. */
3293 struct module *mod;
3294 unsigned int ndx;
3295 int err;
3296
3297 mod = setup_load_info(info, flags);
3298 if (IS_ERR(mod))
3299 return mod;
3300
3301 if (blacklisted(info->name))
3302 return ERR_PTR(-EPERM);
3303
3304 err = check_modinfo(mod, info, flags);
3305 if (err)
3306 return ERR_PTR(err);
3307
3308 /* Allow arches to frob section contents and sizes. */
3309 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3310 info->secstrings, mod);
3311 if (err < 0)
3312 return ERR_PTR(err);
3313
3314 /* We will do a special allocation for per-cpu sections later. */
3315 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3316
3317 /*
3318 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3319 * layout_sections() can put it in the right place.
3320 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3321 */
3322 ndx = find_sec(info, ".data..ro_after_init");
3323 if (ndx)
3324 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3325
3326 /* Determine total sizes, and put offsets in sh_entsize. For now
3327 this is done generically; there doesn't appear to be any
3328 special cases for the architectures. */
3329 layout_sections(mod, info);
3330 layout_symtab(mod, info);
3331
3332 /* Allocate and move to the final place */
3333 err = move_module(mod, info);
3334 if (err)
3335 return ERR_PTR(err);
3336
3337 /* Module has been copied to its final place now: return it. */
3338 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3339 kmemleak_load_module(mod, info);
3340 return mod;
3341 }
3342
3343 /* mod is no longer valid after this! */
3344 static void module_deallocate(struct module *mod, struct load_info *info)
3345 {
3346 percpu_modfree(mod);
3347 module_arch_freeing_init(mod);
3348 module_memfree(mod->init_layout.base);
3349 module_memfree(mod->core_layout.base);
3350 }
3351
3352 int __weak module_finalize(const Elf_Ehdr *hdr,
3353 const Elf_Shdr *sechdrs,
3354 struct module *me)
3355 {
3356 return 0;
3357 }
3358
3359 static int post_relocation(struct module *mod, const struct load_info *info)
3360 {
3361 /* Sort exception table now relocations are done. */
3362 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3363
3364 /* Copy relocated percpu area over. */
3365 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3366 info->sechdrs[info->index.pcpu].sh_size);
3367
3368 /* Setup kallsyms-specific fields. */
3369 add_kallsyms(mod, info);
3370
3371 /* Arch-specific module finalizing. */
3372 return module_finalize(info->hdr, info->sechdrs, mod);
3373 }
3374
3375 /* Is this module of this name done loading? No locks held. */
3376 static bool finished_loading(const char *name)
3377 {
3378 struct module *mod;
3379 bool ret;
3380
3381 /*
3382 * The module_mutex should not be a heavily contended lock;
3383 * if we get the occasional sleep here, we'll go an extra iteration
3384 * in the wait_event_interruptible(), which is harmless.
3385 */
3386 sched_annotate_sleep();
3387 mutex_lock(&module_mutex);
3388 mod = find_module_all(name, strlen(name), true);
3389 ret = !mod || mod->state == MODULE_STATE_LIVE
3390 || mod->state == MODULE_STATE_GOING;
3391 mutex_unlock(&module_mutex);
3392
3393 return ret;
3394 }
3395
3396 /* Call module constructors. */
3397 static void do_mod_ctors(struct module *mod)
3398 {
3399 #ifdef CONFIG_CONSTRUCTORS
3400 unsigned long i;
3401
3402 for (i = 0; i < mod->num_ctors; i++)
3403 mod->ctors[i]();
3404 #endif
3405 }
3406
3407 /* For freeing module_init on success, in case kallsyms traversing */
3408 struct mod_initfree {
3409 struct rcu_head rcu;
3410 void *module_init;
3411 };
3412
3413 static void do_free_init(struct rcu_head *head)
3414 {
3415 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3416 module_memfree(m->module_init);
3417 kfree(m);
3418 }
3419
3420 /*
3421 * This is where the real work happens.
3422 *
3423 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3424 * helper command 'lx-symbols'.
3425 */
3426 static noinline int do_init_module(struct module *mod)
3427 {
3428 int ret = 0;
3429 struct mod_initfree *freeinit;
3430
3431 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3432 if (!freeinit) {
3433 ret = -ENOMEM;
3434 goto fail;
3435 }
3436 freeinit->module_init = mod->init_layout.base;
3437
3438 /*
3439 * We want to find out whether @mod uses async during init. Clear
3440 * PF_USED_ASYNC. async_schedule*() will set it.
3441 */
3442 current->flags &= ~PF_USED_ASYNC;
3443
3444 do_mod_ctors(mod);
3445 /* Start the module */
3446 if (mod->init != NULL)
3447 ret = do_one_initcall(mod->init);
3448 if (ret < 0) {
3449 goto fail_free_freeinit;
3450 }
3451 if (ret > 0) {
3452 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3453 "follow 0/-E convention\n"
3454 "%s: loading module anyway...\n",
3455 __func__, mod->name, ret, __func__);
3456 dump_stack();
3457 }
3458
3459 /* Now it's a first class citizen! */
3460 mod->state = MODULE_STATE_LIVE;
3461 blocking_notifier_call_chain(&module_notify_list,
3462 MODULE_STATE_LIVE, mod);
3463
3464 /*
3465 * We need to finish all async code before the module init sequence
3466 * is done. This has potential to deadlock. For example, a newly
3467 * detected block device can trigger request_module() of the
3468 * default iosched from async probing task. Once userland helper
3469 * reaches here, async_synchronize_full() will wait on the async
3470 * task waiting on request_module() and deadlock.
3471 *
3472 * This deadlock is avoided by perfomring async_synchronize_full()
3473 * iff module init queued any async jobs. This isn't a full
3474 * solution as it will deadlock the same if module loading from
3475 * async jobs nests more than once; however, due to the various
3476 * constraints, this hack seems to be the best option for now.
3477 * Please refer to the following thread for details.
3478 *
3479 * http://thread.gmane.org/gmane.linux.kernel/1420814
3480 */
3481 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3482 async_synchronize_full();
3483
3484 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3485 mod->init_layout.size);
3486 mutex_lock(&module_mutex);
3487 /* Drop initial reference. */
3488 module_put(mod);
3489 trim_init_extable(mod);
3490 #ifdef CONFIG_KALLSYMS
3491 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3492 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3493 #endif
3494 module_enable_ro(mod, true);
3495 mod_tree_remove_init(mod);
3496 disable_ro_nx(&mod->init_layout);
3497 module_arch_freeing_init(mod);
3498 mod->init_layout.base = NULL;
3499 mod->init_layout.size = 0;
3500 mod->init_layout.ro_size = 0;
3501 mod->init_layout.ro_after_init_size = 0;
3502 mod->init_layout.text_size = 0;
3503 /*
3504 * We want to free module_init, but be aware that kallsyms may be
3505 * walking this with preempt disabled. In all the failure paths, we
3506 * call synchronize_sched(), but we don't want to slow down the success
3507 * path, so use actual RCU here.
3508 */
3509 call_rcu_sched(&freeinit->rcu, do_free_init);
3510 mutex_unlock(&module_mutex);
3511 wake_up_all(&module_wq);
3512
3513 return 0;
3514
3515 fail_free_freeinit:
3516 kfree(freeinit);
3517 fail:
3518 /* Try to protect us from buggy refcounters. */
3519 mod->state = MODULE_STATE_GOING;
3520 synchronize_sched();
3521 module_put(mod);
3522 blocking_notifier_call_chain(&module_notify_list,
3523 MODULE_STATE_GOING, mod);
3524 klp_module_going(mod);
3525 ftrace_release_mod(mod);
3526 free_module(mod);
3527 wake_up_all(&module_wq);
3528 return ret;
3529 }
3530
3531 static int may_init_module(void)
3532 {
3533 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3534 return -EPERM;
3535
3536 return 0;
3537 }
3538
3539 /*
3540 * We try to place it in the list now to make sure it's unique before
3541 * we dedicate too many resources. In particular, temporary percpu
3542 * memory exhaustion.
3543 */
3544 static int add_unformed_module(struct module *mod)
3545 {
3546 int err;
3547 struct module *old;
3548
3549 mod->state = MODULE_STATE_UNFORMED;
3550
3551 again:
3552 mutex_lock(&module_mutex);
3553 old = find_module_all(mod->name, strlen(mod->name), true);
3554 if (old != NULL) {
3555 if (old->state == MODULE_STATE_COMING
3556 || old->state == MODULE_STATE_UNFORMED) {
3557 /* Wait in case it fails to load. */
3558 mutex_unlock(&module_mutex);
3559 err = wait_event_interruptible(module_wq,
3560 finished_loading(mod->name));
3561 if (err)
3562 goto out_unlocked;
3563 goto again;
3564 }
3565 err = -EEXIST;
3566 goto out;
3567 }
3568 mod_update_bounds(mod);
3569 list_add_rcu(&mod->list, &modules);
3570 mod_tree_insert(mod);
3571 err = 0;
3572
3573 out:
3574 mutex_unlock(&module_mutex);
3575 out_unlocked:
3576 return err;
3577 }
3578
3579 static int complete_formation(struct module *mod, struct load_info *info)
3580 {
3581 int err;
3582
3583 mutex_lock(&module_mutex);
3584
3585 /* Find duplicate symbols (must be called under lock). */
3586 err = verify_export_symbols(mod);
3587 if (err < 0)
3588 goto out;
3589
3590 /* This relies on module_mutex for list integrity. */
3591 module_bug_finalize(info->hdr, info->sechdrs, mod);
3592
3593 module_enable_ro(mod, false);
3594 module_enable_nx(mod);
3595
3596 /* Mark state as coming so strong_try_module_get() ignores us,
3597 * but kallsyms etc. can see us. */
3598 mod->state = MODULE_STATE_COMING;
3599 mutex_unlock(&module_mutex);
3600
3601 return 0;
3602
3603 out:
3604 mutex_unlock(&module_mutex);
3605 return err;
3606 }
3607
3608 static int prepare_coming_module(struct module *mod)
3609 {
3610 int err;
3611
3612 ftrace_module_enable(mod);
3613 err = klp_module_coming(mod);
3614 if (err)
3615 return err;
3616
3617 blocking_notifier_call_chain(&module_notify_list,
3618 MODULE_STATE_COMING, mod);
3619 return 0;
3620 }
3621
3622 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3623 void *arg)
3624 {
3625 struct module *mod = arg;
3626 int ret;
3627
3628 if (strcmp(param, "async_probe") == 0) {
3629 mod->async_probe_requested = true;
3630 return 0;
3631 }
3632
3633 /* Check for magic 'dyndbg' arg */
3634 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3635 if (ret != 0)
3636 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3637 return 0;
3638 }
3639
3640 /* Allocate and load the module: note that size of section 0 is always
3641 zero, and we rely on this for optional sections. */
3642 static int load_module(struct load_info *info, const char __user *uargs,
3643 int flags)
3644 {
3645 struct module *mod;
3646 long err;
3647 char *after_dashes;
3648
3649 err = module_sig_check(info, flags);
3650 if (err)
3651 goto free_copy;
3652
3653 err = elf_header_check(info);
3654 if (err)
3655 goto free_copy;
3656
3657 /* Figure out module layout, and allocate all the memory. */
3658 mod = layout_and_allocate(info, flags);
3659 if (IS_ERR(mod)) {
3660 err = PTR_ERR(mod);
3661 goto free_copy;
3662 }
3663
3664 audit_log_kern_module(mod->name);
3665
3666 /* Reserve our place in the list. */
3667 err = add_unformed_module(mod);
3668 if (err)
3669 goto free_module;
3670
3671 #ifdef CONFIG_MODULE_SIG
3672 mod->sig_ok = info->sig_ok;
3673 if (!mod->sig_ok) {
3674 pr_notice_once("%s: module verification failed: signature "
3675 "and/or required key missing - tainting "
3676 "kernel\n", mod->name);
3677 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3678 }
3679 #endif
3680
3681 /* To avoid stressing percpu allocator, do this once we're unique. */
3682 err = percpu_modalloc(mod, info);
3683 if (err)
3684 goto unlink_mod;
3685
3686 /* Now module is in final location, initialize linked lists, etc. */
3687 err = module_unload_init(mod);
3688 if (err)
3689 goto unlink_mod;
3690
3691 init_param_lock(mod);
3692
3693 /* Now we've got everything in the final locations, we can
3694 * find optional sections. */
3695 err = find_module_sections(mod, info);
3696 if (err)
3697 goto free_unload;
3698
3699 err = check_module_license_and_versions(mod);
3700 if (err)
3701 goto free_unload;
3702
3703 /* Set up MODINFO_ATTR fields */
3704 setup_modinfo(mod, info);
3705
3706 /* Fix up syms, so that st_value is a pointer to location. */
3707 err = simplify_symbols(mod, info);
3708 if (err < 0)
3709 goto free_modinfo;
3710
3711 err = apply_relocations(mod, info);
3712 if (err < 0)
3713 goto free_modinfo;
3714
3715 err = post_relocation(mod, info);
3716 if (err < 0)
3717 goto free_modinfo;
3718
3719 flush_module_icache(mod);
3720
3721 /* Now copy in args */
3722 mod->args = strndup_user(uargs, ~0UL >> 1);
3723 if (IS_ERR(mod->args)) {
3724 err = PTR_ERR(mod->args);
3725 goto free_arch_cleanup;
3726 }
3727
3728 dynamic_debug_setup(mod, info->debug, info->num_debug);
3729
3730 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3731 ftrace_module_init(mod);
3732
3733 /* Finally it's fully formed, ready to start executing. */
3734 err = complete_formation(mod, info);
3735 if (err)
3736 goto ddebug_cleanup;
3737
3738 err = prepare_coming_module(mod);
3739 if (err)
3740 goto bug_cleanup;
3741
3742 /* Module is ready to execute: parsing args may do that. */
3743 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3744 -32768, 32767, mod,
3745 unknown_module_param_cb);
3746 if (IS_ERR(after_dashes)) {
3747 err = PTR_ERR(after_dashes);
3748 goto coming_cleanup;
3749 } else if (after_dashes) {
3750 pr_warn("%s: parameters '%s' after `--' ignored\n",
3751 mod->name, after_dashes);
3752 }
3753
3754 /* Link in to sysfs. */
3755 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3756 if (err < 0)
3757 goto coming_cleanup;
3758
3759 if (is_livepatch_module(mod)) {
3760 err = copy_module_elf(mod, info);
3761 if (err < 0)
3762 goto sysfs_cleanup;
3763 }
3764
3765 /* Get rid of temporary copy. */
3766 free_copy(info);
3767
3768 /* Done! */
3769 trace_module_load(mod);
3770
3771 return do_init_module(mod);
3772
3773 sysfs_cleanup:
3774 mod_sysfs_teardown(mod);
3775 coming_cleanup:
3776 mod->state = MODULE_STATE_GOING;
3777 destroy_params(mod->kp, mod->num_kp);
3778 blocking_notifier_call_chain(&module_notify_list,
3779 MODULE_STATE_GOING, mod);
3780 klp_module_going(mod);
3781 bug_cleanup:
3782 /* module_bug_cleanup needs module_mutex protection */
3783 mutex_lock(&module_mutex);
3784 module_bug_cleanup(mod);
3785 mutex_unlock(&module_mutex);
3786
3787 /* we can't deallocate the module until we clear memory protection */
3788 module_disable_ro(mod);
3789 module_disable_nx(mod);
3790
3791 ddebug_cleanup:
3792 dynamic_debug_remove(mod, info->debug);
3793 synchronize_sched();
3794 kfree(mod->args);
3795 free_arch_cleanup:
3796 module_arch_cleanup(mod);
3797 free_modinfo:
3798 free_modinfo(mod);
3799 free_unload:
3800 module_unload_free(mod);
3801 unlink_mod:
3802 mutex_lock(&module_mutex);
3803 /* Unlink carefully: kallsyms could be walking list. */
3804 list_del_rcu(&mod->list);
3805 mod_tree_remove(mod);
3806 wake_up_all(&module_wq);
3807 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3808 synchronize_sched();
3809 mutex_unlock(&module_mutex);
3810 free_module:
3811 /*
3812 * Ftrace needs to clean up what it initialized.
3813 * This does nothing if ftrace_module_init() wasn't called,
3814 * but it must be called outside of module_mutex.
3815 */
3816 ftrace_release_mod(mod);
3817 /* Free lock-classes; relies on the preceding sync_rcu() */
3818 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3819
3820 module_deallocate(mod, info);
3821 free_copy:
3822 free_copy(info);
3823 return err;
3824 }
3825
3826 SYSCALL_DEFINE3(init_module, void __user *, umod,
3827 unsigned long, len, const char __user *, uargs)
3828 {
3829 int err;
3830 struct load_info info = { };
3831
3832 err = may_init_module();
3833 if (err)
3834 return err;
3835
3836 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3837 umod, len, uargs);
3838
3839 err = copy_module_from_user(umod, len, &info);
3840 if (err)
3841 return err;
3842
3843 return load_module(&info, uargs, 0);
3844 }
3845
3846 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3847 {
3848 struct load_info info = { };
3849 loff_t size;
3850 void *hdr;
3851 int err;
3852
3853 err = may_init_module();
3854 if (err)
3855 return err;
3856
3857 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3858
3859 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3860 |MODULE_INIT_IGNORE_VERMAGIC))
3861 return -EINVAL;
3862
3863 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3864 READING_MODULE);
3865 if (err)
3866 return err;
3867 info.hdr = hdr;
3868 info.len = size;
3869
3870 return load_module(&info, uargs, flags);
3871 }
3872
3873 static inline int within(unsigned long addr, void *start, unsigned long size)
3874 {
3875 return ((void *)addr >= start && (void *)addr < start + size);
3876 }
3877
3878 #ifdef CONFIG_KALLSYMS
3879 /*
3880 * This ignores the intensely annoying "mapping symbols" found
3881 * in ARM ELF files: $a, $t and $d.
3882 */
3883 static inline int is_arm_mapping_symbol(const char *str)
3884 {
3885 if (str[0] == '.' && str[1] == 'L')
3886 return true;
3887 return str[0] == '$' && strchr("axtd", str[1])
3888 && (str[2] == '\0' || str[2] == '.');
3889 }
3890
3891 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3892 {
3893 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3894 }
3895
3896 static const char *get_ksymbol(struct module *mod,
3897 unsigned long addr,
3898 unsigned long *size,
3899 unsigned long *offset)
3900 {
3901 unsigned int i, best = 0;
3902 unsigned long nextval;
3903 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3904
3905 /* At worse, next value is at end of module */
3906 if (within_module_init(addr, mod))
3907 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3908 else
3909 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3910
3911 /* Scan for closest preceding symbol, and next symbol. (ELF
3912 starts real symbols at 1). */
3913 for (i = 1; i < kallsyms->num_symtab; i++) {
3914 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3915 continue;
3916
3917 /* We ignore unnamed symbols: they're uninformative
3918 * and inserted at a whim. */
3919 if (*symname(kallsyms, i) == '\0'
3920 || is_arm_mapping_symbol(symname(kallsyms, i)))
3921 continue;
3922
3923 if (kallsyms->symtab[i].st_value <= addr
3924 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3925 best = i;
3926 if (kallsyms->symtab[i].st_value > addr
3927 && kallsyms->symtab[i].st_value < nextval)
3928 nextval = kallsyms->symtab[i].st_value;
3929 }
3930
3931 if (!best)
3932 return NULL;
3933
3934 if (size)
3935 *size = nextval - kallsyms->symtab[best].st_value;
3936 if (offset)
3937 *offset = addr - kallsyms->symtab[best].st_value;
3938 return symname(kallsyms, best);
3939 }
3940
3941 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3942 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3943 const char *module_address_lookup(unsigned long addr,
3944 unsigned long *size,
3945 unsigned long *offset,
3946 char **modname,
3947 char *namebuf)
3948 {
3949 const char *ret = NULL;
3950 struct module *mod;
3951
3952 preempt_disable();
3953 mod = __module_address(addr);
3954 if (mod) {
3955 if (modname)
3956 *modname = mod->name;
3957 ret = get_ksymbol(mod, addr, size, offset);
3958 }
3959 /* Make a copy in here where it's safe */
3960 if (ret) {
3961 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3962 ret = namebuf;
3963 }
3964 preempt_enable();
3965
3966 return ret;
3967 }
3968
3969 int lookup_module_symbol_name(unsigned long addr, char *symname)
3970 {
3971 struct module *mod;
3972
3973 preempt_disable();
3974 list_for_each_entry_rcu(mod, &modules, list) {
3975 if (mod->state == MODULE_STATE_UNFORMED)
3976 continue;
3977 if (within_module(addr, mod)) {
3978 const char *sym;
3979
3980 sym = get_ksymbol(mod, addr, NULL, NULL);
3981 if (!sym)
3982 goto out;
3983 strlcpy(symname, sym, KSYM_NAME_LEN);
3984 preempt_enable();
3985 return 0;
3986 }
3987 }
3988 out:
3989 preempt_enable();
3990 return -ERANGE;
3991 }
3992
3993 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3994 unsigned long *offset, char *modname, char *name)
3995 {
3996 struct module *mod;
3997
3998 preempt_disable();
3999 list_for_each_entry_rcu(mod, &modules, list) {
4000 if (mod->state == MODULE_STATE_UNFORMED)
4001 continue;
4002 if (within_module(addr, mod)) {
4003 const char *sym;
4004
4005 sym = get_ksymbol(mod, addr, size, offset);
4006 if (!sym)
4007 goto out;
4008 if (modname)
4009 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4010 if (name)
4011 strlcpy(name, sym, KSYM_NAME_LEN);
4012 preempt_enable();
4013 return 0;
4014 }
4015 }
4016 out:
4017 preempt_enable();
4018 return -ERANGE;
4019 }
4020
4021 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4022 char *name, char *module_name, int *exported)
4023 {
4024 struct module *mod;
4025
4026 preempt_disable();
4027 list_for_each_entry_rcu(mod, &modules, list) {
4028 struct mod_kallsyms *kallsyms;
4029
4030 if (mod->state == MODULE_STATE_UNFORMED)
4031 continue;
4032 kallsyms = rcu_dereference_sched(mod->kallsyms);
4033 if (symnum < kallsyms->num_symtab) {
4034 *value = kallsyms->symtab[symnum].st_value;
4035 *type = kallsyms->symtab[symnum].st_info;
4036 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4037 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4038 *exported = is_exported(name, *value, mod);
4039 preempt_enable();
4040 return 0;
4041 }
4042 symnum -= kallsyms->num_symtab;
4043 }
4044 preempt_enable();
4045 return -ERANGE;
4046 }
4047
4048 static unsigned long mod_find_symname(struct module *mod, const char *name)
4049 {
4050 unsigned int i;
4051 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4052
4053 for (i = 0; i < kallsyms->num_symtab; i++)
4054 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4055 kallsyms->symtab[i].st_info != 'U')
4056 return kallsyms->symtab[i].st_value;
4057 return 0;
4058 }
4059
4060 /* Look for this name: can be of form module:name. */
4061 unsigned long module_kallsyms_lookup_name(const char *name)
4062 {
4063 struct module *mod;
4064 char *colon;
4065 unsigned long ret = 0;
4066
4067 /* Don't lock: we're in enough trouble already. */
4068 preempt_disable();
4069 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4070 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4071 ret = mod_find_symname(mod, colon+1);
4072 } else {
4073 list_for_each_entry_rcu(mod, &modules, list) {
4074 if (mod->state == MODULE_STATE_UNFORMED)
4075 continue;
4076 if ((ret = mod_find_symname(mod, name)) != 0)
4077 break;
4078 }
4079 }
4080 preempt_enable();
4081 return ret;
4082 }
4083
4084 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4085 struct module *, unsigned long),
4086 void *data)
4087 {
4088 struct module *mod;
4089 unsigned int i;
4090 int ret;
4091
4092 module_assert_mutex();
4093
4094 list_for_each_entry(mod, &modules, list) {
4095 /* We hold module_mutex: no need for rcu_dereference_sched */
4096 struct mod_kallsyms *kallsyms = mod->kallsyms;
4097
4098 if (mod->state == MODULE_STATE_UNFORMED)
4099 continue;
4100 for (i = 0; i < kallsyms->num_symtab; i++) {
4101 ret = fn(data, symname(kallsyms, i),
4102 mod, kallsyms->symtab[i].st_value);
4103 if (ret != 0)
4104 return ret;
4105 }
4106 }
4107 return 0;
4108 }
4109 #endif /* CONFIG_KALLSYMS */
4110
4111 /* Maximum number of characters written by module_flags() */
4112 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4113
4114 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4115 static char *module_flags(struct module *mod, char *buf)
4116 {
4117 int bx = 0;
4118
4119 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4120 if (mod->taints ||
4121 mod->state == MODULE_STATE_GOING ||
4122 mod->state == MODULE_STATE_COMING) {
4123 buf[bx++] = '(';
4124 bx += module_flags_taint(mod, buf + bx);
4125 /* Show a - for module-is-being-unloaded */
4126 if (mod->state == MODULE_STATE_GOING)
4127 buf[bx++] = '-';
4128 /* Show a + for module-is-being-loaded */
4129 if (mod->state == MODULE_STATE_COMING)
4130 buf[bx++] = '+';
4131 buf[bx++] = ')';
4132 }
4133 buf[bx] = '\0';
4134
4135 return buf;
4136 }
4137
4138 #ifdef CONFIG_PROC_FS
4139 /* Called by the /proc file system to return a list of modules. */
4140 static void *m_start(struct seq_file *m, loff_t *pos)
4141 {
4142 mutex_lock(&module_mutex);
4143 return seq_list_start(&modules, *pos);
4144 }
4145
4146 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4147 {
4148 return seq_list_next(p, &modules, pos);
4149 }
4150
4151 static void m_stop(struct seq_file *m, void *p)
4152 {
4153 mutex_unlock(&module_mutex);
4154 }
4155
4156 static int m_show(struct seq_file *m, void *p)
4157 {
4158 struct module *mod = list_entry(p, struct module, list);
4159 char buf[MODULE_FLAGS_BUF_SIZE];
4160 void *value;
4161
4162 /* We always ignore unformed modules. */
4163 if (mod->state == MODULE_STATE_UNFORMED)
4164 return 0;
4165
4166 seq_printf(m, "%s %u",
4167 mod->name, mod->init_layout.size + mod->core_layout.size);
4168 print_unload_info(m, mod);
4169
4170 /* Informative for users. */
4171 seq_printf(m, " %s",
4172 mod->state == MODULE_STATE_GOING ? "Unloading" :
4173 mod->state == MODULE_STATE_COMING ? "Loading" :
4174 "Live");
4175 /* Used by oprofile and other similar tools. */
4176 value = m->private ? NULL : mod->core_layout.base;
4177 seq_printf(m, " 0x%px", value);
4178
4179 /* Taints info */
4180 if (mod->taints)
4181 seq_printf(m, " %s", module_flags(mod, buf));
4182
4183 seq_puts(m, "\n");
4184 return 0;
4185 }
4186
4187 /* Format: modulename size refcount deps address
4188
4189 Where refcount is a number or -, and deps is a comma-separated list
4190 of depends or -.
4191 */
4192 static const struct seq_operations modules_op = {
4193 .start = m_start,
4194 .next = m_next,
4195 .stop = m_stop,
4196 .show = m_show
4197 };
4198
4199 /*
4200 * This also sets the "private" pointer to non-NULL if the
4201 * kernel pointers should be hidden (so you can just test
4202 * "m->private" to see if you should keep the values private).
4203 *
4204 * We use the same logic as for /proc/kallsyms.
4205 */
4206 static int modules_open(struct inode *inode, struct file *file)
4207 {
4208 int err = seq_open(file, &modules_op);
4209
4210 if (!err) {
4211 struct seq_file *m = file->private_data;
4212 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4213 }
4214
4215 return 0;
4216 }
4217
4218 static const struct file_operations proc_modules_operations = {
4219 .open = modules_open,
4220 .read = seq_read,
4221 .llseek = seq_lseek,
4222 .release = seq_release,
4223 };
4224
4225 static int __init proc_modules_init(void)
4226 {
4227 proc_create("modules", 0, NULL, &proc_modules_operations);
4228 return 0;
4229 }
4230 module_init(proc_modules_init);
4231 #endif
4232
4233 /* Given an address, look for it in the module exception tables. */
4234 const struct exception_table_entry *search_module_extables(unsigned long addr)
4235 {
4236 const struct exception_table_entry *e = NULL;
4237 struct module *mod;
4238
4239 preempt_disable();
4240 mod = __module_address(addr);
4241 if (!mod)
4242 goto out;
4243
4244 if (!mod->num_exentries)
4245 goto out;
4246
4247 e = search_extable(mod->extable,
4248 mod->num_exentries,
4249 addr);
4250 out:
4251 preempt_enable();
4252
4253 /*
4254 * Now, if we found one, we are running inside it now, hence
4255 * we cannot unload the module, hence no refcnt needed.
4256 */
4257 return e;
4258 }
4259
4260 /*
4261 * is_module_address - is this address inside a module?
4262 * @addr: the address to check.
4263 *
4264 * See is_module_text_address() if you simply want to see if the address
4265 * is code (not data).
4266 */
4267 bool is_module_address(unsigned long addr)
4268 {
4269 bool ret;
4270
4271 preempt_disable();
4272 ret = __module_address(addr) != NULL;
4273 preempt_enable();
4274
4275 return ret;
4276 }
4277
4278 /*
4279 * __module_address - get the module which contains an address.
4280 * @addr: the address.
4281 *
4282 * Must be called with preempt disabled or module mutex held so that
4283 * module doesn't get freed during this.
4284 */
4285 struct module *__module_address(unsigned long addr)
4286 {
4287 struct module *mod;
4288
4289 if (addr < module_addr_min || addr > module_addr_max)
4290 return NULL;
4291
4292 module_assert_mutex_or_preempt();
4293
4294 mod = mod_find(addr);
4295 if (mod) {
4296 BUG_ON(!within_module(addr, mod));
4297 if (mod->state == MODULE_STATE_UNFORMED)
4298 mod = NULL;
4299 }
4300 return mod;
4301 }
4302 EXPORT_SYMBOL_GPL(__module_address);
4303
4304 /*
4305 * is_module_text_address - is this address inside module code?
4306 * @addr: the address to check.
4307 *
4308 * See is_module_address() if you simply want to see if the address is
4309 * anywhere in a module. See kernel_text_address() for testing if an
4310 * address corresponds to kernel or module code.
4311 */
4312 bool is_module_text_address(unsigned long addr)
4313 {
4314 bool ret;
4315
4316 preempt_disable();
4317 ret = __module_text_address(addr) != NULL;
4318 preempt_enable();
4319
4320 return ret;
4321 }
4322
4323 /*
4324 * __module_text_address - get the module whose code contains an address.
4325 * @addr: the address.
4326 *
4327 * Must be called with preempt disabled or module mutex held so that
4328 * module doesn't get freed during this.
4329 */
4330 struct module *__module_text_address(unsigned long addr)
4331 {
4332 struct module *mod = __module_address(addr);
4333 if (mod) {
4334 /* Make sure it's within the text section. */
4335 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4336 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4337 mod = NULL;
4338 }
4339 return mod;
4340 }
4341 EXPORT_SYMBOL_GPL(__module_text_address);
4342
4343 /* Don't grab lock, we're oopsing. */
4344 void print_modules(void)
4345 {
4346 struct module *mod;
4347 char buf[MODULE_FLAGS_BUF_SIZE];
4348
4349 printk(KERN_DEFAULT "Modules linked in:");
4350 /* Most callers should already have preempt disabled, but make sure */
4351 preempt_disable();
4352 list_for_each_entry_rcu(mod, &modules, list) {
4353 if (mod->state == MODULE_STATE_UNFORMED)
4354 continue;
4355 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4356 }
4357 preempt_enable();
4358 if (last_unloaded_module[0])
4359 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4360 pr_cont("\n");
4361 }
4362
4363 #ifdef CONFIG_MODVERSIONS
4364 /* Generate the signature for all relevant module structures here.
4365 * If these change, we don't want to try to parse the module. */
4366 void module_layout(struct module *mod,
4367 struct modversion_info *ver,
4368 struct kernel_param *kp,
4369 struct kernel_symbol *ks,
4370 struct tracepoint * const *tp)
4371 {
4372 }
4373 EXPORT_SYMBOL(module_layout);
4374 #endif