]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/module.c
module: Issue warnings when tainting kernel
[mirror_ubuntu-jammy-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/livepatch.h>
57 #include <linux/async.h>
58 #include <linux/percpu.h>
59 #include <linux/kmemleak.h>
60 #include <linux/jump_label.h>
61 #include <linux/pfn.h>
62 #include <linux/bsearch.h>
63 #include <uapi/linux/module.h>
64 #include "module-internal.h"
65
66 #define CREATE_TRACE_POINTS
67 #include <trace/events/module.h>
68
69 #ifndef ARCH_SHF_SMALL
70 #define ARCH_SHF_SMALL 0
71 #endif
72
73 /*
74 * Modules' sections will be aligned on page boundaries
75 * to ensure complete separation of code and data, but
76 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
77 */
78 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
79 # define debug_align(X) ALIGN(X, PAGE_SIZE)
80 #else
81 # define debug_align(X) (X)
82 #endif
83
84 /* If this is set, the section belongs in the init part of the module */
85 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
86
87 /*
88 * Mutex protects:
89 * 1) List of modules (also safely readable with preempt_disable),
90 * 2) module_use links,
91 * 3) module_addr_min/module_addr_max.
92 * (delete and add uses RCU list operations). */
93 DEFINE_MUTEX(module_mutex);
94 EXPORT_SYMBOL_GPL(module_mutex);
95 static LIST_HEAD(modules);
96
97 #ifdef CONFIG_MODULES_TREE_LOOKUP
98
99 /*
100 * Use a latched RB-tree for __module_address(); this allows us to use
101 * RCU-sched lookups of the address from any context.
102 *
103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
104 * __module_address() hard by doing a lot of stack unwinding; potentially from
105 * NMI context.
106 */
107
108 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
109 {
110 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
111
112 return (unsigned long)layout->base;
113 }
114
115 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
116 {
117 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
118
119 return (unsigned long)layout->size;
120 }
121
122 static __always_inline bool
123 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
124 {
125 return __mod_tree_val(a) < __mod_tree_val(b);
126 }
127
128 static __always_inline int
129 mod_tree_comp(void *key, struct latch_tree_node *n)
130 {
131 unsigned long val = (unsigned long)key;
132 unsigned long start, end;
133
134 start = __mod_tree_val(n);
135 if (val < start)
136 return -1;
137
138 end = start + __mod_tree_size(n);
139 if (val >= end)
140 return 1;
141
142 return 0;
143 }
144
145 static const struct latch_tree_ops mod_tree_ops = {
146 .less = mod_tree_less,
147 .comp = mod_tree_comp,
148 };
149
150 static struct mod_tree_root {
151 struct latch_tree_root root;
152 unsigned long addr_min;
153 unsigned long addr_max;
154 } mod_tree __cacheline_aligned = {
155 .addr_min = -1UL,
156 };
157
158 #define module_addr_min mod_tree.addr_min
159 #define module_addr_max mod_tree.addr_max
160
161 static noinline void __mod_tree_insert(struct mod_tree_node *node)
162 {
163 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
164 }
165
166 static void __mod_tree_remove(struct mod_tree_node *node)
167 {
168 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
169 }
170
171 /*
172 * These modifications: insert, remove_init and remove; are serialized by the
173 * module_mutex.
174 */
175 static void mod_tree_insert(struct module *mod)
176 {
177 mod->core_layout.mtn.mod = mod;
178 mod->init_layout.mtn.mod = mod;
179
180 __mod_tree_insert(&mod->core_layout.mtn);
181 if (mod->init_layout.size)
182 __mod_tree_insert(&mod->init_layout.mtn);
183 }
184
185 static void mod_tree_remove_init(struct module *mod)
186 {
187 if (mod->init_layout.size)
188 __mod_tree_remove(&mod->init_layout.mtn);
189 }
190
191 static void mod_tree_remove(struct module *mod)
192 {
193 __mod_tree_remove(&mod->core_layout.mtn);
194 mod_tree_remove_init(mod);
195 }
196
197 static struct module *mod_find(unsigned long addr)
198 {
199 struct latch_tree_node *ltn;
200
201 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
202 if (!ltn)
203 return NULL;
204
205 return container_of(ltn, struct mod_tree_node, node)->mod;
206 }
207
208 #else /* MODULES_TREE_LOOKUP */
209
210 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
211
212 static void mod_tree_insert(struct module *mod) { }
213 static void mod_tree_remove_init(struct module *mod) { }
214 static void mod_tree_remove(struct module *mod) { }
215
216 static struct module *mod_find(unsigned long addr)
217 {
218 struct module *mod;
219
220 list_for_each_entry_rcu(mod, &modules, list) {
221 if (within_module(addr, mod))
222 return mod;
223 }
224
225 return NULL;
226 }
227
228 #endif /* MODULES_TREE_LOOKUP */
229
230 /*
231 * Bounds of module text, for speeding up __module_address.
232 * Protected by module_mutex.
233 */
234 static void __mod_update_bounds(void *base, unsigned int size)
235 {
236 unsigned long min = (unsigned long)base;
237 unsigned long max = min + size;
238
239 if (min < module_addr_min)
240 module_addr_min = min;
241 if (max > module_addr_max)
242 module_addr_max = max;
243 }
244
245 static void mod_update_bounds(struct module *mod)
246 {
247 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
248 if (mod->init_layout.size)
249 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
250 }
251
252 #ifdef CONFIG_KGDB_KDB
253 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
254 #endif /* CONFIG_KGDB_KDB */
255
256 static void module_assert_mutex(void)
257 {
258 lockdep_assert_held(&module_mutex);
259 }
260
261 static void module_assert_mutex_or_preempt(void)
262 {
263 #ifdef CONFIG_LOCKDEP
264 if (unlikely(!debug_locks))
265 return;
266
267 WARN_ON(!rcu_read_lock_sched_held() &&
268 !lockdep_is_held(&module_mutex));
269 #endif
270 }
271
272 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
273 #ifndef CONFIG_MODULE_SIG_FORCE
274 module_param(sig_enforce, bool_enable_only, 0644);
275 #endif /* !CONFIG_MODULE_SIG_FORCE */
276
277 /* Block module loading/unloading? */
278 int modules_disabled = 0;
279 core_param(nomodule, modules_disabled, bint, 0);
280
281 /* Waiting for a module to finish initializing? */
282 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
283
284 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
285
286 int register_module_notifier(struct notifier_block *nb)
287 {
288 return blocking_notifier_chain_register(&module_notify_list, nb);
289 }
290 EXPORT_SYMBOL(register_module_notifier);
291
292 int unregister_module_notifier(struct notifier_block *nb)
293 {
294 return blocking_notifier_chain_unregister(&module_notify_list, nb);
295 }
296 EXPORT_SYMBOL(unregister_module_notifier);
297
298 struct load_info {
299 Elf_Ehdr *hdr;
300 unsigned long len;
301 Elf_Shdr *sechdrs;
302 char *secstrings, *strtab;
303 unsigned long symoffs, stroffs;
304 struct _ddebug *debug;
305 unsigned int num_debug;
306 bool sig_ok;
307 #ifdef CONFIG_KALLSYMS
308 unsigned long mod_kallsyms_init_off;
309 #endif
310 struct {
311 unsigned int sym, str, mod, vers, info, pcpu;
312 } index;
313 };
314
315 /* We require a truly strong try_module_get(): 0 means failure due to
316 ongoing or failed initialization etc. */
317 static inline int strong_try_module_get(struct module *mod)
318 {
319 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
320 if (mod && mod->state == MODULE_STATE_COMING)
321 return -EBUSY;
322 if (try_module_get(mod))
323 return 0;
324 else
325 return -ENOENT;
326 }
327
328 static inline void add_taint_module(struct module *mod, unsigned flag,
329 enum lockdep_ok lockdep_ok)
330 {
331 add_taint(flag, lockdep_ok);
332 mod->taints |= (1U << flag);
333 }
334
335 /*
336 * A thread that wants to hold a reference to a module only while it
337 * is running can call this to safely exit. nfsd and lockd use this.
338 */
339 void __noreturn __module_put_and_exit(struct module *mod, long code)
340 {
341 module_put(mod);
342 do_exit(code);
343 }
344 EXPORT_SYMBOL(__module_put_and_exit);
345
346 /* Find a module section: 0 means not found. */
347 static unsigned int find_sec(const struct load_info *info, const char *name)
348 {
349 unsigned int i;
350
351 for (i = 1; i < info->hdr->e_shnum; i++) {
352 Elf_Shdr *shdr = &info->sechdrs[i];
353 /* Alloc bit cleared means "ignore it." */
354 if ((shdr->sh_flags & SHF_ALLOC)
355 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
356 return i;
357 }
358 return 0;
359 }
360
361 /* Find a module section, or NULL. */
362 static void *section_addr(const struct load_info *info, const char *name)
363 {
364 /* Section 0 has sh_addr 0. */
365 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
366 }
367
368 /* Find a module section, or NULL. Fill in number of "objects" in section. */
369 static void *section_objs(const struct load_info *info,
370 const char *name,
371 size_t object_size,
372 unsigned int *num)
373 {
374 unsigned int sec = find_sec(info, name);
375
376 /* Section 0 has sh_addr 0 and sh_size 0. */
377 *num = info->sechdrs[sec].sh_size / object_size;
378 return (void *)info->sechdrs[sec].sh_addr;
379 }
380
381 /* Provided by the linker */
382 extern const struct kernel_symbol __start___ksymtab[];
383 extern const struct kernel_symbol __stop___ksymtab[];
384 extern const struct kernel_symbol __start___ksymtab_gpl[];
385 extern const struct kernel_symbol __stop___ksymtab_gpl[];
386 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
387 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
388 extern const unsigned long __start___kcrctab[];
389 extern const unsigned long __start___kcrctab_gpl[];
390 extern const unsigned long __start___kcrctab_gpl_future[];
391 #ifdef CONFIG_UNUSED_SYMBOLS
392 extern const struct kernel_symbol __start___ksymtab_unused[];
393 extern const struct kernel_symbol __stop___ksymtab_unused[];
394 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
395 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
396 extern const unsigned long __start___kcrctab_unused[];
397 extern const unsigned long __start___kcrctab_unused_gpl[];
398 #endif
399
400 #ifndef CONFIG_MODVERSIONS
401 #define symversion(base, idx) NULL
402 #else
403 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
404 #endif
405
406 static bool each_symbol_in_section(const struct symsearch *arr,
407 unsigned int arrsize,
408 struct module *owner,
409 bool (*fn)(const struct symsearch *syms,
410 struct module *owner,
411 void *data),
412 void *data)
413 {
414 unsigned int j;
415
416 for (j = 0; j < arrsize; j++) {
417 if (fn(&arr[j], owner, data))
418 return true;
419 }
420
421 return false;
422 }
423
424 /* Returns true as soon as fn returns true, otherwise false. */
425 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
426 struct module *owner,
427 void *data),
428 void *data)
429 {
430 struct module *mod;
431 static const struct symsearch arr[] = {
432 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
433 NOT_GPL_ONLY, false },
434 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
435 __start___kcrctab_gpl,
436 GPL_ONLY, false },
437 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
438 __start___kcrctab_gpl_future,
439 WILL_BE_GPL_ONLY, false },
440 #ifdef CONFIG_UNUSED_SYMBOLS
441 { __start___ksymtab_unused, __stop___ksymtab_unused,
442 __start___kcrctab_unused,
443 NOT_GPL_ONLY, true },
444 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
445 __start___kcrctab_unused_gpl,
446 GPL_ONLY, true },
447 #endif
448 };
449
450 module_assert_mutex_or_preempt();
451
452 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
453 return true;
454
455 list_for_each_entry_rcu(mod, &modules, list) {
456 struct symsearch arr[] = {
457 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
458 NOT_GPL_ONLY, false },
459 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
460 mod->gpl_crcs,
461 GPL_ONLY, false },
462 { mod->gpl_future_syms,
463 mod->gpl_future_syms + mod->num_gpl_future_syms,
464 mod->gpl_future_crcs,
465 WILL_BE_GPL_ONLY, false },
466 #ifdef CONFIG_UNUSED_SYMBOLS
467 { mod->unused_syms,
468 mod->unused_syms + mod->num_unused_syms,
469 mod->unused_crcs,
470 NOT_GPL_ONLY, true },
471 { mod->unused_gpl_syms,
472 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
473 mod->unused_gpl_crcs,
474 GPL_ONLY, true },
475 #endif
476 };
477
478 if (mod->state == MODULE_STATE_UNFORMED)
479 continue;
480
481 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
482 return true;
483 }
484 return false;
485 }
486 EXPORT_SYMBOL_GPL(each_symbol_section);
487
488 struct find_symbol_arg {
489 /* Input */
490 const char *name;
491 bool gplok;
492 bool warn;
493
494 /* Output */
495 struct module *owner;
496 const unsigned long *crc;
497 const struct kernel_symbol *sym;
498 };
499
500 static bool check_symbol(const struct symsearch *syms,
501 struct module *owner,
502 unsigned int symnum, void *data)
503 {
504 struct find_symbol_arg *fsa = data;
505
506 if (!fsa->gplok) {
507 if (syms->licence == GPL_ONLY)
508 return false;
509 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
510 pr_warn("Symbol %s is being used by a non-GPL module, "
511 "which will not be allowed in the future\n",
512 fsa->name);
513 }
514 }
515
516 #ifdef CONFIG_UNUSED_SYMBOLS
517 if (syms->unused && fsa->warn) {
518 pr_warn("Symbol %s is marked as UNUSED, however this module is "
519 "using it.\n", fsa->name);
520 pr_warn("This symbol will go away in the future.\n");
521 pr_warn("Please evaluate if this is the right api to use and "
522 "if it really is, submit a report to the linux kernel "
523 "mailing list together with submitting your code for "
524 "inclusion.\n");
525 }
526 #endif
527
528 fsa->owner = owner;
529 fsa->crc = symversion(syms->crcs, symnum);
530 fsa->sym = &syms->start[symnum];
531 return true;
532 }
533
534 static int cmp_name(const void *va, const void *vb)
535 {
536 const char *a;
537 const struct kernel_symbol *b;
538 a = va; b = vb;
539 return strcmp(a, b->name);
540 }
541
542 static bool find_symbol_in_section(const struct symsearch *syms,
543 struct module *owner,
544 void *data)
545 {
546 struct find_symbol_arg *fsa = data;
547 struct kernel_symbol *sym;
548
549 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
550 sizeof(struct kernel_symbol), cmp_name);
551
552 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
553 return true;
554
555 return false;
556 }
557
558 /* Find a symbol and return it, along with, (optional) crc and
559 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
560 const struct kernel_symbol *find_symbol(const char *name,
561 struct module **owner,
562 const unsigned long **crc,
563 bool gplok,
564 bool warn)
565 {
566 struct find_symbol_arg fsa;
567
568 fsa.name = name;
569 fsa.gplok = gplok;
570 fsa.warn = warn;
571
572 if (each_symbol_section(find_symbol_in_section, &fsa)) {
573 if (owner)
574 *owner = fsa.owner;
575 if (crc)
576 *crc = fsa.crc;
577 return fsa.sym;
578 }
579
580 pr_debug("Failed to find symbol %s\n", name);
581 return NULL;
582 }
583 EXPORT_SYMBOL_GPL(find_symbol);
584
585 /*
586 * Search for module by name: must hold module_mutex (or preempt disabled
587 * for read-only access).
588 */
589 static struct module *find_module_all(const char *name, size_t len,
590 bool even_unformed)
591 {
592 struct module *mod;
593
594 module_assert_mutex_or_preempt();
595
596 list_for_each_entry(mod, &modules, list) {
597 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
598 continue;
599 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
600 return mod;
601 }
602 return NULL;
603 }
604
605 struct module *find_module(const char *name)
606 {
607 module_assert_mutex();
608 return find_module_all(name, strlen(name), false);
609 }
610 EXPORT_SYMBOL_GPL(find_module);
611
612 #ifdef CONFIG_SMP
613
614 static inline void __percpu *mod_percpu(struct module *mod)
615 {
616 return mod->percpu;
617 }
618
619 static int percpu_modalloc(struct module *mod, struct load_info *info)
620 {
621 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
622 unsigned long align = pcpusec->sh_addralign;
623
624 if (!pcpusec->sh_size)
625 return 0;
626
627 if (align > PAGE_SIZE) {
628 pr_warn("%s: per-cpu alignment %li > %li\n",
629 mod->name, align, PAGE_SIZE);
630 align = PAGE_SIZE;
631 }
632
633 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
634 if (!mod->percpu) {
635 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
636 mod->name, (unsigned long)pcpusec->sh_size);
637 return -ENOMEM;
638 }
639 mod->percpu_size = pcpusec->sh_size;
640 return 0;
641 }
642
643 static void percpu_modfree(struct module *mod)
644 {
645 free_percpu(mod->percpu);
646 }
647
648 static unsigned int find_pcpusec(struct load_info *info)
649 {
650 return find_sec(info, ".data..percpu");
651 }
652
653 static void percpu_modcopy(struct module *mod,
654 const void *from, unsigned long size)
655 {
656 int cpu;
657
658 for_each_possible_cpu(cpu)
659 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
660 }
661
662 /**
663 * is_module_percpu_address - test whether address is from module static percpu
664 * @addr: address to test
665 *
666 * Test whether @addr belongs to module static percpu area.
667 *
668 * RETURNS:
669 * %true if @addr is from module static percpu area
670 */
671 bool is_module_percpu_address(unsigned long addr)
672 {
673 struct module *mod;
674 unsigned int cpu;
675
676 preempt_disable();
677
678 list_for_each_entry_rcu(mod, &modules, list) {
679 if (mod->state == MODULE_STATE_UNFORMED)
680 continue;
681 if (!mod->percpu_size)
682 continue;
683 for_each_possible_cpu(cpu) {
684 void *start = per_cpu_ptr(mod->percpu, cpu);
685
686 if ((void *)addr >= start &&
687 (void *)addr < start + mod->percpu_size) {
688 preempt_enable();
689 return true;
690 }
691 }
692 }
693
694 preempt_enable();
695 return false;
696 }
697
698 #else /* ... !CONFIG_SMP */
699
700 static inline void __percpu *mod_percpu(struct module *mod)
701 {
702 return NULL;
703 }
704 static int percpu_modalloc(struct module *mod, struct load_info *info)
705 {
706 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
707 if (info->sechdrs[info->index.pcpu].sh_size != 0)
708 return -ENOMEM;
709 return 0;
710 }
711 static inline void percpu_modfree(struct module *mod)
712 {
713 }
714 static unsigned int find_pcpusec(struct load_info *info)
715 {
716 return 0;
717 }
718 static inline void percpu_modcopy(struct module *mod,
719 const void *from, unsigned long size)
720 {
721 /* pcpusec should be 0, and size of that section should be 0. */
722 BUG_ON(size != 0);
723 }
724 bool is_module_percpu_address(unsigned long addr)
725 {
726 return false;
727 }
728
729 #endif /* CONFIG_SMP */
730
731 #define MODINFO_ATTR(field) \
732 static void setup_modinfo_##field(struct module *mod, const char *s) \
733 { \
734 mod->field = kstrdup(s, GFP_KERNEL); \
735 } \
736 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
737 struct module_kobject *mk, char *buffer) \
738 { \
739 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
740 } \
741 static int modinfo_##field##_exists(struct module *mod) \
742 { \
743 return mod->field != NULL; \
744 } \
745 static void free_modinfo_##field(struct module *mod) \
746 { \
747 kfree(mod->field); \
748 mod->field = NULL; \
749 } \
750 static struct module_attribute modinfo_##field = { \
751 .attr = { .name = __stringify(field), .mode = 0444 }, \
752 .show = show_modinfo_##field, \
753 .setup = setup_modinfo_##field, \
754 .test = modinfo_##field##_exists, \
755 .free = free_modinfo_##field, \
756 };
757
758 MODINFO_ATTR(version);
759 MODINFO_ATTR(srcversion);
760
761 static char last_unloaded_module[MODULE_NAME_LEN+1];
762
763 #ifdef CONFIG_MODULE_UNLOAD
764
765 EXPORT_TRACEPOINT_SYMBOL(module_get);
766
767 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
768 #define MODULE_REF_BASE 1
769
770 /* Init the unload section of the module. */
771 static int module_unload_init(struct module *mod)
772 {
773 /*
774 * Initialize reference counter to MODULE_REF_BASE.
775 * refcnt == 0 means module is going.
776 */
777 atomic_set(&mod->refcnt, MODULE_REF_BASE);
778
779 INIT_LIST_HEAD(&mod->source_list);
780 INIT_LIST_HEAD(&mod->target_list);
781
782 /* Hold reference count during initialization. */
783 atomic_inc(&mod->refcnt);
784
785 return 0;
786 }
787
788 /* Does a already use b? */
789 static int already_uses(struct module *a, struct module *b)
790 {
791 struct module_use *use;
792
793 list_for_each_entry(use, &b->source_list, source_list) {
794 if (use->source == a) {
795 pr_debug("%s uses %s!\n", a->name, b->name);
796 return 1;
797 }
798 }
799 pr_debug("%s does not use %s!\n", a->name, b->name);
800 return 0;
801 }
802
803 /*
804 * Module a uses b
805 * - we add 'a' as a "source", 'b' as a "target" of module use
806 * - the module_use is added to the list of 'b' sources (so
807 * 'b' can walk the list to see who sourced them), and of 'a'
808 * targets (so 'a' can see what modules it targets).
809 */
810 static int add_module_usage(struct module *a, struct module *b)
811 {
812 struct module_use *use;
813
814 pr_debug("Allocating new usage for %s.\n", a->name);
815 use = kmalloc(sizeof(*use), GFP_ATOMIC);
816 if (!use) {
817 pr_warn("%s: out of memory loading\n", a->name);
818 return -ENOMEM;
819 }
820
821 use->source = a;
822 use->target = b;
823 list_add(&use->source_list, &b->source_list);
824 list_add(&use->target_list, &a->target_list);
825 return 0;
826 }
827
828 /* Module a uses b: caller needs module_mutex() */
829 int ref_module(struct module *a, struct module *b)
830 {
831 int err;
832
833 if (b == NULL || already_uses(a, b))
834 return 0;
835
836 /* If module isn't available, we fail. */
837 err = strong_try_module_get(b);
838 if (err)
839 return err;
840
841 err = add_module_usage(a, b);
842 if (err) {
843 module_put(b);
844 return err;
845 }
846 return 0;
847 }
848 EXPORT_SYMBOL_GPL(ref_module);
849
850 /* Clear the unload stuff of the module. */
851 static void module_unload_free(struct module *mod)
852 {
853 struct module_use *use, *tmp;
854
855 mutex_lock(&module_mutex);
856 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
857 struct module *i = use->target;
858 pr_debug("%s unusing %s\n", mod->name, i->name);
859 module_put(i);
860 list_del(&use->source_list);
861 list_del(&use->target_list);
862 kfree(use);
863 }
864 mutex_unlock(&module_mutex);
865 }
866
867 #ifdef CONFIG_MODULE_FORCE_UNLOAD
868 static inline int try_force_unload(unsigned int flags)
869 {
870 int ret = (flags & O_TRUNC);
871 if (ret)
872 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
873 return ret;
874 }
875 #else
876 static inline int try_force_unload(unsigned int flags)
877 {
878 return 0;
879 }
880 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
881
882 /* Try to release refcount of module, 0 means success. */
883 static int try_release_module_ref(struct module *mod)
884 {
885 int ret;
886
887 /* Try to decrement refcnt which we set at loading */
888 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
889 BUG_ON(ret < 0);
890 if (ret)
891 /* Someone can put this right now, recover with checking */
892 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
893
894 return ret;
895 }
896
897 static int try_stop_module(struct module *mod, int flags, int *forced)
898 {
899 /* If it's not unused, quit unless we're forcing. */
900 if (try_release_module_ref(mod) != 0) {
901 *forced = try_force_unload(flags);
902 if (!(*forced))
903 return -EWOULDBLOCK;
904 }
905
906 /* Mark it as dying. */
907 mod->state = MODULE_STATE_GOING;
908
909 return 0;
910 }
911
912 /**
913 * module_refcount - return the refcount or -1 if unloading
914 *
915 * @mod: the module we're checking
916 *
917 * Returns:
918 * -1 if the module is in the process of unloading
919 * otherwise the number of references in the kernel to the module
920 */
921 int module_refcount(struct module *mod)
922 {
923 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
924 }
925 EXPORT_SYMBOL(module_refcount);
926
927 /* This exists whether we can unload or not */
928 static void free_module(struct module *mod);
929
930 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
931 unsigned int, flags)
932 {
933 struct module *mod;
934 char name[MODULE_NAME_LEN];
935 int ret, forced = 0;
936
937 if (!capable(CAP_SYS_MODULE) || modules_disabled)
938 return -EPERM;
939
940 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
941 return -EFAULT;
942 name[MODULE_NAME_LEN-1] = '\0';
943
944 if (mutex_lock_interruptible(&module_mutex) != 0)
945 return -EINTR;
946
947 mod = find_module(name);
948 if (!mod) {
949 ret = -ENOENT;
950 goto out;
951 }
952
953 if (!list_empty(&mod->source_list)) {
954 /* Other modules depend on us: get rid of them first. */
955 ret = -EWOULDBLOCK;
956 goto out;
957 }
958
959 /* Doing init or already dying? */
960 if (mod->state != MODULE_STATE_LIVE) {
961 /* FIXME: if (force), slam module count damn the torpedoes */
962 pr_debug("%s already dying\n", mod->name);
963 ret = -EBUSY;
964 goto out;
965 }
966
967 /* If it has an init func, it must have an exit func to unload */
968 if (mod->init && !mod->exit) {
969 forced = try_force_unload(flags);
970 if (!forced) {
971 /* This module can't be removed */
972 ret = -EBUSY;
973 goto out;
974 }
975 }
976
977 /* Stop the machine so refcounts can't move and disable module. */
978 ret = try_stop_module(mod, flags, &forced);
979 if (ret != 0)
980 goto out;
981
982 mutex_unlock(&module_mutex);
983 /* Final destruction now no one is using it. */
984 if (mod->exit != NULL)
985 mod->exit();
986 blocking_notifier_call_chain(&module_notify_list,
987 MODULE_STATE_GOING, mod);
988 klp_module_going(mod);
989 ftrace_release_mod(mod);
990
991 async_synchronize_full();
992
993 /* Store the name of the last unloaded module for diagnostic purposes */
994 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
995
996 free_module(mod);
997 return 0;
998 out:
999 mutex_unlock(&module_mutex);
1000 return ret;
1001 }
1002
1003 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1004 {
1005 struct module_use *use;
1006 int printed_something = 0;
1007
1008 seq_printf(m, " %i ", module_refcount(mod));
1009
1010 /*
1011 * Always include a trailing , so userspace can differentiate
1012 * between this and the old multi-field proc format.
1013 */
1014 list_for_each_entry(use, &mod->source_list, source_list) {
1015 printed_something = 1;
1016 seq_printf(m, "%s,", use->source->name);
1017 }
1018
1019 if (mod->init != NULL && mod->exit == NULL) {
1020 printed_something = 1;
1021 seq_puts(m, "[permanent],");
1022 }
1023
1024 if (!printed_something)
1025 seq_puts(m, "-");
1026 }
1027
1028 void __symbol_put(const char *symbol)
1029 {
1030 struct module *owner;
1031
1032 preempt_disable();
1033 if (!find_symbol(symbol, &owner, NULL, true, false))
1034 BUG();
1035 module_put(owner);
1036 preempt_enable();
1037 }
1038 EXPORT_SYMBOL(__symbol_put);
1039
1040 /* Note this assumes addr is a function, which it currently always is. */
1041 void symbol_put_addr(void *addr)
1042 {
1043 struct module *modaddr;
1044 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1045
1046 if (core_kernel_text(a))
1047 return;
1048
1049 /*
1050 * Even though we hold a reference on the module; we still need to
1051 * disable preemption in order to safely traverse the data structure.
1052 */
1053 preempt_disable();
1054 modaddr = __module_text_address(a);
1055 BUG_ON(!modaddr);
1056 module_put(modaddr);
1057 preempt_enable();
1058 }
1059 EXPORT_SYMBOL_GPL(symbol_put_addr);
1060
1061 static ssize_t show_refcnt(struct module_attribute *mattr,
1062 struct module_kobject *mk, char *buffer)
1063 {
1064 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1065 }
1066
1067 static struct module_attribute modinfo_refcnt =
1068 __ATTR(refcnt, 0444, show_refcnt, NULL);
1069
1070 void __module_get(struct module *module)
1071 {
1072 if (module) {
1073 preempt_disable();
1074 atomic_inc(&module->refcnt);
1075 trace_module_get(module, _RET_IP_);
1076 preempt_enable();
1077 }
1078 }
1079 EXPORT_SYMBOL(__module_get);
1080
1081 bool try_module_get(struct module *module)
1082 {
1083 bool ret = true;
1084
1085 if (module) {
1086 preempt_disable();
1087 /* Note: here, we can fail to get a reference */
1088 if (likely(module_is_live(module) &&
1089 atomic_inc_not_zero(&module->refcnt) != 0))
1090 trace_module_get(module, _RET_IP_);
1091 else
1092 ret = false;
1093
1094 preempt_enable();
1095 }
1096 return ret;
1097 }
1098 EXPORT_SYMBOL(try_module_get);
1099
1100 void module_put(struct module *module)
1101 {
1102 int ret;
1103
1104 if (module) {
1105 preempt_disable();
1106 ret = atomic_dec_if_positive(&module->refcnt);
1107 WARN_ON(ret < 0); /* Failed to put refcount */
1108 trace_module_put(module, _RET_IP_);
1109 preempt_enable();
1110 }
1111 }
1112 EXPORT_SYMBOL(module_put);
1113
1114 #else /* !CONFIG_MODULE_UNLOAD */
1115 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1116 {
1117 /* We don't know the usage count, or what modules are using. */
1118 seq_puts(m, " - -");
1119 }
1120
1121 static inline void module_unload_free(struct module *mod)
1122 {
1123 }
1124
1125 int ref_module(struct module *a, struct module *b)
1126 {
1127 return strong_try_module_get(b);
1128 }
1129 EXPORT_SYMBOL_GPL(ref_module);
1130
1131 static inline int module_unload_init(struct module *mod)
1132 {
1133 return 0;
1134 }
1135 #endif /* CONFIG_MODULE_UNLOAD */
1136
1137 static size_t module_flags_taint(struct module *mod, char *buf)
1138 {
1139 size_t l = 0;
1140
1141 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1142 buf[l++] = 'P';
1143 if (mod->taints & (1 << TAINT_OOT_MODULE))
1144 buf[l++] = 'O';
1145 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1146 buf[l++] = 'F';
1147 if (mod->taints & (1 << TAINT_CRAP))
1148 buf[l++] = 'C';
1149 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1150 buf[l++] = 'E';
1151 /*
1152 * TAINT_FORCED_RMMOD: could be added.
1153 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1154 * apply to modules.
1155 */
1156 return l;
1157 }
1158
1159 static ssize_t show_initstate(struct module_attribute *mattr,
1160 struct module_kobject *mk, char *buffer)
1161 {
1162 const char *state = "unknown";
1163
1164 switch (mk->mod->state) {
1165 case MODULE_STATE_LIVE:
1166 state = "live";
1167 break;
1168 case MODULE_STATE_COMING:
1169 state = "coming";
1170 break;
1171 case MODULE_STATE_GOING:
1172 state = "going";
1173 break;
1174 default:
1175 BUG();
1176 }
1177 return sprintf(buffer, "%s\n", state);
1178 }
1179
1180 static struct module_attribute modinfo_initstate =
1181 __ATTR(initstate, 0444, show_initstate, NULL);
1182
1183 static ssize_t store_uevent(struct module_attribute *mattr,
1184 struct module_kobject *mk,
1185 const char *buffer, size_t count)
1186 {
1187 enum kobject_action action;
1188
1189 if (kobject_action_type(buffer, count, &action) == 0)
1190 kobject_uevent(&mk->kobj, action);
1191 return count;
1192 }
1193
1194 struct module_attribute module_uevent =
1195 __ATTR(uevent, 0200, NULL, store_uevent);
1196
1197 static ssize_t show_coresize(struct module_attribute *mattr,
1198 struct module_kobject *mk, char *buffer)
1199 {
1200 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1201 }
1202
1203 static struct module_attribute modinfo_coresize =
1204 __ATTR(coresize, 0444, show_coresize, NULL);
1205
1206 static ssize_t show_initsize(struct module_attribute *mattr,
1207 struct module_kobject *mk, char *buffer)
1208 {
1209 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1210 }
1211
1212 static struct module_attribute modinfo_initsize =
1213 __ATTR(initsize, 0444, show_initsize, NULL);
1214
1215 static ssize_t show_taint(struct module_attribute *mattr,
1216 struct module_kobject *mk, char *buffer)
1217 {
1218 size_t l;
1219
1220 l = module_flags_taint(mk->mod, buffer);
1221 buffer[l++] = '\n';
1222 return l;
1223 }
1224
1225 static struct module_attribute modinfo_taint =
1226 __ATTR(taint, 0444, show_taint, NULL);
1227
1228 static struct module_attribute *modinfo_attrs[] = {
1229 &module_uevent,
1230 &modinfo_version,
1231 &modinfo_srcversion,
1232 &modinfo_initstate,
1233 &modinfo_coresize,
1234 &modinfo_initsize,
1235 &modinfo_taint,
1236 #ifdef CONFIG_MODULE_UNLOAD
1237 &modinfo_refcnt,
1238 #endif
1239 NULL,
1240 };
1241
1242 static const char vermagic[] = VERMAGIC_STRING;
1243
1244 static int try_to_force_load(struct module *mod, const char *reason)
1245 {
1246 #ifdef CONFIG_MODULE_FORCE_LOAD
1247 if (!test_taint(TAINT_FORCED_MODULE))
1248 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1249 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1250 return 0;
1251 #else
1252 return -ENOEXEC;
1253 #endif
1254 }
1255
1256 #ifdef CONFIG_MODVERSIONS
1257 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1258 static unsigned long maybe_relocated(unsigned long crc,
1259 const struct module *crc_owner)
1260 {
1261 #ifdef ARCH_RELOCATES_KCRCTAB
1262 if (crc_owner == NULL)
1263 return crc - (unsigned long)reloc_start;
1264 #endif
1265 return crc;
1266 }
1267
1268 static int check_version(Elf_Shdr *sechdrs,
1269 unsigned int versindex,
1270 const char *symname,
1271 struct module *mod,
1272 const unsigned long *crc,
1273 const struct module *crc_owner)
1274 {
1275 unsigned int i, num_versions;
1276 struct modversion_info *versions;
1277
1278 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1279 if (!crc)
1280 return 1;
1281
1282 /* No versions at all? modprobe --force does this. */
1283 if (versindex == 0)
1284 return try_to_force_load(mod, symname) == 0;
1285
1286 versions = (void *) sechdrs[versindex].sh_addr;
1287 num_versions = sechdrs[versindex].sh_size
1288 / sizeof(struct modversion_info);
1289
1290 for (i = 0; i < num_versions; i++) {
1291 if (strcmp(versions[i].name, symname) != 0)
1292 continue;
1293
1294 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1295 return 1;
1296 pr_debug("Found checksum %lX vs module %lX\n",
1297 maybe_relocated(*crc, crc_owner), versions[i].crc);
1298 goto bad_version;
1299 }
1300
1301 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1302 return 0;
1303
1304 bad_version:
1305 pr_warn("%s: disagrees about version of symbol %s\n",
1306 mod->name, symname);
1307 return 0;
1308 }
1309
1310 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1311 unsigned int versindex,
1312 struct module *mod)
1313 {
1314 const unsigned long *crc;
1315
1316 /*
1317 * Since this should be found in kernel (which can't be removed), no
1318 * locking is necessary -- use preempt_disable() to placate lockdep.
1319 */
1320 preempt_disable();
1321 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1322 &crc, true, false)) {
1323 preempt_enable();
1324 BUG();
1325 }
1326 preempt_enable();
1327 return check_version(sechdrs, versindex,
1328 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1329 NULL);
1330 }
1331
1332 /* First part is kernel version, which we ignore if module has crcs. */
1333 static inline int same_magic(const char *amagic, const char *bmagic,
1334 bool has_crcs)
1335 {
1336 if (has_crcs) {
1337 amagic += strcspn(amagic, " ");
1338 bmagic += strcspn(bmagic, " ");
1339 }
1340 return strcmp(amagic, bmagic) == 0;
1341 }
1342 #else
1343 static inline int check_version(Elf_Shdr *sechdrs,
1344 unsigned int versindex,
1345 const char *symname,
1346 struct module *mod,
1347 const unsigned long *crc,
1348 const struct module *crc_owner)
1349 {
1350 return 1;
1351 }
1352
1353 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1354 unsigned int versindex,
1355 struct module *mod)
1356 {
1357 return 1;
1358 }
1359
1360 static inline int same_magic(const char *amagic, const char *bmagic,
1361 bool has_crcs)
1362 {
1363 return strcmp(amagic, bmagic) == 0;
1364 }
1365 #endif /* CONFIG_MODVERSIONS */
1366
1367 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1368 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1369 const struct load_info *info,
1370 const char *name,
1371 char ownername[])
1372 {
1373 struct module *owner;
1374 const struct kernel_symbol *sym;
1375 const unsigned long *crc;
1376 int err;
1377
1378 /*
1379 * The module_mutex should not be a heavily contended lock;
1380 * if we get the occasional sleep here, we'll go an extra iteration
1381 * in the wait_event_interruptible(), which is harmless.
1382 */
1383 sched_annotate_sleep();
1384 mutex_lock(&module_mutex);
1385 sym = find_symbol(name, &owner, &crc,
1386 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1387 if (!sym)
1388 goto unlock;
1389
1390 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1391 owner)) {
1392 sym = ERR_PTR(-EINVAL);
1393 goto getname;
1394 }
1395
1396 err = ref_module(mod, owner);
1397 if (err) {
1398 sym = ERR_PTR(err);
1399 goto getname;
1400 }
1401
1402 getname:
1403 /* We must make copy under the lock if we failed to get ref. */
1404 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1405 unlock:
1406 mutex_unlock(&module_mutex);
1407 return sym;
1408 }
1409
1410 static const struct kernel_symbol *
1411 resolve_symbol_wait(struct module *mod,
1412 const struct load_info *info,
1413 const char *name)
1414 {
1415 const struct kernel_symbol *ksym;
1416 char owner[MODULE_NAME_LEN];
1417
1418 if (wait_event_interruptible_timeout(module_wq,
1419 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1420 || PTR_ERR(ksym) != -EBUSY,
1421 30 * HZ) <= 0) {
1422 pr_warn("%s: gave up waiting for init of module %s.\n",
1423 mod->name, owner);
1424 }
1425 return ksym;
1426 }
1427
1428 /*
1429 * /sys/module/foo/sections stuff
1430 * J. Corbet <corbet@lwn.net>
1431 */
1432 #ifdef CONFIG_SYSFS
1433
1434 #ifdef CONFIG_KALLSYMS
1435 static inline bool sect_empty(const Elf_Shdr *sect)
1436 {
1437 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1438 }
1439
1440 struct module_sect_attr {
1441 struct module_attribute mattr;
1442 char *name;
1443 unsigned long address;
1444 };
1445
1446 struct module_sect_attrs {
1447 struct attribute_group grp;
1448 unsigned int nsections;
1449 struct module_sect_attr attrs[0];
1450 };
1451
1452 static ssize_t module_sect_show(struct module_attribute *mattr,
1453 struct module_kobject *mk, char *buf)
1454 {
1455 struct module_sect_attr *sattr =
1456 container_of(mattr, struct module_sect_attr, mattr);
1457 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1458 }
1459
1460 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1461 {
1462 unsigned int section;
1463
1464 for (section = 0; section < sect_attrs->nsections; section++)
1465 kfree(sect_attrs->attrs[section].name);
1466 kfree(sect_attrs);
1467 }
1468
1469 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1470 {
1471 unsigned int nloaded = 0, i, size[2];
1472 struct module_sect_attrs *sect_attrs;
1473 struct module_sect_attr *sattr;
1474 struct attribute **gattr;
1475
1476 /* Count loaded sections and allocate structures */
1477 for (i = 0; i < info->hdr->e_shnum; i++)
1478 if (!sect_empty(&info->sechdrs[i]))
1479 nloaded++;
1480 size[0] = ALIGN(sizeof(*sect_attrs)
1481 + nloaded * sizeof(sect_attrs->attrs[0]),
1482 sizeof(sect_attrs->grp.attrs[0]));
1483 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1484 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1485 if (sect_attrs == NULL)
1486 return;
1487
1488 /* Setup section attributes. */
1489 sect_attrs->grp.name = "sections";
1490 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1491
1492 sect_attrs->nsections = 0;
1493 sattr = &sect_attrs->attrs[0];
1494 gattr = &sect_attrs->grp.attrs[0];
1495 for (i = 0; i < info->hdr->e_shnum; i++) {
1496 Elf_Shdr *sec = &info->sechdrs[i];
1497 if (sect_empty(sec))
1498 continue;
1499 sattr->address = sec->sh_addr;
1500 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1501 GFP_KERNEL);
1502 if (sattr->name == NULL)
1503 goto out;
1504 sect_attrs->nsections++;
1505 sysfs_attr_init(&sattr->mattr.attr);
1506 sattr->mattr.show = module_sect_show;
1507 sattr->mattr.store = NULL;
1508 sattr->mattr.attr.name = sattr->name;
1509 sattr->mattr.attr.mode = S_IRUGO;
1510 *(gattr++) = &(sattr++)->mattr.attr;
1511 }
1512 *gattr = NULL;
1513
1514 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1515 goto out;
1516
1517 mod->sect_attrs = sect_attrs;
1518 return;
1519 out:
1520 free_sect_attrs(sect_attrs);
1521 }
1522
1523 static void remove_sect_attrs(struct module *mod)
1524 {
1525 if (mod->sect_attrs) {
1526 sysfs_remove_group(&mod->mkobj.kobj,
1527 &mod->sect_attrs->grp);
1528 /* We are positive that no one is using any sect attrs
1529 * at this point. Deallocate immediately. */
1530 free_sect_attrs(mod->sect_attrs);
1531 mod->sect_attrs = NULL;
1532 }
1533 }
1534
1535 /*
1536 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1537 */
1538
1539 struct module_notes_attrs {
1540 struct kobject *dir;
1541 unsigned int notes;
1542 struct bin_attribute attrs[0];
1543 };
1544
1545 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1546 struct bin_attribute *bin_attr,
1547 char *buf, loff_t pos, size_t count)
1548 {
1549 /*
1550 * The caller checked the pos and count against our size.
1551 */
1552 memcpy(buf, bin_attr->private + pos, count);
1553 return count;
1554 }
1555
1556 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1557 unsigned int i)
1558 {
1559 if (notes_attrs->dir) {
1560 while (i-- > 0)
1561 sysfs_remove_bin_file(notes_attrs->dir,
1562 &notes_attrs->attrs[i]);
1563 kobject_put(notes_attrs->dir);
1564 }
1565 kfree(notes_attrs);
1566 }
1567
1568 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1569 {
1570 unsigned int notes, loaded, i;
1571 struct module_notes_attrs *notes_attrs;
1572 struct bin_attribute *nattr;
1573
1574 /* failed to create section attributes, so can't create notes */
1575 if (!mod->sect_attrs)
1576 return;
1577
1578 /* Count notes sections and allocate structures. */
1579 notes = 0;
1580 for (i = 0; i < info->hdr->e_shnum; i++)
1581 if (!sect_empty(&info->sechdrs[i]) &&
1582 (info->sechdrs[i].sh_type == SHT_NOTE))
1583 ++notes;
1584
1585 if (notes == 0)
1586 return;
1587
1588 notes_attrs = kzalloc(sizeof(*notes_attrs)
1589 + notes * sizeof(notes_attrs->attrs[0]),
1590 GFP_KERNEL);
1591 if (notes_attrs == NULL)
1592 return;
1593
1594 notes_attrs->notes = notes;
1595 nattr = &notes_attrs->attrs[0];
1596 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1597 if (sect_empty(&info->sechdrs[i]))
1598 continue;
1599 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1600 sysfs_bin_attr_init(nattr);
1601 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1602 nattr->attr.mode = S_IRUGO;
1603 nattr->size = info->sechdrs[i].sh_size;
1604 nattr->private = (void *) info->sechdrs[i].sh_addr;
1605 nattr->read = module_notes_read;
1606 ++nattr;
1607 }
1608 ++loaded;
1609 }
1610
1611 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1612 if (!notes_attrs->dir)
1613 goto out;
1614
1615 for (i = 0; i < notes; ++i)
1616 if (sysfs_create_bin_file(notes_attrs->dir,
1617 &notes_attrs->attrs[i]))
1618 goto out;
1619
1620 mod->notes_attrs = notes_attrs;
1621 return;
1622
1623 out:
1624 free_notes_attrs(notes_attrs, i);
1625 }
1626
1627 static void remove_notes_attrs(struct module *mod)
1628 {
1629 if (mod->notes_attrs)
1630 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1631 }
1632
1633 #else
1634
1635 static inline void add_sect_attrs(struct module *mod,
1636 const struct load_info *info)
1637 {
1638 }
1639
1640 static inline void remove_sect_attrs(struct module *mod)
1641 {
1642 }
1643
1644 static inline void add_notes_attrs(struct module *mod,
1645 const struct load_info *info)
1646 {
1647 }
1648
1649 static inline void remove_notes_attrs(struct module *mod)
1650 {
1651 }
1652 #endif /* CONFIG_KALLSYMS */
1653
1654 static void add_usage_links(struct module *mod)
1655 {
1656 #ifdef CONFIG_MODULE_UNLOAD
1657 struct module_use *use;
1658 int nowarn;
1659
1660 mutex_lock(&module_mutex);
1661 list_for_each_entry(use, &mod->target_list, target_list) {
1662 nowarn = sysfs_create_link(use->target->holders_dir,
1663 &mod->mkobj.kobj, mod->name);
1664 }
1665 mutex_unlock(&module_mutex);
1666 #endif
1667 }
1668
1669 static void del_usage_links(struct module *mod)
1670 {
1671 #ifdef CONFIG_MODULE_UNLOAD
1672 struct module_use *use;
1673
1674 mutex_lock(&module_mutex);
1675 list_for_each_entry(use, &mod->target_list, target_list)
1676 sysfs_remove_link(use->target->holders_dir, mod->name);
1677 mutex_unlock(&module_mutex);
1678 #endif
1679 }
1680
1681 static int module_add_modinfo_attrs(struct module *mod)
1682 {
1683 struct module_attribute *attr;
1684 struct module_attribute *temp_attr;
1685 int error = 0;
1686 int i;
1687
1688 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1689 (ARRAY_SIZE(modinfo_attrs) + 1)),
1690 GFP_KERNEL);
1691 if (!mod->modinfo_attrs)
1692 return -ENOMEM;
1693
1694 temp_attr = mod->modinfo_attrs;
1695 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1696 if (!attr->test || attr->test(mod)) {
1697 memcpy(temp_attr, attr, sizeof(*temp_attr));
1698 sysfs_attr_init(&temp_attr->attr);
1699 error = sysfs_create_file(&mod->mkobj.kobj,
1700 &temp_attr->attr);
1701 ++temp_attr;
1702 }
1703 }
1704 return error;
1705 }
1706
1707 static void module_remove_modinfo_attrs(struct module *mod)
1708 {
1709 struct module_attribute *attr;
1710 int i;
1711
1712 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1713 /* pick a field to test for end of list */
1714 if (!attr->attr.name)
1715 break;
1716 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1717 if (attr->free)
1718 attr->free(mod);
1719 }
1720 kfree(mod->modinfo_attrs);
1721 }
1722
1723 static void mod_kobject_put(struct module *mod)
1724 {
1725 DECLARE_COMPLETION_ONSTACK(c);
1726 mod->mkobj.kobj_completion = &c;
1727 kobject_put(&mod->mkobj.kobj);
1728 wait_for_completion(&c);
1729 }
1730
1731 static int mod_sysfs_init(struct module *mod)
1732 {
1733 int err;
1734 struct kobject *kobj;
1735
1736 if (!module_sysfs_initialized) {
1737 pr_err("%s: module sysfs not initialized\n", mod->name);
1738 err = -EINVAL;
1739 goto out;
1740 }
1741
1742 kobj = kset_find_obj(module_kset, mod->name);
1743 if (kobj) {
1744 pr_err("%s: module is already loaded\n", mod->name);
1745 kobject_put(kobj);
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
1750 mod->mkobj.mod = mod;
1751
1752 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1753 mod->mkobj.kobj.kset = module_kset;
1754 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1755 "%s", mod->name);
1756 if (err)
1757 mod_kobject_put(mod);
1758
1759 /* delay uevent until full sysfs population */
1760 out:
1761 return err;
1762 }
1763
1764 static int mod_sysfs_setup(struct module *mod,
1765 const struct load_info *info,
1766 struct kernel_param *kparam,
1767 unsigned int num_params)
1768 {
1769 int err;
1770
1771 err = mod_sysfs_init(mod);
1772 if (err)
1773 goto out;
1774
1775 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1776 if (!mod->holders_dir) {
1777 err = -ENOMEM;
1778 goto out_unreg;
1779 }
1780
1781 err = module_param_sysfs_setup(mod, kparam, num_params);
1782 if (err)
1783 goto out_unreg_holders;
1784
1785 err = module_add_modinfo_attrs(mod);
1786 if (err)
1787 goto out_unreg_param;
1788
1789 add_usage_links(mod);
1790 add_sect_attrs(mod, info);
1791 add_notes_attrs(mod, info);
1792
1793 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1794 return 0;
1795
1796 out_unreg_param:
1797 module_param_sysfs_remove(mod);
1798 out_unreg_holders:
1799 kobject_put(mod->holders_dir);
1800 out_unreg:
1801 mod_kobject_put(mod);
1802 out:
1803 return err;
1804 }
1805
1806 static void mod_sysfs_fini(struct module *mod)
1807 {
1808 remove_notes_attrs(mod);
1809 remove_sect_attrs(mod);
1810 mod_kobject_put(mod);
1811 }
1812
1813 static void init_param_lock(struct module *mod)
1814 {
1815 mutex_init(&mod->param_lock);
1816 }
1817 #else /* !CONFIG_SYSFS */
1818
1819 static int mod_sysfs_setup(struct module *mod,
1820 const struct load_info *info,
1821 struct kernel_param *kparam,
1822 unsigned int num_params)
1823 {
1824 return 0;
1825 }
1826
1827 static void mod_sysfs_fini(struct module *mod)
1828 {
1829 }
1830
1831 static void module_remove_modinfo_attrs(struct module *mod)
1832 {
1833 }
1834
1835 static void del_usage_links(struct module *mod)
1836 {
1837 }
1838
1839 static void init_param_lock(struct module *mod)
1840 {
1841 }
1842 #endif /* CONFIG_SYSFS */
1843
1844 static void mod_sysfs_teardown(struct module *mod)
1845 {
1846 del_usage_links(mod);
1847 module_remove_modinfo_attrs(mod);
1848 module_param_sysfs_remove(mod);
1849 kobject_put(mod->mkobj.drivers_dir);
1850 kobject_put(mod->holders_dir);
1851 mod_sysfs_fini(mod);
1852 }
1853
1854 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1855 /*
1856 * LKM RO/NX protection: protect module's text/ro-data
1857 * from modification and any data from execution.
1858 *
1859 * General layout of module is:
1860 * [text] [read-only-data] [writable data]
1861 * text_size -----^ ^ ^
1862 * ro_size ------------------------| |
1863 * size -------------------------------------------|
1864 *
1865 * These values are always page-aligned (as is base)
1866 */
1867 static void frob_text(const struct module_layout *layout,
1868 int (*set_memory)(unsigned long start, int num_pages))
1869 {
1870 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1871 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1872 set_memory((unsigned long)layout->base,
1873 layout->text_size >> PAGE_SHIFT);
1874 }
1875
1876 static void frob_rodata(const struct module_layout *layout,
1877 int (*set_memory)(unsigned long start, int num_pages))
1878 {
1879 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1880 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1881 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1882 set_memory((unsigned long)layout->base + layout->text_size,
1883 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1884 }
1885
1886 static void frob_writable_data(const struct module_layout *layout,
1887 int (*set_memory)(unsigned long start, int num_pages))
1888 {
1889 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1890 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1891 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1892 set_memory((unsigned long)layout->base + layout->ro_size,
1893 (layout->size - layout->ro_size) >> PAGE_SHIFT);
1894 }
1895
1896 /* livepatching wants to disable read-only so it can frob module. */
1897 void module_disable_ro(const struct module *mod)
1898 {
1899 frob_text(&mod->core_layout, set_memory_rw);
1900 frob_rodata(&mod->core_layout, set_memory_rw);
1901 frob_text(&mod->init_layout, set_memory_rw);
1902 frob_rodata(&mod->init_layout, set_memory_rw);
1903 }
1904
1905 void module_enable_ro(const struct module *mod)
1906 {
1907 frob_text(&mod->core_layout, set_memory_ro);
1908 frob_rodata(&mod->core_layout, set_memory_ro);
1909 frob_text(&mod->init_layout, set_memory_ro);
1910 frob_rodata(&mod->init_layout, set_memory_ro);
1911 }
1912
1913 static void module_enable_nx(const struct module *mod)
1914 {
1915 frob_rodata(&mod->core_layout, set_memory_nx);
1916 frob_writable_data(&mod->core_layout, set_memory_nx);
1917 frob_rodata(&mod->init_layout, set_memory_nx);
1918 frob_writable_data(&mod->init_layout, set_memory_nx);
1919 }
1920
1921 static void module_disable_nx(const struct module *mod)
1922 {
1923 frob_rodata(&mod->core_layout, set_memory_x);
1924 frob_writable_data(&mod->core_layout, set_memory_x);
1925 frob_rodata(&mod->init_layout, set_memory_x);
1926 frob_writable_data(&mod->init_layout, set_memory_x);
1927 }
1928
1929 /* Iterate through all modules and set each module's text as RW */
1930 void set_all_modules_text_rw(void)
1931 {
1932 struct module *mod;
1933
1934 mutex_lock(&module_mutex);
1935 list_for_each_entry_rcu(mod, &modules, list) {
1936 if (mod->state == MODULE_STATE_UNFORMED)
1937 continue;
1938
1939 frob_text(&mod->core_layout, set_memory_rw);
1940 frob_text(&mod->init_layout, set_memory_rw);
1941 }
1942 mutex_unlock(&module_mutex);
1943 }
1944
1945 /* Iterate through all modules and set each module's text as RO */
1946 void set_all_modules_text_ro(void)
1947 {
1948 struct module *mod;
1949
1950 mutex_lock(&module_mutex);
1951 list_for_each_entry_rcu(mod, &modules, list) {
1952 if (mod->state == MODULE_STATE_UNFORMED)
1953 continue;
1954
1955 frob_text(&mod->core_layout, set_memory_ro);
1956 frob_text(&mod->init_layout, set_memory_ro);
1957 }
1958 mutex_unlock(&module_mutex);
1959 }
1960
1961 static void disable_ro_nx(const struct module_layout *layout)
1962 {
1963 frob_text(layout, set_memory_rw);
1964 frob_rodata(layout, set_memory_rw);
1965 frob_rodata(layout, set_memory_x);
1966 frob_writable_data(layout, set_memory_x);
1967 }
1968
1969 #else
1970 static void disable_ro_nx(const struct module_layout *layout) { }
1971 static void module_enable_nx(const struct module *mod) { }
1972 static void module_disable_nx(const struct module *mod) { }
1973 #endif
1974
1975 #ifdef CONFIG_LIVEPATCH
1976 /*
1977 * Persist Elf information about a module. Copy the Elf header,
1978 * section header table, section string table, and symtab section
1979 * index from info to mod->klp_info.
1980 */
1981 static int copy_module_elf(struct module *mod, struct load_info *info)
1982 {
1983 unsigned int size, symndx;
1984 int ret;
1985
1986 size = sizeof(*mod->klp_info);
1987 mod->klp_info = kmalloc(size, GFP_KERNEL);
1988 if (mod->klp_info == NULL)
1989 return -ENOMEM;
1990
1991 /* Elf header */
1992 size = sizeof(mod->klp_info->hdr);
1993 memcpy(&mod->klp_info->hdr, info->hdr, size);
1994
1995 /* Elf section header table */
1996 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
1997 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
1998 if (mod->klp_info->sechdrs == NULL) {
1999 ret = -ENOMEM;
2000 goto free_info;
2001 }
2002 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2003
2004 /* Elf section name string table */
2005 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2006 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2007 if (mod->klp_info->secstrings == NULL) {
2008 ret = -ENOMEM;
2009 goto free_sechdrs;
2010 }
2011 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2012
2013 /* Elf symbol section index */
2014 symndx = info->index.sym;
2015 mod->klp_info->symndx = symndx;
2016
2017 /*
2018 * For livepatch modules, core_kallsyms.symtab is a complete
2019 * copy of the original symbol table. Adjust sh_addr to point
2020 * to core_kallsyms.symtab since the copy of the symtab in module
2021 * init memory is freed at the end of do_init_module().
2022 */
2023 mod->klp_info->sechdrs[symndx].sh_addr = \
2024 (unsigned long) mod->core_kallsyms.symtab;
2025
2026 return 0;
2027
2028 free_sechdrs:
2029 kfree(mod->klp_info->sechdrs);
2030 free_info:
2031 kfree(mod->klp_info);
2032 return ret;
2033 }
2034
2035 static void free_module_elf(struct module *mod)
2036 {
2037 kfree(mod->klp_info->sechdrs);
2038 kfree(mod->klp_info->secstrings);
2039 kfree(mod->klp_info);
2040 }
2041 #else /* !CONFIG_LIVEPATCH */
2042 static int copy_module_elf(struct module *mod, struct load_info *info)
2043 {
2044 return 0;
2045 }
2046
2047 static void free_module_elf(struct module *mod)
2048 {
2049 }
2050 #endif /* CONFIG_LIVEPATCH */
2051
2052 void __weak module_memfree(void *module_region)
2053 {
2054 vfree(module_region);
2055 }
2056
2057 void __weak module_arch_cleanup(struct module *mod)
2058 {
2059 }
2060
2061 void __weak module_arch_freeing_init(struct module *mod)
2062 {
2063 }
2064
2065 /* Free a module, remove from lists, etc. */
2066 static void free_module(struct module *mod)
2067 {
2068 trace_module_free(mod);
2069
2070 mod_sysfs_teardown(mod);
2071
2072 /* We leave it in list to prevent duplicate loads, but make sure
2073 * that noone uses it while it's being deconstructed. */
2074 mutex_lock(&module_mutex);
2075 mod->state = MODULE_STATE_UNFORMED;
2076 mutex_unlock(&module_mutex);
2077
2078 /* Remove dynamic debug info */
2079 ddebug_remove_module(mod->name);
2080
2081 /* Arch-specific cleanup. */
2082 module_arch_cleanup(mod);
2083
2084 /* Module unload stuff */
2085 module_unload_free(mod);
2086
2087 /* Free any allocated parameters. */
2088 destroy_params(mod->kp, mod->num_kp);
2089
2090 if (is_livepatch_module(mod))
2091 free_module_elf(mod);
2092
2093 /* Now we can delete it from the lists */
2094 mutex_lock(&module_mutex);
2095 /* Unlink carefully: kallsyms could be walking list. */
2096 list_del_rcu(&mod->list);
2097 mod_tree_remove(mod);
2098 /* Remove this module from bug list, this uses list_del_rcu */
2099 module_bug_cleanup(mod);
2100 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2101 synchronize_sched();
2102 mutex_unlock(&module_mutex);
2103
2104 /* This may be empty, but that's OK */
2105 disable_ro_nx(&mod->init_layout);
2106 module_arch_freeing_init(mod);
2107 module_memfree(mod->init_layout.base);
2108 kfree(mod->args);
2109 percpu_modfree(mod);
2110
2111 /* Free lock-classes; relies on the preceding sync_rcu(). */
2112 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2113
2114 /* Finally, free the core (containing the module structure) */
2115 disable_ro_nx(&mod->core_layout);
2116 module_memfree(mod->core_layout.base);
2117
2118 #ifdef CONFIG_MPU
2119 update_protections(current->mm);
2120 #endif
2121 }
2122
2123 void *__symbol_get(const char *symbol)
2124 {
2125 struct module *owner;
2126 const struct kernel_symbol *sym;
2127
2128 preempt_disable();
2129 sym = find_symbol(symbol, &owner, NULL, true, true);
2130 if (sym && strong_try_module_get(owner))
2131 sym = NULL;
2132 preempt_enable();
2133
2134 return sym ? (void *)sym->value : NULL;
2135 }
2136 EXPORT_SYMBOL_GPL(__symbol_get);
2137
2138 /*
2139 * Ensure that an exported symbol [global namespace] does not already exist
2140 * in the kernel or in some other module's exported symbol table.
2141 *
2142 * You must hold the module_mutex.
2143 */
2144 static int verify_export_symbols(struct module *mod)
2145 {
2146 unsigned int i;
2147 struct module *owner;
2148 const struct kernel_symbol *s;
2149 struct {
2150 const struct kernel_symbol *sym;
2151 unsigned int num;
2152 } arr[] = {
2153 { mod->syms, mod->num_syms },
2154 { mod->gpl_syms, mod->num_gpl_syms },
2155 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2156 #ifdef CONFIG_UNUSED_SYMBOLS
2157 { mod->unused_syms, mod->num_unused_syms },
2158 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2159 #endif
2160 };
2161
2162 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2163 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2164 if (find_symbol(s->name, &owner, NULL, true, false)) {
2165 pr_err("%s: exports duplicate symbol %s"
2166 " (owned by %s)\n",
2167 mod->name, s->name, module_name(owner));
2168 return -ENOEXEC;
2169 }
2170 }
2171 }
2172 return 0;
2173 }
2174
2175 /* Change all symbols so that st_value encodes the pointer directly. */
2176 static int simplify_symbols(struct module *mod, const struct load_info *info)
2177 {
2178 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2179 Elf_Sym *sym = (void *)symsec->sh_addr;
2180 unsigned long secbase;
2181 unsigned int i;
2182 int ret = 0;
2183 const struct kernel_symbol *ksym;
2184
2185 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2186 const char *name = info->strtab + sym[i].st_name;
2187
2188 switch (sym[i].st_shndx) {
2189 case SHN_COMMON:
2190 /* Ignore common symbols */
2191 if (!strncmp(name, "__gnu_lto", 9))
2192 break;
2193
2194 /* We compiled with -fno-common. These are not
2195 supposed to happen. */
2196 pr_debug("Common symbol: %s\n", name);
2197 pr_warn("%s: please compile with -fno-common\n",
2198 mod->name);
2199 ret = -ENOEXEC;
2200 break;
2201
2202 case SHN_ABS:
2203 /* Don't need to do anything */
2204 pr_debug("Absolute symbol: 0x%08lx\n",
2205 (long)sym[i].st_value);
2206 break;
2207
2208 case SHN_LIVEPATCH:
2209 /* Livepatch symbols are resolved by livepatch */
2210 break;
2211
2212 case SHN_UNDEF:
2213 ksym = resolve_symbol_wait(mod, info, name);
2214 /* Ok if resolved. */
2215 if (ksym && !IS_ERR(ksym)) {
2216 sym[i].st_value = ksym->value;
2217 break;
2218 }
2219
2220 /* Ok if weak. */
2221 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2222 break;
2223
2224 pr_warn("%s: Unknown symbol %s (err %li)\n",
2225 mod->name, name, PTR_ERR(ksym));
2226 ret = PTR_ERR(ksym) ?: -ENOENT;
2227 break;
2228
2229 default:
2230 /* Divert to percpu allocation if a percpu var. */
2231 if (sym[i].st_shndx == info->index.pcpu)
2232 secbase = (unsigned long)mod_percpu(mod);
2233 else
2234 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2235 sym[i].st_value += secbase;
2236 break;
2237 }
2238 }
2239
2240 return ret;
2241 }
2242
2243 static int apply_relocations(struct module *mod, const struct load_info *info)
2244 {
2245 unsigned int i;
2246 int err = 0;
2247
2248 /* Now do relocations. */
2249 for (i = 1; i < info->hdr->e_shnum; i++) {
2250 unsigned int infosec = info->sechdrs[i].sh_info;
2251
2252 /* Not a valid relocation section? */
2253 if (infosec >= info->hdr->e_shnum)
2254 continue;
2255
2256 /* Don't bother with non-allocated sections */
2257 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2258 continue;
2259
2260 /* Livepatch relocation sections are applied by livepatch */
2261 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2262 continue;
2263
2264 if (info->sechdrs[i].sh_type == SHT_REL)
2265 err = apply_relocate(info->sechdrs, info->strtab,
2266 info->index.sym, i, mod);
2267 else if (info->sechdrs[i].sh_type == SHT_RELA)
2268 err = apply_relocate_add(info->sechdrs, info->strtab,
2269 info->index.sym, i, mod);
2270 if (err < 0)
2271 break;
2272 }
2273 return err;
2274 }
2275
2276 /* Additional bytes needed by arch in front of individual sections */
2277 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2278 unsigned int section)
2279 {
2280 /* default implementation just returns zero */
2281 return 0;
2282 }
2283
2284 /* Update size with this section: return offset. */
2285 static long get_offset(struct module *mod, unsigned int *size,
2286 Elf_Shdr *sechdr, unsigned int section)
2287 {
2288 long ret;
2289
2290 *size += arch_mod_section_prepend(mod, section);
2291 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2292 *size = ret + sechdr->sh_size;
2293 return ret;
2294 }
2295
2296 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2297 might -- code, read-only data, read-write data, small data. Tally
2298 sizes, and place the offsets into sh_entsize fields: high bit means it
2299 belongs in init. */
2300 static void layout_sections(struct module *mod, struct load_info *info)
2301 {
2302 static unsigned long const masks[][2] = {
2303 /* NOTE: all executable code must be the first section
2304 * in this array; otherwise modify the text_size
2305 * finder in the two loops below */
2306 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2307 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2308 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2309 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2310 };
2311 unsigned int m, i;
2312
2313 for (i = 0; i < info->hdr->e_shnum; i++)
2314 info->sechdrs[i].sh_entsize = ~0UL;
2315
2316 pr_debug("Core section allocation order:\n");
2317 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2318 for (i = 0; i < info->hdr->e_shnum; ++i) {
2319 Elf_Shdr *s = &info->sechdrs[i];
2320 const char *sname = info->secstrings + s->sh_name;
2321
2322 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2323 || (s->sh_flags & masks[m][1])
2324 || s->sh_entsize != ~0UL
2325 || strstarts(sname, ".init"))
2326 continue;
2327 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2328 pr_debug("\t%s\n", sname);
2329 }
2330 switch (m) {
2331 case 0: /* executable */
2332 mod->core_layout.size = debug_align(mod->core_layout.size);
2333 mod->core_layout.text_size = mod->core_layout.size;
2334 break;
2335 case 1: /* RO: text and ro-data */
2336 mod->core_layout.size = debug_align(mod->core_layout.size);
2337 mod->core_layout.ro_size = mod->core_layout.size;
2338 break;
2339 case 3: /* whole core */
2340 mod->core_layout.size = debug_align(mod->core_layout.size);
2341 break;
2342 }
2343 }
2344
2345 pr_debug("Init section allocation order:\n");
2346 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2347 for (i = 0; i < info->hdr->e_shnum; ++i) {
2348 Elf_Shdr *s = &info->sechdrs[i];
2349 const char *sname = info->secstrings + s->sh_name;
2350
2351 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2352 || (s->sh_flags & masks[m][1])
2353 || s->sh_entsize != ~0UL
2354 || !strstarts(sname, ".init"))
2355 continue;
2356 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2357 | INIT_OFFSET_MASK);
2358 pr_debug("\t%s\n", sname);
2359 }
2360 switch (m) {
2361 case 0: /* executable */
2362 mod->init_layout.size = debug_align(mod->init_layout.size);
2363 mod->init_layout.text_size = mod->init_layout.size;
2364 break;
2365 case 1: /* RO: text and ro-data */
2366 mod->init_layout.size = debug_align(mod->init_layout.size);
2367 mod->init_layout.ro_size = mod->init_layout.size;
2368 break;
2369 case 3: /* whole init */
2370 mod->init_layout.size = debug_align(mod->init_layout.size);
2371 break;
2372 }
2373 }
2374 }
2375
2376 static void set_license(struct module *mod, const char *license)
2377 {
2378 if (!license)
2379 license = "unspecified";
2380
2381 if (!license_is_gpl_compatible(license)) {
2382 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2383 pr_warn("%s: module license '%s' taints kernel.\n",
2384 mod->name, license);
2385 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2386 LOCKDEP_NOW_UNRELIABLE);
2387 }
2388 }
2389
2390 /* Parse tag=value strings from .modinfo section */
2391 static char *next_string(char *string, unsigned long *secsize)
2392 {
2393 /* Skip non-zero chars */
2394 while (string[0]) {
2395 string++;
2396 if ((*secsize)-- <= 1)
2397 return NULL;
2398 }
2399
2400 /* Skip any zero padding. */
2401 while (!string[0]) {
2402 string++;
2403 if ((*secsize)-- <= 1)
2404 return NULL;
2405 }
2406 return string;
2407 }
2408
2409 static char *get_modinfo(struct load_info *info, const char *tag)
2410 {
2411 char *p;
2412 unsigned int taglen = strlen(tag);
2413 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2414 unsigned long size = infosec->sh_size;
2415
2416 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2417 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2418 return p + taglen + 1;
2419 }
2420 return NULL;
2421 }
2422
2423 static void setup_modinfo(struct module *mod, struct load_info *info)
2424 {
2425 struct module_attribute *attr;
2426 int i;
2427
2428 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2429 if (attr->setup)
2430 attr->setup(mod, get_modinfo(info, attr->attr.name));
2431 }
2432 }
2433
2434 static void free_modinfo(struct module *mod)
2435 {
2436 struct module_attribute *attr;
2437 int i;
2438
2439 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2440 if (attr->free)
2441 attr->free(mod);
2442 }
2443 }
2444
2445 #ifdef CONFIG_KALLSYMS
2446
2447 /* lookup symbol in given range of kernel_symbols */
2448 static const struct kernel_symbol *lookup_symbol(const char *name,
2449 const struct kernel_symbol *start,
2450 const struct kernel_symbol *stop)
2451 {
2452 return bsearch(name, start, stop - start,
2453 sizeof(struct kernel_symbol), cmp_name);
2454 }
2455
2456 static int is_exported(const char *name, unsigned long value,
2457 const struct module *mod)
2458 {
2459 const struct kernel_symbol *ks;
2460 if (!mod)
2461 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2462 else
2463 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2464 return ks != NULL && ks->value == value;
2465 }
2466
2467 /* As per nm */
2468 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2469 {
2470 const Elf_Shdr *sechdrs = info->sechdrs;
2471
2472 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2473 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2474 return 'v';
2475 else
2476 return 'w';
2477 }
2478 if (sym->st_shndx == SHN_UNDEF)
2479 return 'U';
2480 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2481 return 'a';
2482 if (sym->st_shndx >= SHN_LORESERVE)
2483 return '?';
2484 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2485 return 't';
2486 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2487 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2488 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2489 return 'r';
2490 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2491 return 'g';
2492 else
2493 return 'd';
2494 }
2495 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2496 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2497 return 's';
2498 else
2499 return 'b';
2500 }
2501 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2502 ".debug")) {
2503 return 'n';
2504 }
2505 return '?';
2506 }
2507
2508 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2509 unsigned int shnum, unsigned int pcpundx)
2510 {
2511 const Elf_Shdr *sec;
2512
2513 if (src->st_shndx == SHN_UNDEF
2514 || src->st_shndx >= shnum
2515 || !src->st_name)
2516 return false;
2517
2518 #ifdef CONFIG_KALLSYMS_ALL
2519 if (src->st_shndx == pcpundx)
2520 return true;
2521 #endif
2522
2523 sec = sechdrs + src->st_shndx;
2524 if (!(sec->sh_flags & SHF_ALLOC)
2525 #ifndef CONFIG_KALLSYMS_ALL
2526 || !(sec->sh_flags & SHF_EXECINSTR)
2527 #endif
2528 || (sec->sh_entsize & INIT_OFFSET_MASK))
2529 return false;
2530
2531 return true;
2532 }
2533
2534 /*
2535 * We only allocate and copy the strings needed by the parts of symtab
2536 * we keep. This is simple, but has the effect of making multiple
2537 * copies of duplicates. We could be more sophisticated, see
2538 * linux-kernel thread starting with
2539 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2540 */
2541 static void layout_symtab(struct module *mod, struct load_info *info)
2542 {
2543 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2544 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2545 const Elf_Sym *src;
2546 unsigned int i, nsrc, ndst, strtab_size = 0;
2547
2548 /* Put symbol section at end of init part of module. */
2549 symsect->sh_flags |= SHF_ALLOC;
2550 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2551 info->index.sym) | INIT_OFFSET_MASK;
2552 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2553
2554 src = (void *)info->hdr + symsect->sh_offset;
2555 nsrc = symsect->sh_size / sizeof(*src);
2556
2557 /* Compute total space required for the core symbols' strtab. */
2558 for (ndst = i = 0; i < nsrc; i++) {
2559 if (i == 0 || is_livepatch_module(mod) ||
2560 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2561 info->index.pcpu)) {
2562 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2563 ndst++;
2564 }
2565 }
2566
2567 /* Append room for core symbols at end of core part. */
2568 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2569 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2570 mod->core_layout.size += strtab_size;
2571 mod->core_layout.size = debug_align(mod->core_layout.size);
2572
2573 /* Put string table section at end of init part of module. */
2574 strsect->sh_flags |= SHF_ALLOC;
2575 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2576 info->index.str) | INIT_OFFSET_MASK;
2577 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2578
2579 /* We'll tack temporary mod_kallsyms on the end. */
2580 mod->init_layout.size = ALIGN(mod->init_layout.size,
2581 __alignof__(struct mod_kallsyms));
2582 info->mod_kallsyms_init_off = mod->init_layout.size;
2583 mod->init_layout.size += sizeof(struct mod_kallsyms);
2584 mod->init_layout.size = debug_align(mod->init_layout.size);
2585 }
2586
2587 /*
2588 * We use the full symtab and strtab which layout_symtab arranged to
2589 * be appended to the init section. Later we switch to the cut-down
2590 * core-only ones.
2591 */
2592 static void add_kallsyms(struct module *mod, const struct load_info *info)
2593 {
2594 unsigned int i, ndst;
2595 const Elf_Sym *src;
2596 Elf_Sym *dst;
2597 char *s;
2598 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2599
2600 /* Set up to point into init section. */
2601 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2602
2603 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2604 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2605 /* Make sure we get permanent strtab: don't use info->strtab. */
2606 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2607
2608 /* Set types up while we still have access to sections. */
2609 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2610 mod->kallsyms->symtab[i].st_info
2611 = elf_type(&mod->kallsyms->symtab[i], info);
2612
2613 /* Now populate the cut down core kallsyms for after init. */
2614 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2615 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2616 src = mod->kallsyms->symtab;
2617 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2618 if (i == 0 || is_livepatch_module(mod) ||
2619 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2620 info->index.pcpu)) {
2621 dst[ndst] = src[i];
2622 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2623 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2624 KSYM_NAME_LEN) + 1;
2625 }
2626 }
2627 mod->core_kallsyms.num_symtab = ndst;
2628 }
2629 #else
2630 static inline void layout_symtab(struct module *mod, struct load_info *info)
2631 {
2632 }
2633
2634 static void add_kallsyms(struct module *mod, const struct load_info *info)
2635 {
2636 }
2637 #endif /* CONFIG_KALLSYMS */
2638
2639 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2640 {
2641 if (!debug)
2642 return;
2643 #ifdef CONFIG_DYNAMIC_DEBUG
2644 if (ddebug_add_module(debug, num, debug->modname))
2645 pr_err("dynamic debug error adding module: %s\n",
2646 debug->modname);
2647 #endif
2648 }
2649
2650 static void dynamic_debug_remove(struct _ddebug *debug)
2651 {
2652 if (debug)
2653 ddebug_remove_module(debug->modname);
2654 }
2655
2656 void * __weak module_alloc(unsigned long size)
2657 {
2658 return vmalloc_exec(size);
2659 }
2660
2661 #ifdef CONFIG_DEBUG_KMEMLEAK
2662 static void kmemleak_load_module(const struct module *mod,
2663 const struct load_info *info)
2664 {
2665 unsigned int i;
2666
2667 /* only scan the sections containing data */
2668 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2669
2670 for (i = 1; i < info->hdr->e_shnum; i++) {
2671 /* Scan all writable sections that's not executable */
2672 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2673 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2674 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2675 continue;
2676
2677 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2678 info->sechdrs[i].sh_size, GFP_KERNEL);
2679 }
2680 }
2681 #else
2682 static inline void kmemleak_load_module(const struct module *mod,
2683 const struct load_info *info)
2684 {
2685 }
2686 #endif
2687
2688 #ifdef CONFIG_MODULE_SIG
2689 static int module_sig_check(struct load_info *info)
2690 {
2691 int err = -ENOKEY;
2692 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2693 const void *mod = info->hdr;
2694
2695 if (info->len > markerlen &&
2696 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2697 /* We truncate the module to discard the signature */
2698 info->len -= markerlen;
2699 err = mod_verify_sig(mod, &info->len);
2700 }
2701
2702 if (!err) {
2703 info->sig_ok = true;
2704 return 0;
2705 }
2706
2707 /* Not having a signature is only an error if we're strict. */
2708 if (err == -ENOKEY && !sig_enforce)
2709 err = 0;
2710
2711 return err;
2712 }
2713 #else /* !CONFIG_MODULE_SIG */
2714 static int module_sig_check(struct load_info *info)
2715 {
2716 return 0;
2717 }
2718 #endif /* !CONFIG_MODULE_SIG */
2719
2720 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2721 static int elf_header_check(struct load_info *info)
2722 {
2723 if (info->len < sizeof(*(info->hdr)))
2724 return -ENOEXEC;
2725
2726 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2727 || info->hdr->e_type != ET_REL
2728 || !elf_check_arch(info->hdr)
2729 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2730 return -ENOEXEC;
2731
2732 if (info->hdr->e_shoff >= info->len
2733 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2734 info->len - info->hdr->e_shoff))
2735 return -ENOEXEC;
2736
2737 return 0;
2738 }
2739
2740 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2741
2742 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2743 {
2744 do {
2745 unsigned long n = min(len, COPY_CHUNK_SIZE);
2746
2747 if (copy_from_user(dst, usrc, n) != 0)
2748 return -EFAULT;
2749 cond_resched();
2750 dst += n;
2751 usrc += n;
2752 len -= n;
2753 } while (len);
2754 return 0;
2755 }
2756
2757 #ifdef CONFIG_LIVEPATCH
2758 static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
2759 {
2760 mod->klp = get_modinfo(info, "livepatch") ? true : false;
2761
2762 return 0;
2763 }
2764 #else /* !CONFIG_LIVEPATCH */
2765 static int find_livepatch_modinfo(struct module *mod, struct load_info *info)
2766 {
2767 if (get_modinfo(info, "livepatch")) {
2768 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2769 mod->name);
2770 return -ENOEXEC;
2771 }
2772
2773 return 0;
2774 }
2775 #endif /* CONFIG_LIVEPATCH */
2776
2777 /* Sets info->hdr and info->len. */
2778 static int copy_module_from_user(const void __user *umod, unsigned long len,
2779 struct load_info *info)
2780 {
2781 int err;
2782
2783 info->len = len;
2784 if (info->len < sizeof(*(info->hdr)))
2785 return -ENOEXEC;
2786
2787 err = security_kernel_read_file(NULL, READING_MODULE);
2788 if (err)
2789 return err;
2790
2791 /* Suck in entire file: we'll want most of it. */
2792 info->hdr = __vmalloc(info->len,
2793 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2794 if (!info->hdr)
2795 return -ENOMEM;
2796
2797 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2798 vfree(info->hdr);
2799 return -EFAULT;
2800 }
2801
2802 return 0;
2803 }
2804
2805 static void free_copy(struct load_info *info)
2806 {
2807 vfree(info->hdr);
2808 }
2809
2810 static int rewrite_section_headers(struct load_info *info, int flags)
2811 {
2812 unsigned int i;
2813
2814 /* This should always be true, but let's be sure. */
2815 info->sechdrs[0].sh_addr = 0;
2816
2817 for (i = 1; i < info->hdr->e_shnum; i++) {
2818 Elf_Shdr *shdr = &info->sechdrs[i];
2819 if (shdr->sh_type != SHT_NOBITS
2820 && info->len < shdr->sh_offset + shdr->sh_size) {
2821 pr_err("Module len %lu truncated\n", info->len);
2822 return -ENOEXEC;
2823 }
2824
2825 /* Mark all sections sh_addr with their address in the
2826 temporary image. */
2827 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2828
2829 #ifndef CONFIG_MODULE_UNLOAD
2830 /* Don't load .exit sections */
2831 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2832 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2833 #endif
2834 }
2835
2836 /* Track but don't keep modinfo and version sections. */
2837 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2838 info->index.vers = 0; /* Pretend no __versions section! */
2839 else
2840 info->index.vers = find_sec(info, "__versions");
2841 info->index.info = find_sec(info, ".modinfo");
2842 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2843 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2844 return 0;
2845 }
2846
2847 /*
2848 * Set up our basic convenience variables (pointers to section headers,
2849 * search for module section index etc), and do some basic section
2850 * verification.
2851 *
2852 * Return the temporary module pointer (we'll replace it with the final
2853 * one when we move the module sections around).
2854 */
2855 static struct module *setup_load_info(struct load_info *info, int flags)
2856 {
2857 unsigned int i;
2858 int err;
2859 struct module *mod;
2860
2861 /* Set up the convenience variables */
2862 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2863 info->secstrings = (void *)info->hdr
2864 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2865
2866 err = rewrite_section_headers(info, flags);
2867 if (err)
2868 return ERR_PTR(err);
2869
2870 /* Find internal symbols and strings. */
2871 for (i = 1; i < info->hdr->e_shnum; i++) {
2872 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2873 info->index.sym = i;
2874 info->index.str = info->sechdrs[i].sh_link;
2875 info->strtab = (char *)info->hdr
2876 + info->sechdrs[info->index.str].sh_offset;
2877 break;
2878 }
2879 }
2880
2881 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2882 if (!info->index.mod) {
2883 pr_warn("No module found in object\n");
2884 return ERR_PTR(-ENOEXEC);
2885 }
2886 /* This is temporary: point mod into copy of data. */
2887 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2888
2889 if (info->index.sym == 0) {
2890 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2891 return ERR_PTR(-ENOEXEC);
2892 }
2893
2894 info->index.pcpu = find_pcpusec(info);
2895
2896 /* Check module struct version now, before we try to use module. */
2897 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2898 return ERR_PTR(-ENOEXEC);
2899
2900 return mod;
2901 }
2902
2903 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2904 {
2905 const char *modmagic = get_modinfo(info, "vermagic");
2906 int err;
2907
2908 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2909 modmagic = NULL;
2910
2911 /* This is allowed: modprobe --force will invalidate it. */
2912 if (!modmagic) {
2913 err = try_to_force_load(mod, "bad vermagic");
2914 if (err)
2915 return err;
2916 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2917 pr_err("%s: version magic '%s' should be '%s'\n",
2918 mod->name, modmagic, vermagic);
2919 return -ENOEXEC;
2920 }
2921
2922 if (!get_modinfo(info, "intree")) {
2923 if (!test_taint(TAINT_OOT_MODULE))
2924 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2925 mod->name);
2926 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2927 }
2928
2929 if (get_modinfo(info, "staging")) {
2930 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2931 pr_warn("%s: module is from the staging directory, the quality "
2932 "is unknown, you have been warned.\n", mod->name);
2933 }
2934
2935 err = find_livepatch_modinfo(mod, info);
2936 if (err)
2937 return err;
2938
2939 /* Set up license info based on the info section */
2940 set_license(mod, get_modinfo(info, "license"));
2941
2942 return 0;
2943 }
2944
2945 static int find_module_sections(struct module *mod, struct load_info *info)
2946 {
2947 mod->kp = section_objs(info, "__param",
2948 sizeof(*mod->kp), &mod->num_kp);
2949 mod->syms = section_objs(info, "__ksymtab",
2950 sizeof(*mod->syms), &mod->num_syms);
2951 mod->crcs = section_addr(info, "__kcrctab");
2952 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2953 sizeof(*mod->gpl_syms),
2954 &mod->num_gpl_syms);
2955 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2956 mod->gpl_future_syms = section_objs(info,
2957 "__ksymtab_gpl_future",
2958 sizeof(*mod->gpl_future_syms),
2959 &mod->num_gpl_future_syms);
2960 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2961
2962 #ifdef CONFIG_UNUSED_SYMBOLS
2963 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2964 sizeof(*mod->unused_syms),
2965 &mod->num_unused_syms);
2966 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2967 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2968 sizeof(*mod->unused_gpl_syms),
2969 &mod->num_unused_gpl_syms);
2970 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2971 #endif
2972 #ifdef CONFIG_CONSTRUCTORS
2973 mod->ctors = section_objs(info, ".ctors",
2974 sizeof(*mod->ctors), &mod->num_ctors);
2975 if (!mod->ctors)
2976 mod->ctors = section_objs(info, ".init_array",
2977 sizeof(*mod->ctors), &mod->num_ctors);
2978 else if (find_sec(info, ".init_array")) {
2979 /*
2980 * This shouldn't happen with same compiler and binutils
2981 * building all parts of the module.
2982 */
2983 pr_warn("%s: has both .ctors and .init_array.\n",
2984 mod->name);
2985 return -EINVAL;
2986 }
2987 #endif
2988
2989 #ifdef CONFIG_TRACEPOINTS
2990 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2991 sizeof(*mod->tracepoints_ptrs),
2992 &mod->num_tracepoints);
2993 #endif
2994 #ifdef HAVE_JUMP_LABEL
2995 mod->jump_entries = section_objs(info, "__jump_table",
2996 sizeof(*mod->jump_entries),
2997 &mod->num_jump_entries);
2998 #endif
2999 #ifdef CONFIG_EVENT_TRACING
3000 mod->trace_events = section_objs(info, "_ftrace_events",
3001 sizeof(*mod->trace_events),
3002 &mod->num_trace_events);
3003 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3004 sizeof(*mod->trace_enums),
3005 &mod->num_trace_enums);
3006 #endif
3007 #ifdef CONFIG_TRACING
3008 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3009 sizeof(*mod->trace_bprintk_fmt_start),
3010 &mod->num_trace_bprintk_fmt);
3011 #endif
3012 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3013 /* sechdrs[0].sh_size is always zero */
3014 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3015 sizeof(*mod->ftrace_callsites),
3016 &mod->num_ftrace_callsites);
3017 #endif
3018
3019 mod->extable = section_objs(info, "__ex_table",
3020 sizeof(*mod->extable), &mod->num_exentries);
3021
3022 if (section_addr(info, "__obsparm"))
3023 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3024
3025 info->debug = section_objs(info, "__verbose",
3026 sizeof(*info->debug), &info->num_debug);
3027
3028 return 0;
3029 }
3030
3031 static int move_module(struct module *mod, struct load_info *info)
3032 {
3033 int i;
3034 void *ptr;
3035
3036 /* Do the allocs. */
3037 ptr = module_alloc(mod->core_layout.size);
3038 /*
3039 * The pointer to this block is stored in the module structure
3040 * which is inside the block. Just mark it as not being a
3041 * leak.
3042 */
3043 kmemleak_not_leak(ptr);
3044 if (!ptr)
3045 return -ENOMEM;
3046
3047 memset(ptr, 0, mod->core_layout.size);
3048 mod->core_layout.base = ptr;
3049
3050 if (mod->init_layout.size) {
3051 ptr = module_alloc(mod->init_layout.size);
3052 /*
3053 * The pointer to this block is stored in the module structure
3054 * which is inside the block. This block doesn't need to be
3055 * scanned as it contains data and code that will be freed
3056 * after the module is initialized.
3057 */
3058 kmemleak_ignore(ptr);
3059 if (!ptr) {
3060 module_memfree(mod->core_layout.base);
3061 return -ENOMEM;
3062 }
3063 memset(ptr, 0, mod->init_layout.size);
3064 mod->init_layout.base = ptr;
3065 } else
3066 mod->init_layout.base = NULL;
3067
3068 /* Transfer each section which specifies SHF_ALLOC */
3069 pr_debug("final section addresses:\n");
3070 for (i = 0; i < info->hdr->e_shnum; i++) {
3071 void *dest;
3072 Elf_Shdr *shdr = &info->sechdrs[i];
3073
3074 if (!(shdr->sh_flags & SHF_ALLOC))
3075 continue;
3076
3077 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3078 dest = mod->init_layout.base
3079 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3080 else
3081 dest = mod->core_layout.base + shdr->sh_entsize;
3082
3083 if (shdr->sh_type != SHT_NOBITS)
3084 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3085 /* Update sh_addr to point to copy in image. */
3086 shdr->sh_addr = (unsigned long)dest;
3087 pr_debug("\t0x%lx %s\n",
3088 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3089 }
3090
3091 return 0;
3092 }
3093
3094 static int check_module_license_and_versions(struct module *mod)
3095 {
3096 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3097
3098 /*
3099 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3100 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3101 * using GPL-only symbols it needs.
3102 */
3103 if (strcmp(mod->name, "ndiswrapper") == 0)
3104 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3105
3106 /* driverloader was caught wrongly pretending to be under GPL */
3107 if (strcmp(mod->name, "driverloader") == 0)
3108 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3109 LOCKDEP_NOW_UNRELIABLE);
3110
3111 /* lve claims to be GPL but upstream won't provide source */
3112 if (strcmp(mod->name, "lve") == 0)
3113 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3114 LOCKDEP_NOW_UNRELIABLE);
3115
3116 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3117 pr_warn("%s: module license taints kernel.\n", mod->name);
3118
3119 #ifdef CONFIG_MODVERSIONS
3120 if ((mod->num_syms && !mod->crcs)
3121 || (mod->num_gpl_syms && !mod->gpl_crcs)
3122 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3123 #ifdef CONFIG_UNUSED_SYMBOLS
3124 || (mod->num_unused_syms && !mod->unused_crcs)
3125 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3126 #endif
3127 ) {
3128 return try_to_force_load(mod,
3129 "no versions for exported symbols");
3130 }
3131 #endif
3132 return 0;
3133 }
3134
3135 static void flush_module_icache(const struct module *mod)
3136 {
3137 mm_segment_t old_fs;
3138
3139 /* flush the icache in correct context */
3140 old_fs = get_fs();
3141 set_fs(KERNEL_DS);
3142
3143 /*
3144 * Flush the instruction cache, since we've played with text.
3145 * Do it before processing of module parameters, so the module
3146 * can provide parameter accessor functions of its own.
3147 */
3148 if (mod->init_layout.base)
3149 flush_icache_range((unsigned long)mod->init_layout.base,
3150 (unsigned long)mod->init_layout.base
3151 + mod->init_layout.size);
3152 flush_icache_range((unsigned long)mod->core_layout.base,
3153 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3154
3155 set_fs(old_fs);
3156 }
3157
3158 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3159 Elf_Shdr *sechdrs,
3160 char *secstrings,
3161 struct module *mod)
3162 {
3163 return 0;
3164 }
3165
3166 static struct module *layout_and_allocate(struct load_info *info, int flags)
3167 {
3168 /* Module within temporary copy. */
3169 struct module *mod;
3170 int err;
3171
3172 mod = setup_load_info(info, flags);
3173 if (IS_ERR(mod))
3174 return mod;
3175
3176 err = check_modinfo(mod, info, flags);
3177 if (err)
3178 return ERR_PTR(err);
3179
3180 /* Allow arches to frob section contents and sizes. */
3181 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3182 info->secstrings, mod);
3183 if (err < 0)
3184 return ERR_PTR(err);
3185
3186 /* We will do a special allocation for per-cpu sections later. */
3187 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3188
3189 /* Determine total sizes, and put offsets in sh_entsize. For now
3190 this is done generically; there doesn't appear to be any
3191 special cases for the architectures. */
3192 layout_sections(mod, info);
3193 layout_symtab(mod, info);
3194
3195 /* Allocate and move to the final place */
3196 err = move_module(mod, info);
3197 if (err)
3198 return ERR_PTR(err);
3199
3200 /* Module has been copied to its final place now: return it. */
3201 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3202 kmemleak_load_module(mod, info);
3203 return mod;
3204 }
3205
3206 /* mod is no longer valid after this! */
3207 static void module_deallocate(struct module *mod, struct load_info *info)
3208 {
3209 percpu_modfree(mod);
3210 module_arch_freeing_init(mod);
3211 module_memfree(mod->init_layout.base);
3212 module_memfree(mod->core_layout.base);
3213 }
3214
3215 int __weak module_finalize(const Elf_Ehdr *hdr,
3216 const Elf_Shdr *sechdrs,
3217 struct module *me)
3218 {
3219 return 0;
3220 }
3221
3222 static int post_relocation(struct module *mod, const struct load_info *info)
3223 {
3224 /* Sort exception table now relocations are done. */
3225 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3226
3227 /* Copy relocated percpu area over. */
3228 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3229 info->sechdrs[info->index.pcpu].sh_size);
3230
3231 /* Setup kallsyms-specific fields. */
3232 add_kallsyms(mod, info);
3233
3234 /* Arch-specific module finalizing. */
3235 return module_finalize(info->hdr, info->sechdrs, mod);
3236 }
3237
3238 /* Is this module of this name done loading? No locks held. */
3239 static bool finished_loading(const char *name)
3240 {
3241 struct module *mod;
3242 bool ret;
3243
3244 /*
3245 * The module_mutex should not be a heavily contended lock;
3246 * if we get the occasional sleep here, we'll go an extra iteration
3247 * in the wait_event_interruptible(), which is harmless.
3248 */
3249 sched_annotate_sleep();
3250 mutex_lock(&module_mutex);
3251 mod = find_module_all(name, strlen(name), true);
3252 ret = !mod || mod->state == MODULE_STATE_LIVE
3253 || mod->state == MODULE_STATE_GOING;
3254 mutex_unlock(&module_mutex);
3255
3256 return ret;
3257 }
3258
3259 /* Call module constructors. */
3260 static void do_mod_ctors(struct module *mod)
3261 {
3262 #ifdef CONFIG_CONSTRUCTORS
3263 unsigned long i;
3264
3265 for (i = 0; i < mod->num_ctors; i++)
3266 mod->ctors[i]();
3267 #endif
3268 }
3269
3270 /* For freeing module_init on success, in case kallsyms traversing */
3271 struct mod_initfree {
3272 struct rcu_head rcu;
3273 void *module_init;
3274 };
3275
3276 static void do_free_init(struct rcu_head *head)
3277 {
3278 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3279 module_memfree(m->module_init);
3280 kfree(m);
3281 }
3282
3283 /*
3284 * This is where the real work happens.
3285 *
3286 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3287 * helper command 'lx-symbols'.
3288 */
3289 static noinline int do_init_module(struct module *mod)
3290 {
3291 int ret = 0;
3292 struct mod_initfree *freeinit;
3293
3294 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3295 if (!freeinit) {
3296 ret = -ENOMEM;
3297 goto fail;
3298 }
3299 freeinit->module_init = mod->init_layout.base;
3300
3301 /*
3302 * We want to find out whether @mod uses async during init. Clear
3303 * PF_USED_ASYNC. async_schedule*() will set it.
3304 */
3305 current->flags &= ~PF_USED_ASYNC;
3306
3307 do_mod_ctors(mod);
3308 /* Start the module */
3309 if (mod->init != NULL)
3310 ret = do_one_initcall(mod->init);
3311 if (ret < 0) {
3312 goto fail_free_freeinit;
3313 }
3314 if (ret > 0) {
3315 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3316 "follow 0/-E convention\n"
3317 "%s: loading module anyway...\n",
3318 __func__, mod->name, ret, __func__);
3319 dump_stack();
3320 }
3321
3322 /* Now it's a first class citizen! */
3323 mod->state = MODULE_STATE_LIVE;
3324 blocking_notifier_call_chain(&module_notify_list,
3325 MODULE_STATE_LIVE, mod);
3326
3327 /*
3328 * We need to finish all async code before the module init sequence
3329 * is done. This has potential to deadlock. For example, a newly
3330 * detected block device can trigger request_module() of the
3331 * default iosched from async probing task. Once userland helper
3332 * reaches here, async_synchronize_full() will wait on the async
3333 * task waiting on request_module() and deadlock.
3334 *
3335 * This deadlock is avoided by perfomring async_synchronize_full()
3336 * iff module init queued any async jobs. This isn't a full
3337 * solution as it will deadlock the same if module loading from
3338 * async jobs nests more than once; however, due to the various
3339 * constraints, this hack seems to be the best option for now.
3340 * Please refer to the following thread for details.
3341 *
3342 * http://thread.gmane.org/gmane.linux.kernel/1420814
3343 */
3344 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3345 async_synchronize_full();
3346
3347 mutex_lock(&module_mutex);
3348 /* Drop initial reference. */
3349 module_put(mod);
3350 trim_init_extable(mod);
3351 #ifdef CONFIG_KALLSYMS
3352 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3353 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3354 #endif
3355 mod_tree_remove_init(mod);
3356 disable_ro_nx(&mod->init_layout);
3357 module_arch_freeing_init(mod);
3358 mod->init_layout.base = NULL;
3359 mod->init_layout.size = 0;
3360 mod->init_layout.ro_size = 0;
3361 mod->init_layout.text_size = 0;
3362 /*
3363 * We want to free module_init, but be aware that kallsyms may be
3364 * walking this with preempt disabled. In all the failure paths, we
3365 * call synchronize_sched(), but we don't want to slow down the success
3366 * path, so use actual RCU here.
3367 */
3368 call_rcu_sched(&freeinit->rcu, do_free_init);
3369 mutex_unlock(&module_mutex);
3370 wake_up_all(&module_wq);
3371
3372 return 0;
3373
3374 fail_free_freeinit:
3375 kfree(freeinit);
3376 fail:
3377 /* Try to protect us from buggy refcounters. */
3378 mod->state = MODULE_STATE_GOING;
3379 synchronize_sched();
3380 module_put(mod);
3381 blocking_notifier_call_chain(&module_notify_list,
3382 MODULE_STATE_GOING, mod);
3383 klp_module_going(mod);
3384 ftrace_release_mod(mod);
3385 free_module(mod);
3386 wake_up_all(&module_wq);
3387 return ret;
3388 }
3389
3390 static int may_init_module(void)
3391 {
3392 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3393 return -EPERM;
3394
3395 return 0;
3396 }
3397
3398 /*
3399 * We try to place it in the list now to make sure it's unique before
3400 * we dedicate too many resources. In particular, temporary percpu
3401 * memory exhaustion.
3402 */
3403 static int add_unformed_module(struct module *mod)
3404 {
3405 int err;
3406 struct module *old;
3407
3408 mod->state = MODULE_STATE_UNFORMED;
3409
3410 again:
3411 mutex_lock(&module_mutex);
3412 old = find_module_all(mod->name, strlen(mod->name), true);
3413 if (old != NULL) {
3414 if (old->state == MODULE_STATE_COMING
3415 || old->state == MODULE_STATE_UNFORMED) {
3416 /* Wait in case it fails to load. */
3417 mutex_unlock(&module_mutex);
3418 err = wait_event_interruptible(module_wq,
3419 finished_loading(mod->name));
3420 if (err)
3421 goto out_unlocked;
3422 goto again;
3423 }
3424 err = -EEXIST;
3425 goto out;
3426 }
3427 mod_update_bounds(mod);
3428 list_add_rcu(&mod->list, &modules);
3429 mod_tree_insert(mod);
3430 err = 0;
3431
3432 out:
3433 mutex_unlock(&module_mutex);
3434 out_unlocked:
3435 return err;
3436 }
3437
3438 static int complete_formation(struct module *mod, struct load_info *info)
3439 {
3440 int err;
3441
3442 mutex_lock(&module_mutex);
3443
3444 /* Find duplicate symbols (must be called under lock). */
3445 err = verify_export_symbols(mod);
3446 if (err < 0)
3447 goto out;
3448
3449 /* This relies on module_mutex for list integrity. */
3450 module_bug_finalize(info->hdr, info->sechdrs, mod);
3451
3452 /* Set RO and NX regions */
3453 module_enable_ro(mod);
3454 module_enable_nx(mod);
3455
3456 /* Mark state as coming so strong_try_module_get() ignores us,
3457 * but kallsyms etc. can see us. */
3458 mod->state = MODULE_STATE_COMING;
3459 mutex_unlock(&module_mutex);
3460
3461 return 0;
3462
3463 out:
3464 mutex_unlock(&module_mutex);
3465 return err;
3466 }
3467
3468 static int prepare_coming_module(struct module *mod)
3469 {
3470 int err;
3471
3472 ftrace_module_enable(mod);
3473 err = klp_module_coming(mod);
3474 if (err)
3475 return err;
3476
3477 blocking_notifier_call_chain(&module_notify_list,
3478 MODULE_STATE_COMING, mod);
3479 return 0;
3480 }
3481
3482 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3483 void *arg)
3484 {
3485 struct module *mod = arg;
3486 int ret;
3487
3488 if (strcmp(param, "async_probe") == 0) {
3489 mod->async_probe_requested = true;
3490 return 0;
3491 }
3492
3493 /* Check for magic 'dyndbg' arg */
3494 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3495 if (ret != 0)
3496 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3497 return 0;
3498 }
3499
3500 /* Allocate and load the module: note that size of section 0 is always
3501 zero, and we rely on this for optional sections. */
3502 static int load_module(struct load_info *info, const char __user *uargs,
3503 int flags)
3504 {
3505 struct module *mod;
3506 long err;
3507 char *after_dashes;
3508
3509 err = module_sig_check(info);
3510 if (err)
3511 goto free_copy;
3512
3513 err = elf_header_check(info);
3514 if (err)
3515 goto free_copy;
3516
3517 /* Figure out module layout, and allocate all the memory. */
3518 mod = layout_and_allocate(info, flags);
3519 if (IS_ERR(mod)) {
3520 err = PTR_ERR(mod);
3521 goto free_copy;
3522 }
3523
3524 /* Reserve our place in the list. */
3525 err = add_unformed_module(mod);
3526 if (err)
3527 goto free_module;
3528
3529 #ifdef CONFIG_MODULE_SIG
3530 mod->sig_ok = info->sig_ok;
3531 if (!mod->sig_ok) {
3532 pr_notice_once("%s: module verification failed: signature "
3533 "and/or required key missing - tainting "
3534 "kernel\n", mod->name);
3535 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3536 }
3537 #endif
3538
3539 /* To avoid stressing percpu allocator, do this once we're unique. */
3540 err = percpu_modalloc(mod, info);
3541 if (err)
3542 goto unlink_mod;
3543
3544 /* Now module is in final location, initialize linked lists, etc. */
3545 err = module_unload_init(mod);
3546 if (err)
3547 goto unlink_mod;
3548
3549 init_param_lock(mod);
3550
3551 /* Now we've got everything in the final locations, we can
3552 * find optional sections. */
3553 err = find_module_sections(mod, info);
3554 if (err)
3555 goto free_unload;
3556
3557 err = check_module_license_and_versions(mod);
3558 if (err)
3559 goto free_unload;
3560
3561 /* Set up MODINFO_ATTR fields */
3562 setup_modinfo(mod, info);
3563
3564 /* Fix up syms, so that st_value is a pointer to location. */
3565 err = simplify_symbols(mod, info);
3566 if (err < 0)
3567 goto free_modinfo;
3568
3569 err = apply_relocations(mod, info);
3570 if (err < 0)
3571 goto free_modinfo;
3572
3573 err = post_relocation(mod, info);
3574 if (err < 0)
3575 goto free_modinfo;
3576
3577 flush_module_icache(mod);
3578
3579 /* Now copy in args */
3580 mod->args = strndup_user(uargs, ~0UL >> 1);
3581 if (IS_ERR(mod->args)) {
3582 err = PTR_ERR(mod->args);
3583 goto free_arch_cleanup;
3584 }
3585
3586 dynamic_debug_setup(info->debug, info->num_debug);
3587
3588 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3589 ftrace_module_init(mod);
3590
3591 /* Finally it's fully formed, ready to start executing. */
3592 err = complete_formation(mod, info);
3593 if (err)
3594 goto ddebug_cleanup;
3595
3596 err = prepare_coming_module(mod);
3597 if (err)
3598 goto bug_cleanup;
3599
3600 /* Module is ready to execute: parsing args may do that. */
3601 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3602 -32768, 32767, mod,
3603 unknown_module_param_cb);
3604 if (IS_ERR(after_dashes)) {
3605 err = PTR_ERR(after_dashes);
3606 goto coming_cleanup;
3607 } else if (after_dashes) {
3608 pr_warn("%s: parameters '%s' after `--' ignored\n",
3609 mod->name, after_dashes);
3610 }
3611
3612 /* Link in to syfs. */
3613 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3614 if (err < 0)
3615 goto coming_cleanup;
3616
3617 if (is_livepatch_module(mod)) {
3618 err = copy_module_elf(mod, info);
3619 if (err < 0)
3620 goto sysfs_cleanup;
3621 }
3622
3623 /* Get rid of temporary copy. */
3624 free_copy(info);
3625
3626 /* Done! */
3627 trace_module_load(mod);
3628
3629 return do_init_module(mod);
3630
3631 sysfs_cleanup:
3632 mod_sysfs_teardown(mod);
3633 coming_cleanup:
3634 blocking_notifier_call_chain(&module_notify_list,
3635 MODULE_STATE_GOING, mod);
3636 klp_module_going(mod);
3637 bug_cleanup:
3638 /* module_bug_cleanup needs module_mutex protection */
3639 mutex_lock(&module_mutex);
3640 module_bug_cleanup(mod);
3641 mutex_unlock(&module_mutex);
3642
3643 /* we can't deallocate the module until we clear memory protection */
3644 module_disable_ro(mod);
3645 module_disable_nx(mod);
3646
3647 ddebug_cleanup:
3648 dynamic_debug_remove(info->debug);
3649 synchronize_sched();
3650 kfree(mod->args);
3651 free_arch_cleanup:
3652 module_arch_cleanup(mod);
3653 free_modinfo:
3654 free_modinfo(mod);
3655 free_unload:
3656 module_unload_free(mod);
3657 unlink_mod:
3658 mutex_lock(&module_mutex);
3659 /* Unlink carefully: kallsyms could be walking list. */
3660 list_del_rcu(&mod->list);
3661 mod_tree_remove(mod);
3662 wake_up_all(&module_wq);
3663 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3664 synchronize_sched();
3665 mutex_unlock(&module_mutex);
3666 free_module:
3667 /*
3668 * Ftrace needs to clean up what it initialized.
3669 * This does nothing if ftrace_module_init() wasn't called,
3670 * but it must be called outside of module_mutex.
3671 */
3672 ftrace_release_mod(mod);
3673 /* Free lock-classes; relies on the preceding sync_rcu() */
3674 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3675
3676 module_deallocate(mod, info);
3677 free_copy:
3678 free_copy(info);
3679 return err;
3680 }
3681
3682 SYSCALL_DEFINE3(init_module, void __user *, umod,
3683 unsigned long, len, const char __user *, uargs)
3684 {
3685 int err;
3686 struct load_info info = { };
3687
3688 err = may_init_module();
3689 if (err)
3690 return err;
3691
3692 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3693 umod, len, uargs);
3694
3695 err = copy_module_from_user(umod, len, &info);
3696 if (err)
3697 return err;
3698
3699 return load_module(&info, uargs, 0);
3700 }
3701
3702 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3703 {
3704 struct load_info info = { };
3705 loff_t size;
3706 void *hdr;
3707 int err;
3708
3709 err = may_init_module();
3710 if (err)
3711 return err;
3712
3713 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3714
3715 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3716 |MODULE_INIT_IGNORE_VERMAGIC))
3717 return -EINVAL;
3718
3719 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3720 READING_MODULE);
3721 if (err)
3722 return err;
3723 info.hdr = hdr;
3724 info.len = size;
3725
3726 return load_module(&info, uargs, flags);
3727 }
3728
3729 static inline int within(unsigned long addr, void *start, unsigned long size)
3730 {
3731 return ((void *)addr >= start && (void *)addr < start + size);
3732 }
3733
3734 #ifdef CONFIG_KALLSYMS
3735 /*
3736 * This ignores the intensely annoying "mapping symbols" found
3737 * in ARM ELF files: $a, $t and $d.
3738 */
3739 static inline int is_arm_mapping_symbol(const char *str)
3740 {
3741 if (str[0] == '.' && str[1] == 'L')
3742 return true;
3743 return str[0] == '$' && strchr("axtd", str[1])
3744 && (str[2] == '\0' || str[2] == '.');
3745 }
3746
3747 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3748 {
3749 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3750 }
3751
3752 static const char *get_ksymbol(struct module *mod,
3753 unsigned long addr,
3754 unsigned long *size,
3755 unsigned long *offset)
3756 {
3757 unsigned int i, best = 0;
3758 unsigned long nextval;
3759 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3760
3761 /* At worse, next value is at end of module */
3762 if (within_module_init(addr, mod))
3763 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3764 else
3765 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3766
3767 /* Scan for closest preceding symbol, and next symbol. (ELF
3768 starts real symbols at 1). */
3769 for (i = 1; i < kallsyms->num_symtab; i++) {
3770 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3771 continue;
3772
3773 /* We ignore unnamed symbols: they're uninformative
3774 * and inserted at a whim. */
3775 if (*symname(kallsyms, i) == '\0'
3776 || is_arm_mapping_symbol(symname(kallsyms, i)))
3777 continue;
3778
3779 if (kallsyms->symtab[i].st_value <= addr
3780 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3781 best = i;
3782 if (kallsyms->symtab[i].st_value > addr
3783 && kallsyms->symtab[i].st_value < nextval)
3784 nextval = kallsyms->symtab[i].st_value;
3785 }
3786
3787 if (!best)
3788 return NULL;
3789
3790 if (size)
3791 *size = nextval - kallsyms->symtab[best].st_value;
3792 if (offset)
3793 *offset = addr - kallsyms->symtab[best].st_value;
3794 return symname(kallsyms, best);
3795 }
3796
3797 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3798 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3799 const char *module_address_lookup(unsigned long addr,
3800 unsigned long *size,
3801 unsigned long *offset,
3802 char **modname,
3803 char *namebuf)
3804 {
3805 const char *ret = NULL;
3806 struct module *mod;
3807
3808 preempt_disable();
3809 mod = __module_address(addr);
3810 if (mod) {
3811 if (modname)
3812 *modname = mod->name;
3813 ret = get_ksymbol(mod, addr, size, offset);
3814 }
3815 /* Make a copy in here where it's safe */
3816 if (ret) {
3817 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3818 ret = namebuf;
3819 }
3820 preempt_enable();
3821
3822 return ret;
3823 }
3824
3825 int lookup_module_symbol_name(unsigned long addr, char *symname)
3826 {
3827 struct module *mod;
3828
3829 preempt_disable();
3830 list_for_each_entry_rcu(mod, &modules, list) {
3831 if (mod->state == MODULE_STATE_UNFORMED)
3832 continue;
3833 if (within_module(addr, mod)) {
3834 const char *sym;
3835
3836 sym = get_ksymbol(mod, addr, NULL, NULL);
3837 if (!sym)
3838 goto out;
3839 strlcpy(symname, sym, KSYM_NAME_LEN);
3840 preempt_enable();
3841 return 0;
3842 }
3843 }
3844 out:
3845 preempt_enable();
3846 return -ERANGE;
3847 }
3848
3849 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3850 unsigned long *offset, char *modname, char *name)
3851 {
3852 struct module *mod;
3853
3854 preempt_disable();
3855 list_for_each_entry_rcu(mod, &modules, list) {
3856 if (mod->state == MODULE_STATE_UNFORMED)
3857 continue;
3858 if (within_module(addr, mod)) {
3859 const char *sym;
3860
3861 sym = get_ksymbol(mod, addr, size, offset);
3862 if (!sym)
3863 goto out;
3864 if (modname)
3865 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3866 if (name)
3867 strlcpy(name, sym, KSYM_NAME_LEN);
3868 preempt_enable();
3869 return 0;
3870 }
3871 }
3872 out:
3873 preempt_enable();
3874 return -ERANGE;
3875 }
3876
3877 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3878 char *name, char *module_name, int *exported)
3879 {
3880 struct module *mod;
3881
3882 preempt_disable();
3883 list_for_each_entry_rcu(mod, &modules, list) {
3884 struct mod_kallsyms *kallsyms;
3885
3886 if (mod->state == MODULE_STATE_UNFORMED)
3887 continue;
3888 kallsyms = rcu_dereference_sched(mod->kallsyms);
3889 if (symnum < kallsyms->num_symtab) {
3890 *value = kallsyms->symtab[symnum].st_value;
3891 *type = kallsyms->symtab[symnum].st_info;
3892 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3893 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3894 *exported = is_exported(name, *value, mod);
3895 preempt_enable();
3896 return 0;
3897 }
3898 symnum -= kallsyms->num_symtab;
3899 }
3900 preempt_enable();
3901 return -ERANGE;
3902 }
3903
3904 static unsigned long mod_find_symname(struct module *mod, const char *name)
3905 {
3906 unsigned int i;
3907 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3908
3909 for (i = 0; i < kallsyms->num_symtab; i++)
3910 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3911 kallsyms->symtab[i].st_info != 'U')
3912 return kallsyms->symtab[i].st_value;
3913 return 0;
3914 }
3915
3916 /* Look for this name: can be of form module:name. */
3917 unsigned long module_kallsyms_lookup_name(const char *name)
3918 {
3919 struct module *mod;
3920 char *colon;
3921 unsigned long ret = 0;
3922
3923 /* Don't lock: we're in enough trouble already. */
3924 preempt_disable();
3925 if ((colon = strchr(name, ':')) != NULL) {
3926 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3927 ret = mod_find_symname(mod, colon+1);
3928 } else {
3929 list_for_each_entry_rcu(mod, &modules, list) {
3930 if (mod->state == MODULE_STATE_UNFORMED)
3931 continue;
3932 if ((ret = mod_find_symname(mod, name)) != 0)
3933 break;
3934 }
3935 }
3936 preempt_enable();
3937 return ret;
3938 }
3939
3940 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3941 struct module *, unsigned long),
3942 void *data)
3943 {
3944 struct module *mod;
3945 unsigned int i;
3946 int ret;
3947
3948 module_assert_mutex();
3949
3950 list_for_each_entry(mod, &modules, list) {
3951 /* We hold module_mutex: no need for rcu_dereference_sched */
3952 struct mod_kallsyms *kallsyms = mod->kallsyms;
3953
3954 if (mod->state == MODULE_STATE_UNFORMED)
3955 continue;
3956 for (i = 0; i < kallsyms->num_symtab; i++) {
3957 ret = fn(data, symname(kallsyms, i),
3958 mod, kallsyms->symtab[i].st_value);
3959 if (ret != 0)
3960 return ret;
3961 }
3962 }
3963 return 0;
3964 }
3965 #endif /* CONFIG_KALLSYMS */
3966
3967 static char *module_flags(struct module *mod, char *buf)
3968 {
3969 int bx = 0;
3970
3971 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3972 if (mod->taints ||
3973 mod->state == MODULE_STATE_GOING ||
3974 mod->state == MODULE_STATE_COMING) {
3975 buf[bx++] = '(';
3976 bx += module_flags_taint(mod, buf + bx);
3977 /* Show a - for module-is-being-unloaded */
3978 if (mod->state == MODULE_STATE_GOING)
3979 buf[bx++] = '-';
3980 /* Show a + for module-is-being-loaded */
3981 if (mod->state == MODULE_STATE_COMING)
3982 buf[bx++] = '+';
3983 buf[bx++] = ')';
3984 }
3985 buf[bx] = '\0';
3986
3987 return buf;
3988 }
3989
3990 #ifdef CONFIG_PROC_FS
3991 /* Called by the /proc file system to return a list of modules. */
3992 static void *m_start(struct seq_file *m, loff_t *pos)
3993 {
3994 mutex_lock(&module_mutex);
3995 return seq_list_start(&modules, *pos);
3996 }
3997
3998 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3999 {
4000 return seq_list_next(p, &modules, pos);
4001 }
4002
4003 static void m_stop(struct seq_file *m, void *p)
4004 {
4005 mutex_unlock(&module_mutex);
4006 }
4007
4008 static int m_show(struct seq_file *m, void *p)
4009 {
4010 struct module *mod = list_entry(p, struct module, list);
4011 char buf[8];
4012
4013 /* We always ignore unformed modules. */
4014 if (mod->state == MODULE_STATE_UNFORMED)
4015 return 0;
4016
4017 seq_printf(m, "%s %u",
4018 mod->name, mod->init_layout.size + mod->core_layout.size);
4019 print_unload_info(m, mod);
4020
4021 /* Informative for users. */
4022 seq_printf(m, " %s",
4023 mod->state == MODULE_STATE_GOING ? "Unloading" :
4024 mod->state == MODULE_STATE_COMING ? "Loading" :
4025 "Live");
4026 /* Used by oprofile and other similar tools. */
4027 seq_printf(m, " 0x%pK", mod->core_layout.base);
4028
4029 /* Taints info */
4030 if (mod->taints)
4031 seq_printf(m, " %s", module_flags(mod, buf));
4032
4033 seq_puts(m, "\n");
4034 return 0;
4035 }
4036
4037 /* Format: modulename size refcount deps address
4038
4039 Where refcount is a number or -, and deps is a comma-separated list
4040 of depends or -.
4041 */
4042 static const struct seq_operations modules_op = {
4043 .start = m_start,
4044 .next = m_next,
4045 .stop = m_stop,
4046 .show = m_show
4047 };
4048
4049 static int modules_open(struct inode *inode, struct file *file)
4050 {
4051 return seq_open(file, &modules_op);
4052 }
4053
4054 static const struct file_operations proc_modules_operations = {
4055 .open = modules_open,
4056 .read = seq_read,
4057 .llseek = seq_lseek,
4058 .release = seq_release,
4059 };
4060
4061 static int __init proc_modules_init(void)
4062 {
4063 proc_create("modules", 0, NULL, &proc_modules_operations);
4064 return 0;
4065 }
4066 module_init(proc_modules_init);
4067 #endif
4068
4069 /* Given an address, look for it in the module exception tables. */
4070 const struct exception_table_entry *search_module_extables(unsigned long addr)
4071 {
4072 const struct exception_table_entry *e = NULL;
4073 struct module *mod;
4074
4075 preempt_disable();
4076 list_for_each_entry_rcu(mod, &modules, list) {
4077 if (mod->state == MODULE_STATE_UNFORMED)
4078 continue;
4079 if (mod->num_exentries == 0)
4080 continue;
4081
4082 e = search_extable(mod->extable,
4083 mod->extable + mod->num_exentries - 1,
4084 addr);
4085 if (e)
4086 break;
4087 }
4088 preempt_enable();
4089
4090 /* Now, if we found one, we are running inside it now, hence
4091 we cannot unload the module, hence no refcnt needed. */
4092 return e;
4093 }
4094
4095 /*
4096 * is_module_address - is this address inside a module?
4097 * @addr: the address to check.
4098 *
4099 * See is_module_text_address() if you simply want to see if the address
4100 * is code (not data).
4101 */
4102 bool is_module_address(unsigned long addr)
4103 {
4104 bool ret;
4105
4106 preempt_disable();
4107 ret = __module_address(addr) != NULL;
4108 preempt_enable();
4109
4110 return ret;
4111 }
4112
4113 /*
4114 * __module_address - get the module which contains an address.
4115 * @addr: the address.
4116 *
4117 * Must be called with preempt disabled or module mutex held so that
4118 * module doesn't get freed during this.
4119 */
4120 struct module *__module_address(unsigned long addr)
4121 {
4122 struct module *mod;
4123
4124 if (addr < module_addr_min || addr > module_addr_max)
4125 return NULL;
4126
4127 module_assert_mutex_or_preempt();
4128
4129 mod = mod_find(addr);
4130 if (mod) {
4131 BUG_ON(!within_module(addr, mod));
4132 if (mod->state == MODULE_STATE_UNFORMED)
4133 mod = NULL;
4134 }
4135 return mod;
4136 }
4137 EXPORT_SYMBOL_GPL(__module_address);
4138
4139 /*
4140 * is_module_text_address - is this address inside module code?
4141 * @addr: the address to check.
4142 *
4143 * See is_module_address() if you simply want to see if the address is
4144 * anywhere in a module. See kernel_text_address() for testing if an
4145 * address corresponds to kernel or module code.
4146 */
4147 bool is_module_text_address(unsigned long addr)
4148 {
4149 bool ret;
4150
4151 preempt_disable();
4152 ret = __module_text_address(addr) != NULL;
4153 preempt_enable();
4154
4155 return ret;
4156 }
4157
4158 /*
4159 * __module_text_address - get the module whose code contains an address.
4160 * @addr: the address.
4161 *
4162 * Must be called with preempt disabled or module mutex held so that
4163 * module doesn't get freed during this.
4164 */
4165 struct module *__module_text_address(unsigned long addr)
4166 {
4167 struct module *mod = __module_address(addr);
4168 if (mod) {
4169 /* Make sure it's within the text section. */
4170 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4171 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4172 mod = NULL;
4173 }
4174 return mod;
4175 }
4176 EXPORT_SYMBOL_GPL(__module_text_address);
4177
4178 /* Don't grab lock, we're oopsing. */
4179 void print_modules(void)
4180 {
4181 struct module *mod;
4182 char buf[8];
4183
4184 printk(KERN_DEFAULT "Modules linked in:");
4185 /* Most callers should already have preempt disabled, but make sure */
4186 preempt_disable();
4187 list_for_each_entry_rcu(mod, &modules, list) {
4188 if (mod->state == MODULE_STATE_UNFORMED)
4189 continue;
4190 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4191 }
4192 preempt_enable();
4193 if (last_unloaded_module[0])
4194 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4195 pr_cont("\n");
4196 }
4197
4198 #ifdef CONFIG_MODVERSIONS
4199 /* Generate the signature for all relevant module structures here.
4200 * If these change, we don't want to try to parse the module. */
4201 void module_layout(struct module *mod,
4202 struct modversion_info *ver,
4203 struct kernel_param *kp,
4204 struct kernel_symbol *ks,
4205 struct tracepoint * const *tp)
4206 {
4207 }
4208 EXPORT_SYMBOL(module_layout);
4209 #endif