]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/module.c
kernel/module: Fix mem leak in module_add_modinfo_attrs
[mirror_ubuntu-bionic-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76
77 /*
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
81 */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90
91 /*
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102
103 /*
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
106 *
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
110 */
111
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115
116 return (unsigned long)layout->base;
117 }
118
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122
123 return (unsigned long)layout->size;
124 }
125
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
137
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
141
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
145
146 return 0;
147 }
148
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
152 };
153
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
160 };
161
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169
170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174
175 /*
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
178 */
179 static void mod_tree_insert(struct module *mod)
180 {
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
183
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
187 }
188
189 static void mod_tree_remove_init(struct module *mod)
190 {
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
193 }
194
195 static void mod_tree_remove(struct module *mod)
196 {
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
199 }
200
201 static struct module *mod_find(unsigned long addr)
202 {
203 struct latch_tree_node *ltn;
204
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
208
209 return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211
212 #else /* MODULES_TREE_LOOKUP */
213
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
219
220 static struct module *mod_find(unsigned long addr)
221 {
222 struct module *mod;
223
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
227 }
228
229 return NULL;
230 }
231
232 #endif /* MODULES_TREE_LOOKUP */
233
234 /*
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
237 */
238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
242
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
247 }
248
249 static void mod_update_bounds(struct module *mod)
250 {
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259
260 static void module_assert_mutex(void)
261 {
262 lockdep_assert_held(&module_mutex);
263 }
264
265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
270
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
274 }
275
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
280
281 /*
282 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
283 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
284 */
285 bool is_module_sig_enforced(void)
286 {
287 return sig_enforce;
288 }
289 EXPORT_SYMBOL(is_module_sig_enforced);
290
291 /* Block module loading/unloading? */
292 int modules_disabled = 0;
293 core_param(nomodule, modules_disabled, bint, 0);
294
295 /* Waiting for a module to finish initializing? */
296 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
297
298 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
299
300 int register_module_notifier(struct notifier_block *nb)
301 {
302 return blocking_notifier_chain_register(&module_notify_list, nb);
303 }
304 EXPORT_SYMBOL(register_module_notifier);
305
306 int unregister_module_notifier(struct notifier_block *nb)
307 {
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
309 }
310 EXPORT_SYMBOL(unregister_module_notifier);
311
312 struct load_info {
313 const char *name;
314 Elf_Ehdr *hdr;
315 unsigned long len;
316 Elf_Shdr *sechdrs;
317 char *secstrings, *strtab;
318 unsigned long symoffs, stroffs;
319 struct _ddebug *debug;
320 unsigned int num_debug;
321 bool sig_ok;
322 #ifdef CONFIG_KALLSYMS
323 unsigned long mod_kallsyms_init_off;
324 #endif
325 struct {
326 unsigned int sym, str, mod, vers, info, pcpu;
327 } index;
328 };
329
330 /*
331 * We require a truly strong try_module_get(): 0 means success.
332 * Otherwise an error is returned due to ongoing or failed
333 * initialization etc.
334 */
335 static inline int strong_try_module_get(struct module *mod)
336 {
337 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
338 if (mod && mod->state == MODULE_STATE_COMING)
339 return -EBUSY;
340 if (try_module_get(mod))
341 return 0;
342 else
343 return -ENOENT;
344 }
345
346 static inline void add_taint_module(struct module *mod, unsigned flag,
347 enum lockdep_ok lockdep_ok)
348 {
349 add_taint(flag, lockdep_ok);
350 set_bit(flag, &mod->taints);
351 }
352
353 /*
354 * A thread that wants to hold a reference to a module only while it
355 * is running can call this to safely exit. nfsd and lockd use this.
356 */
357 void __noreturn __module_put_and_exit(struct module *mod, long code)
358 {
359 module_put(mod);
360 do_exit(code);
361 }
362 EXPORT_SYMBOL(__module_put_and_exit);
363
364 /* Find a module section: 0 means not found. */
365 static unsigned int find_sec(const struct load_info *info, const char *name)
366 {
367 unsigned int i;
368
369 for (i = 1; i < info->hdr->e_shnum; i++) {
370 Elf_Shdr *shdr = &info->sechdrs[i];
371 /* Alloc bit cleared means "ignore it." */
372 if ((shdr->sh_flags & SHF_ALLOC)
373 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
374 return i;
375 }
376 return 0;
377 }
378
379 /* Find a module section, or NULL. */
380 static void *section_addr(const struct load_info *info, const char *name)
381 {
382 /* Section 0 has sh_addr 0. */
383 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
384 }
385
386 /* Find a module section, or NULL. Fill in number of "objects" in section. */
387 static void *section_objs(const struct load_info *info,
388 const char *name,
389 size_t object_size,
390 unsigned int *num)
391 {
392 unsigned int sec = find_sec(info, name);
393
394 /* Section 0 has sh_addr 0 and sh_size 0. */
395 *num = info->sechdrs[sec].sh_size / object_size;
396 return (void *)info->sechdrs[sec].sh_addr;
397 }
398
399 /* Provided by the linker */
400 extern const struct kernel_symbol __start___ksymtab[];
401 extern const struct kernel_symbol __stop___ksymtab[];
402 extern const struct kernel_symbol __start___ksymtab_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_gpl[];
404 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
405 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
406 extern const s32 __start___kcrctab[];
407 extern const s32 __start___kcrctab_gpl[];
408 extern const s32 __start___kcrctab_gpl_future[];
409 #ifdef CONFIG_UNUSED_SYMBOLS
410 extern const struct kernel_symbol __start___ksymtab_unused[];
411 extern const struct kernel_symbol __stop___ksymtab_unused[];
412 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
413 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
414 extern const s32 __start___kcrctab_unused[];
415 extern const s32 __start___kcrctab_unused_gpl[];
416 #endif
417
418 #ifndef CONFIG_MODVERSIONS
419 #define symversion(base, idx) NULL
420 #else
421 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
422 #endif
423
424 static bool each_symbol_in_section(const struct symsearch *arr,
425 unsigned int arrsize,
426 struct module *owner,
427 bool (*fn)(const struct symsearch *syms,
428 struct module *owner,
429 void *data),
430 void *data)
431 {
432 unsigned int j;
433
434 for (j = 0; j < arrsize; j++) {
435 if (fn(&arr[j], owner, data))
436 return true;
437 }
438
439 return false;
440 }
441
442 /* Returns true as soon as fn returns true, otherwise false. */
443 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
444 struct module *owner,
445 void *data),
446 void *data)
447 {
448 struct module *mod;
449 static const struct symsearch arr[] = {
450 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
451 NOT_GPL_ONLY, false },
452 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
453 __start___kcrctab_gpl,
454 GPL_ONLY, false },
455 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
456 __start___kcrctab_gpl_future,
457 WILL_BE_GPL_ONLY, false },
458 #ifdef CONFIG_UNUSED_SYMBOLS
459 { __start___ksymtab_unused, __stop___ksymtab_unused,
460 __start___kcrctab_unused,
461 NOT_GPL_ONLY, true },
462 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
463 __start___kcrctab_unused_gpl,
464 GPL_ONLY, true },
465 #endif
466 };
467
468 module_assert_mutex_or_preempt();
469
470 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
471 return true;
472
473 list_for_each_entry_rcu(mod, &modules, list) {
474 struct symsearch arr[] = {
475 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
476 NOT_GPL_ONLY, false },
477 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
478 mod->gpl_crcs,
479 GPL_ONLY, false },
480 { mod->gpl_future_syms,
481 mod->gpl_future_syms + mod->num_gpl_future_syms,
482 mod->gpl_future_crcs,
483 WILL_BE_GPL_ONLY, false },
484 #ifdef CONFIG_UNUSED_SYMBOLS
485 { mod->unused_syms,
486 mod->unused_syms + mod->num_unused_syms,
487 mod->unused_crcs,
488 NOT_GPL_ONLY, true },
489 { mod->unused_gpl_syms,
490 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
491 mod->unused_gpl_crcs,
492 GPL_ONLY, true },
493 #endif
494 };
495
496 if (mod->state == MODULE_STATE_UNFORMED)
497 continue;
498
499 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
500 return true;
501 }
502 return false;
503 }
504 EXPORT_SYMBOL_GPL(each_symbol_section);
505
506 struct find_symbol_arg {
507 /* Input */
508 const char *name;
509 bool gplok;
510 bool warn;
511
512 /* Output */
513 struct module *owner;
514 const s32 *crc;
515 const struct kernel_symbol *sym;
516 };
517
518 static bool check_symbol(const struct symsearch *syms,
519 struct module *owner,
520 unsigned int symnum, void *data)
521 {
522 struct find_symbol_arg *fsa = data;
523
524 if (!fsa->gplok) {
525 if (syms->licence == GPL_ONLY)
526 return false;
527 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
528 pr_warn("Symbol %s is being used by a non-GPL module, "
529 "which will not be allowed in the future\n",
530 fsa->name);
531 }
532 }
533
534 #ifdef CONFIG_UNUSED_SYMBOLS
535 if (syms->unused && fsa->warn) {
536 pr_warn("Symbol %s is marked as UNUSED, however this module is "
537 "using it.\n", fsa->name);
538 pr_warn("This symbol will go away in the future.\n");
539 pr_warn("Please evaluate if this is the right api to use and "
540 "if it really is, submit a report to the linux kernel "
541 "mailing list together with submitting your code for "
542 "inclusion.\n");
543 }
544 #endif
545
546 fsa->owner = owner;
547 fsa->crc = symversion(syms->crcs, symnum);
548 fsa->sym = &syms->start[symnum];
549 return true;
550 }
551
552 static int cmp_name(const void *va, const void *vb)
553 {
554 const char *a;
555 const struct kernel_symbol *b;
556 a = va; b = vb;
557 return strcmp(a, b->name);
558 }
559
560 static bool find_symbol_in_section(const struct symsearch *syms,
561 struct module *owner,
562 void *data)
563 {
564 struct find_symbol_arg *fsa = data;
565 struct kernel_symbol *sym;
566
567 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
568 sizeof(struct kernel_symbol), cmp_name);
569
570 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
571 return true;
572
573 return false;
574 }
575
576 /* Find a symbol and return it, along with, (optional) crc and
577 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
578 const struct kernel_symbol *find_symbol(const char *name,
579 struct module **owner,
580 const s32 **crc,
581 bool gplok,
582 bool warn)
583 {
584 struct find_symbol_arg fsa;
585
586 fsa.name = name;
587 fsa.gplok = gplok;
588 fsa.warn = warn;
589
590 if (each_symbol_section(find_symbol_in_section, &fsa)) {
591 if (owner)
592 *owner = fsa.owner;
593 if (crc)
594 *crc = fsa.crc;
595 return fsa.sym;
596 }
597
598 pr_debug("Failed to find symbol %s\n", name);
599 return NULL;
600 }
601 EXPORT_SYMBOL_GPL(find_symbol);
602
603 /*
604 * Search for module by name: must hold module_mutex (or preempt disabled
605 * for read-only access).
606 */
607 static struct module *find_module_all(const char *name, size_t len,
608 bool even_unformed)
609 {
610 struct module *mod;
611
612 module_assert_mutex_or_preempt();
613
614 list_for_each_entry_rcu(mod, &modules, list) {
615 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
616 continue;
617 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
618 return mod;
619 }
620 return NULL;
621 }
622
623 struct module *find_module(const char *name)
624 {
625 module_assert_mutex();
626 return find_module_all(name, strlen(name), false);
627 }
628 EXPORT_SYMBOL_GPL(find_module);
629
630 #ifdef CONFIG_SMP
631
632 static inline void __percpu *mod_percpu(struct module *mod)
633 {
634 return mod->percpu;
635 }
636
637 static int percpu_modalloc(struct module *mod, struct load_info *info)
638 {
639 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
640 unsigned long align = pcpusec->sh_addralign;
641
642 if (!pcpusec->sh_size)
643 return 0;
644
645 if (align > PAGE_SIZE) {
646 pr_warn("%s: per-cpu alignment %li > %li\n",
647 mod->name, align, PAGE_SIZE);
648 align = PAGE_SIZE;
649 }
650
651 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
652 if (!mod->percpu) {
653 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
654 mod->name, (unsigned long)pcpusec->sh_size);
655 return -ENOMEM;
656 }
657 mod->percpu_size = pcpusec->sh_size;
658 return 0;
659 }
660
661 static void percpu_modfree(struct module *mod)
662 {
663 free_percpu(mod->percpu);
664 }
665
666 static unsigned int find_pcpusec(struct load_info *info)
667 {
668 return find_sec(info, ".data..percpu");
669 }
670
671 static void percpu_modcopy(struct module *mod,
672 const void *from, unsigned long size)
673 {
674 int cpu;
675
676 for_each_possible_cpu(cpu)
677 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
678 }
679
680 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
681 {
682 struct module *mod;
683 unsigned int cpu;
684
685 preempt_disable();
686
687 list_for_each_entry_rcu(mod, &modules, list) {
688 if (mod->state == MODULE_STATE_UNFORMED)
689 continue;
690 if (!mod->percpu_size)
691 continue;
692 for_each_possible_cpu(cpu) {
693 void *start = per_cpu_ptr(mod->percpu, cpu);
694 void *va = (void *)addr;
695
696 if (va >= start && va < start + mod->percpu_size) {
697 if (can_addr) {
698 *can_addr = (unsigned long) (va - start);
699 *can_addr += (unsigned long)
700 per_cpu_ptr(mod->percpu,
701 get_boot_cpu_id());
702 }
703 preempt_enable();
704 return true;
705 }
706 }
707 }
708
709 preempt_enable();
710 return false;
711 }
712
713 /**
714 * is_module_percpu_address - test whether address is from module static percpu
715 * @addr: address to test
716 *
717 * Test whether @addr belongs to module static percpu area.
718 *
719 * RETURNS:
720 * %true if @addr is from module static percpu area
721 */
722 bool is_module_percpu_address(unsigned long addr)
723 {
724 return __is_module_percpu_address(addr, NULL);
725 }
726
727 #else /* ... !CONFIG_SMP */
728
729 static inline void __percpu *mod_percpu(struct module *mod)
730 {
731 return NULL;
732 }
733 static int percpu_modalloc(struct module *mod, struct load_info *info)
734 {
735 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
736 if (info->sechdrs[info->index.pcpu].sh_size != 0)
737 return -ENOMEM;
738 return 0;
739 }
740 static inline void percpu_modfree(struct module *mod)
741 {
742 }
743 static unsigned int find_pcpusec(struct load_info *info)
744 {
745 return 0;
746 }
747 static inline void percpu_modcopy(struct module *mod,
748 const void *from, unsigned long size)
749 {
750 /* pcpusec should be 0, and size of that section should be 0. */
751 BUG_ON(size != 0);
752 }
753 bool is_module_percpu_address(unsigned long addr)
754 {
755 return false;
756 }
757
758 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
759 {
760 return false;
761 }
762
763 #endif /* CONFIG_SMP */
764
765 #define MODINFO_ATTR(field) \
766 static void setup_modinfo_##field(struct module *mod, const char *s) \
767 { \
768 mod->field = kstrdup(s, GFP_KERNEL); \
769 } \
770 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
771 struct module_kobject *mk, char *buffer) \
772 { \
773 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
774 } \
775 static int modinfo_##field##_exists(struct module *mod) \
776 { \
777 return mod->field != NULL; \
778 } \
779 static void free_modinfo_##field(struct module *mod) \
780 { \
781 kfree(mod->field); \
782 mod->field = NULL; \
783 } \
784 static struct module_attribute modinfo_##field = { \
785 .attr = { .name = __stringify(field), .mode = 0444 }, \
786 .show = show_modinfo_##field, \
787 .setup = setup_modinfo_##field, \
788 .test = modinfo_##field##_exists, \
789 .free = free_modinfo_##field, \
790 };
791
792 MODINFO_ATTR(version);
793 MODINFO_ATTR(srcversion);
794
795 static char last_unloaded_module[MODULE_NAME_LEN+1];
796
797 #ifdef CONFIG_MODULE_UNLOAD
798
799 EXPORT_TRACEPOINT_SYMBOL(module_get);
800
801 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
802 #define MODULE_REF_BASE 1
803
804 /* Init the unload section of the module. */
805 static int module_unload_init(struct module *mod)
806 {
807 /*
808 * Initialize reference counter to MODULE_REF_BASE.
809 * refcnt == 0 means module is going.
810 */
811 atomic_set(&mod->refcnt, MODULE_REF_BASE);
812
813 INIT_LIST_HEAD(&mod->source_list);
814 INIT_LIST_HEAD(&mod->target_list);
815
816 /* Hold reference count during initialization. */
817 atomic_inc(&mod->refcnt);
818
819 return 0;
820 }
821
822 /* Does a already use b? */
823 static int already_uses(struct module *a, struct module *b)
824 {
825 struct module_use *use;
826
827 list_for_each_entry(use, &b->source_list, source_list) {
828 if (use->source == a) {
829 pr_debug("%s uses %s!\n", a->name, b->name);
830 return 1;
831 }
832 }
833 pr_debug("%s does not use %s!\n", a->name, b->name);
834 return 0;
835 }
836
837 /*
838 * Module a uses b
839 * - we add 'a' as a "source", 'b' as a "target" of module use
840 * - the module_use is added to the list of 'b' sources (so
841 * 'b' can walk the list to see who sourced them), and of 'a'
842 * targets (so 'a' can see what modules it targets).
843 */
844 static int add_module_usage(struct module *a, struct module *b)
845 {
846 struct module_use *use;
847
848 pr_debug("Allocating new usage for %s.\n", a->name);
849 use = kmalloc(sizeof(*use), GFP_ATOMIC);
850 if (!use)
851 return -ENOMEM;
852
853 use->source = a;
854 use->target = b;
855 list_add(&use->source_list, &b->source_list);
856 list_add(&use->target_list, &a->target_list);
857 return 0;
858 }
859
860 /* Module a uses b: caller needs module_mutex() */
861 int ref_module(struct module *a, struct module *b)
862 {
863 int err;
864
865 if (b == NULL || already_uses(a, b))
866 return 0;
867
868 /* If module isn't available, we fail. */
869 err = strong_try_module_get(b);
870 if (err)
871 return err;
872
873 err = add_module_usage(a, b);
874 if (err) {
875 module_put(b);
876 return err;
877 }
878 return 0;
879 }
880 EXPORT_SYMBOL_GPL(ref_module);
881
882 /* Clear the unload stuff of the module. */
883 static void module_unload_free(struct module *mod)
884 {
885 struct module_use *use, *tmp;
886
887 mutex_lock(&module_mutex);
888 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
889 struct module *i = use->target;
890 pr_debug("%s unusing %s\n", mod->name, i->name);
891 module_put(i);
892 list_del(&use->source_list);
893 list_del(&use->target_list);
894 kfree(use);
895 }
896 mutex_unlock(&module_mutex);
897 }
898
899 #ifdef CONFIG_MODULE_FORCE_UNLOAD
900 static inline int try_force_unload(unsigned int flags)
901 {
902 int ret = (flags & O_TRUNC);
903 if (ret)
904 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
905 return ret;
906 }
907 #else
908 static inline int try_force_unload(unsigned int flags)
909 {
910 return 0;
911 }
912 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
913
914 /* Try to release refcount of module, 0 means success. */
915 static int try_release_module_ref(struct module *mod)
916 {
917 int ret;
918
919 /* Try to decrement refcnt which we set at loading */
920 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
921 BUG_ON(ret < 0);
922 if (ret)
923 /* Someone can put this right now, recover with checking */
924 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
925
926 return ret;
927 }
928
929 static int try_stop_module(struct module *mod, int flags, int *forced)
930 {
931 /* If it's not unused, quit unless we're forcing. */
932 if (try_release_module_ref(mod) != 0) {
933 *forced = try_force_unload(flags);
934 if (!(*forced))
935 return -EWOULDBLOCK;
936 }
937
938 /* Mark it as dying. */
939 mod->state = MODULE_STATE_GOING;
940
941 return 0;
942 }
943
944 /**
945 * module_refcount - return the refcount or -1 if unloading
946 *
947 * @mod: the module we're checking
948 *
949 * Returns:
950 * -1 if the module is in the process of unloading
951 * otherwise the number of references in the kernel to the module
952 */
953 int module_refcount(struct module *mod)
954 {
955 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
956 }
957 EXPORT_SYMBOL(module_refcount);
958
959 /* This exists whether we can unload or not */
960 static void free_module(struct module *mod);
961
962 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
963 unsigned int, flags)
964 {
965 struct module *mod;
966 char name[MODULE_NAME_LEN];
967 int ret, forced = 0;
968
969 if (!capable(CAP_SYS_MODULE) || modules_disabled)
970 return -EPERM;
971
972 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
973 return -EFAULT;
974 name[MODULE_NAME_LEN-1] = '\0';
975
976 audit_log_kern_module(name);
977
978 if (mutex_lock_interruptible(&module_mutex) != 0)
979 return -EINTR;
980
981 mod = find_module(name);
982 if (!mod) {
983 ret = -ENOENT;
984 goto out;
985 }
986
987 if (!list_empty(&mod->source_list)) {
988 /* Other modules depend on us: get rid of them first. */
989 ret = -EWOULDBLOCK;
990 goto out;
991 }
992
993 /* Doing init or already dying? */
994 if (mod->state != MODULE_STATE_LIVE) {
995 /* FIXME: if (force), slam module count damn the torpedoes */
996 pr_debug("%s already dying\n", mod->name);
997 ret = -EBUSY;
998 goto out;
999 }
1000
1001 /* If it has an init func, it must have an exit func to unload */
1002 if (mod->init && !mod->exit) {
1003 forced = try_force_unload(flags);
1004 if (!forced) {
1005 /* This module can't be removed */
1006 ret = -EBUSY;
1007 goto out;
1008 }
1009 }
1010
1011 /* Stop the machine so refcounts can't move and disable module. */
1012 ret = try_stop_module(mod, flags, &forced);
1013 if (ret != 0)
1014 goto out;
1015
1016 mutex_unlock(&module_mutex);
1017 /* Final destruction now no one is using it. */
1018 if (mod->exit != NULL)
1019 mod->exit();
1020 blocking_notifier_call_chain(&module_notify_list,
1021 MODULE_STATE_GOING, mod);
1022 klp_module_going(mod);
1023 ftrace_release_mod(mod);
1024
1025 async_synchronize_full();
1026
1027 /* Store the name of the last unloaded module for diagnostic purposes */
1028 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1029
1030 free_module(mod);
1031 return 0;
1032 out:
1033 mutex_unlock(&module_mutex);
1034 return ret;
1035 }
1036
1037 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1038 {
1039 struct module_use *use;
1040 int printed_something = 0;
1041
1042 seq_printf(m, " %i ", module_refcount(mod));
1043
1044 /*
1045 * Always include a trailing , so userspace can differentiate
1046 * between this and the old multi-field proc format.
1047 */
1048 list_for_each_entry(use, &mod->source_list, source_list) {
1049 printed_something = 1;
1050 seq_printf(m, "%s,", use->source->name);
1051 }
1052
1053 if (mod->init != NULL && mod->exit == NULL) {
1054 printed_something = 1;
1055 seq_puts(m, "[permanent],");
1056 }
1057
1058 if (!printed_something)
1059 seq_puts(m, "-");
1060 }
1061
1062 void __symbol_put(const char *symbol)
1063 {
1064 struct module *owner;
1065
1066 preempt_disable();
1067 if (!find_symbol(symbol, &owner, NULL, true, false))
1068 BUG();
1069 module_put(owner);
1070 preempt_enable();
1071 }
1072 EXPORT_SYMBOL(__symbol_put);
1073
1074 /* Note this assumes addr is a function, which it currently always is. */
1075 void symbol_put_addr(void *addr)
1076 {
1077 struct module *modaddr;
1078 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1079
1080 if (core_kernel_text(a))
1081 return;
1082
1083 /*
1084 * Even though we hold a reference on the module; we still need to
1085 * disable preemption in order to safely traverse the data structure.
1086 */
1087 preempt_disable();
1088 modaddr = __module_text_address(a);
1089 BUG_ON(!modaddr);
1090 module_put(modaddr);
1091 preempt_enable();
1092 }
1093 EXPORT_SYMBOL_GPL(symbol_put_addr);
1094
1095 static ssize_t show_refcnt(struct module_attribute *mattr,
1096 struct module_kobject *mk, char *buffer)
1097 {
1098 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1099 }
1100
1101 static struct module_attribute modinfo_refcnt =
1102 __ATTR(refcnt, 0444, show_refcnt, NULL);
1103
1104 void __module_get(struct module *module)
1105 {
1106 if (module) {
1107 preempt_disable();
1108 atomic_inc(&module->refcnt);
1109 trace_module_get(module, _RET_IP_);
1110 preempt_enable();
1111 }
1112 }
1113 EXPORT_SYMBOL(__module_get);
1114
1115 bool try_module_get(struct module *module)
1116 {
1117 bool ret = true;
1118
1119 if (module) {
1120 preempt_disable();
1121 /* Note: here, we can fail to get a reference */
1122 if (likely(module_is_live(module) &&
1123 atomic_inc_not_zero(&module->refcnt) != 0))
1124 trace_module_get(module, _RET_IP_);
1125 else
1126 ret = false;
1127
1128 preempt_enable();
1129 }
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(try_module_get);
1133
1134 void module_put(struct module *module)
1135 {
1136 int ret;
1137
1138 if (module) {
1139 preempt_disable();
1140 ret = atomic_dec_if_positive(&module->refcnt);
1141 WARN_ON(ret < 0); /* Failed to put refcount */
1142 trace_module_put(module, _RET_IP_);
1143 preempt_enable();
1144 }
1145 }
1146 EXPORT_SYMBOL(module_put);
1147
1148 #else /* !CONFIG_MODULE_UNLOAD */
1149 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1150 {
1151 /* We don't know the usage count, or what modules are using. */
1152 seq_puts(m, " - -");
1153 }
1154
1155 static inline void module_unload_free(struct module *mod)
1156 {
1157 }
1158
1159 int ref_module(struct module *a, struct module *b)
1160 {
1161 return strong_try_module_get(b);
1162 }
1163 EXPORT_SYMBOL_GPL(ref_module);
1164
1165 static inline int module_unload_init(struct module *mod)
1166 {
1167 return 0;
1168 }
1169 #endif /* CONFIG_MODULE_UNLOAD */
1170
1171 static size_t module_flags_taint(struct module *mod, char *buf)
1172 {
1173 size_t l = 0;
1174 int i;
1175
1176 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1177 if (taint_flags[i].module && test_bit(i, &mod->taints))
1178 buf[l++] = taint_flags[i].c_true;
1179 }
1180
1181 return l;
1182 }
1183
1184 static ssize_t show_initstate(struct module_attribute *mattr,
1185 struct module_kobject *mk, char *buffer)
1186 {
1187 const char *state = "unknown";
1188
1189 switch (mk->mod->state) {
1190 case MODULE_STATE_LIVE:
1191 state = "live";
1192 break;
1193 case MODULE_STATE_COMING:
1194 state = "coming";
1195 break;
1196 case MODULE_STATE_GOING:
1197 state = "going";
1198 break;
1199 default:
1200 BUG();
1201 }
1202 return sprintf(buffer, "%s\n", state);
1203 }
1204
1205 static struct module_attribute modinfo_initstate =
1206 __ATTR(initstate, 0444, show_initstate, NULL);
1207
1208 static ssize_t store_uevent(struct module_attribute *mattr,
1209 struct module_kobject *mk,
1210 const char *buffer, size_t count)
1211 {
1212 int rc;
1213
1214 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1215 return rc ? rc : count;
1216 }
1217
1218 struct module_attribute module_uevent =
1219 __ATTR(uevent, 0200, NULL, store_uevent);
1220
1221 static ssize_t show_coresize(struct module_attribute *mattr,
1222 struct module_kobject *mk, char *buffer)
1223 {
1224 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1225 }
1226
1227 static struct module_attribute modinfo_coresize =
1228 __ATTR(coresize, 0444, show_coresize, NULL);
1229
1230 static ssize_t show_initsize(struct module_attribute *mattr,
1231 struct module_kobject *mk, char *buffer)
1232 {
1233 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1234 }
1235
1236 static struct module_attribute modinfo_initsize =
1237 __ATTR(initsize, 0444, show_initsize, NULL);
1238
1239 static ssize_t show_taint(struct module_attribute *mattr,
1240 struct module_kobject *mk, char *buffer)
1241 {
1242 size_t l;
1243
1244 l = module_flags_taint(mk->mod, buffer);
1245 buffer[l++] = '\n';
1246 return l;
1247 }
1248
1249 static struct module_attribute modinfo_taint =
1250 __ATTR(taint, 0444, show_taint, NULL);
1251
1252 static struct module_attribute *modinfo_attrs[] = {
1253 &module_uevent,
1254 &modinfo_version,
1255 &modinfo_srcversion,
1256 &modinfo_initstate,
1257 &modinfo_coresize,
1258 &modinfo_initsize,
1259 &modinfo_taint,
1260 #ifdef CONFIG_MODULE_UNLOAD
1261 &modinfo_refcnt,
1262 #endif
1263 NULL,
1264 };
1265
1266 static const char vermagic[] = VERMAGIC_STRING;
1267
1268 static int try_to_force_load(struct module *mod, const char *reason)
1269 {
1270 #ifdef CONFIG_MODULE_FORCE_LOAD
1271 if (!test_taint(TAINT_FORCED_MODULE))
1272 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1273 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1274 return 0;
1275 #else
1276 return -ENOEXEC;
1277 #endif
1278 }
1279
1280 #ifdef CONFIG_MODVERSIONS
1281
1282 static u32 resolve_rel_crc(const s32 *crc)
1283 {
1284 return *(u32 *)((void *)crc + *crc);
1285 }
1286
1287 static int check_version(const struct load_info *info,
1288 const char *symname,
1289 struct module *mod,
1290 const s32 *crc)
1291 {
1292 Elf_Shdr *sechdrs = info->sechdrs;
1293 unsigned int versindex = info->index.vers;
1294 unsigned int i, num_versions;
1295 struct modversion_info *versions;
1296
1297 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1298 if (!crc)
1299 return 1;
1300
1301 /* No versions at all? modprobe --force does this. */
1302 if (versindex == 0)
1303 return try_to_force_load(mod, symname) == 0;
1304
1305 versions = (void *) sechdrs[versindex].sh_addr;
1306 num_versions = sechdrs[versindex].sh_size
1307 / sizeof(struct modversion_info);
1308
1309 for (i = 0; i < num_versions; i++) {
1310 u32 crcval;
1311
1312 if (strcmp(versions[i].name, symname) != 0)
1313 continue;
1314
1315 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1316 crcval = resolve_rel_crc(crc);
1317 else
1318 crcval = *crc;
1319 if (versions[i].crc == crcval)
1320 return 1;
1321 pr_debug("Found checksum %X vs module %lX\n",
1322 crcval, versions[i].crc);
1323 goto bad_version;
1324 }
1325
1326 /* Broken toolchain. Warn once, then let it go.. */
1327 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1328 return 1;
1329
1330 bad_version:
1331 pr_warn("%s: disagrees about version of symbol %s\n",
1332 info->name, symname);
1333 return 0;
1334 }
1335
1336 static inline int check_modstruct_version(const struct load_info *info,
1337 struct module *mod)
1338 {
1339 const s32 *crc;
1340
1341 /*
1342 * Since this should be found in kernel (which can't be removed), no
1343 * locking is necessary -- use preempt_disable() to placate lockdep.
1344 */
1345 preempt_disable();
1346 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1347 &crc, true, false)) {
1348 preempt_enable();
1349 BUG();
1350 }
1351 preempt_enable();
1352 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1353 mod, crc);
1354 }
1355
1356 /* First part is kernel version, which we ignore if module has crcs. */
1357 static inline int same_magic(const char *amagic, const char *bmagic,
1358 bool has_crcs)
1359 {
1360 if (has_crcs) {
1361 amagic += strcspn(amagic, " ");
1362 bmagic += strcspn(bmagic, " ");
1363 }
1364 return strcmp(amagic, bmagic) == 0;
1365 }
1366 #else
1367 static inline int check_version(const struct load_info *info,
1368 const char *symname,
1369 struct module *mod,
1370 const s32 *crc)
1371 {
1372 return 1;
1373 }
1374
1375 static inline int check_modstruct_version(const struct load_info *info,
1376 struct module *mod)
1377 {
1378 return 1;
1379 }
1380
1381 static inline int same_magic(const char *amagic, const char *bmagic,
1382 bool has_crcs)
1383 {
1384 return strcmp(amagic, bmagic) == 0;
1385 }
1386 #endif /* CONFIG_MODVERSIONS */
1387
1388 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1389 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1390 const struct load_info *info,
1391 const char *name,
1392 char ownername[])
1393 {
1394 struct module *owner;
1395 const struct kernel_symbol *sym;
1396 const s32 *crc;
1397 int err;
1398
1399 /*
1400 * The module_mutex should not be a heavily contended lock;
1401 * if we get the occasional sleep here, we'll go an extra iteration
1402 * in the wait_event_interruptible(), which is harmless.
1403 */
1404 sched_annotate_sleep();
1405 mutex_lock(&module_mutex);
1406 sym = find_symbol(name, &owner, &crc,
1407 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1408 if (!sym)
1409 goto unlock;
1410
1411 if (!check_version(info, name, mod, crc)) {
1412 sym = ERR_PTR(-EINVAL);
1413 goto getname;
1414 }
1415
1416 err = ref_module(mod, owner);
1417 if (err) {
1418 sym = ERR_PTR(err);
1419 goto getname;
1420 }
1421
1422 getname:
1423 /* We must make copy under the lock if we failed to get ref. */
1424 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1425 unlock:
1426 mutex_unlock(&module_mutex);
1427 return sym;
1428 }
1429
1430 static const struct kernel_symbol *
1431 resolve_symbol_wait(struct module *mod,
1432 const struct load_info *info,
1433 const char *name)
1434 {
1435 const struct kernel_symbol *ksym;
1436 char owner[MODULE_NAME_LEN];
1437
1438 if (wait_event_interruptible_timeout(module_wq,
1439 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1440 || PTR_ERR(ksym) != -EBUSY,
1441 30 * HZ) <= 0) {
1442 pr_warn("%s: gave up waiting for init of module %s.\n",
1443 mod->name, owner);
1444 }
1445 return ksym;
1446 }
1447
1448 /*
1449 * /sys/module/foo/sections stuff
1450 * J. Corbet <corbet@lwn.net>
1451 */
1452 #ifdef CONFIG_SYSFS
1453
1454 #ifdef CONFIG_KALLSYMS
1455 static inline bool sect_empty(const Elf_Shdr *sect)
1456 {
1457 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1458 }
1459
1460 struct module_sect_attr {
1461 struct module_attribute mattr;
1462 char *name;
1463 unsigned long address;
1464 };
1465
1466 struct module_sect_attrs {
1467 struct attribute_group grp;
1468 unsigned int nsections;
1469 struct module_sect_attr attrs[0];
1470 };
1471
1472 static ssize_t module_sect_show(struct module_attribute *mattr,
1473 struct module_kobject *mk, char *buf)
1474 {
1475 struct module_sect_attr *sattr =
1476 container_of(mattr, struct module_sect_attr, mattr);
1477 return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1478 (void *)sattr->address : NULL);
1479 }
1480
1481 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1482 {
1483 unsigned int section;
1484
1485 for (section = 0; section < sect_attrs->nsections; section++)
1486 kfree(sect_attrs->attrs[section].name);
1487 kfree(sect_attrs);
1488 }
1489
1490 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1491 {
1492 unsigned int nloaded = 0, i, size[2];
1493 struct module_sect_attrs *sect_attrs;
1494 struct module_sect_attr *sattr;
1495 struct attribute **gattr;
1496
1497 /* Count loaded sections and allocate structures */
1498 for (i = 0; i < info->hdr->e_shnum; i++)
1499 if (!sect_empty(&info->sechdrs[i]))
1500 nloaded++;
1501 size[0] = ALIGN(sizeof(*sect_attrs)
1502 + nloaded * sizeof(sect_attrs->attrs[0]),
1503 sizeof(sect_attrs->grp.attrs[0]));
1504 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1505 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1506 if (sect_attrs == NULL)
1507 return;
1508
1509 /* Setup section attributes. */
1510 sect_attrs->grp.name = "sections";
1511 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1512
1513 sect_attrs->nsections = 0;
1514 sattr = &sect_attrs->attrs[0];
1515 gattr = &sect_attrs->grp.attrs[0];
1516 for (i = 0; i < info->hdr->e_shnum; i++) {
1517 Elf_Shdr *sec = &info->sechdrs[i];
1518 if (sect_empty(sec))
1519 continue;
1520 sattr->address = sec->sh_addr;
1521 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1522 GFP_KERNEL);
1523 if (sattr->name == NULL)
1524 goto out;
1525 sect_attrs->nsections++;
1526 sysfs_attr_init(&sattr->mattr.attr);
1527 sattr->mattr.show = module_sect_show;
1528 sattr->mattr.store = NULL;
1529 sattr->mattr.attr.name = sattr->name;
1530 sattr->mattr.attr.mode = S_IRUSR;
1531 *(gattr++) = &(sattr++)->mattr.attr;
1532 }
1533 *gattr = NULL;
1534
1535 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1536 goto out;
1537
1538 mod->sect_attrs = sect_attrs;
1539 return;
1540 out:
1541 free_sect_attrs(sect_attrs);
1542 }
1543
1544 static void remove_sect_attrs(struct module *mod)
1545 {
1546 if (mod->sect_attrs) {
1547 sysfs_remove_group(&mod->mkobj.kobj,
1548 &mod->sect_attrs->grp);
1549 /* We are positive that no one is using any sect attrs
1550 * at this point. Deallocate immediately. */
1551 free_sect_attrs(mod->sect_attrs);
1552 mod->sect_attrs = NULL;
1553 }
1554 }
1555
1556 /*
1557 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1558 */
1559
1560 struct module_notes_attrs {
1561 struct kobject *dir;
1562 unsigned int notes;
1563 struct bin_attribute attrs[0];
1564 };
1565
1566 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1567 struct bin_attribute *bin_attr,
1568 char *buf, loff_t pos, size_t count)
1569 {
1570 /*
1571 * The caller checked the pos and count against our size.
1572 */
1573 memcpy(buf, bin_attr->private + pos, count);
1574 return count;
1575 }
1576
1577 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1578 unsigned int i)
1579 {
1580 if (notes_attrs->dir) {
1581 while (i-- > 0)
1582 sysfs_remove_bin_file(notes_attrs->dir,
1583 &notes_attrs->attrs[i]);
1584 kobject_put(notes_attrs->dir);
1585 }
1586 kfree(notes_attrs);
1587 }
1588
1589 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1590 {
1591 unsigned int notes, loaded, i;
1592 struct module_notes_attrs *notes_attrs;
1593 struct bin_attribute *nattr;
1594
1595 /* failed to create section attributes, so can't create notes */
1596 if (!mod->sect_attrs)
1597 return;
1598
1599 /* Count notes sections and allocate structures. */
1600 notes = 0;
1601 for (i = 0; i < info->hdr->e_shnum; i++)
1602 if (!sect_empty(&info->sechdrs[i]) &&
1603 (info->sechdrs[i].sh_type == SHT_NOTE))
1604 ++notes;
1605
1606 if (notes == 0)
1607 return;
1608
1609 notes_attrs = kzalloc(sizeof(*notes_attrs)
1610 + notes * sizeof(notes_attrs->attrs[0]),
1611 GFP_KERNEL);
1612 if (notes_attrs == NULL)
1613 return;
1614
1615 notes_attrs->notes = notes;
1616 nattr = &notes_attrs->attrs[0];
1617 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1618 if (sect_empty(&info->sechdrs[i]))
1619 continue;
1620 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1621 sysfs_bin_attr_init(nattr);
1622 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1623 nattr->attr.mode = S_IRUGO;
1624 nattr->size = info->sechdrs[i].sh_size;
1625 nattr->private = (void *) info->sechdrs[i].sh_addr;
1626 nattr->read = module_notes_read;
1627 ++nattr;
1628 }
1629 ++loaded;
1630 }
1631
1632 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1633 if (!notes_attrs->dir)
1634 goto out;
1635
1636 for (i = 0; i < notes; ++i)
1637 if (sysfs_create_bin_file(notes_attrs->dir,
1638 &notes_attrs->attrs[i]))
1639 goto out;
1640
1641 mod->notes_attrs = notes_attrs;
1642 return;
1643
1644 out:
1645 free_notes_attrs(notes_attrs, i);
1646 }
1647
1648 static void remove_notes_attrs(struct module *mod)
1649 {
1650 if (mod->notes_attrs)
1651 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1652 }
1653
1654 #else
1655
1656 static inline void add_sect_attrs(struct module *mod,
1657 const struct load_info *info)
1658 {
1659 }
1660
1661 static inline void remove_sect_attrs(struct module *mod)
1662 {
1663 }
1664
1665 static inline void add_notes_attrs(struct module *mod,
1666 const struct load_info *info)
1667 {
1668 }
1669
1670 static inline void remove_notes_attrs(struct module *mod)
1671 {
1672 }
1673 #endif /* CONFIG_KALLSYMS */
1674
1675 static void del_usage_links(struct module *mod)
1676 {
1677 #ifdef CONFIG_MODULE_UNLOAD
1678 struct module_use *use;
1679
1680 mutex_lock(&module_mutex);
1681 list_for_each_entry(use, &mod->target_list, target_list)
1682 sysfs_remove_link(use->target->holders_dir, mod->name);
1683 mutex_unlock(&module_mutex);
1684 #endif
1685 }
1686
1687 static int add_usage_links(struct module *mod)
1688 {
1689 int ret = 0;
1690 #ifdef CONFIG_MODULE_UNLOAD
1691 struct module_use *use;
1692
1693 mutex_lock(&module_mutex);
1694 list_for_each_entry(use, &mod->target_list, target_list) {
1695 ret = sysfs_create_link(use->target->holders_dir,
1696 &mod->mkobj.kobj, mod->name);
1697 if (ret)
1698 break;
1699 }
1700 mutex_unlock(&module_mutex);
1701 if (ret)
1702 del_usage_links(mod);
1703 #endif
1704 return ret;
1705 }
1706
1707 static void module_remove_modinfo_attrs(struct module *mod, int end);
1708
1709 static int module_add_modinfo_attrs(struct module *mod)
1710 {
1711 struct module_attribute *attr;
1712 struct module_attribute *temp_attr;
1713 int error = 0;
1714 int i;
1715
1716 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1717 (ARRAY_SIZE(modinfo_attrs) + 1)),
1718 GFP_KERNEL);
1719 if (!mod->modinfo_attrs)
1720 return -ENOMEM;
1721
1722 temp_attr = mod->modinfo_attrs;
1723 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1724 if (!attr->test || attr->test(mod)) {
1725 memcpy(temp_attr, attr, sizeof(*temp_attr));
1726 sysfs_attr_init(&temp_attr->attr);
1727 error = sysfs_create_file(&mod->mkobj.kobj,
1728 &temp_attr->attr);
1729 if (error)
1730 goto error_out;
1731 ++temp_attr;
1732 }
1733 }
1734
1735 return 0;
1736
1737 error_out:
1738 if (i > 0)
1739 module_remove_modinfo_attrs(mod, --i);
1740 return error;
1741 }
1742
1743 static void module_remove_modinfo_attrs(struct module *mod, int end)
1744 {
1745 struct module_attribute *attr;
1746 int i;
1747
1748 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1749 if (end >= 0 && i > end)
1750 break;
1751 /* pick a field to test for end of list */
1752 if (!attr->attr.name)
1753 break;
1754 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1755 if (attr->free)
1756 attr->free(mod);
1757 }
1758 kfree(mod->modinfo_attrs);
1759 }
1760
1761 static void mod_kobject_put(struct module *mod)
1762 {
1763 DECLARE_COMPLETION_ONSTACK(c);
1764 mod->mkobj.kobj_completion = &c;
1765 kobject_put(&mod->mkobj.kobj);
1766 wait_for_completion(&c);
1767 }
1768
1769 static int mod_sysfs_init(struct module *mod)
1770 {
1771 int err;
1772 struct kobject *kobj;
1773
1774 if (!module_sysfs_initialized) {
1775 pr_err("%s: module sysfs not initialized\n", mod->name);
1776 err = -EINVAL;
1777 goto out;
1778 }
1779
1780 kobj = kset_find_obj(module_kset, mod->name);
1781 if (kobj) {
1782 pr_err("%s: module is already loaded\n", mod->name);
1783 kobject_put(kobj);
1784 err = -EINVAL;
1785 goto out;
1786 }
1787
1788 mod->mkobj.mod = mod;
1789
1790 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1791 mod->mkobj.kobj.kset = module_kset;
1792 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1793 "%s", mod->name);
1794 if (err)
1795 mod_kobject_put(mod);
1796
1797 /* delay uevent until full sysfs population */
1798 out:
1799 return err;
1800 }
1801
1802 static int mod_sysfs_setup(struct module *mod,
1803 const struct load_info *info,
1804 struct kernel_param *kparam,
1805 unsigned int num_params)
1806 {
1807 int err;
1808
1809 err = mod_sysfs_init(mod);
1810 if (err)
1811 goto out;
1812
1813 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1814 if (!mod->holders_dir) {
1815 err = -ENOMEM;
1816 goto out_unreg;
1817 }
1818
1819 err = module_param_sysfs_setup(mod, kparam, num_params);
1820 if (err)
1821 goto out_unreg_holders;
1822
1823 err = module_add_modinfo_attrs(mod);
1824 if (err)
1825 goto out_unreg_param;
1826
1827 err = add_usage_links(mod);
1828 if (err)
1829 goto out_unreg_modinfo_attrs;
1830
1831 add_sect_attrs(mod, info);
1832 add_notes_attrs(mod, info);
1833
1834 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1835 return 0;
1836
1837 out_unreg_modinfo_attrs:
1838 module_remove_modinfo_attrs(mod, -1);
1839 out_unreg_param:
1840 module_param_sysfs_remove(mod);
1841 out_unreg_holders:
1842 kobject_put(mod->holders_dir);
1843 out_unreg:
1844 mod_kobject_put(mod);
1845 out:
1846 return err;
1847 }
1848
1849 static void mod_sysfs_fini(struct module *mod)
1850 {
1851 remove_notes_attrs(mod);
1852 remove_sect_attrs(mod);
1853 mod_kobject_put(mod);
1854 }
1855
1856 static void init_param_lock(struct module *mod)
1857 {
1858 mutex_init(&mod->param_lock);
1859 }
1860 #else /* !CONFIG_SYSFS */
1861
1862 static int mod_sysfs_setup(struct module *mod,
1863 const struct load_info *info,
1864 struct kernel_param *kparam,
1865 unsigned int num_params)
1866 {
1867 return 0;
1868 }
1869
1870 static void mod_sysfs_fini(struct module *mod)
1871 {
1872 }
1873
1874 static void module_remove_modinfo_attrs(struct module *mod, int end)
1875 {
1876 }
1877
1878 static void del_usage_links(struct module *mod)
1879 {
1880 }
1881
1882 static void init_param_lock(struct module *mod)
1883 {
1884 }
1885 #endif /* CONFIG_SYSFS */
1886
1887 static void mod_sysfs_teardown(struct module *mod)
1888 {
1889 del_usage_links(mod);
1890 module_remove_modinfo_attrs(mod, -1);
1891 module_param_sysfs_remove(mod);
1892 kobject_put(mod->mkobj.drivers_dir);
1893 kobject_put(mod->holders_dir);
1894 mod_sysfs_fini(mod);
1895 }
1896
1897 #ifdef CONFIG_STRICT_MODULE_RWX
1898 /*
1899 * LKM RO/NX protection: protect module's text/ro-data
1900 * from modification and any data from execution.
1901 *
1902 * General layout of module is:
1903 * [text] [read-only-data] [ro-after-init] [writable data]
1904 * text_size -----^ ^ ^ ^
1905 * ro_size ------------------------| | |
1906 * ro_after_init_size -----------------------------| |
1907 * size -----------------------------------------------------------|
1908 *
1909 * These values are always page-aligned (as is base)
1910 */
1911 static void frob_text(const struct module_layout *layout,
1912 int (*set_memory)(unsigned long start, int num_pages))
1913 {
1914 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1915 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1916 set_memory((unsigned long)layout->base,
1917 layout->text_size >> PAGE_SHIFT);
1918 }
1919
1920 static void frob_rodata(const struct module_layout *layout,
1921 int (*set_memory)(unsigned long start, int num_pages))
1922 {
1923 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1924 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1925 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1926 set_memory((unsigned long)layout->base + layout->text_size,
1927 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1928 }
1929
1930 static void frob_ro_after_init(const struct module_layout *layout,
1931 int (*set_memory)(unsigned long start, int num_pages))
1932 {
1933 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1934 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1935 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1936 set_memory((unsigned long)layout->base + layout->ro_size,
1937 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1938 }
1939
1940 static void frob_writable_data(const struct module_layout *layout,
1941 int (*set_memory)(unsigned long start, int num_pages))
1942 {
1943 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1944 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1945 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1946 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1947 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1948 }
1949
1950 /* livepatching wants to disable read-only so it can frob module. */
1951 void module_disable_ro(const struct module *mod)
1952 {
1953 if (!rodata_enabled)
1954 return;
1955
1956 frob_text(&mod->core_layout, set_memory_rw);
1957 frob_rodata(&mod->core_layout, set_memory_rw);
1958 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1959 frob_text(&mod->init_layout, set_memory_rw);
1960 frob_rodata(&mod->init_layout, set_memory_rw);
1961 }
1962
1963 void module_enable_ro(const struct module *mod, bool after_init)
1964 {
1965 if (!rodata_enabled)
1966 return;
1967
1968 frob_text(&mod->core_layout, set_memory_ro);
1969 frob_text(&mod->core_layout, set_memory_x);
1970
1971 frob_rodata(&mod->core_layout, set_memory_ro);
1972
1973 frob_text(&mod->init_layout, set_memory_ro);
1974 frob_text(&mod->init_layout, set_memory_x);
1975
1976 frob_rodata(&mod->init_layout, set_memory_ro);
1977
1978 if (after_init)
1979 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1980 }
1981
1982 static void module_enable_nx(const struct module *mod)
1983 {
1984 frob_rodata(&mod->core_layout, set_memory_nx);
1985 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1986 frob_writable_data(&mod->core_layout, set_memory_nx);
1987 frob_rodata(&mod->init_layout, set_memory_nx);
1988 frob_writable_data(&mod->init_layout, set_memory_nx);
1989 }
1990
1991 static void module_disable_nx(const struct module *mod)
1992 {
1993 frob_rodata(&mod->core_layout, set_memory_x);
1994 frob_ro_after_init(&mod->core_layout, set_memory_x);
1995 frob_writable_data(&mod->core_layout, set_memory_x);
1996 frob_rodata(&mod->init_layout, set_memory_x);
1997 frob_writable_data(&mod->init_layout, set_memory_x);
1998 }
1999
2000 /* Iterate through all modules and set each module's text as RW */
2001 void set_all_modules_text_rw(void)
2002 {
2003 struct module *mod;
2004
2005 if (!rodata_enabled)
2006 return;
2007
2008 mutex_lock(&module_mutex);
2009 list_for_each_entry_rcu(mod, &modules, list) {
2010 if (mod->state == MODULE_STATE_UNFORMED)
2011 continue;
2012
2013 frob_text(&mod->core_layout, set_memory_rw);
2014 frob_text(&mod->init_layout, set_memory_rw);
2015 }
2016 mutex_unlock(&module_mutex);
2017 }
2018
2019 /* Iterate through all modules and set each module's text as RO */
2020 void set_all_modules_text_ro(void)
2021 {
2022 struct module *mod;
2023
2024 if (!rodata_enabled)
2025 return;
2026
2027 mutex_lock(&module_mutex);
2028 list_for_each_entry_rcu(mod, &modules, list) {
2029 /*
2030 * Ignore going modules since it's possible that ro
2031 * protection has already been disabled, otherwise we'll
2032 * run into protection faults at module deallocation.
2033 */
2034 if (mod->state == MODULE_STATE_UNFORMED ||
2035 mod->state == MODULE_STATE_GOING)
2036 continue;
2037
2038 frob_text(&mod->core_layout, set_memory_ro);
2039 frob_text(&mod->init_layout, set_memory_ro);
2040 }
2041 mutex_unlock(&module_mutex);
2042 }
2043
2044 static void disable_ro_nx(const struct module_layout *layout)
2045 {
2046 if (rodata_enabled) {
2047 frob_text(layout, set_memory_rw);
2048 frob_rodata(layout, set_memory_rw);
2049 frob_ro_after_init(layout, set_memory_rw);
2050 }
2051 frob_rodata(layout, set_memory_x);
2052 frob_ro_after_init(layout, set_memory_x);
2053 frob_writable_data(layout, set_memory_x);
2054 }
2055
2056 #else
2057 static void disable_ro_nx(const struct module_layout *layout) { }
2058 static void module_enable_nx(const struct module *mod) { }
2059 static void module_disable_nx(const struct module *mod) { }
2060 #endif
2061
2062 #ifdef CONFIG_LIVEPATCH
2063 /*
2064 * Persist Elf information about a module. Copy the Elf header,
2065 * section header table, section string table, and symtab section
2066 * index from info to mod->klp_info.
2067 */
2068 static int copy_module_elf(struct module *mod, struct load_info *info)
2069 {
2070 unsigned int size, symndx;
2071 int ret;
2072
2073 size = sizeof(*mod->klp_info);
2074 mod->klp_info = kmalloc(size, GFP_KERNEL);
2075 if (mod->klp_info == NULL)
2076 return -ENOMEM;
2077
2078 /* Elf header */
2079 size = sizeof(mod->klp_info->hdr);
2080 memcpy(&mod->klp_info->hdr, info->hdr, size);
2081
2082 /* Elf section header table */
2083 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2084 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2085 if (mod->klp_info->sechdrs == NULL) {
2086 ret = -ENOMEM;
2087 goto free_info;
2088 }
2089 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2090
2091 /* Elf section name string table */
2092 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2093 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2094 if (mod->klp_info->secstrings == NULL) {
2095 ret = -ENOMEM;
2096 goto free_sechdrs;
2097 }
2098 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2099
2100 /* Elf symbol section index */
2101 symndx = info->index.sym;
2102 mod->klp_info->symndx = symndx;
2103
2104 /*
2105 * For livepatch modules, core_kallsyms.symtab is a complete
2106 * copy of the original symbol table. Adjust sh_addr to point
2107 * to core_kallsyms.symtab since the copy of the symtab in module
2108 * init memory is freed at the end of do_init_module().
2109 */
2110 mod->klp_info->sechdrs[symndx].sh_addr = \
2111 (unsigned long) mod->core_kallsyms.symtab;
2112
2113 return 0;
2114
2115 free_sechdrs:
2116 kfree(mod->klp_info->sechdrs);
2117 free_info:
2118 kfree(mod->klp_info);
2119 return ret;
2120 }
2121
2122 static void free_module_elf(struct module *mod)
2123 {
2124 kfree(mod->klp_info->sechdrs);
2125 kfree(mod->klp_info->secstrings);
2126 kfree(mod->klp_info);
2127 }
2128 #else /* !CONFIG_LIVEPATCH */
2129 static int copy_module_elf(struct module *mod, struct load_info *info)
2130 {
2131 return 0;
2132 }
2133
2134 static void free_module_elf(struct module *mod)
2135 {
2136 }
2137 #endif /* CONFIG_LIVEPATCH */
2138
2139 void __weak module_memfree(void *module_region)
2140 {
2141 vfree(module_region);
2142 }
2143
2144 void __weak module_arch_cleanup(struct module *mod)
2145 {
2146 }
2147
2148 void __weak module_arch_freeing_init(struct module *mod)
2149 {
2150 }
2151
2152 /* Free a module, remove from lists, etc. */
2153 static void free_module(struct module *mod)
2154 {
2155 trace_module_free(mod);
2156
2157 mod_sysfs_teardown(mod);
2158
2159 /* We leave it in list to prevent duplicate loads, but make sure
2160 * that noone uses it while it's being deconstructed. */
2161 mutex_lock(&module_mutex);
2162 mod->state = MODULE_STATE_UNFORMED;
2163 mutex_unlock(&module_mutex);
2164
2165 /* Remove dynamic debug info */
2166 ddebug_remove_module(mod->name);
2167
2168 /* Arch-specific cleanup. */
2169 module_arch_cleanup(mod);
2170
2171 /* Module unload stuff */
2172 module_unload_free(mod);
2173
2174 /* Free any allocated parameters. */
2175 destroy_params(mod->kp, mod->num_kp);
2176
2177 if (is_livepatch_module(mod))
2178 free_module_elf(mod);
2179
2180 /* Now we can delete it from the lists */
2181 mutex_lock(&module_mutex);
2182 /* Unlink carefully: kallsyms could be walking list. */
2183 list_del_rcu(&mod->list);
2184 mod_tree_remove(mod);
2185 /* Remove this module from bug list, this uses list_del_rcu */
2186 module_bug_cleanup(mod);
2187 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2188 synchronize_sched();
2189 mutex_unlock(&module_mutex);
2190
2191 /* This may be empty, but that's OK */
2192 disable_ro_nx(&mod->init_layout);
2193 module_arch_freeing_init(mod);
2194 module_memfree(mod->init_layout.base);
2195 kfree(mod->args);
2196 percpu_modfree(mod);
2197
2198 /* Free lock-classes; relies on the preceding sync_rcu(). */
2199 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2200
2201 /* Finally, free the core (containing the module structure) */
2202 disable_ro_nx(&mod->core_layout);
2203 module_memfree(mod->core_layout.base);
2204
2205 #ifdef CONFIG_MPU
2206 update_protections(current->mm);
2207 #endif
2208 }
2209
2210 void *__symbol_get(const char *symbol)
2211 {
2212 struct module *owner;
2213 const struct kernel_symbol *sym;
2214
2215 preempt_disable();
2216 sym = find_symbol(symbol, &owner, NULL, true, true);
2217 if (sym && strong_try_module_get(owner))
2218 sym = NULL;
2219 preempt_enable();
2220
2221 return sym ? (void *)sym->value : NULL;
2222 }
2223 EXPORT_SYMBOL_GPL(__symbol_get);
2224
2225 /*
2226 * Ensure that an exported symbol [global namespace] does not already exist
2227 * in the kernel or in some other module's exported symbol table.
2228 *
2229 * You must hold the module_mutex.
2230 */
2231 static int verify_export_symbols(struct module *mod)
2232 {
2233 unsigned int i;
2234 struct module *owner;
2235 const struct kernel_symbol *s;
2236 struct {
2237 const struct kernel_symbol *sym;
2238 unsigned int num;
2239 } arr[] = {
2240 { mod->syms, mod->num_syms },
2241 { mod->gpl_syms, mod->num_gpl_syms },
2242 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2243 #ifdef CONFIG_UNUSED_SYMBOLS
2244 { mod->unused_syms, mod->num_unused_syms },
2245 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2246 #endif
2247 };
2248
2249 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2251 if (find_symbol(s->name, &owner, NULL, true, false)) {
2252 pr_err("%s: exports duplicate symbol %s"
2253 " (owned by %s)\n",
2254 mod->name, s->name, module_name(owner));
2255 return -ENOEXEC;
2256 }
2257 }
2258 }
2259 return 0;
2260 }
2261
2262 /* Change all symbols so that st_value encodes the pointer directly. */
2263 static int simplify_symbols(struct module *mod, const struct load_info *info)
2264 {
2265 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2266 Elf_Sym *sym = (void *)symsec->sh_addr;
2267 unsigned long secbase;
2268 unsigned int i;
2269 int ret = 0;
2270 const struct kernel_symbol *ksym;
2271
2272 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2273 const char *name = info->strtab + sym[i].st_name;
2274
2275 switch (sym[i].st_shndx) {
2276 case SHN_COMMON:
2277 /* Ignore common symbols */
2278 if (!strncmp(name, "__gnu_lto", 9))
2279 break;
2280
2281 /* We compiled with -fno-common. These are not
2282 supposed to happen. */
2283 pr_debug("Common symbol: %s\n", name);
2284 pr_warn("%s: please compile with -fno-common\n",
2285 mod->name);
2286 ret = -ENOEXEC;
2287 break;
2288
2289 case SHN_ABS:
2290 /* Don't need to do anything */
2291 pr_debug("Absolute symbol: 0x%08lx\n",
2292 (long)sym[i].st_value);
2293 break;
2294
2295 case SHN_LIVEPATCH:
2296 /* Livepatch symbols are resolved by livepatch */
2297 break;
2298
2299 case SHN_UNDEF:
2300 ksym = resolve_symbol_wait(mod, info, name);
2301 /* Ok if resolved. */
2302 if (ksym && !IS_ERR(ksym)) {
2303 sym[i].st_value = ksym->value;
2304 break;
2305 }
2306
2307 /* Ok if weak. */
2308 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2309 break;
2310
2311 pr_warn("%s: Unknown symbol %s (err %li)\n",
2312 mod->name, name, PTR_ERR(ksym));
2313 ret = PTR_ERR(ksym) ?: -ENOENT;
2314 break;
2315
2316 default:
2317 /* Divert to percpu allocation if a percpu var. */
2318 if (sym[i].st_shndx == info->index.pcpu)
2319 secbase = (unsigned long)mod_percpu(mod);
2320 else
2321 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2322 sym[i].st_value += secbase;
2323 break;
2324 }
2325 }
2326
2327 return ret;
2328 }
2329
2330 static int apply_relocations(struct module *mod, const struct load_info *info)
2331 {
2332 unsigned int i;
2333 int err = 0;
2334
2335 /* Now do relocations. */
2336 for (i = 1; i < info->hdr->e_shnum; i++) {
2337 unsigned int infosec = info->sechdrs[i].sh_info;
2338
2339 /* Not a valid relocation section? */
2340 if (infosec >= info->hdr->e_shnum)
2341 continue;
2342
2343 /* Don't bother with non-allocated sections */
2344 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2345 continue;
2346
2347 /* Livepatch relocation sections are applied by livepatch */
2348 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2349 continue;
2350
2351 if (info->sechdrs[i].sh_type == SHT_REL)
2352 err = apply_relocate(info->sechdrs, info->strtab,
2353 info->index.sym, i, mod);
2354 else if (info->sechdrs[i].sh_type == SHT_RELA)
2355 err = apply_relocate_add(info->sechdrs, info->strtab,
2356 info->index.sym, i, mod);
2357 if (err < 0)
2358 break;
2359 }
2360 return err;
2361 }
2362
2363 /* Additional bytes needed by arch in front of individual sections */
2364 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2365 unsigned int section)
2366 {
2367 /* default implementation just returns zero */
2368 return 0;
2369 }
2370
2371 /* Update size with this section: return offset. */
2372 static long get_offset(struct module *mod, unsigned int *size,
2373 Elf_Shdr *sechdr, unsigned int section)
2374 {
2375 long ret;
2376
2377 *size += arch_mod_section_prepend(mod, section);
2378 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2379 *size = ret + sechdr->sh_size;
2380 return ret;
2381 }
2382
2383 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2384 might -- code, read-only data, read-write data, small data. Tally
2385 sizes, and place the offsets into sh_entsize fields: high bit means it
2386 belongs in init. */
2387 static void layout_sections(struct module *mod, struct load_info *info)
2388 {
2389 static unsigned long const masks[][2] = {
2390 /* NOTE: all executable code must be the first section
2391 * in this array; otherwise modify the text_size
2392 * finder in the two loops below */
2393 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2394 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2395 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2396 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2397 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2398 };
2399 unsigned int m, i;
2400
2401 for (i = 0; i < info->hdr->e_shnum; i++)
2402 info->sechdrs[i].sh_entsize = ~0UL;
2403
2404 pr_debug("Core section allocation order:\n");
2405 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2406 for (i = 0; i < info->hdr->e_shnum; ++i) {
2407 Elf_Shdr *s = &info->sechdrs[i];
2408 const char *sname = info->secstrings + s->sh_name;
2409
2410 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2411 || (s->sh_flags & masks[m][1])
2412 || s->sh_entsize != ~0UL
2413 || strstarts(sname, ".init"))
2414 continue;
2415 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2416 pr_debug("\t%s\n", sname);
2417 }
2418 switch (m) {
2419 case 0: /* executable */
2420 mod->core_layout.size = debug_align(mod->core_layout.size);
2421 mod->core_layout.text_size = mod->core_layout.size;
2422 break;
2423 case 1: /* RO: text and ro-data */
2424 mod->core_layout.size = debug_align(mod->core_layout.size);
2425 mod->core_layout.ro_size = mod->core_layout.size;
2426 break;
2427 case 2: /* RO after init */
2428 mod->core_layout.size = debug_align(mod->core_layout.size);
2429 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2430 break;
2431 case 4: /* whole core */
2432 mod->core_layout.size = debug_align(mod->core_layout.size);
2433 break;
2434 }
2435 }
2436
2437 pr_debug("Init section allocation order:\n");
2438 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2439 for (i = 0; i < info->hdr->e_shnum; ++i) {
2440 Elf_Shdr *s = &info->sechdrs[i];
2441 const char *sname = info->secstrings + s->sh_name;
2442
2443 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2444 || (s->sh_flags & masks[m][1])
2445 || s->sh_entsize != ~0UL
2446 || !strstarts(sname, ".init"))
2447 continue;
2448 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2449 | INIT_OFFSET_MASK);
2450 pr_debug("\t%s\n", sname);
2451 }
2452 switch (m) {
2453 case 0: /* executable */
2454 mod->init_layout.size = debug_align(mod->init_layout.size);
2455 mod->init_layout.text_size = mod->init_layout.size;
2456 break;
2457 case 1: /* RO: text and ro-data */
2458 mod->init_layout.size = debug_align(mod->init_layout.size);
2459 mod->init_layout.ro_size = mod->init_layout.size;
2460 break;
2461 case 2:
2462 /*
2463 * RO after init doesn't apply to init_layout (only
2464 * core_layout), so it just takes the value of ro_size.
2465 */
2466 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2467 break;
2468 case 4: /* whole init */
2469 mod->init_layout.size = debug_align(mod->init_layout.size);
2470 break;
2471 }
2472 }
2473 }
2474
2475 static void set_license(struct module *mod, const char *license)
2476 {
2477 if (!license)
2478 license = "unspecified";
2479
2480 if (!license_is_gpl_compatible(license)) {
2481 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2482 pr_warn("%s: module license '%s' taints kernel.\n",
2483 mod->name, license);
2484 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2485 LOCKDEP_NOW_UNRELIABLE);
2486 }
2487 }
2488
2489 /* Parse tag=value strings from .modinfo section */
2490 static char *next_string(char *string, unsigned long *secsize)
2491 {
2492 /* Skip non-zero chars */
2493 while (string[0]) {
2494 string++;
2495 if ((*secsize)-- <= 1)
2496 return NULL;
2497 }
2498
2499 /* Skip any zero padding. */
2500 while (!string[0]) {
2501 string++;
2502 if ((*secsize)-- <= 1)
2503 return NULL;
2504 }
2505 return string;
2506 }
2507
2508 static char *get_modinfo(struct load_info *info, const char *tag)
2509 {
2510 char *p;
2511 unsigned int taglen = strlen(tag);
2512 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2513 unsigned long size = infosec->sh_size;
2514
2515 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2516 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2517 return p + taglen + 1;
2518 }
2519 return NULL;
2520 }
2521
2522 static void setup_modinfo(struct module *mod, struct load_info *info)
2523 {
2524 struct module_attribute *attr;
2525 int i;
2526
2527 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2528 if (attr->setup)
2529 attr->setup(mod, get_modinfo(info, attr->attr.name));
2530 }
2531 }
2532
2533 static void free_modinfo(struct module *mod)
2534 {
2535 struct module_attribute *attr;
2536 int i;
2537
2538 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2539 if (attr->free)
2540 attr->free(mod);
2541 }
2542 }
2543
2544 #ifdef CONFIG_KALLSYMS
2545
2546 /* lookup symbol in given range of kernel_symbols */
2547 static const struct kernel_symbol *lookup_symbol(const char *name,
2548 const struct kernel_symbol *start,
2549 const struct kernel_symbol *stop)
2550 {
2551 return bsearch(name, start, stop - start,
2552 sizeof(struct kernel_symbol), cmp_name);
2553 }
2554
2555 static int is_exported(const char *name, unsigned long value,
2556 const struct module *mod)
2557 {
2558 const struct kernel_symbol *ks;
2559 if (!mod)
2560 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2561 else
2562 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2563 return ks != NULL && ks->value == value;
2564 }
2565
2566 /* As per nm */
2567 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2568 {
2569 const Elf_Shdr *sechdrs = info->sechdrs;
2570
2571 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2572 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2573 return 'v';
2574 else
2575 return 'w';
2576 }
2577 if (sym->st_shndx == SHN_UNDEF)
2578 return 'U';
2579 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2580 return 'a';
2581 if (sym->st_shndx >= SHN_LORESERVE)
2582 return '?';
2583 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2584 return 't';
2585 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2586 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2587 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2588 return 'r';
2589 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2590 return 'g';
2591 else
2592 return 'd';
2593 }
2594 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2595 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2596 return 's';
2597 else
2598 return 'b';
2599 }
2600 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2601 ".debug")) {
2602 return 'n';
2603 }
2604 return '?';
2605 }
2606
2607 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2608 unsigned int shnum, unsigned int pcpundx)
2609 {
2610 const Elf_Shdr *sec;
2611
2612 if (src->st_shndx == SHN_UNDEF
2613 || src->st_shndx >= shnum
2614 || !src->st_name)
2615 return false;
2616
2617 #ifdef CONFIG_KALLSYMS_ALL
2618 if (src->st_shndx == pcpundx)
2619 return true;
2620 #endif
2621
2622 sec = sechdrs + src->st_shndx;
2623 if (!(sec->sh_flags & SHF_ALLOC)
2624 #ifndef CONFIG_KALLSYMS_ALL
2625 || !(sec->sh_flags & SHF_EXECINSTR)
2626 #endif
2627 || (sec->sh_entsize & INIT_OFFSET_MASK))
2628 return false;
2629
2630 return true;
2631 }
2632
2633 /*
2634 * We only allocate and copy the strings needed by the parts of symtab
2635 * we keep. This is simple, but has the effect of making multiple
2636 * copies of duplicates. We could be more sophisticated, see
2637 * linux-kernel thread starting with
2638 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2639 */
2640 static void layout_symtab(struct module *mod, struct load_info *info)
2641 {
2642 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2643 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2644 const Elf_Sym *src;
2645 unsigned int i, nsrc, ndst, strtab_size = 0;
2646
2647 /* Put symbol section at end of init part of module. */
2648 symsect->sh_flags |= SHF_ALLOC;
2649 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2650 info->index.sym) | INIT_OFFSET_MASK;
2651 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2652
2653 src = (void *)info->hdr + symsect->sh_offset;
2654 nsrc = symsect->sh_size / sizeof(*src);
2655
2656 /* Compute total space required for the core symbols' strtab. */
2657 for (ndst = i = 0; i < nsrc; i++) {
2658 if (i == 0 || is_livepatch_module(mod) ||
2659 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2660 info->index.pcpu)) {
2661 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2662 ndst++;
2663 }
2664 }
2665
2666 /* Append room for core symbols at end of core part. */
2667 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2668 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2669 mod->core_layout.size += strtab_size;
2670 mod->core_layout.size = debug_align(mod->core_layout.size);
2671
2672 /* Put string table section at end of init part of module. */
2673 strsect->sh_flags |= SHF_ALLOC;
2674 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2675 info->index.str) | INIT_OFFSET_MASK;
2676 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2677
2678 /* We'll tack temporary mod_kallsyms on the end. */
2679 mod->init_layout.size = ALIGN(mod->init_layout.size,
2680 __alignof__(struct mod_kallsyms));
2681 info->mod_kallsyms_init_off = mod->init_layout.size;
2682 mod->init_layout.size += sizeof(struct mod_kallsyms);
2683 mod->init_layout.size = debug_align(mod->init_layout.size);
2684 }
2685
2686 /*
2687 * We use the full symtab and strtab which layout_symtab arranged to
2688 * be appended to the init section. Later we switch to the cut-down
2689 * core-only ones.
2690 */
2691 static void add_kallsyms(struct module *mod, const struct load_info *info)
2692 {
2693 unsigned int i, ndst;
2694 const Elf_Sym *src;
2695 Elf_Sym *dst;
2696 char *s;
2697 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2698
2699 /* Set up to point into init section. */
2700 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2701
2702 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2703 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2704 /* Make sure we get permanent strtab: don't use info->strtab. */
2705 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2706
2707 /* Set types up while we still have access to sections. */
2708 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2709 mod->kallsyms->symtab[i].st_info
2710 = elf_type(&mod->kallsyms->symtab[i], info);
2711
2712 /* Now populate the cut down core kallsyms for after init. */
2713 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2714 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2715 src = mod->kallsyms->symtab;
2716 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2717 if (i == 0 || is_livepatch_module(mod) ||
2718 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2719 info->index.pcpu)) {
2720 dst[ndst] = src[i];
2721 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2722 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2723 KSYM_NAME_LEN) + 1;
2724 }
2725 }
2726 mod->core_kallsyms.num_symtab = ndst;
2727 }
2728 #else
2729 static inline void layout_symtab(struct module *mod, struct load_info *info)
2730 {
2731 }
2732
2733 static void add_kallsyms(struct module *mod, const struct load_info *info)
2734 {
2735 }
2736 #endif /* CONFIG_KALLSYMS */
2737
2738 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2739 {
2740 if (!debug)
2741 return;
2742 #ifdef CONFIG_DYNAMIC_DEBUG
2743 if (ddebug_add_module(debug, num, mod->name))
2744 pr_err("dynamic debug error adding module: %s\n",
2745 debug->modname);
2746 #endif
2747 }
2748
2749 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2750 {
2751 if (debug)
2752 ddebug_remove_module(mod->name);
2753 }
2754
2755 void * __weak module_alloc(unsigned long size)
2756 {
2757 return vmalloc_exec(size);
2758 }
2759
2760 #ifdef CONFIG_DEBUG_KMEMLEAK
2761 static void kmemleak_load_module(const struct module *mod,
2762 const struct load_info *info)
2763 {
2764 unsigned int i;
2765
2766 /* only scan the sections containing data */
2767 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2768
2769 for (i = 1; i < info->hdr->e_shnum; i++) {
2770 /* Scan all writable sections that's not executable */
2771 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2772 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2773 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2774 continue;
2775
2776 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2777 info->sechdrs[i].sh_size, GFP_KERNEL);
2778 }
2779 }
2780 #else
2781 static inline void kmemleak_load_module(const struct module *mod,
2782 const struct load_info *info)
2783 {
2784 }
2785 #endif
2786
2787 #ifdef CONFIG_MODULE_SIG
2788 static int module_sig_check(struct load_info *info, int flags)
2789 {
2790 int err = -ENOKEY;
2791 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2792 const void *mod = info->hdr;
2793
2794 /*
2795 * Require flags == 0, as a module with version information
2796 * removed is no longer the module that was signed
2797 */
2798 if (flags == 0 &&
2799 info->len > markerlen &&
2800 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2801 /* We truncate the module to discard the signature */
2802 info->len -= markerlen;
2803 err = mod_verify_sig(mod, &info->len);
2804 }
2805
2806 if (!err) {
2807 info->sig_ok = true;
2808 return 0;
2809 }
2810
2811 /* Not having a signature is only an error if we're strict. */
2812 if (err == -ENOKEY && !sig_enforce &&
2813 !kernel_is_locked_down("Loading of unsigned modules"))
2814 err = 0;
2815
2816 return err;
2817 }
2818 #else /* !CONFIG_MODULE_SIG */
2819 static int module_sig_check(struct load_info *info, int flags)
2820 {
2821 return 0;
2822 }
2823 #endif /* !CONFIG_MODULE_SIG */
2824
2825 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2826 static int elf_header_check(struct load_info *info)
2827 {
2828 if (info->len < sizeof(*(info->hdr)))
2829 return -ENOEXEC;
2830
2831 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2832 || info->hdr->e_type != ET_REL
2833 || !elf_check_arch(info->hdr)
2834 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2835 return -ENOEXEC;
2836
2837 if (info->hdr->e_shoff >= info->len
2838 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2839 info->len - info->hdr->e_shoff))
2840 return -ENOEXEC;
2841
2842 return 0;
2843 }
2844
2845 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2846
2847 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2848 {
2849 do {
2850 unsigned long n = min(len, COPY_CHUNK_SIZE);
2851
2852 if (copy_from_user(dst, usrc, n) != 0)
2853 return -EFAULT;
2854 cond_resched();
2855 dst += n;
2856 usrc += n;
2857 len -= n;
2858 } while (len);
2859 return 0;
2860 }
2861
2862 #ifdef CONFIG_LIVEPATCH
2863 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2864 {
2865 if (get_modinfo(info, "livepatch")) {
2866 mod->klp = true;
2867 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2868 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2869 mod->name);
2870 }
2871
2872 return 0;
2873 }
2874 #else /* !CONFIG_LIVEPATCH */
2875 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2876 {
2877 if (get_modinfo(info, "livepatch")) {
2878 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2879 mod->name);
2880 return -ENOEXEC;
2881 }
2882
2883 return 0;
2884 }
2885 #endif /* CONFIG_LIVEPATCH */
2886
2887 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2888 {
2889 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2890 return;
2891
2892 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2893 mod->name);
2894 }
2895
2896 /* Sets info->hdr and info->len. */
2897 static int copy_module_from_user(const void __user *umod, unsigned long len,
2898 struct load_info *info)
2899 {
2900 int err;
2901
2902 info->len = len;
2903 if (info->len < sizeof(*(info->hdr)))
2904 return -ENOEXEC;
2905
2906 err = security_kernel_read_file(NULL, READING_MODULE);
2907 if (err)
2908 return err;
2909
2910 /* Suck in entire file: we'll want most of it. */
2911 info->hdr = __vmalloc(info->len,
2912 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2913 if (!info->hdr)
2914 return -ENOMEM;
2915
2916 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2917 vfree(info->hdr);
2918 return -EFAULT;
2919 }
2920
2921 return 0;
2922 }
2923
2924 static void free_copy(struct load_info *info)
2925 {
2926 vfree(info->hdr);
2927 }
2928
2929 static int rewrite_section_headers(struct load_info *info, int flags)
2930 {
2931 unsigned int i;
2932
2933 /* This should always be true, but let's be sure. */
2934 info->sechdrs[0].sh_addr = 0;
2935
2936 for (i = 1; i < info->hdr->e_shnum; i++) {
2937 Elf_Shdr *shdr = &info->sechdrs[i];
2938 if (shdr->sh_type != SHT_NOBITS
2939 && info->len < shdr->sh_offset + shdr->sh_size) {
2940 pr_err("Module len %lu truncated\n", info->len);
2941 return -ENOEXEC;
2942 }
2943
2944 /* Mark all sections sh_addr with their address in the
2945 temporary image. */
2946 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2947
2948 #ifndef CONFIG_MODULE_UNLOAD
2949 /* Don't load .exit sections */
2950 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2951 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2952 #endif
2953 }
2954
2955 /* Track but don't keep modinfo and version sections. */
2956 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2957 info->index.vers = 0; /* Pretend no __versions section! */
2958 else
2959 info->index.vers = find_sec(info, "__versions");
2960 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2961
2962 info->index.info = find_sec(info, ".modinfo");
2963 if (!info->index.info)
2964 info->name = "(missing .modinfo section)";
2965 else
2966 info->name = get_modinfo(info, "name");
2967 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2968
2969 return 0;
2970 }
2971
2972 /*
2973 * Set up our basic convenience variables (pointers to section headers,
2974 * search for module section index etc), and do some basic section
2975 * verification.
2976 *
2977 * Return the temporary module pointer (we'll replace it with the final
2978 * one when we move the module sections around).
2979 */
2980 static struct module *setup_load_info(struct load_info *info, int flags)
2981 {
2982 unsigned int i;
2983 int err;
2984 struct module *mod;
2985
2986 /* Set up the convenience variables */
2987 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2988 info->secstrings = (void *)info->hdr
2989 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2990
2991 err = rewrite_section_headers(info, flags);
2992 if (err)
2993 return ERR_PTR(err);
2994
2995 /* Find internal symbols and strings. */
2996 for (i = 1; i < info->hdr->e_shnum; i++) {
2997 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2998 info->index.sym = i;
2999 info->index.str = info->sechdrs[i].sh_link;
3000 info->strtab = (char *)info->hdr
3001 + info->sechdrs[info->index.str].sh_offset;
3002 break;
3003 }
3004 }
3005
3006 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3007 if (!info->index.mod) {
3008 pr_warn("%s: No module found in object\n",
3009 info->name ?: "(missing .modinfo name field)");
3010 return ERR_PTR(-ENOEXEC);
3011 }
3012 /* This is temporary: point mod into copy of data. */
3013 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3014
3015 /*
3016 * If we didn't load the .modinfo 'name' field, fall back to
3017 * on-disk struct mod 'name' field.
3018 */
3019 if (!info->name)
3020 info->name = mod->name;
3021
3022 if (info->index.sym == 0) {
3023 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3024 return ERR_PTR(-ENOEXEC);
3025 }
3026
3027 info->index.pcpu = find_pcpusec(info);
3028
3029 /* Check module struct version now, before we try to use module. */
3030 if (!check_modstruct_version(info, mod))
3031 return ERR_PTR(-ENOEXEC);
3032
3033 return mod;
3034 }
3035
3036 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3037 {
3038 const char *modmagic = get_modinfo(info, "vermagic");
3039 int err;
3040
3041 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3042 modmagic = NULL;
3043
3044 /* This is allowed: modprobe --force will invalidate it. */
3045 if (!modmagic) {
3046 err = try_to_force_load(mod, "bad vermagic");
3047 if (err)
3048 return err;
3049 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3050 pr_err("%s: version magic '%s' should be '%s'\n",
3051 info->name, modmagic, vermagic);
3052 return -ENOEXEC;
3053 }
3054
3055 if (!get_modinfo(info, "intree")) {
3056 if (!test_taint(TAINT_OOT_MODULE))
3057 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3058 mod->name);
3059 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3060 }
3061
3062 check_modinfo_retpoline(mod, info);
3063
3064 if (get_modinfo(info, "staging")) {
3065 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3066 pr_warn("%s: module is from the staging directory, the quality "
3067 "is unknown, you have been warned.\n", mod->name);
3068 }
3069
3070 err = check_modinfo_livepatch(mod, info);
3071 if (err)
3072 return err;
3073
3074 /* Set up license info based on the info section */
3075 set_license(mod, get_modinfo(info, "license"));
3076
3077 return 0;
3078 }
3079
3080 static int find_module_sections(struct module *mod, struct load_info *info)
3081 {
3082 mod->kp = section_objs(info, "__param",
3083 sizeof(*mod->kp), &mod->num_kp);
3084 mod->syms = section_objs(info, "__ksymtab",
3085 sizeof(*mod->syms), &mod->num_syms);
3086 mod->crcs = section_addr(info, "__kcrctab");
3087 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3088 sizeof(*mod->gpl_syms),
3089 &mod->num_gpl_syms);
3090 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3091 mod->gpl_future_syms = section_objs(info,
3092 "__ksymtab_gpl_future",
3093 sizeof(*mod->gpl_future_syms),
3094 &mod->num_gpl_future_syms);
3095 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3096
3097 #ifdef CONFIG_UNUSED_SYMBOLS
3098 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3099 sizeof(*mod->unused_syms),
3100 &mod->num_unused_syms);
3101 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3102 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3103 sizeof(*mod->unused_gpl_syms),
3104 &mod->num_unused_gpl_syms);
3105 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3106 #endif
3107 #ifdef CONFIG_CONSTRUCTORS
3108 mod->ctors = section_objs(info, ".ctors",
3109 sizeof(*mod->ctors), &mod->num_ctors);
3110 if (!mod->ctors)
3111 mod->ctors = section_objs(info, ".init_array",
3112 sizeof(*mod->ctors), &mod->num_ctors);
3113 else if (find_sec(info, ".init_array")) {
3114 /*
3115 * This shouldn't happen with same compiler and binutils
3116 * building all parts of the module.
3117 */
3118 pr_warn("%s: has both .ctors and .init_array.\n",
3119 mod->name);
3120 return -EINVAL;
3121 }
3122 #endif
3123
3124 #ifdef CONFIG_TRACEPOINTS
3125 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3126 sizeof(*mod->tracepoints_ptrs),
3127 &mod->num_tracepoints);
3128 #endif
3129 #ifdef HAVE_JUMP_LABEL
3130 mod->jump_entries = section_objs(info, "__jump_table",
3131 sizeof(*mod->jump_entries),
3132 &mod->num_jump_entries);
3133 #endif
3134 #ifdef CONFIG_EVENT_TRACING
3135 mod->trace_events = section_objs(info, "_ftrace_events",
3136 sizeof(*mod->trace_events),
3137 &mod->num_trace_events);
3138 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3139 sizeof(*mod->trace_evals),
3140 &mod->num_trace_evals);
3141 #endif
3142 #ifdef CONFIG_TRACING
3143 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3144 sizeof(*mod->trace_bprintk_fmt_start),
3145 &mod->num_trace_bprintk_fmt);
3146 #endif
3147 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3148 /* sechdrs[0].sh_size is always zero */
3149 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3150 sizeof(*mod->ftrace_callsites),
3151 &mod->num_ftrace_callsites);
3152 #endif
3153
3154 mod->extable = section_objs(info, "__ex_table",
3155 sizeof(*mod->extable), &mod->num_exentries);
3156
3157 if (section_addr(info, "__obsparm"))
3158 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3159
3160 info->debug = section_objs(info, "__verbose",
3161 sizeof(*info->debug), &info->num_debug);
3162
3163 return 0;
3164 }
3165
3166 static int move_module(struct module *mod, struct load_info *info)
3167 {
3168 int i;
3169 void *ptr;
3170
3171 /* Do the allocs. */
3172 ptr = module_alloc(mod->core_layout.size);
3173 /*
3174 * The pointer to this block is stored in the module structure
3175 * which is inside the block. Just mark it as not being a
3176 * leak.
3177 */
3178 kmemleak_not_leak(ptr);
3179 if (!ptr)
3180 return -ENOMEM;
3181
3182 memset(ptr, 0, mod->core_layout.size);
3183 mod->core_layout.base = ptr;
3184
3185 if (mod->init_layout.size) {
3186 ptr = module_alloc(mod->init_layout.size);
3187 /*
3188 * The pointer to this block is stored in the module structure
3189 * which is inside the block. This block doesn't need to be
3190 * scanned as it contains data and code that will be freed
3191 * after the module is initialized.
3192 */
3193 kmemleak_ignore(ptr);
3194 if (!ptr) {
3195 module_memfree(mod->core_layout.base);
3196 return -ENOMEM;
3197 }
3198 memset(ptr, 0, mod->init_layout.size);
3199 mod->init_layout.base = ptr;
3200 } else
3201 mod->init_layout.base = NULL;
3202
3203 /* Transfer each section which specifies SHF_ALLOC */
3204 pr_debug("final section addresses:\n");
3205 for (i = 0; i < info->hdr->e_shnum; i++) {
3206 void *dest;
3207 Elf_Shdr *shdr = &info->sechdrs[i];
3208
3209 if (!(shdr->sh_flags & SHF_ALLOC))
3210 continue;
3211
3212 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3213 dest = mod->init_layout.base
3214 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3215 else
3216 dest = mod->core_layout.base + shdr->sh_entsize;
3217
3218 if (shdr->sh_type != SHT_NOBITS)
3219 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3220 /* Update sh_addr to point to copy in image. */
3221 shdr->sh_addr = (unsigned long)dest;
3222 pr_debug("\t0x%lx %s\n",
3223 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3224 }
3225
3226 return 0;
3227 }
3228
3229 static int check_module_license_and_versions(struct module *mod)
3230 {
3231 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3232
3233 /*
3234 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3235 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3236 * using GPL-only symbols it needs.
3237 */
3238 if (strcmp(mod->name, "ndiswrapper") == 0)
3239 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3240
3241 /* driverloader was caught wrongly pretending to be under GPL */
3242 if (strcmp(mod->name, "driverloader") == 0)
3243 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3244 LOCKDEP_NOW_UNRELIABLE);
3245
3246 /* lve claims to be GPL but upstream won't provide source */
3247 if (strcmp(mod->name, "lve") == 0)
3248 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3249 LOCKDEP_NOW_UNRELIABLE);
3250
3251 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3252 pr_warn("%s: module license taints kernel.\n", mod->name);
3253
3254 #ifdef CONFIG_MODVERSIONS
3255 if ((mod->num_syms && !mod->crcs)
3256 || (mod->num_gpl_syms && !mod->gpl_crcs)
3257 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3258 #ifdef CONFIG_UNUSED_SYMBOLS
3259 || (mod->num_unused_syms && !mod->unused_crcs)
3260 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3261 #endif
3262 ) {
3263 return try_to_force_load(mod,
3264 "no versions for exported symbols");
3265 }
3266 #endif
3267 return 0;
3268 }
3269
3270 static void flush_module_icache(const struct module *mod)
3271 {
3272 mm_segment_t old_fs;
3273
3274 /* flush the icache in correct context */
3275 old_fs = get_fs();
3276 set_fs(KERNEL_DS);
3277
3278 /*
3279 * Flush the instruction cache, since we've played with text.
3280 * Do it before processing of module parameters, so the module
3281 * can provide parameter accessor functions of its own.
3282 */
3283 if (mod->init_layout.base)
3284 flush_icache_range((unsigned long)mod->init_layout.base,
3285 (unsigned long)mod->init_layout.base
3286 + mod->init_layout.size);
3287 flush_icache_range((unsigned long)mod->core_layout.base,
3288 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3289
3290 set_fs(old_fs);
3291 }
3292
3293 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3294 Elf_Shdr *sechdrs,
3295 char *secstrings,
3296 struct module *mod)
3297 {
3298 return 0;
3299 }
3300
3301 /* module_blacklist is a comma-separated list of module names */
3302 static char *module_blacklist;
3303 static bool blacklisted(const char *module_name)
3304 {
3305 const char *p;
3306 size_t len;
3307
3308 if (!module_blacklist)
3309 return false;
3310
3311 for (p = module_blacklist; *p; p += len) {
3312 len = strcspn(p, ",");
3313 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3314 return true;
3315 if (p[len] == ',')
3316 len++;
3317 }
3318 return false;
3319 }
3320 core_param(module_blacklist, module_blacklist, charp, 0400);
3321
3322 static struct module *layout_and_allocate(struct load_info *info, int flags)
3323 {
3324 /* Module within temporary copy. */
3325 struct module *mod;
3326 unsigned int ndx;
3327 int err;
3328
3329 mod = setup_load_info(info, flags);
3330 if (IS_ERR(mod))
3331 return mod;
3332
3333 if (blacklisted(info->name))
3334 return ERR_PTR(-EPERM);
3335
3336 err = check_modinfo(mod, info, flags);
3337 if (err)
3338 return ERR_PTR(err);
3339
3340 /* Allow arches to frob section contents and sizes. */
3341 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3342 info->secstrings, mod);
3343 if (err < 0)
3344 return ERR_PTR(err);
3345
3346 /* We will do a special allocation for per-cpu sections later. */
3347 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3348
3349 /*
3350 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3351 * layout_sections() can put it in the right place.
3352 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3353 */
3354 ndx = find_sec(info, ".data..ro_after_init");
3355 if (ndx)
3356 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3357
3358 /* Determine total sizes, and put offsets in sh_entsize. For now
3359 this is done generically; there doesn't appear to be any
3360 special cases for the architectures. */
3361 layout_sections(mod, info);
3362 layout_symtab(mod, info);
3363
3364 /* Allocate and move to the final place */
3365 err = move_module(mod, info);
3366 if (err)
3367 return ERR_PTR(err);
3368
3369 /* Module has been copied to its final place now: return it. */
3370 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3371 kmemleak_load_module(mod, info);
3372 return mod;
3373 }
3374
3375 /* mod is no longer valid after this! */
3376 static void module_deallocate(struct module *mod, struct load_info *info)
3377 {
3378 percpu_modfree(mod);
3379 module_arch_freeing_init(mod);
3380 module_memfree(mod->init_layout.base);
3381 module_memfree(mod->core_layout.base);
3382 }
3383
3384 int __weak module_finalize(const Elf_Ehdr *hdr,
3385 const Elf_Shdr *sechdrs,
3386 struct module *me)
3387 {
3388 return 0;
3389 }
3390
3391 static int post_relocation(struct module *mod, const struct load_info *info)
3392 {
3393 /* Sort exception table now relocations are done. */
3394 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3395
3396 /* Copy relocated percpu area over. */
3397 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3398 info->sechdrs[info->index.pcpu].sh_size);
3399
3400 /* Setup kallsyms-specific fields. */
3401 add_kallsyms(mod, info);
3402
3403 /* Arch-specific module finalizing. */
3404 return module_finalize(info->hdr, info->sechdrs, mod);
3405 }
3406
3407 /* Is this module of this name done loading? No locks held. */
3408 static bool finished_loading(const char *name)
3409 {
3410 struct module *mod;
3411 bool ret;
3412
3413 /*
3414 * The module_mutex should not be a heavily contended lock;
3415 * if we get the occasional sleep here, we'll go an extra iteration
3416 * in the wait_event_interruptible(), which is harmless.
3417 */
3418 sched_annotate_sleep();
3419 mutex_lock(&module_mutex);
3420 mod = find_module_all(name, strlen(name), true);
3421 ret = !mod || mod->state == MODULE_STATE_LIVE;
3422 mutex_unlock(&module_mutex);
3423
3424 return ret;
3425 }
3426
3427 /* Call module constructors. */
3428 static void do_mod_ctors(struct module *mod)
3429 {
3430 #ifdef CONFIG_CONSTRUCTORS
3431 unsigned long i;
3432
3433 for (i = 0; i < mod->num_ctors; i++)
3434 mod->ctors[i]();
3435 #endif
3436 }
3437
3438 /* For freeing module_init on success, in case kallsyms traversing */
3439 struct mod_initfree {
3440 struct rcu_head rcu;
3441 void *module_init;
3442 };
3443
3444 static void do_free_init(struct rcu_head *head)
3445 {
3446 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3447 module_memfree(m->module_init);
3448 kfree(m);
3449 }
3450
3451 /*
3452 * This is where the real work happens.
3453 *
3454 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3455 * helper command 'lx-symbols'.
3456 */
3457 static noinline int do_init_module(struct module *mod)
3458 {
3459 int ret = 0;
3460 struct mod_initfree *freeinit;
3461
3462 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3463 if (!freeinit) {
3464 ret = -ENOMEM;
3465 goto fail;
3466 }
3467 freeinit->module_init = mod->init_layout.base;
3468
3469 /*
3470 * We want to find out whether @mod uses async during init. Clear
3471 * PF_USED_ASYNC. async_schedule*() will set it.
3472 */
3473 current->flags &= ~PF_USED_ASYNC;
3474
3475 do_mod_ctors(mod);
3476 /* Start the module */
3477 if (mod->init != NULL)
3478 ret = do_one_initcall(mod->init);
3479 if (ret < 0) {
3480 goto fail_free_freeinit;
3481 }
3482 if (ret > 0) {
3483 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3484 "follow 0/-E convention\n"
3485 "%s: loading module anyway...\n",
3486 __func__, mod->name, ret, __func__);
3487 dump_stack();
3488 }
3489
3490 /* Now it's a first class citizen! */
3491 mod->state = MODULE_STATE_LIVE;
3492 blocking_notifier_call_chain(&module_notify_list,
3493 MODULE_STATE_LIVE, mod);
3494
3495 /*
3496 * We need to finish all async code before the module init sequence
3497 * is done. This has potential to deadlock. For example, a newly
3498 * detected block device can trigger request_module() of the
3499 * default iosched from async probing task. Once userland helper
3500 * reaches here, async_synchronize_full() will wait on the async
3501 * task waiting on request_module() and deadlock.
3502 *
3503 * This deadlock is avoided by perfomring async_synchronize_full()
3504 * iff module init queued any async jobs. This isn't a full
3505 * solution as it will deadlock the same if module loading from
3506 * async jobs nests more than once; however, due to the various
3507 * constraints, this hack seems to be the best option for now.
3508 * Please refer to the following thread for details.
3509 *
3510 * http://thread.gmane.org/gmane.linux.kernel/1420814
3511 */
3512 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3513 async_synchronize_full();
3514
3515 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3516 mod->init_layout.size);
3517 mutex_lock(&module_mutex);
3518 /* Drop initial reference. */
3519 module_put(mod);
3520 trim_init_extable(mod);
3521 #ifdef CONFIG_KALLSYMS
3522 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3523 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3524 #endif
3525 module_enable_ro(mod, true);
3526 mod_tree_remove_init(mod);
3527 disable_ro_nx(&mod->init_layout);
3528 module_arch_freeing_init(mod);
3529 mod->init_layout.base = NULL;
3530 mod->init_layout.size = 0;
3531 mod->init_layout.ro_size = 0;
3532 mod->init_layout.ro_after_init_size = 0;
3533 mod->init_layout.text_size = 0;
3534 /*
3535 * We want to free module_init, but be aware that kallsyms may be
3536 * walking this with preempt disabled. In all the failure paths, we
3537 * call synchronize_sched(), but we don't want to slow down the success
3538 * path, so use actual RCU here.
3539 * Note that module_alloc() on most architectures creates W+X page
3540 * mappings which won't be cleaned up until do_free_init() runs. Any
3541 * code such as mark_rodata_ro() which depends on those mappings to
3542 * be cleaned up needs to sync with the queued work - ie
3543 * rcu_barrier_sched()
3544 */
3545 call_rcu_sched(&freeinit->rcu, do_free_init);
3546 mutex_unlock(&module_mutex);
3547 wake_up_all(&module_wq);
3548
3549 return 0;
3550
3551 fail_free_freeinit:
3552 kfree(freeinit);
3553 fail:
3554 /* Try to protect us from buggy refcounters. */
3555 mod->state = MODULE_STATE_GOING;
3556 synchronize_sched();
3557 module_put(mod);
3558 blocking_notifier_call_chain(&module_notify_list,
3559 MODULE_STATE_GOING, mod);
3560 klp_module_going(mod);
3561 ftrace_release_mod(mod);
3562 free_module(mod);
3563 wake_up_all(&module_wq);
3564 return ret;
3565 }
3566
3567 static int may_init_module(void)
3568 {
3569 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3570 return -EPERM;
3571
3572 return 0;
3573 }
3574
3575 /*
3576 * We try to place it in the list now to make sure it's unique before
3577 * we dedicate too many resources. In particular, temporary percpu
3578 * memory exhaustion.
3579 */
3580 static int add_unformed_module(struct module *mod)
3581 {
3582 int err;
3583 struct module *old;
3584
3585 mod->state = MODULE_STATE_UNFORMED;
3586
3587 again:
3588 mutex_lock(&module_mutex);
3589 old = find_module_all(mod->name, strlen(mod->name), true);
3590 if (old != NULL) {
3591 if (old->state != MODULE_STATE_LIVE) {
3592 /* Wait in case it fails to load. */
3593 mutex_unlock(&module_mutex);
3594 err = wait_event_interruptible(module_wq,
3595 finished_loading(mod->name));
3596 if (err)
3597 goto out_unlocked;
3598 goto again;
3599 }
3600 err = -EEXIST;
3601 goto out;
3602 }
3603 mod_update_bounds(mod);
3604 list_add_rcu(&mod->list, &modules);
3605 mod_tree_insert(mod);
3606 err = 0;
3607
3608 out:
3609 mutex_unlock(&module_mutex);
3610 out_unlocked:
3611 return err;
3612 }
3613
3614 static int complete_formation(struct module *mod, struct load_info *info)
3615 {
3616 int err;
3617
3618 mutex_lock(&module_mutex);
3619
3620 /* Find duplicate symbols (must be called under lock). */
3621 err = verify_export_symbols(mod);
3622 if (err < 0)
3623 goto out;
3624
3625 /* This relies on module_mutex for list integrity. */
3626 module_bug_finalize(info->hdr, info->sechdrs, mod);
3627
3628 module_enable_ro(mod, false);
3629 module_enable_nx(mod);
3630
3631 /* Mark state as coming so strong_try_module_get() ignores us,
3632 * but kallsyms etc. can see us. */
3633 mod->state = MODULE_STATE_COMING;
3634 mutex_unlock(&module_mutex);
3635
3636 return 0;
3637
3638 out:
3639 mutex_unlock(&module_mutex);
3640 return err;
3641 }
3642
3643 static int prepare_coming_module(struct module *mod)
3644 {
3645 int err;
3646
3647 ftrace_module_enable(mod);
3648 err = klp_module_coming(mod);
3649 if (err)
3650 return err;
3651
3652 blocking_notifier_call_chain(&module_notify_list,
3653 MODULE_STATE_COMING, mod);
3654 return 0;
3655 }
3656
3657 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3658 void *arg)
3659 {
3660 struct module *mod = arg;
3661 int ret;
3662
3663 if (strcmp(param, "async_probe") == 0) {
3664 mod->async_probe_requested = true;
3665 return 0;
3666 }
3667
3668 /* Check for magic 'dyndbg' arg */
3669 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3670 if (ret != 0)
3671 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3672 return 0;
3673 }
3674
3675 /* Allocate and load the module: note that size of section 0 is always
3676 zero, and we rely on this for optional sections. */
3677 static int load_module(struct load_info *info, const char __user *uargs,
3678 int flags)
3679 {
3680 struct module *mod;
3681 long err;
3682 char *after_dashes;
3683
3684 err = module_sig_check(info, flags);
3685 if (err)
3686 goto free_copy;
3687
3688 err = elf_header_check(info);
3689 if (err)
3690 goto free_copy;
3691
3692 /* Figure out module layout, and allocate all the memory. */
3693 mod = layout_and_allocate(info, flags);
3694 if (IS_ERR(mod)) {
3695 err = PTR_ERR(mod);
3696 goto free_copy;
3697 }
3698
3699 audit_log_kern_module(mod->name);
3700
3701 /* Reserve our place in the list. */
3702 err = add_unformed_module(mod);
3703 if (err)
3704 goto free_module;
3705
3706 #ifdef CONFIG_MODULE_SIG
3707 mod->sig_ok = info->sig_ok;
3708 if (!mod->sig_ok) {
3709 pr_notice_once("%s: module verification failed: signature "
3710 "and/or required key missing - tainting "
3711 "kernel\n", mod->name);
3712 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3713 }
3714 #endif
3715
3716 /* To avoid stressing percpu allocator, do this once we're unique. */
3717 err = percpu_modalloc(mod, info);
3718 if (err)
3719 goto unlink_mod;
3720
3721 /* Now module is in final location, initialize linked lists, etc. */
3722 err = module_unload_init(mod);
3723 if (err)
3724 goto unlink_mod;
3725
3726 init_param_lock(mod);
3727
3728 /* Now we've got everything in the final locations, we can
3729 * find optional sections. */
3730 err = find_module_sections(mod, info);
3731 if (err)
3732 goto free_unload;
3733
3734 err = check_module_license_and_versions(mod);
3735 if (err)
3736 goto free_unload;
3737
3738 /* Set up MODINFO_ATTR fields */
3739 setup_modinfo(mod, info);
3740
3741 /* Fix up syms, so that st_value is a pointer to location. */
3742 err = simplify_symbols(mod, info);
3743 if (err < 0)
3744 goto free_modinfo;
3745
3746 err = apply_relocations(mod, info);
3747 if (err < 0)
3748 goto free_modinfo;
3749
3750 err = post_relocation(mod, info);
3751 if (err < 0)
3752 goto free_modinfo;
3753
3754 flush_module_icache(mod);
3755
3756 /* Now copy in args */
3757 mod->args = strndup_user(uargs, ~0UL >> 1);
3758 if (IS_ERR(mod->args)) {
3759 err = PTR_ERR(mod->args);
3760 goto free_arch_cleanup;
3761 }
3762
3763 dynamic_debug_setup(mod, info->debug, info->num_debug);
3764
3765 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3766 ftrace_module_init(mod);
3767
3768 /* Finally it's fully formed, ready to start executing. */
3769 err = complete_formation(mod, info);
3770 if (err)
3771 goto ddebug_cleanup;
3772
3773 err = prepare_coming_module(mod);
3774 if (err)
3775 goto bug_cleanup;
3776
3777 /* Module is ready to execute: parsing args may do that. */
3778 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3779 -32768, 32767, mod,
3780 unknown_module_param_cb);
3781 if (IS_ERR(after_dashes)) {
3782 err = PTR_ERR(after_dashes);
3783 goto coming_cleanup;
3784 } else if (after_dashes) {
3785 pr_warn("%s: parameters '%s' after `--' ignored\n",
3786 mod->name, after_dashes);
3787 }
3788
3789 /* Link in to sysfs. */
3790 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3791 if (err < 0)
3792 goto coming_cleanup;
3793
3794 if (is_livepatch_module(mod)) {
3795 err = copy_module_elf(mod, info);
3796 if (err < 0)
3797 goto sysfs_cleanup;
3798 }
3799
3800 /* Get rid of temporary copy. */
3801 free_copy(info);
3802
3803 /* Done! */
3804 trace_module_load(mod);
3805
3806 return do_init_module(mod);
3807
3808 sysfs_cleanup:
3809 mod_sysfs_teardown(mod);
3810 coming_cleanup:
3811 mod->state = MODULE_STATE_GOING;
3812 destroy_params(mod->kp, mod->num_kp);
3813 blocking_notifier_call_chain(&module_notify_list,
3814 MODULE_STATE_GOING, mod);
3815 klp_module_going(mod);
3816 bug_cleanup:
3817 /* module_bug_cleanup needs module_mutex protection */
3818 mutex_lock(&module_mutex);
3819 module_bug_cleanup(mod);
3820 mutex_unlock(&module_mutex);
3821
3822 /* we can't deallocate the module until we clear memory protection */
3823 module_disable_ro(mod);
3824 module_disable_nx(mod);
3825
3826 ddebug_cleanup:
3827 dynamic_debug_remove(mod, info->debug);
3828 synchronize_sched();
3829 kfree(mod->args);
3830 free_arch_cleanup:
3831 module_arch_cleanup(mod);
3832 free_modinfo:
3833 free_modinfo(mod);
3834 free_unload:
3835 module_unload_free(mod);
3836 unlink_mod:
3837 mutex_lock(&module_mutex);
3838 /* Unlink carefully: kallsyms could be walking list. */
3839 list_del_rcu(&mod->list);
3840 mod_tree_remove(mod);
3841 wake_up_all(&module_wq);
3842 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3843 synchronize_sched();
3844 mutex_unlock(&module_mutex);
3845 free_module:
3846 /*
3847 * Ftrace needs to clean up what it initialized.
3848 * This does nothing if ftrace_module_init() wasn't called,
3849 * but it must be called outside of module_mutex.
3850 */
3851 ftrace_release_mod(mod);
3852 /* Free lock-classes; relies on the preceding sync_rcu() */
3853 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3854
3855 module_deallocate(mod, info);
3856 free_copy:
3857 free_copy(info);
3858 return err;
3859 }
3860
3861 SYSCALL_DEFINE3(init_module, void __user *, umod,
3862 unsigned long, len, const char __user *, uargs)
3863 {
3864 int err;
3865 struct load_info info = { };
3866
3867 err = may_init_module();
3868 if (err)
3869 return err;
3870
3871 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3872 umod, len, uargs);
3873
3874 err = copy_module_from_user(umod, len, &info);
3875 if (err)
3876 return err;
3877
3878 return load_module(&info, uargs, 0);
3879 }
3880
3881 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3882 {
3883 struct load_info info = { };
3884 loff_t size;
3885 void *hdr;
3886 int err;
3887
3888 err = may_init_module();
3889 if (err)
3890 return err;
3891
3892 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3893
3894 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3895 |MODULE_INIT_IGNORE_VERMAGIC))
3896 return -EINVAL;
3897
3898 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3899 READING_MODULE);
3900 if (err)
3901 return err;
3902 info.hdr = hdr;
3903 info.len = size;
3904
3905 return load_module(&info, uargs, flags);
3906 }
3907
3908 static inline int within(unsigned long addr, void *start, unsigned long size)
3909 {
3910 return ((void *)addr >= start && (void *)addr < start + size);
3911 }
3912
3913 #ifdef CONFIG_KALLSYMS
3914 /*
3915 * This ignores the intensely annoying "mapping symbols" found
3916 * in ARM ELF files: $a, $t and $d.
3917 */
3918 static inline int is_arm_mapping_symbol(const char *str)
3919 {
3920 if (str[0] == '.' && str[1] == 'L')
3921 return true;
3922 return str[0] == '$' && strchr("axtd", str[1])
3923 && (str[2] == '\0' || str[2] == '.');
3924 }
3925
3926 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3927 {
3928 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3929 }
3930
3931 static const char *get_ksymbol(struct module *mod,
3932 unsigned long addr,
3933 unsigned long *size,
3934 unsigned long *offset)
3935 {
3936 unsigned int i, best = 0;
3937 unsigned long nextval;
3938 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3939
3940 /* At worse, next value is at end of module */
3941 if (within_module_init(addr, mod))
3942 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3943 else
3944 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3945
3946 /* Scan for closest preceding symbol, and next symbol. (ELF
3947 starts real symbols at 1). */
3948 for (i = 1; i < kallsyms->num_symtab; i++) {
3949 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3950 continue;
3951
3952 /* We ignore unnamed symbols: they're uninformative
3953 * and inserted at a whim. */
3954 if (*symname(kallsyms, i) == '\0'
3955 || is_arm_mapping_symbol(symname(kallsyms, i)))
3956 continue;
3957
3958 if (kallsyms->symtab[i].st_value <= addr
3959 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3960 best = i;
3961 if (kallsyms->symtab[i].st_value > addr
3962 && kallsyms->symtab[i].st_value < nextval)
3963 nextval = kallsyms->symtab[i].st_value;
3964 }
3965
3966 if (!best)
3967 return NULL;
3968
3969 if (size)
3970 *size = nextval - kallsyms->symtab[best].st_value;
3971 if (offset)
3972 *offset = addr - kallsyms->symtab[best].st_value;
3973 return symname(kallsyms, best);
3974 }
3975
3976 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3977 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3978 const char *module_address_lookup(unsigned long addr,
3979 unsigned long *size,
3980 unsigned long *offset,
3981 char **modname,
3982 char *namebuf)
3983 {
3984 const char *ret = NULL;
3985 struct module *mod;
3986
3987 preempt_disable();
3988 mod = __module_address(addr);
3989 if (mod) {
3990 if (modname)
3991 *modname = mod->name;
3992 ret = get_ksymbol(mod, addr, size, offset);
3993 }
3994 /* Make a copy in here where it's safe */
3995 if (ret) {
3996 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3997 ret = namebuf;
3998 }
3999 preempt_enable();
4000
4001 return ret;
4002 }
4003
4004 int lookup_module_symbol_name(unsigned long addr, char *symname)
4005 {
4006 struct module *mod;
4007
4008 preempt_disable();
4009 list_for_each_entry_rcu(mod, &modules, list) {
4010 if (mod->state == MODULE_STATE_UNFORMED)
4011 continue;
4012 if (within_module(addr, mod)) {
4013 const char *sym;
4014
4015 sym = get_ksymbol(mod, addr, NULL, NULL);
4016 if (!sym)
4017 goto out;
4018 strlcpy(symname, sym, KSYM_NAME_LEN);
4019 preempt_enable();
4020 return 0;
4021 }
4022 }
4023 out:
4024 preempt_enable();
4025 return -ERANGE;
4026 }
4027
4028 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4029 unsigned long *offset, char *modname, char *name)
4030 {
4031 struct module *mod;
4032
4033 preempt_disable();
4034 list_for_each_entry_rcu(mod, &modules, list) {
4035 if (mod->state == MODULE_STATE_UNFORMED)
4036 continue;
4037 if (within_module(addr, mod)) {
4038 const char *sym;
4039
4040 sym = get_ksymbol(mod, addr, size, offset);
4041 if (!sym)
4042 goto out;
4043 if (modname)
4044 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4045 if (name)
4046 strlcpy(name, sym, KSYM_NAME_LEN);
4047 preempt_enable();
4048 return 0;
4049 }
4050 }
4051 out:
4052 preempt_enable();
4053 return -ERANGE;
4054 }
4055
4056 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4057 char *name, char *module_name, int *exported)
4058 {
4059 struct module *mod;
4060
4061 preempt_disable();
4062 list_for_each_entry_rcu(mod, &modules, list) {
4063 struct mod_kallsyms *kallsyms;
4064
4065 if (mod->state == MODULE_STATE_UNFORMED)
4066 continue;
4067 kallsyms = rcu_dereference_sched(mod->kallsyms);
4068 if (symnum < kallsyms->num_symtab) {
4069 *value = kallsyms->symtab[symnum].st_value;
4070 *type = kallsyms->symtab[symnum].st_info;
4071 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4072 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4073 *exported = is_exported(name, *value, mod);
4074 preempt_enable();
4075 return 0;
4076 }
4077 symnum -= kallsyms->num_symtab;
4078 }
4079 preempt_enable();
4080 return -ERANGE;
4081 }
4082
4083 static unsigned long mod_find_symname(struct module *mod, const char *name)
4084 {
4085 unsigned int i;
4086 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4087
4088 for (i = 0; i < kallsyms->num_symtab; i++)
4089 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4090 kallsyms->symtab[i].st_shndx != SHN_UNDEF)
4091 return kallsyms->symtab[i].st_value;
4092 return 0;
4093 }
4094
4095 /* Look for this name: can be of form module:name. */
4096 unsigned long module_kallsyms_lookup_name(const char *name)
4097 {
4098 struct module *mod;
4099 char *colon;
4100 unsigned long ret = 0;
4101
4102 /* Don't lock: we're in enough trouble already. */
4103 preempt_disable();
4104 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4105 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4106 ret = mod_find_symname(mod, colon+1);
4107 } else {
4108 list_for_each_entry_rcu(mod, &modules, list) {
4109 if (mod->state == MODULE_STATE_UNFORMED)
4110 continue;
4111 if ((ret = mod_find_symname(mod, name)) != 0)
4112 break;
4113 }
4114 }
4115 preempt_enable();
4116 return ret;
4117 }
4118
4119 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4120 struct module *, unsigned long),
4121 void *data)
4122 {
4123 struct module *mod;
4124 unsigned int i;
4125 int ret;
4126
4127 module_assert_mutex();
4128
4129 list_for_each_entry(mod, &modules, list) {
4130 /* We hold module_mutex: no need for rcu_dereference_sched */
4131 struct mod_kallsyms *kallsyms = mod->kallsyms;
4132
4133 if (mod->state == MODULE_STATE_UNFORMED)
4134 continue;
4135 for (i = 0; i < kallsyms->num_symtab; i++) {
4136
4137 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
4138 continue;
4139
4140 ret = fn(data, symname(kallsyms, i),
4141 mod, kallsyms->symtab[i].st_value);
4142 if (ret != 0)
4143 return ret;
4144 }
4145 }
4146 return 0;
4147 }
4148 #endif /* CONFIG_KALLSYMS */
4149
4150 /* Maximum number of characters written by module_flags() */
4151 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4152
4153 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4154 static char *module_flags(struct module *mod, char *buf)
4155 {
4156 int bx = 0;
4157
4158 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4159 if (mod->taints ||
4160 mod->state == MODULE_STATE_GOING ||
4161 mod->state == MODULE_STATE_COMING) {
4162 buf[bx++] = '(';
4163 bx += module_flags_taint(mod, buf + bx);
4164 /* Show a - for module-is-being-unloaded */
4165 if (mod->state == MODULE_STATE_GOING)
4166 buf[bx++] = '-';
4167 /* Show a + for module-is-being-loaded */
4168 if (mod->state == MODULE_STATE_COMING)
4169 buf[bx++] = '+';
4170 buf[bx++] = ')';
4171 }
4172 buf[bx] = '\0';
4173
4174 return buf;
4175 }
4176
4177 #ifdef CONFIG_PROC_FS
4178 /* Called by the /proc file system to return a list of modules. */
4179 static void *m_start(struct seq_file *m, loff_t *pos)
4180 {
4181 mutex_lock(&module_mutex);
4182 return seq_list_start(&modules, *pos);
4183 }
4184
4185 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4186 {
4187 return seq_list_next(p, &modules, pos);
4188 }
4189
4190 static void m_stop(struct seq_file *m, void *p)
4191 {
4192 mutex_unlock(&module_mutex);
4193 }
4194
4195 static int m_show(struct seq_file *m, void *p)
4196 {
4197 struct module *mod = list_entry(p, struct module, list);
4198 char buf[MODULE_FLAGS_BUF_SIZE];
4199 void *value;
4200
4201 /* We always ignore unformed modules. */
4202 if (mod->state == MODULE_STATE_UNFORMED)
4203 return 0;
4204
4205 seq_printf(m, "%s %u",
4206 mod->name, mod->init_layout.size + mod->core_layout.size);
4207 print_unload_info(m, mod);
4208
4209 /* Informative for users. */
4210 seq_printf(m, " %s",
4211 mod->state == MODULE_STATE_GOING ? "Unloading" :
4212 mod->state == MODULE_STATE_COMING ? "Loading" :
4213 "Live");
4214 /* Used by oprofile and other similar tools. */
4215 value = m->private ? NULL : mod->core_layout.base;
4216 seq_printf(m, " 0x%px", value);
4217
4218 /* Taints info */
4219 if (mod->taints)
4220 seq_printf(m, " %s", module_flags(mod, buf));
4221
4222 seq_puts(m, "\n");
4223 return 0;
4224 }
4225
4226 /* Format: modulename size refcount deps address
4227
4228 Where refcount is a number or -, and deps is a comma-separated list
4229 of depends or -.
4230 */
4231 static const struct seq_operations modules_op = {
4232 .start = m_start,
4233 .next = m_next,
4234 .stop = m_stop,
4235 .show = m_show
4236 };
4237
4238 /*
4239 * This also sets the "private" pointer to non-NULL if the
4240 * kernel pointers should be hidden (so you can just test
4241 * "m->private" to see if you should keep the values private).
4242 *
4243 * We use the same logic as for /proc/kallsyms.
4244 */
4245 static int modules_open(struct inode *inode, struct file *file)
4246 {
4247 int err = seq_open(file, &modules_op);
4248
4249 if (!err) {
4250 struct seq_file *m = file->private_data;
4251 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4252 }
4253
4254 return err;
4255 }
4256
4257 static const struct file_operations proc_modules_operations = {
4258 .open = modules_open,
4259 .read = seq_read,
4260 .llseek = seq_lseek,
4261 .release = seq_release,
4262 };
4263
4264 static int __init proc_modules_init(void)
4265 {
4266 proc_create("modules", 0, NULL, &proc_modules_operations);
4267 return 0;
4268 }
4269 module_init(proc_modules_init);
4270 #endif
4271
4272 /* Given an address, look for it in the module exception tables. */
4273 const struct exception_table_entry *search_module_extables(unsigned long addr)
4274 {
4275 const struct exception_table_entry *e = NULL;
4276 struct module *mod;
4277
4278 preempt_disable();
4279 mod = __module_address(addr);
4280 if (!mod)
4281 goto out;
4282
4283 if (!mod->num_exentries)
4284 goto out;
4285
4286 e = search_extable(mod->extable,
4287 mod->num_exentries,
4288 addr);
4289 out:
4290 preempt_enable();
4291
4292 /*
4293 * Now, if we found one, we are running inside it now, hence
4294 * we cannot unload the module, hence no refcnt needed.
4295 */
4296 return e;
4297 }
4298
4299 /*
4300 * is_module_address - is this address inside a module?
4301 * @addr: the address to check.
4302 *
4303 * See is_module_text_address() if you simply want to see if the address
4304 * is code (not data).
4305 */
4306 bool is_module_address(unsigned long addr)
4307 {
4308 bool ret;
4309
4310 preempt_disable();
4311 ret = __module_address(addr) != NULL;
4312 preempt_enable();
4313
4314 return ret;
4315 }
4316
4317 /*
4318 * __module_address - get the module which contains an address.
4319 * @addr: the address.
4320 *
4321 * Must be called with preempt disabled or module mutex held so that
4322 * module doesn't get freed during this.
4323 */
4324 struct module *__module_address(unsigned long addr)
4325 {
4326 struct module *mod;
4327
4328 if (addr < module_addr_min || addr > module_addr_max)
4329 return NULL;
4330
4331 module_assert_mutex_or_preempt();
4332
4333 mod = mod_find(addr);
4334 if (mod) {
4335 BUG_ON(!within_module(addr, mod));
4336 if (mod->state == MODULE_STATE_UNFORMED)
4337 mod = NULL;
4338 }
4339 return mod;
4340 }
4341 EXPORT_SYMBOL_GPL(__module_address);
4342
4343 /*
4344 * is_module_text_address - is this address inside module code?
4345 * @addr: the address to check.
4346 *
4347 * See is_module_address() if you simply want to see if the address is
4348 * anywhere in a module. See kernel_text_address() for testing if an
4349 * address corresponds to kernel or module code.
4350 */
4351 bool is_module_text_address(unsigned long addr)
4352 {
4353 bool ret;
4354
4355 preempt_disable();
4356 ret = __module_text_address(addr) != NULL;
4357 preempt_enable();
4358
4359 return ret;
4360 }
4361
4362 /*
4363 * __module_text_address - get the module whose code contains an address.
4364 * @addr: the address.
4365 *
4366 * Must be called with preempt disabled or module mutex held so that
4367 * module doesn't get freed during this.
4368 */
4369 struct module *__module_text_address(unsigned long addr)
4370 {
4371 struct module *mod = __module_address(addr);
4372 if (mod) {
4373 /* Make sure it's within the text section. */
4374 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4375 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4376 mod = NULL;
4377 }
4378 return mod;
4379 }
4380 EXPORT_SYMBOL_GPL(__module_text_address);
4381
4382 /* Don't grab lock, we're oopsing. */
4383 void print_modules(void)
4384 {
4385 struct module *mod;
4386 char buf[MODULE_FLAGS_BUF_SIZE];
4387
4388 printk(KERN_DEFAULT "Modules linked in:");
4389 /* Most callers should already have preempt disabled, but make sure */
4390 preempt_disable();
4391 list_for_each_entry_rcu(mod, &modules, list) {
4392 if (mod->state == MODULE_STATE_UNFORMED)
4393 continue;
4394 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4395 }
4396 preempt_enable();
4397 if (last_unloaded_module[0])
4398 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4399 pr_cont("\n");
4400 }
4401
4402 #ifdef CONFIG_MODVERSIONS
4403 /* Generate the signature for all relevant module structures here.
4404 * If these change, we don't want to try to parse the module. */
4405 void module_layout(struct module *mod,
4406 struct modversion_info *ver,
4407 struct kernel_param *kp,
4408 struct kernel_symbol *ks,
4409 struct tracepoint * const *tp)
4410 {
4411 }
4412 EXPORT_SYMBOL(module_layout);
4413 #endif