]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/module.c
Merge tag 'iommu-updates-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / kernel / module.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7 #define INCLUDE_VERMAGIC
8
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/file.h>
17 #include <linux/fs.h>
18 #include <linux/sysfs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/elf.h>
24 #include <linux/proc_fs.h>
25 #include <linux/security.h>
26 #include <linux/seq_file.h>
27 #include <linux/syscalls.h>
28 #include <linux/fcntl.h>
29 #include <linux/rcupdate.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/moduleparam.h>
33 #include <linux/errno.h>
34 #include <linux/err.h>
35 #include <linux/vermagic.h>
36 #include <linux/notifier.h>
37 #include <linux/sched.h>
38 #include <linux/device.h>
39 #include <linux/string.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/uaccess.h>
43 #include <asm/cacheflush.h>
44 #include <linux/set_memory.h>
45 #include <asm/mmu_context.h>
46 #include <linux/license.h>
47 #include <asm/sections.h>
48 #include <linux/tracepoint.h>
49 #include <linux/ftrace.h>
50 #include <linux/livepatch.h>
51 #include <linux/async.h>
52 #include <linux/percpu.h>
53 #include <linux/kmemleak.h>
54 #include <linux/jump_label.h>
55 #include <linux/pfn.h>
56 #include <linux/bsearch.h>
57 #include <linux/dynamic_debug.h>
58 #include <linux/audit.h>
59 #include <uapi/linux/module.h>
60 #include "module-internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/module.h>
64
65 #ifndef ARCH_SHF_SMALL
66 #define ARCH_SHF_SMALL 0
67 #endif
68
69 /*
70 * Modules' sections will be aligned on page boundaries
71 * to ensure complete separation of code and data, but
72 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
73 */
74 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
75 # define debug_align(X) ALIGN(X, PAGE_SIZE)
76 #else
77 # define debug_align(X) (X)
78 #endif
79
80 /* If this is set, the section belongs in the init part of the module */
81 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
82
83 /*
84 * Mutex protects:
85 * 1) List of modules (also safely readable with preempt_disable),
86 * 2) module_use links,
87 * 3) module_addr_min/module_addr_max.
88 * (delete and add uses RCU list operations).
89 */
90 static DEFINE_MUTEX(module_mutex);
91 static LIST_HEAD(modules);
92
93 /* Work queue for freeing init sections in success case */
94 static void do_free_init(struct work_struct *w);
95 static DECLARE_WORK(init_free_wq, do_free_init);
96 static LLIST_HEAD(init_free_list);
97
98 #ifdef CONFIG_MODULES_TREE_LOOKUP
99
100 /*
101 * Use a latched RB-tree for __module_address(); this allows us to use
102 * RCU-sched lookups of the address from any context.
103 *
104 * This is conditional on PERF_EVENTS || TRACING because those can really hit
105 * __module_address() hard by doing a lot of stack unwinding; potentially from
106 * NMI context.
107 */
108
109 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
110 {
111 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
112
113 return (unsigned long)layout->base;
114 }
115
116 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
117 {
118 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
119
120 return (unsigned long)layout->size;
121 }
122
123 static __always_inline bool
124 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
125 {
126 return __mod_tree_val(a) < __mod_tree_val(b);
127 }
128
129 static __always_inline int
130 mod_tree_comp(void *key, struct latch_tree_node *n)
131 {
132 unsigned long val = (unsigned long)key;
133 unsigned long start, end;
134
135 start = __mod_tree_val(n);
136 if (val < start)
137 return -1;
138
139 end = start + __mod_tree_size(n);
140 if (val >= end)
141 return 1;
142
143 return 0;
144 }
145
146 static const struct latch_tree_ops mod_tree_ops = {
147 .less = mod_tree_less,
148 .comp = mod_tree_comp,
149 };
150
151 static struct mod_tree_root {
152 struct latch_tree_root root;
153 unsigned long addr_min;
154 unsigned long addr_max;
155 } mod_tree __cacheline_aligned = {
156 .addr_min = -1UL,
157 };
158
159 #define module_addr_min mod_tree.addr_min
160 #define module_addr_max mod_tree.addr_max
161
162 static noinline void __mod_tree_insert(struct mod_tree_node *node)
163 {
164 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 }
166
167 static void __mod_tree_remove(struct mod_tree_node *node)
168 {
169 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
170 }
171
172 /*
173 * These modifications: insert, remove_init and remove; are serialized by the
174 * module_mutex.
175 */
176 static void mod_tree_insert(struct module *mod)
177 {
178 mod->core_layout.mtn.mod = mod;
179 mod->init_layout.mtn.mod = mod;
180
181 __mod_tree_insert(&mod->core_layout.mtn);
182 if (mod->init_layout.size)
183 __mod_tree_insert(&mod->init_layout.mtn);
184 }
185
186 static void mod_tree_remove_init(struct module *mod)
187 {
188 if (mod->init_layout.size)
189 __mod_tree_remove(&mod->init_layout.mtn);
190 }
191
192 static void mod_tree_remove(struct module *mod)
193 {
194 __mod_tree_remove(&mod->core_layout.mtn);
195 mod_tree_remove_init(mod);
196 }
197
198 static struct module *mod_find(unsigned long addr)
199 {
200 struct latch_tree_node *ltn;
201
202 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
203 if (!ltn)
204 return NULL;
205
206 return container_of(ltn, struct mod_tree_node, node)->mod;
207 }
208
209 #else /* MODULES_TREE_LOOKUP */
210
211 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
212
213 static void mod_tree_insert(struct module *mod) { }
214 static void mod_tree_remove_init(struct module *mod) { }
215 static void mod_tree_remove(struct module *mod) { }
216
217 static struct module *mod_find(unsigned long addr)
218 {
219 struct module *mod;
220
221 list_for_each_entry_rcu(mod, &modules, list,
222 lockdep_is_held(&module_mutex)) {
223 if (within_module(addr, mod))
224 return mod;
225 }
226
227 return NULL;
228 }
229
230 #endif /* MODULES_TREE_LOOKUP */
231
232 /*
233 * Bounds of module text, for speeding up __module_address.
234 * Protected by module_mutex.
235 */
236 static void __mod_update_bounds(void *base, unsigned int size)
237 {
238 unsigned long min = (unsigned long)base;
239 unsigned long max = min + size;
240
241 if (min < module_addr_min)
242 module_addr_min = min;
243 if (max > module_addr_max)
244 module_addr_max = max;
245 }
246
247 static void mod_update_bounds(struct module *mod)
248 {
249 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
250 if (mod->init_layout.size)
251 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
252 }
253
254 #ifdef CONFIG_KGDB_KDB
255 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
256 #endif /* CONFIG_KGDB_KDB */
257
258 static void module_assert_mutex_or_preempt(void)
259 {
260 #ifdef CONFIG_LOCKDEP
261 if (unlikely(!debug_locks))
262 return;
263
264 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
265 !lockdep_is_held(&module_mutex));
266 #endif
267 }
268
269 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
270 module_param(sig_enforce, bool_enable_only, 0644);
271
272 /*
273 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
274 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
275 */
276 bool is_module_sig_enforced(void)
277 {
278 return sig_enforce;
279 }
280 EXPORT_SYMBOL(is_module_sig_enforced);
281
282 void set_module_sig_enforced(void)
283 {
284 sig_enforce = true;
285 }
286
287 /* Block module loading/unloading? */
288 int modules_disabled = 0;
289 core_param(nomodule, modules_disabled, bint, 0);
290
291 /* Waiting for a module to finish initializing? */
292 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
293
294 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
295
296 int register_module_notifier(struct notifier_block *nb)
297 {
298 return blocking_notifier_chain_register(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(register_module_notifier);
301
302 int unregister_module_notifier(struct notifier_block *nb)
303 {
304 return blocking_notifier_chain_unregister(&module_notify_list, nb);
305 }
306 EXPORT_SYMBOL(unregister_module_notifier);
307
308 /*
309 * We require a truly strong try_module_get(): 0 means success.
310 * Otherwise an error is returned due to ongoing or failed
311 * initialization etc.
312 */
313 static inline int strong_try_module_get(struct module *mod)
314 {
315 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
316 if (mod && mod->state == MODULE_STATE_COMING)
317 return -EBUSY;
318 if (try_module_get(mod))
319 return 0;
320 else
321 return -ENOENT;
322 }
323
324 static inline void add_taint_module(struct module *mod, unsigned flag,
325 enum lockdep_ok lockdep_ok)
326 {
327 add_taint(flag, lockdep_ok);
328 set_bit(flag, &mod->taints);
329 }
330
331 /*
332 * A thread that wants to hold a reference to a module only while it
333 * is running can call this to safely exit. nfsd and lockd use this.
334 */
335 void __noreturn __module_put_and_exit(struct module *mod, long code)
336 {
337 module_put(mod);
338 do_exit(code);
339 }
340 EXPORT_SYMBOL(__module_put_and_exit);
341
342 /* Find a module section: 0 means not found. */
343 static unsigned int find_sec(const struct load_info *info, const char *name)
344 {
345 unsigned int i;
346
347 for (i = 1; i < info->hdr->e_shnum; i++) {
348 Elf_Shdr *shdr = &info->sechdrs[i];
349 /* Alloc bit cleared means "ignore it." */
350 if ((shdr->sh_flags & SHF_ALLOC)
351 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
352 return i;
353 }
354 return 0;
355 }
356
357 /* Find a module section, or NULL. */
358 static void *section_addr(const struct load_info *info, const char *name)
359 {
360 /* Section 0 has sh_addr 0. */
361 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
362 }
363
364 /* Find a module section, or NULL. Fill in number of "objects" in section. */
365 static void *section_objs(const struct load_info *info,
366 const char *name,
367 size_t object_size,
368 unsigned int *num)
369 {
370 unsigned int sec = find_sec(info, name);
371
372 /* Section 0 has sh_addr 0 and sh_size 0. */
373 *num = info->sechdrs[sec].sh_size / object_size;
374 return (void *)info->sechdrs[sec].sh_addr;
375 }
376
377 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
378 static unsigned int find_any_sec(const struct load_info *info, const char *name)
379 {
380 unsigned int i;
381
382 for (i = 1; i < info->hdr->e_shnum; i++) {
383 Elf_Shdr *shdr = &info->sechdrs[i];
384 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
385 return i;
386 }
387 return 0;
388 }
389
390 /*
391 * Find a module section, or NULL. Fill in number of "objects" in section.
392 * Ignores SHF_ALLOC flag.
393 */
394 static __maybe_unused void *any_section_objs(const struct load_info *info,
395 const char *name,
396 size_t object_size,
397 unsigned int *num)
398 {
399 unsigned int sec = find_any_sec(info, name);
400
401 /* Section 0 has sh_addr 0 and sh_size 0. */
402 *num = info->sechdrs[sec].sh_size / object_size;
403 return (void *)info->sechdrs[sec].sh_addr;
404 }
405
406 /* Provided by the linker */
407 extern const struct kernel_symbol __start___ksymtab[];
408 extern const struct kernel_symbol __stop___ksymtab[];
409 extern const struct kernel_symbol __start___ksymtab_gpl[];
410 extern const struct kernel_symbol __stop___ksymtab_gpl[];
411 extern const s32 __start___kcrctab[];
412 extern const s32 __start___kcrctab_gpl[];
413
414 #ifndef CONFIG_MODVERSIONS
415 #define symversion(base, idx) NULL
416 #else
417 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
418 #endif
419
420 struct symsearch {
421 const struct kernel_symbol *start, *stop;
422 const s32 *crcs;
423 enum mod_license {
424 NOT_GPL_ONLY,
425 GPL_ONLY,
426 } license;
427 };
428
429 struct find_symbol_arg {
430 /* Input */
431 const char *name;
432 bool gplok;
433 bool warn;
434
435 /* Output */
436 struct module *owner;
437 const s32 *crc;
438 const struct kernel_symbol *sym;
439 enum mod_license license;
440 };
441
442 static bool check_exported_symbol(const struct symsearch *syms,
443 struct module *owner,
444 unsigned int symnum, void *data)
445 {
446 struct find_symbol_arg *fsa = data;
447
448 if (!fsa->gplok && syms->license == GPL_ONLY)
449 return false;
450 fsa->owner = owner;
451 fsa->crc = symversion(syms->crcs, symnum);
452 fsa->sym = &syms->start[symnum];
453 fsa->license = syms->license;
454 return true;
455 }
456
457 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
458 {
459 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
460 return (unsigned long)offset_to_ptr(&sym->value_offset);
461 #else
462 return sym->value;
463 #endif
464 }
465
466 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
467 {
468 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
469 return offset_to_ptr(&sym->name_offset);
470 #else
471 return sym->name;
472 #endif
473 }
474
475 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
476 {
477 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
478 if (!sym->namespace_offset)
479 return NULL;
480 return offset_to_ptr(&sym->namespace_offset);
481 #else
482 return sym->namespace;
483 #endif
484 }
485
486 static int cmp_name(const void *name, const void *sym)
487 {
488 return strcmp(name, kernel_symbol_name(sym));
489 }
490
491 static bool find_exported_symbol_in_section(const struct symsearch *syms,
492 struct module *owner,
493 void *data)
494 {
495 struct find_symbol_arg *fsa = data;
496 struct kernel_symbol *sym;
497
498 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
499 sizeof(struct kernel_symbol), cmp_name);
500
501 if (sym != NULL && check_exported_symbol(syms, owner,
502 sym - syms->start, data))
503 return true;
504
505 return false;
506 }
507
508 /*
509 * Find an exported symbol and return it, along with, (optional) crc and
510 * (optional) module which owns it. Needs preempt disabled or module_mutex.
511 */
512 static bool find_symbol(struct find_symbol_arg *fsa)
513 {
514 static const struct symsearch arr[] = {
515 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
516 NOT_GPL_ONLY },
517 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
518 __start___kcrctab_gpl,
519 GPL_ONLY },
520 };
521 struct module *mod;
522 unsigned int i;
523
524 module_assert_mutex_or_preempt();
525
526 for (i = 0; i < ARRAY_SIZE(arr); i++)
527 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
528 return true;
529
530 list_for_each_entry_rcu(mod, &modules, list,
531 lockdep_is_held(&module_mutex)) {
532 struct symsearch arr[] = {
533 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
534 NOT_GPL_ONLY },
535 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
536 mod->gpl_crcs,
537 GPL_ONLY },
538 };
539
540 if (mod->state == MODULE_STATE_UNFORMED)
541 continue;
542
543 for (i = 0; i < ARRAY_SIZE(arr); i++)
544 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
545 return true;
546 }
547
548 pr_debug("Failed to find symbol %s\n", fsa->name);
549 return false;
550 }
551
552 /*
553 * Search for module by name: must hold module_mutex (or preempt disabled
554 * for read-only access).
555 */
556 static struct module *find_module_all(const char *name, size_t len,
557 bool even_unformed)
558 {
559 struct module *mod;
560
561 module_assert_mutex_or_preempt();
562
563 list_for_each_entry_rcu(mod, &modules, list,
564 lockdep_is_held(&module_mutex)) {
565 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
566 continue;
567 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
568 return mod;
569 }
570 return NULL;
571 }
572
573 struct module *find_module(const char *name)
574 {
575 return find_module_all(name, strlen(name), false);
576 }
577
578 #ifdef CONFIG_SMP
579
580 static inline void __percpu *mod_percpu(struct module *mod)
581 {
582 return mod->percpu;
583 }
584
585 static int percpu_modalloc(struct module *mod, struct load_info *info)
586 {
587 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
588 unsigned long align = pcpusec->sh_addralign;
589
590 if (!pcpusec->sh_size)
591 return 0;
592
593 if (align > PAGE_SIZE) {
594 pr_warn("%s: per-cpu alignment %li > %li\n",
595 mod->name, align, PAGE_SIZE);
596 align = PAGE_SIZE;
597 }
598
599 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
600 if (!mod->percpu) {
601 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
602 mod->name, (unsigned long)pcpusec->sh_size);
603 return -ENOMEM;
604 }
605 mod->percpu_size = pcpusec->sh_size;
606 return 0;
607 }
608
609 static void percpu_modfree(struct module *mod)
610 {
611 free_percpu(mod->percpu);
612 }
613
614 static unsigned int find_pcpusec(struct load_info *info)
615 {
616 return find_sec(info, ".data..percpu");
617 }
618
619 static void percpu_modcopy(struct module *mod,
620 const void *from, unsigned long size)
621 {
622 int cpu;
623
624 for_each_possible_cpu(cpu)
625 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
626 }
627
628 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
629 {
630 struct module *mod;
631 unsigned int cpu;
632
633 preempt_disable();
634
635 list_for_each_entry_rcu(mod, &modules, list) {
636 if (mod->state == MODULE_STATE_UNFORMED)
637 continue;
638 if (!mod->percpu_size)
639 continue;
640 for_each_possible_cpu(cpu) {
641 void *start = per_cpu_ptr(mod->percpu, cpu);
642 void *va = (void *)addr;
643
644 if (va >= start && va < start + mod->percpu_size) {
645 if (can_addr) {
646 *can_addr = (unsigned long) (va - start);
647 *can_addr += (unsigned long)
648 per_cpu_ptr(mod->percpu,
649 get_boot_cpu_id());
650 }
651 preempt_enable();
652 return true;
653 }
654 }
655 }
656
657 preempt_enable();
658 return false;
659 }
660
661 /**
662 * is_module_percpu_address() - test whether address is from module static percpu
663 * @addr: address to test
664 *
665 * Test whether @addr belongs to module static percpu area.
666 *
667 * Return: %true if @addr is from module static percpu area
668 */
669 bool is_module_percpu_address(unsigned long addr)
670 {
671 return __is_module_percpu_address(addr, NULL);
672 }
673
674 #else /* ... !CONFIG_SMP */
675
676 static inline void __percpu *mod_percpu(struct module *mod)
677 {
678 return NULL;
679 }
680 static int percpu_modalloc(struct module *mod, struct load_info *info)
681 {
682 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
683 if (info->sechdrs[info->index.pcpu].sh_size != 0)
684 return -ENOMEM;
685 return 0;
686 }
687 static inline void percpu_modfree(struct module *mod)
688 {
689 }
690 static unsigned int find_pcpusec(struct load_info *info)
691 {
692 return 0;
693 }
694 static inline void percpu_modcopy(struct module *mod,
695 const void *from, unsigned long size)
696 {
697 /* pcpusec should be 0, and size of that section should be 0. */
698 BUG_ON(size != 0);
699 }
700 bool is_module_percpu_address(unsigned long addr)
701 {
702 return false;
703 }
704
705 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
706 {
707 return false;
708 }
709
710 #endif /* CONFIG_SMP */
711
712 #define MODINFO_ATTR(field) \
713 static void setup_modinfo_##field(struct module *mod, const char *s) \
714 { \
715 mod->field = kstrdup(s, GFP_KERNEL); \
716 } \
717 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
718 struct module_kobject *mk, char *buffer) \
719 { \
720 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
721 } \
722 static int modinfo_##field##_exists(struct module *mod) \
723 { \
724 return mod->field != NULL; \
725 } \
726 static void free_modinfo_##field(struct module *mod) \
727 { \
728 kfree(mod->field); \
729 mod->field = NULL; \
730 } \
731 static struct module_attribute modinfo_##field = { \
732 .attr = { .name = __stringify(field), .mode = 0444 }, \
733 .show = show_modinfo_##field, \
734 .setup = setup_modinfo_##field, \
735 .test = modinfo_##field##_exists, \
736 .free = free_modinfo_##field, \
737 };
738
739 MODINFO_ATTR(version);
740 MODINFO_ATTR(srcversion);
741
742 static char last_unloaded_module[MODULE_NAME_LEN+1];
743
744 #ifdef CONFIG_MODULE_UNLOAD
745
746 EXPORT_TRACEPOINT_SYMBOL(module_get);
747
748 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
749 #define MODULE_REF_BASE 1
750
751 /* Init the unload section of the module. */
752 static int module_unload_init(struct module *mod)
753 {
754 /*
755 * Initialize reference counter to MODULE_REF_BASE.
756 * refcnt == 0 means module is going.
757 */
758 atomic_set(&mod->refcnt, MODULE_REF_BASE);
759
760 INIT_LIST_HEAD(&mod->source_list);
761 INIT_LIST_HEAD(&mod->target_list);
762
763 /* Hold reference count during initialization. */
764 atomic_inc(&mod->refcnt);
765
766 return 0;
767 }
768
769 /* Does a already use b? */
770 static int already_uses(struct module *a, struct module *b)
771 {
772 struct module_use *use;
773
774 list_for_each_entry(use, &b->source_list, source_list) {
775 if (use->source == a) {
776 pr_debug("%s uses %s!\n", a->name, b->name);
777 return 1;
778 }
779 }
780 pr_debug("%s does not use %s!\n", a->name, b->name);
781 return 0;
782 }
783
784 /*
785 * Module a uses b
786 * - we add 'a' as a "source", 'b' as a "target" of module use
787 * - the module_use is added to the list of 'b' sources (so
788 * 'b' can walk the list to see who sourced them), and of 'a'
789 * targets (so 'a' can see what modules it targets).
790 */
791 static int add_module_usage(struct module *a, struct module *b)
792 {
793 struct module_use *use;
794
795 pr_debug("Allocating new usage for %s.\n", a->name);
796 use = kmalloc(sizeof(*use), GFP_ATOMIC);
797 if (!use)
798 return -ENOMEM;
799
800 use->source = a;
801 use->target = b;
802 list_add(&use->source_list, &b->source_list);
803 list_add(&use->target_list, &a->target_list);
804 return 0;
805 }
806
807 /* Module a uses b: caller needs module_mutex() */
808 static int ref_module(struct module *a, struct module *b)
809 {
810 int err;
811
812 if (b == NULL || already_uses(a, b))
813 return 0;
814
815 /* If module isn't available, we fail. */
816 err = strong_try_module_get(b);
817 if (err)
818 return err;
819
820 err = add_module_usage(a, b);
821 if (err) {
822 module_put(b);
823 return err;
824 }
825 return 0;
826 }
827
828 /* Clear the unload stuff of the module. */
829 static void module_unload_free(struct module *mod)
830 {
831 struct module_use *use, *tmp;
832
833 mutex_lock(&module_mutex);
834 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
835 struct module *i = use->target;
836 pr_debug("%s unusing %s\n", mod->name, i->name);
837 module_put(i);
838 list_del(&use->source_list);
839 list_del(&use->target_list);
840 kfree(use);
841 }
842 mutex_unlock(&module_mutex);
843 }
844
845 #ifdef CONFIG_MODULE_FORCE_UNLOAD
846 static inline int try_force_unload(unsigned int flags)
847 {
848 int ret = (flags & O_TRUNC);
849 if (ret)
850 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
851 return ret;
852 }
853 #else
854 static inline int try_force_unload(unsigned int flags)
855 {
856 return 0;
857 }
858 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
859
860 /* Try to release refcount of module, 0 means success. */
861 static int try_release_module_ref(struct module *mod)
862 {
863 int ret;
864
865 /* Try to decrement refcnt which we set at loading */
866 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
867 BUG_ON(ret < 0);
868 if (ret)
869 /* Someone can put this right now, recover with checking */
870 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
871
872 return ret;
873 }
874
875 static int try_stop_module(struct module *mod, int flags, int *forced)
876 {
877 /* If it's not unused, quit unless we're forcing. */
878 if (try_release_module_ref(mod) != 0) {
879 *forced = try_force_unload(flags);
880 if (!(*forced))
881 return -EWOULDBLOCK;
882 }
883
884 /* Mark it as dying. */
885 mod->state = MODULE_STATE_GOING;
886
887 return 0;
888 }
889
890 /**
891 * module_refcount() - return the refcount or -1 if unloading
892 * @mod: the module we're checking
893 *
894 * Return:
895 * -1 if the module is in the process of unloading
896 * otherwise the number of references in the kernel to the module
897 */
898 int module_refcount(struct module *mod)
899 {
900 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
901 }
902 EXPORT_SYMBOL(module_refcount);
903
904 /* This exists whether we can unload or not */
905 static void free_module(struct module *mod);
906
907 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
908 unsigned int, flags)
909 {
910 struct module *mod;
911 char name[MODULE_NAME_LEN];
912 int ret, forced = 0;
913
914 if (!capable(CAP_SYS_MODULE) || modules_disabled)
915 return -EPERM;
916
917 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
918 return -EFAULT;
919 name[MODULE_NAME_LEN-1] = '\0';
920
921 audit_log_kern_module(name);
922
923 if (mutex_lock_interruptible(&module_mutex) != 0)
924 return -EINTR;
925
926 mod = find_module(name);
927 if (!mod) {
928 ret = -ENOENT;
929 goto out;
930 }
931
932 if (!list_empty(&mod->source_list)) {
933 /* Other modules depend on us: get rid of them first. */
934 ret = -EWOULDBLOCK;
935 goto out;
936 }
937
938 /* Doing init or already dying? */
939 if (mod->state != MODULE_STATE_LIVE) {
940 /* FIXME: if (force), slam module count damn the torpedoes */
941 pr_debug("%s already dying\n", mod->name);
942 ret = -EBUSY;
943 goto out;
944 }
945
946 /* If it has an init func, it must have an exit func to unload */
947 if (mod->init && !mod->exit) {
948 forced = try_force_unload(flags);
949 if (!forced) {
950 /* This module can't be removed */
951 ret = -EBUSY;
952 goto out;
953 }
954 }
955
956 /* Stop the machine so refcounts can't move and disable module. */
957 ret = try_stop_module(mod, flags, &forced);
958 if (ret != 0)
959 goto out;
960
961 mutex_unlock(&module_mutex);
962 /* Final destruction now no one is using it. */
963 if (mod->exit != NULL)
964 mod->exit();
965 blocking_notifier_call_chain(&module_notify_list,
966 MODULE_STATE_GOING, mod);
967 klp_module_going(mod);
968 ftrace_release_mod(mod);
969
970 async_synchronize_full();
971
972 /* Store the name of the last unloaded module for diagnostic purposes */
973 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
974
975 free_module(mod);
976 /* someone could wait for the module in add_unformed_module() */
977 wake_up_all(&module_wq);
978 return 0;
979 out:
980 mutex_unlock(&module_mutex);
981 return ret;
982 }
983
984 static inline void print_unload_info(struct seq_file *m, struct module *mod)
985 {
986 struct module_use *use;
987 int printed_something = 0;
988
989 seq_printf(m, " %i ", module_refcount(mod));
990
991 /*
992 * Always include a trailing , so userspace can differentiate
993 * between this and the old multi-field proc format.
994 */
995 list_for_each_entry(use, &mod->source_list, source_list) {
996 printed_something = 1;
997 seq_printf(m, "%s,", use->source->name);
998 }
999
1000 if (mod->init != NULL && mod->exit == NULL) {
1001 printed_something = 1;
1002 seq_puts(m, "[permanent],");
1003 }
1004
1005 if (!printed_something)
1006 seq_puts(m, "-");
1007 }
1008
1009 void __symbol_put(const char *symbol)
1010 {
1011 struct find_symbol_arg fsa = {
1012 .name = symbol,
1013 .gplok = true,
1014 };
1015
1016 preempt_disable();
1017 if (!find_symbol(&fsa))
1018 BUG();
1019 module_put(fsa.owner);
1020 preempt_enable();
1021 }
1022 EXPORT_SYMBOL(__symbol_put);
1023
1024 /* Note this assumes addr is a function, which it currently always is. */
1025 void symbol_put_addr(void *addr)
1026 {
1027 struct module *modaddr;
1028 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1029
1030 if (core_kernel_text(a))
1031 return;
1032
1033 /*
1034 * Even though we hold a reference on the module; we still need to
1035 * disable preemption in order to safely traverse the data structure.
1036 */
1037 preempt_disable();
1038 modaddr = __module_text_address(a);
1039 BUG_ON(!modaddr);
1040 module_put(modaddr);
1041 preempt_enable();
1042 }
1043 EXPORT_SYMBOL_GPL(symbol_put_addr);
1044
1045 static ssize_t show_refcnt(struct module_attribute *mattr,
1046 struct module_kobject *mk, char *buffer)
1047 {
1048 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1049 }
1050
1051 static struct module_attribute modinfo_refcnt =
1052 __ATTR(refcnt, 0444, show_refcnt, NULL);
1053
1054 void __module_get(struct module *module)
1055 {
1056 if (module) {
1057 preempt_disable();
1058 atomic_inc(&module->refcnt);
1059 trace_module_get(module, _RET_IP_);
1060 preempt_enable();
1061 }
1062 }
1063 EXPORT_SYMBOL(__module_get);
1064
1065 bool try_module_get(struct module *module)
1066 {
1067 bool ret = true;
1068
1069 if (module) {
1070 preempt_disable();
1071 /* Note: here, we can fail to get a reference */
1072 if (likely(module_is_live(module) &&
1073 atomic_inc_not_zero(&module->refcnt) != 0))
1074 trace_module_get(module, _RET_IP_);
1075 else
1076 ret = false;
1077
1078 preempt_enable();
1079 }
1080 return ret;
1081 }
1082 EXPORT_SYMBOL(try_module_get);
1083
1084 void module_put(struct module *module)
1085 {
1086 int ret;
1087
1088 if (module) {
1089 preempt_disable();
1090 ret = atomic_dec_if_positive(&module->refcnt);
1091 WARN_ON(ret < 0); /* Failed to put refcount */
1092 trace_module_put(module, _RET_IP_);
1093 preempt_enable();
1094 }
1095 }
1096 EXPORT_SYMBOL(module_put);
1097
1098 #else /* !CONFIG_MODULE_UNLOAD */
1099 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1100 {
1101 /* We don't know the usage count, or what modules are using. */
1102 seq_puts(m, " - -");
1103 }
1104
1105 static inline void module_unload_free(struct module *mod)
1106 {
1107 }
1108
1109 static int ref_module(struct module *a, struct module *b)
1110 {
1111 return strong_try_module_get(b);
1112 }
1113
1114 static inline int module_unload_init(struct module *mod)
1115 {
1116 return 0;
1117 }
1118 #endif /* CONFIG_MODULE_UNLOAD */
1119
1120 static size_t module_flags_taint(struct module *mod, char *buf)
1121 {
1122 size_t l = 0;
1123 int i;
1124
1125 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1126 if (taint_flags[i].module && test_bit(i, &mod->taints))
1127 buf[l++] = taint_flags[i].c_true;
1128 }
1129
1130 return l;
1131 }
1132
1133 static ssize_t show_initstate(struct module_attribute *mattr,
1134 struct module_kobject *mk, char *buffer)
1135 {
1136 const char *state = "unknown";
1137
1138 switch (mk->mod->state) {
1139 case MODULE_STATE_LIVE:
1140 state = "live";
1141 break;
1142 case MODULE_STATE_COMING:
1143 state = "coming";
1144 break;
1145 case MODULE_STATE_GOING:
1146 state = "going";
1147 break;
1148 default:
1149 BUG();
1150 }
1151 return sprintf(buffer, "%s\n", state);
1152 }
1153
1154 static struct module_attribute modinfo_initstate =
1155 __ATTR(initstate, 0444, show_initstate, NULL);
1156
1157 static ssize_t store_uevent(struct module_attribute *mattr,
1158 struct module_kobject *mk,
1159 const char *buffer, size_t count)
1160 {
1161 int rc;
1162
1163 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1164 return rc ? rc : count;
1165 }
1166
1167 struct module_attribute module_uevent =
1168 __ATTR(uevent, 0200, NULL, store_uevent);
1169
1170 static ssize_t show_coresize(struct module_attribute *mattr,
1171 struct module_kobject *mk, char *buffer)
1172 {
1173 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1174 }
1175
1176 static struct module_attribute modinfo_coresize =
1177 __ATTR(coresize, 0444, show_coresize, NULL);
1178
1179 static ssize_t show_initsize(struct module_attribute *mattr,
1180 struct module_kobject *mk, char *buffer)
1181 {
1182 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1183 }
1184
1185 static struct module_attribute modinfo_initsize =
1186 __ATTR(initsize, 0444, show_initsize, NULL);
1187
1188 static ssize_t show_taint(struct module_attribute *mattr,
1189 struct module_kobject *mk, char *buffer)
1190 {
1191 size_t l;
1192
1193 l = module_flags_taint(mk->mod, buffer);
1194 buffer[l++] = '\n';
1195 return l;
1196 }
1197
1198 static struct module_attribute modinfo_taint =
1199 __ATTR(taint, 0444, show_taint, NULL);
1200
1201 static struct module_attribute *modinfo_attrs[] = {
1202 &module_uevent,
1203 &modinfo_version,
1204 &modinfo_srcversion,
1205 &modinfo_initstate,
1206 &modinfo_coresize,
1207 &modinfo_initsize,
1208 &modinfo_taint,
1209 #ifdef CONFIG_MODULE_UNLOAD
1210 &modinfo_refcnt,
1211 #endif
1212 NULL,
1213 };
1214
1215 static const char vermagic[] = VERMAGIC_STRING;
1216
1217 static int try_to_force_load(struct module *mod, const char *reason)
1218 {
1219 #ifdef CONFIG_MODULE_FORCE_LOAD
1220 if (!test_taint(TAINT_FORCED_MODULE))
1221 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1222 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1223 return 0;
1224 #else
1225 return -ENOEXEC;
1226 #endif
1227 }
1228
1229 #ifdef CONFIG_MODVERSIONS
1230
1231 static u32 resolve_rel_crc(const s32 *crc)
1232 {
1233 return *(u32 *)((void *)crc + *crc);
1234 }
1235
1236 static int check_version(const struct load_info *info,
1237 const char *symname,
1238 struct module *mod,
1239 const s32 *crc)
1240 {
1241 Elf_Shdr *sechdrs = info->sechdrs;
1242 unsigned int versindex = info->index.vers;
1243 unsigned int i, num_versions;
1244 struct modversion_info *versions;
1245
1246 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1247 if (!crc)
1248 return 1;
1249
1250 /* No versions at all? modprobe --force does this. */
1251 if (versindex == 0)
1252 return try_to_force_load(mod, symname) == 0;
1253
1254 versions = (void *) sechdrs[versindex].sh_addr;
1255 num_versions = sechdrs[versindex].sh_size
1256 / sizeof(struct modversion_info);
1257
1258 for (i = 0; i < num_versions; i++) {
1259 u32 crcval;
1260
1261 if (strcmp(versions[i].name, symname) != 0)
1262 continue;
1263
1264 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1265 crcval = resolve_rel_crc(crc);
1266 else
1267 crcval = *crc;
1268 if (versions[i].crc == crcval)
1269 return 1;
1270 pr_debug("Found checksum %X vs module %lX\n",
1271 crcval, versions[i].crc);
1272 goto bad_version;
1273 }
1274
1275 /* Broken toolchain. Warn once, then let it go.. */
1276 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1277 return 1;
1278
1279 bad_version:
1280 pr_warn("%s: disagrees about version of symbol %s\n",
1281 info->name, symname);
1282 return 0;
1283 }
1284
1285 static inline int check_modstruct_version(const struct load_info *info,
1286 struct module *mod)
1287 {
1288 struct find_symbol_arg fsa = {
1289 .name = "module_layout",
1290 .gplok = true,
1291 };
1292
1293 /*
1294 * Since this should be found in kernel (which can't be removed), no
1295 * locking is necessary -- use preempt_disable() to placate lockdep.
1296 */
1297 preempt_disable();
1298 if (!find_symbol(&fsa)) {
1299 preempt_enable();
1300 BUG();
1301 }
1302 preempt_enable();
1303 return check_version(info, "module_layout", mod, fsa.crc);
1304 }
1305
1306 /* First part is kernel version, which we ignore if module has crcs. */
1307 static inline int same_magic(const char *amagic, const char *bmagic,
1308 bool has_crcs)
1309 {
1310 if (has_crcs) {
1311 amagic += strcspn(amagic, " ");
1312 bmagic += strcspn(bmagic, " ");
1313 }
1314 return strcmp(amagic, bmagic) == 0;
1315 }
1316 #else
1317 static inline int check_version(const struct load_info *info,
1318 const char *symname,
1319 struct module *mod,
1320 const s32 *crc)
1321 {
1322 return 1;
1323 }
1324
1325 static inline int check_modstruct_version(const struct load_info *info,
1326 struct module *mod)
1327 {
1328 return 1;
1329 }
1330
1331 static inline int same_magic(const char *amagic, const char *bmagic,
1332 bool has_crcs)
1333 {
1334 return strcmp(amagic, bmagic) == 0;
1335 }
1336 #endif /* CONFIG_MODVERSIONS */
1337
1338 static char *get_modinfo(const struct load_info *info, const char *tag);
1339 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1340 char *prev);
1341
1342 static int verify_namespace_is_imported(const struct load_info *info,
1343 const struct kernel_symbol *sym,
1344 struct module *mod)
1345 {
1346 const char *namespace;
1347 char *imported_namespace;
1348
1349 namespace = kernel_symbol_namespace(sym);
1350 if (namespace && namespace[0]) {
1351 imported_namespace = get_modinfo(info, "import_ns");
1352 while (imported_namespace) {
1353 if (strcmp(namespace, imported_namespace) == 0)
1354 return 0;
1355 imported_namespace = get_next_modinfo(
1356 info, "import_ns", imported_namespace);
1357 }
1358 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1359 pr_warn(
1360 #else
1361 pr_err(
1362 #endif
1363 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1364 mod->name, kernel_symbol_name(sym), namespace);
1365 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1366 return -EINVAL;
1367 #endif
1368 }
1369 return 0;
1370 }
1371
1372 static bool inherit_taint(struct module *mod, struct module *owner)
1373 {
1374 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1375 return true;
1376
1377 if (mod->using_gplonly_symbols) {
1378 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1379 mod->name, owner->name);
1380 return false;
1381 }
1382
1383 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1384 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1385 mod->name, owner->name);
1386 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1387 }
1388 return true;
1389 }
1390
1391 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1392 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1393 const struct load_info *info,
1394 const char *name,
1395 char ownername[])
1396 {
1397 struct find_symbol_arg fsa = {
1398 .name = name,
1399 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1400 .warn = true,
1401 };
1402 int err;
1403
1404 /*
1405 * The module_mutex should not be a heavily contended lock;
1406 * if we get the occasional sleep here, we'll go an extra iteration
1407 * in the wait_event_interruptible(), which is harmless.
1408 */
1409 sched_annotate_sleep();
1410 mutex_lock(&module_mutex);
1411 if (!find_symbol(&fsa))
1412 goto unlock;
1413
1414 if (fsa.license == GPL_ONLY)
1415 mod->using_gplonly_symbols = true;
1416
1417 if (!inherit_taint(mod, fsa.owner)) {
1418 fsa.sym = NULL;
1419 goto getname;
1420 }
1421
1422 if (!check_version(info, name, mod, fsa.crc)) {
1423 fsa.sym = ERR_PTR(-EINVAL);
1424 goto getname;
1425 }
1426
1427 err = verify_namespace_is_imported(info, fsa.sym, mod);
1428 if (err) {
1429 fsa.sym = ERR_PTR(err);
1430 goto getname;
1431 }
1432
1433 err = ref_module(mod, fsa.owner);
1434 if (err) {
1435 fsa.sym = ERR_PTR(err);
1436 goto getname;
1437 }
1438
1439 getname:
1440 /* We must make copy under the lock if we failed to get ref. */
1441 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1442 unlock:
1443 mutex_unlock(&module_mutex);
1444 return fsa.sym;
1445 }
1446
1447 static const struct kernel_symbol *
1448 resolve_symbol_wait(struct module *mod,
1449 const struct load_info *info,
1450 const char *name)
1451 {
1452 const struct kernel_symbol *ksym;
1453 char owner[MODULE_NAME_LEN];
1454
1455 if (wait_event_interruptible_timeout(module_wq,
1456 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1457 || PTR_ERR(ksym) != -EBUSY,
1458 30 * HZ) <= 0) {
1459 pr_warn("%s: gave up waiting for init of module %s.\n",
1460 mod->name, owner);
1461 }
1462 return ksym;
1463 }
1464
1465 /*
1466 * /sys/module/foo/sections stuff
1467 * J. Corbet <corbet@lwn.net>
1468 */
1469 #ifdef CONFIG_SYSFS
1470
1471 #ifdef CONFIG_KALLSYMS
1472 static inline bool sect_empty(const Elf_Shdr *sect)
1473 {
1474 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1475 }
1476
1477 struct module_sect_attr {
1478 struct bin_attribute battr;
1479 unsigned long address;
1480 };
1481
1482 struct module_sect_attrs {
1483 struct attribute_group grp;
1484 unsigned int nsections;
1485 struct module_sect_attr attrs[];
1486 };
1487
1488 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1489 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1490 struct bin_attribute *battr,
1491 char *buf, loff_t pos, size_t count)
1492 {
1493 struct module_sect_attr *sattr =
1494 container_of(battr, struct module_sect_attr, battr);
1495 char bounce[MODULE_SECT_READ_SIZE + 1];
1496 size_t wrote;
1497
1498 if (pos != 0)
1499 return -EINVAL;
1500
1501 /*
1502 * Since we're a binary read handler, we must account for the
1503 * trailing NUL byte that sprintf will write: if "buf" is
1504 * too small to hold the NUL, or the NUL is exactly the last
1505 * byte, the read will look like it got truncated by one byte.
1506 * Since there is no way to ask sprintf nicely to not write
1507 * the NUL, we have to use a bounce buffer.
1508 */
1509 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1510 kallsyms_show_value(file->f_cred)
1511 ? (void *)sattr->address : NULL);
1512 count = min(count, wrote);
1513 memcpy(buf, bounce, count);
1514
1515 return count;
1516 }
1517
1518 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1519 {
1520 unsigned int section;
1521
1522 for (section = 0; section < sect_attrs->nsections; section++)
1523 kfree(sect_attrs->attrs[section].battr.attr.name);
1524 kfree(sect_attrs);
1525 }
1526
1527 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1528 {
1529 unsigned int nloaded = 0, i, size[2];
1530 struct module_sect_attrs *sect_attrs;
1531 struct module_sect_attr *sattr;
1532 struct bin_attribute **gattr;
1533
1534 /* Count loaded sections and allocate structures */
1535 for (i = 0; i < info->hdr->e_shnum; i++)
1536 if (!sect_empty(&info->sechdrs[i]))
1537 nloaded++;
1538 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1539 sizeof(sect_attrs->grp.bin_attrs[0]));
1540 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1541 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1542 if (sect_attrs == NULL)
1543 return;
1544
1545 /* Setup section attributes. */
1546 sect_attrs->grp.name = "sections";
1547 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1548
1549 sect_attrs->nsections = 0;
1550 sattr = &sect_attrs->attrs[0];
1551 gattr = &sect_attrs->grp.bin_attrs[0];
1552 for (i = 0; i < info->hdr->e_shnum; i++) {
1553 Elf_Shdr *sec = &info->sechdrs[i];
1554 if (sect_empty(sec))
1555 continue;
1556 sysfs_bin_attr_init(&sattr->battr);
1557 sattr->address = sec->sh_addr;
1558 sattr->battr.attr.name =
1559 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1560 if (sattr->battr.attr.name == NULL)
1561 goto out;
1562 sect_attrs->nsections++;
1563 sattr->battr.read = module_sect_read;
1564 sattr->battr.size = MODULE_SECT_READ_SIZE;
1565 sattr->battr.attr.mode = 0400;
1566 *(gattr++) = &(sattr++)->battr;
1567 }
1568 *gattr = NULL;
1569
1570 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1571 goto out;
1572
1573 mod->sect_attrs = sect_attrs;
1574 return;
1575 out:
1576 free_sect_attrs(sect_attrs);
1577 }
1578
1579 static void remove_sect_attrs(struct module *mod)
1580 {
1581 if (mod->sect_attrs) {
1582 sysfs_remove_group(&mod->mkobj.kobj,
1583 &mod->sect_attrs->grp);
1584 /*
1585 * We are positive that no one is using any sect attrs
1586 * at this point. Deallocate immediately.
1587 */
1588 free_sect_attrs(mod->sect_attrs);
1589 mod->sect_attrs = NULL;
1590 }
1591 }
1592
1593 /*
1594 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1595 */
1596
1597 struct module_notes_attrs {
1598 struct kobject *dir;
1599 unsigned int notes;
1600 struct bin_attribute attrs[];
1601 };
1602
1603 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1604 struct bin_attribute *bin_attr,
1605 char *buf, loff_t pos, size_t count)
1606 {
1607 /*
1608 * The caller checked the pos and count against our size.
1609 */
1610 memcpy(buf, bin_attr->private + pos, count);
1611 return count;
1612 }
1613
1614 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1615 unsigned int i)
1616 {
1617 if (notes_attrs->dir) {
1618 while (i-- > 0)
1619 sysfs_remove_bin_file(notes_attrs->dir,
1620 &notes_attrs->attrs[i]);
1621 kobject_put(notes_attrs->dir);
1622 }
1623 kfree(notes_attrs);
1624 }
1625
1626 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1627 {
1628 unsigned int notes, loaded, i;
1629 struct module_notes_attrs *notes_attrs;
1630 struct bin_attribute *nattr;
1631
1632 /* failed to create section attributes, so can't create notes */
1633 if (!mod->sect_attrs)
1634 return;
1635
1636 /* Count notes sections and allocate structures. */
1637 notes = 0;
1638 for (i = 0; i < info->hdr->e_shnum; i++)
1639 if (!sect_empty(&info->sechdrs[i]) &&
1640 (info->sechdrs[i].sh_type == SHT_NOTE))
1641 ++notes;
1642
1643 if (notes == 0)
1644 return;
1645
1646 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1647 GFP_KERNEL);
1648 if (notes_attrs == NULL)
1649 return;
1650
1651 notes_attrs->notes = notes;
1652 nattr = &notes_attrs->attrs[0];
1653 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1654 if (sect_empty(&info->sechdrs[i]))
1655 continue;
1656 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1657 sysfs_bin_attr_init(nattr);
1658 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1659 nattr->attr.mode = S_IRUGO;
1660 nattr->size = info->sechdrs[i].sh_size;
1661 nattr->private = (void *) info->sechdrs[i].sh_addr;
1662 nattr->read = module_notes_read;
1663 ++nattr;
1664 }
1665 ++loaded;
1666 }
1667
1668 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1669 if (!notes_attrs->dir)
1670 goto out;
1671
1672 for (i = 0; i < notes; ++i)
1673 if (sysfs_create_bin_file(notes_attrs->dir,
1674 &notes_attrs->attrs[i]))
1675 goto out;
1676
1677 mod->notes_attrs = notes_attrs;
1678 return;
1679
1680 out:
1681 free_notes_attrs(notes_attrs, i);
1682 }
1683
1684 static void remove_notes_attrs(struct module *mod)
1685 {
1686 if (mod->notes_attrs)
1687 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1688 }
1689
1690 #else
1691
1692 static inline void add_sect_attrs(struct module *mod,
1693 const struct load_info *info)
1694 {
1695 }
1696
1697 static inline void remove_sect_attrs(struct module *mod)
1698 {
1699 }
1700
1701 static inline void add_notes_attrs(struct module *mod,
1702 const struct load_info *info)
1703 {
1704 }
1705
1706 static inline void remove_notes_attrs(struct module *mod)
1707 {
1708 }
1709 #endif /* CONFIG_KALLSYMS */
1710
1711 static void del_usage_links(struct module *mod)
1712 {
1713 #ifdef CONFIG_MODULE_UNLOAD
1714 struct module_use *use;
1715
1716 mutex_lock(&module_mutex);
1717 list_for_each_entry(use, &mod->target_list, target_list)
1718 sysfs_remove_link(use->target->holders_dir, mod->name);
1719 mutex_unlock(&module_mutex);
1720 #endif
1721 }
1722
1723 static int add_usage_links(struct module *mod)
1724 {
1725 int ret = 0;
1726 #ifdef CONFIG_MODULE_UNLOAD
1727 struct module_use *use;
1728
1729 mutex_lock(&module_mutex);
1730 list_for_each_entry(use, &mod->target_list, target_list) {
1731 ret = sysfs_create_link(use->target->holders_dir,
1732 &mod->mkobj.kobj, mod->name);
1733 if (ret)
1734 break;
1735 }
1736 mutex_unlock(&module_mutex);
1737 if (ret)
1738 del_usage_links(mod);
1739 #endif
1740 return ret;
1741 }
1742
1743 static void module_remove_modinfo_attrs(struct module *mod, int end);
1744
1745 static int module_add_modinfo_attrs(struct module *mod)
1746 {
1747 struct module_attribute *attr;
1748 struct module_attribute *temp_attr;
1749 int error = 0;
1750 int i;
1751
1752 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1753 (ARRAY_SIZE(modinfo_attrs) + 1)),
1754 GFP_KERNEL);
1755 if (!mod->modinfo_attrs)
1756 return -ENOMEM;
1757
1758 temp_attr = mod->modinfo_attrs;
1759 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1760 if (!attr->test || attr->test(mod)) {
1761 memcpy(temp_attr, attr, sizeof(*temp_attr));
1762 sysfs_attr_init(&temp_attr->attr);
1763 error = sysfs_create_file(&mod->mkobj.kobj,
1764 &temp_attr->attr);
1765 if (error)
1766 goto error_out;
1767 ++temp_attr;
1768 }
1769 }
1770
1771 return 0;
1772
1773 error_out:
1774 if (i > 0)
1775 module_remove_modinfo_attrs(mod, --i);
1776 else
1777 kfree(mod->modinfo_attrs);
1778 return error;
1779 }
1780
1781 static void module_remove_modinfo_attrs(struct module *mod, int end)
1782 {
1783 struct module_attribute *attr;
1784 int i;
1785
1786 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1787 if (end >= 0 && i > end)
1788 break;
1789 /* pick a field to test for end of list */
1790 if (!attr->attr.name)
1791 break;
1792 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1793 if (attr->free)
1794 attr->free(mod);
1795 }
1796 kfree(mod->modinfo_attrs);
1797 }
1798
1799 static void mod_kobject_put(struct module *mod)
1800 {
1801 DECLARE_COMPLETION_ONSTACK(c);
1802 mod->mkobj.kobj_completion = &c;
1803 kobject_put(&mod->mkobj.kobj);
1804 wait_for_completion(&c);
1805 }
1806
1807 static int mod_sysfs_init(struct module *mod)
1808 {
1809 int err;
1810 struct kobject *kobj;
1811
1812 if (!module_sysfs_initialized) {
1813 pr_err("%s: module sysfs not initialized\n", mod->name);
1814 err = -EINVAL;
1815 goto out;
1816 }
1817
1818 kobj = kset_find_obj(module_kset, mod->name);
1819 if (kobj) {
1820 pr_err("%s: module is already loaded\n", mod->name);
1821 kobject_put(kobj);
1822 err = -EINVAL;
1823 goto out;
1824 }
1825
1826 mod->mkobj.mod = mod;
1827
1828 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1829 mod->mkobj.kobj.kset = module_kset;
1830 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1831 "%s", mod->name);
1832 if (err)
1833 mod_kobject_put(mod);
1834
1835 out:
1836 return err;
1837 }
1838
1839 static int mod_sysfs_setup(struct module *mod,
1840 const struct load_info *info,
1841 struct kernel_param *kparam,
1842 unsigned int num_params)
1843 {
1844 int err;
1845
1846 err = mod_sysfs_init(mod);
1847 if (err)
1848 goto out;
1849
1850 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1851 if (!mod->holders_dir) {
1852 err = -ENOMEM;
1853 goto out_unreg;
1854 }
1855
1856 err = module_param_sysfs_setup(mod, kparam, num_params);
1857 if (err)
1858 goto out_unreg_holders;
1859
1860 err = module_add_modinfo_attrs(mod);
1861 if (err)
1862 goto out_unreg_param;
1863
1864 err = add_usage_links(mod);
1865 if (err)
1866 goto out_unreg_modinfo_attrs;
1867
1868 add_sect_attrs(mod, info);
1869 add_notes_attrs(mod, info);
1870
1871 return 0;
1872
1873 out_unreg_modinfo_attrs:
1874 module_remove_modinfo_attrs(mod, -1);
1875 out_unreg_param:
1876 module_param_sysfs_remove(mod);
1877 out_unreg_holders:
1878 kobject_put(mod->holders_dir);
1879 out_unreg:
1880 mod_kobject_put(mod);
1881 out:
1882 return err;
1883 }
1884
1885 static void mod_sysfs_fini(struct module *mod)
1886 {
1887 remove_notes_attrs(mod);
1888 remove_sect_attrs(mod);
1889 mod_kobject_put(mod);
1890 }
1891
1892 static void init_param_lock(struct module *mod)
1893 {
1894 mutex_init(&mod->param_lock);
1895 }
1896 #else /* !CONFIG_SYSFS */
1897
1898 static int mod_sysfs_setup(struct module *mod,
1899 const struct load_info *info,
1900 struct kernel_param *kparam,
1901 unsigned int num_params)
1902 {
1903 return 0;
1904 }
1905
1906 static void mod_sysfs_fini(struct module *mod)
1907 {
1908 }
1909
1910 static void module_remove_modinfo_attrs(struct module *mod, int end)
1911 {
1912 }
1913
1914 static void del_usage_links(struct module *mod)
1915 {
1916 }
1917
1918 static void init_param_lock(struct module *mod)
1919 {
1920 }
1921 #endif /* CONFIG_SYSFS */
1922
1923 static void mod_sysfs_teardown(struct module *mod)
1924 {
1925 del_usage_links(mod);
1926 module_remove_modinfo_attrs(mod, -1);
1927 module_param_sysfs_remove(mod);
1928 kobject_put(mod->mkobj.drivers_dir);
1929 kobject_put(mod->holders_dir);
1930 mod_sysfs_fini(mod);
1931 }
1932
1933 /*
1934 * LKM RO/NX protection: protect module's text/ro-data
1935 * from modification and any data from execution.
1936 *
1937 * General layout of module is:
1938 * [text] [read-only-data] [ro-after-init] [writable data]
1939 * text_size -----^ ^ ^ ^
1940 * ro_size ------------------------| | |
1941 * ro_after_init_size -----------------------------| |
1942 * size -----------------------------------------------------------|
1943 *
1944 * These values are always page-aligned (as is base)
1945 */
1946
1947 /*
1948 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1949 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1950 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1951 * whether we are strict.
1952 */
1953 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1954 static void frob_text(const struct module_layout *layout,
1955 int (*set_memory)(unsigned long start, int num_pages))
1956 {
1957 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1958 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1959 set_memory((unsigned long)layout->base,
1960 layout->text_size >> PAGE_SHIFT);
1961 }
1962
1963 static void module_enable_x(const struct module *mod)
1964 {
1965 frob_text(&mod->core_layout, set_memory_x);
1966 frob_text(&mod->init_layout, set_memory_x);
1967 }
1968 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1969 static void module_enable_x(const struct module *mod) { }
1970 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1971
1972 #ifdef CONFIG_STRICT_MODULE_RWX
1973 static void frob_rodata(const struct module_layout *layout,
1974 int (*set_memory)(unsigned long start, int num_pages))
1975 {
1976 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1978 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1979 set_memory((unsigned long)layout->base + layout->text_size,
1980 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1981 }
1982
1983 static void frob_ro_after_init(const struct module_layout *layout,
1984 int (*set_memory)(unsigned long start, int num_pages))
1985 {
1986 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1987 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1988 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1989 set_memory((unsigned long)layout->base + layout->ro_size,
1990 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1991 }
1992
1993 static void frob_writable_data(const struct module_layout *layout,
1994 int (*set_memory)(unsigned long start, int num_pages))
1995 {
1996 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1997 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1998 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1999 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2000 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2001 }
2002
2003 static void module_enable_ro(const struct module *mod, bool after_init)
2004 {
2005 if (!rodata_enabled)
2006 return;
2007
2008 set_vm_flush_reset_perms(mod->core_layout.base);
2009 set_vm_flush_reset_perms(mod->init_layout.base);
2010 frob_text(&mod->core_layout, set_memory_ro);
2011
2012 frob_rodata(&mod->core_layout, set_memory_ro);
2013 frob_text(&mod->init_layout, set_memory_ro);
2014 frob_rodata(&mod->init_layout, set_memory_ro);
2015
2016 if (after_init)
2017 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2018 }
2019
2020 static void module_enable_nx(const struct module *mod)
2021 {
2022 frob_rodata(&mod->core_layout, set_memory_nx);
2023 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2024 frob_writable_data(&mod->core_layout, set_memory_nx);
2025 frob_rodata(&mod->init_layout, set_memory_nx);
2026 frob_writable_data(&mod->init_layout, set_memory_nx);
2027 }
2028
2029 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2030 char *secstrings, struct module *mod)
2031 {
2032 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2033 int i;
2034
2035 for (i = 0; i < hdr->e_shnum; i++) {
2036 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2037 pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2038 mod->name, secstrings + sechdrs[i].sh_name, i);
2039 return -ENOEXEC;
2040 }
2041 }
2042
2043 return 0;
2044 }
2045
2046 #else /* !CONFIG_STRICT_MODULE_RWX */
2047 static void module_enable_nx(const struct module *mod) { }
2048 static void module_enable_ro(const struct module *mod, bool after_init) {}
2049 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2050 char *secstrings, struct module *mod)
2051 {
2052 return 0;
2053 }
2054 #endif /* CONFIG_STRICT_MODULE_RWX */
2055
2056 #ifdef CONFIG_LIVEPATCH
2057 /*
2058 * Persist Elf information about a module. Copy the Elf header,
2059 * section header table, section string table, and symtab section
2060 * index from info to mod->klp_info.
2061 */
2062 static int copy_module_elf(struct module *mod, struct load_info *info)
2063 {
2064 unsigned int size, symndx;
2065 int ret;
2066
2067 size = sizeof(*mod->klp_info);
2068 mod->klp_info = kmalloc(size, GFP_KERNEL);
2069 if (mod->klp_info == NULL)
2070 return -ENOMEM;
2071
2072 /* Elf header */
2073 size = sizeof(mod->klp_info->hdr);
2074 memcpy(&mod->klp_info->hdr, info->hdr, size);
2075
2076 /* Elf section header table */
2077 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2078 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2079 if (mod->klp_info->sechdrs == NULL) {
2080 ret = -ENOMEM;
2081 goto free_info;
2082 }
2083
2084 /* Elf section name string table */
2085 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2086 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2087 if (mod->klp_info->secstrings == NULL) {
2088 ret = -ENOMEM;
2089 goto free_sechdrs;
2090 }
2091
2092 /* Elf symbol section index */
2093 symndx = info->index.sym;
2094 mod->klp_info->symndx = symndx;
2095
2096 /*
2097 * For livepatch modules, core_kallsyms.symtab is a complete
2098 * copy of the original symbol table. Adjust sh_addr to point
2099 * to core_kallsyms.symtab since the copy of the symtab in module
2100 * init memory is freed at the end of do_init_module().
2101 */
2102 mod->klp_info->sechdrs[symndx].sh_addr = \
2103 (unsigned long) mod->core_kallsyms.symtab;
2104
2105 return 0;
2106
2107 free_sechdrs:
2108 kfree(mod->klp_info->sechdrs);
2109 free_info:
2110 kfree(mod->klp_info);
2111 return ret;
2112 }
2113
2114 static void free_module_elf(struct module *mod)
2115 {
2116 kfree(mod->klp_info->sechdrs);
2117 kfree(mod->klp_info->secstrings);
2118 kfree(mod->klp_info);
2119 }
2120 #else /* !CONFIG_LIVEPATCH */
2121 static int copy_module_elf(struct module *mod, struct load_info *info)
2122 {
2123 return 0;
2124 }
2125
2126 static void free_module_elf(struct module *mod)
2127 {
2128 }
2129 #endif /* CONFIG_LIVEPATCH */
2130
2131 void __weak module_memfree(void *module_region)
2132 {
2133 /*
2134 * This memory may be RO, and freeing RO memory in an interrupt is not
2135 * supported by vmalloc.
2136 */
2137 WARN_ON(in_interrupt());
2138 vfree(module_region);
2139 }
2140
2141 void __weak module_arch_cleanup(struct module *mod)
2142 {
2143 }
2144
2145 void __weak module_arch_freeing_init(struct module *mod)
2146 {
2147 }
2148
2149 static void cfi_cleanup(struct module *mod);
2150
2151 /* Free a module, remove from lists, etc. */
2152 static void free_module(struct module *mod)
2153 {
2154 trace_module_free(mod);
2155
2156 mod_sysfs_teardown(mod);
2157
2158 /*
2159 * We leave it in list to prevent duplicate loads, but make sure
2160 * that noone uses it while it's being deconstructed.
2161 */
2162 mutex_lock(&module_mutex);
2163 mod->state = MODULE_STATE_UNFORMED;
2164 mutex_unlock(&module_mutex);
2165
2166 /* Remove dynamic debug info */
2167 ddebug_remove_module(mod->name);
2168
2169 /* Arch-specific cleanup. */
2170 module_arch_cleanup(mod);
2171
2172 /* Module unload stuff */
2173 module_unload_free(mod);
2174
2175 /* Free any allocated parameters. */
2176 destroy_params(mod->kp, mod->num_kp);
2177
2178 if (is_livepatch_module(mod))
2179 free_module_elf(mod);
2180
2181 /* Now we can delete it from the lists */
2182 mutex_lock(&module_mutex);
2183 /* Unlink carefully: kallsyms could be walking list. */
2184 list_del_rcu(&mod->list);
2185 mod_tree_remove(mod);
2186 /* Remove this module from bug list, this uses list_del_rcu */
2187 module_bug_cleanup(mod);
2188 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2189 synchronize_rcu();
2190 mutex_unlock(&module_mutex);
2191
2192 /* Clean up CFI for the module. */
2193 cfi_cleanup(mod);
2194
2195 /* This may be empty, but that's OK */
2196 module_arch_freeing_init(mod);
2197 module_memfree(mod->init_layout.base);
2198 kfree(mod->args);
2199 percpu_modfree(mod);
2200
2201 /* Free lock-classes; relies on the preceding sync_rcu(). */
2202 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2203
2204 /* Finally, free the core (containing the module structure) */
2205 module_memfree(mod->core_layout.base);
2206 }
2207
2208 void *__symbol_get(const char *symbol)
2209 {
2210 struct find_symbol_arg fsa = {
2211 .name = symbol,
2212 .gplok = true,
2213 .warn = true,
2214 };
2215
2216 preempt_disable();
2217 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2218 preempt_enable();
2219 return NULL;
2220 }
2221 preempt_enable();
2222 return (void *)kernel_symbol_value(fsa.sym);
2223 }
2224 EXPORT_SYMBOL_GPL(__symbol_get);
2225
2226 /*
2227 * Ensure that an exported symbol [global namespace] does not already exist
2228 * in the kernel or in some other module's exported symbol table.
2229 *
2230 * You must hold the module_mutex.
2231 */
2232 static int verify_exported_symbols(struct module *mod)
2233 {
2234 unsigned int i;
2235 const struct kernel_symbol *s;
2236 struct {
2237 const struct kernel_symbol *sym;
2238 unsigned int num;
2239 } arr[] = {
2240 { mod->syms, mod->num_syms },
2241 { mod->gpl_syms, mod->num_gpl_syms },
2242 };
2243
2244 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2245 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2246 struct find_symbol_arg fsa = {
2247 .name = kernel_symbol_name(s),
2248 .gplok = true,
2249 };
2250 if (find_symbol(&fsa)) {
2251 pr_err("%s: exports duplicate symbol %s"
2252 " (owned by %s)\n",
2253 mod->name, kernel_symbol_name(s),
2254 module_name(fsa.owner));
2255 return -ENOEXEC;
2256 }
2257 }
2258 }
2259 return 0;
2260 }
2261
2262 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2263 {
2264 /*
2265 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2266 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2267 * i386 has a similar problem but may not deserve a fix.
2268 *
2269 * If we ever have to ignore many symbols, consider refactoring the code to
2270 * only warn if referenced by a relocation.
2271 */
2272 if (emachine == EM_386 || emachine == EM_X86_64)
2273 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2274 return false;
2275 }
2276
2277 /* Change all symbols so that st_value encodes the pointer directly. */
2278 static int simplify_symbols(struct module *mod, const struct load_info *info)
2279 {
2280 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2281 Elf_Sym *sym = (void *)symsec->sh_addr;
2282 unsigned long secbase;
2283 unsigned int i;
2284 int ret = 0;
2285 const struct kernel_symbol *ksym;
2286
2287 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2288 const char *name = info->strtab + sym[i].st_name;
2289
2290 switch (sym[i].st_shndx) {
2291 case SHN_COMMON:
2292 /* Ignore common symbols */
2293 if (!strncmp(name, "__gnu_lto", 9))
2294 break;
2295
2296 /*
2297 * We compiled with -fno-common. These are not
2298 * supposed to happen.
2299 */
2300 pr_debug("Common symbol: %s\n", name);
2301 pr_warn("%s: please compile with -fno-common\n",
2302 mod->name);
2303 ret = -ENOEXEC;
2304 break;
2305
2306 case SHN_ABS:
2307 /* Don't need to do anything */
2308 pr_debug("Absolute symbol: 0x%08lx\n",
2309 (long)sym[i].st_value);
2310 break;
2311
2312 case SHN_LIVEPATCH:
2313 /* Livepatch symbols are resolved by livepatch */
2314 break;
2315
2316 case SHN_UNDEF:
2317 ksym = resolve_symbol_wait(mod, info, name);
2318 /* Ok if resolved. */
2319 if (ksym && !IS_ERR(ksym)) {
2320 sym[i].st_value = kernel_symbol_value(ksym);
2321 break;
2322 }
2323
2324 /* Ok if weak or ignored. */
2325 if (!ksym &&
2326 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2327 ignore_undef_symbol(info->hdr->e_machine, name)))
2328 break;
2329
2330 ret = PTR_ERR(ksym) ?: -ENOENT;
2331 pr_warn("%s: Unknown symbol %s (err %d)\n",
2332 mod->name, name, ret);
2333 break;
2334
2335 default:
2336 /* Divert to percpu allocation if a percpu var. */
2337 if (sym[i].st_shndx == info->index.pcpu)
2338 secbase = (unsigned long)mod_percpu(mod);
2339 else
2340 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2341 sym[i].st_value += secbase;
2342 break;
2343 }
2344 }
2345
2346 return ret;
2347 }
2348
2349 static int apply_relocations(struct module *mod, const struct load_info *info)
2350 {
2351 unsigned int i;
2352 int err = 0;
2353
2354 /* Now do relocations. */
2355 for (i = 1; i < info->hdr->e_shnum; i++) {
2356 unsigned int infosec = info->sechdrs[i].sh_info;
2357
2358 /* Not a valid relocation section? */
2359 if (infosec >= info->hdr->e_shnum)
2360 continue;
2361
2362 /* Don't bother with non-allocated sections */
2363 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2364 continue;
2365
2366 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2367 err = klp_apply_section_relocs(mod, info->sechdrs,
2368 info->secstrings,
2369 info->strtab,
2370 info->index.sym, i,
2371 NULL);
2372 else if (info->sechdrs[i].sh_type == SHT_REL)
2373 err = apply_relocate(info->sechdrs, info->strtab,
2374 info->index.sym, i, mod);
2375 else if (info->sechdrs[i].sh_type == SHT_RELA)
2376 err = apply_relocate_add(info->sechdrs, info->strtab,
2377 info->index.sym, i, mod);
2378 if (err < 0)
2379 break;
2380 }
2381 return err;
2382 }
2383
2384 /* Additional bytes needed by arch in front of individual sections */
2385 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2386 unsigned int section)
2387 {
2388 /* default implementation just returns zero */
2389 return 0;
2390 }
2391
2392 /* Update size with this section: return offset. */
2393 static long get_offset(struct module *mod, unsigned int *size,
2394 Elf_Shdr *sechdr, unsigned int section)
2395 {
2396 long ret;
2397
2398 *size += arch_mod_section_prepend(mod, section);
2399 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2400 *size = ret + sechdr->sh_size;
2401 return ret;
2402 }
2403
2404 /*
2405 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2406 * might -- code, read-only data, read-write data, small data. Tally
2407 * sizes, and place the offsets into sh_entsize fields: high bit means it
2408 * belongs in init.
2409 */
2410 static void layout_sections(struct module *mod, struct load_info *info)
2411 {
2412 static unsigned long const masks[][2] = {
2413 /*
2414 * NOTE: all executable code must be the first section
2415 * in this array; otherwise modify the text_size
2416 * finder in the two loops below
2417 */
2418 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2419 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2420 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2421 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2422 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2423 };
2424 unsigned int m, i;
2425
2426 for (i = 0; i < info->hdr->e_shnum; i++)
2427 info->sechdrs[i].sh_entsize = ~0UL;
2428
2429 pr_debug("Core section allocation order:\n");
2430 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2431 for (i = 0; i < info->hdr->e_shnum; ++i) {
2432 Elf_Shdr *s = &info->sechdrs[i];
2433 const char *sname = info->secstrings + s->sh_name;
2434
2435 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2436 || (s->sh_flags & masks[m][1])
2437 || s->sh_entsize != ~0UL
2438 || module_init_section(sname))
2439 continue;
2440 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2441 pr_debug("\t%s\n", sname);
2442 }
2443 switch (m) {
2444 case 0: /* executable */
2445 mod->core_layout.size = debug_align(mod->core_layout.size);
2446 mod->core_layout.text_size = mod->core_layout.size;
2447 break;
2448 case 1: /* RO: text and ro-data */
2449 mod->core_layout.size = debug_align(mod->core_layout.size);
2450 mod->core_layout.ro_size = mod->core_layout.size;
2451 break;
2452 case 2: /* RO after init */
2453 mod->core_layout.size = debug_align(mod->core_layout.size);
2454 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2455 break;
2456 case 4: /* whole core */
2457 mod->core_layout.size = debug_align(mod->core_layout.size);
2458 break;
2459 }
2460 }
2461
2462 pr_debug("Init section allocation order:\n");
2463 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2464 for (i = 0; i < info->hdr->e_shnum; ++i) {
2465 Elf_Shdr *s = &info->sechdrs[i];
2466 const char *sname = info->secstrings + s->sh_name;
2467
2468 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2469 || (s->sh_flags & masks[m][1])
2470 || s->sh_entsize != ~0UL
2471 || !module_init_section(sname))
2472 continue;
2473 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2474 | INIT_OFFSET_MASK);
2475 pr_debug("\t%s\n", sname);
2476 }
2477 switch (m) {
2478 case 0: /* executable */
2479 mod->init_layout.size = debug_align(mod->init_layout.size);
2480 mod->init_layout.text_size = mod->init_layout.size;
2481 break;
2482 case 1: /* RO: text and ro-data */
2483 mod->init_layout.size = debug_align(mod->init_layout.size);
2484 mod->init_layout.ro_size = mod->init_layout.size;
2485 break;
2486 case 2:
2487 /*
2488 * RO after init doesn't apply to init_layout (only
2489 * core_layout), so it just takes the value of ro_size.
2490 */
2491 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2492 break;
2493 case 4: /* whole init */
2494 mod->init_layout.size = debug_align(mod->init_layout.size);
2495 break;
2496 }
2497 }
2498 }
2499
2500 static void set_license(struct module *mod, const char *license)
2501 {
2502 if (!license)
2503 license = "unspecified";
2504
2505 if (!license_is_gpl_compatible(license)) {
2506 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2507 pr_warn("%s: module license '%s' taints kernel.\n",
2508 mod->name, license);
2509 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2510 LOCKDEP_NOW_UNRELIABLE);
2511 }
2512 }
2513
2514 /* Parse tag=value strings from .modinfo section */
2515 static char *next_string(char *string, unsigned long *secsize)
2516 {
2517 /* Skip non-zero chars */
2518 while (string[0]) {
2519 string++;
2520 if ((*secsize)-- <= 1)
2521 return NULL;
2522 }
2523
2524 /* Skip any zero padding. */
2525 while (!string[0]) {
2526 string++;
2527 if ((*secsize)-- <= 1)
2528 return NULL;
2529 }
2530 return string;
2531 }
2532
2533 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2534 char *prev)
2535 {
2536 char *p;
2537 unsigned int taglen = strlen(tag);
2538 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2539 unsigned long size = infosec->sh_size;
2540
2541 /*
2542 * get_modinfo() calls made before rewrite_section_headers()
2543 * must use sh_offset, as sh_addr isn't set!
2544 */
2545 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2546
2547 if (prev) {
2548 size -= prev - modinfo;
2549 modinfo = next_string(prev, &size);
2550 }
2551
2552 for (p = modinfo; p; p = next_string(p, &size)) {
2553 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2554 return p + taglen + 1;
2555 }
2556 return NULL;
2557 }
2558
2559 static char *get_modinfo(const struct load_info *info, const char *tag)
2560 {
2561 return get_next_modinfo(info, tag, NULL);
2562 }
2563
2564 static void setup_modinfo(struct module *mod, struct load_info *info)
2565 {
2566 struct module_attribute *attr;
2567 int i;
2568
2569 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2570 if (attr->setup)
2571 attr->setup(mod, get_modinfo(info, attr->attr.name));
2572 }
2573 }
2574
2575 static void free_modinfo(struct module *mod)
2576 {
2577 struct module_attribute *attr;
2578 int i;
2579
2580 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2581 if (attr->free)
2582 attr->free(mod);
2583 }
2584 }
2585
2586 #ifdef CONFIG_KALLSYMS
2587
2588 /* Lookup exported symbol in given range of kernel_symbols */
2589 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2590 const struct kernel_symbol *start,
2591 const struct kernel_symbol *stop)
2592 {
2593 return bsearch(name, start, stop - start,
2594 sizeof(struct kernel_symbol), cmp_name);
2595 }
2596
2597 static int is_exported(const char *name, unsigned long value,
2598 const struct module *mod)
2599 {
2600 const struct kernel_symbol *ks;
2601 if (!mod)
2602 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2603 else
2604 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2605
2606 return ks != NULL && kernel_symbol_value(ks) == value;
2607 }
2608
2609 /* As per nm */
2610 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2611 {
2612 const Elf_Shdr *sechdrs = info->sechdrs;
2613
2614 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2615 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2616 return 'v';
2617 else
2618 return 'w';
2619 }
2620 if (sym->st_shndx == SHN_UNDEF)
2621 return 'U';
2622 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2623 return 'a';
2624 if (sym->st_shndx >= SHN_LORESERVE)
2625 return '?';
2626 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2627 return 't';
2628 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2629 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2630 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2631 return 'r';
2632 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2633 return 'g';
2634 else
2635 return 'd';
2636 }
2637 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2638 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2639 return 's';
2640 else
2641 return 'b';
2642 }
2643 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2644 ".debug")) {
2645 return 'n';
2646 }
2647 return '?';
2648 }
2649
2650 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2651 unsigned int shnum, unsigned int pcpundx)
2652 {
2653 const Elf_Shdr *sec;
2654
2655 if (src->st_shndx == SHN_UNDEF
2656 || src->st_shndx >= shnum
2657 || !src->st_name)
2658 return false;
2659
2660 #ifdef CONFIG_KALLSYMS_ALL
2661 if (src->st_shndx == pcpundx)
2662 return true;
2663 #endif
2664
2665 sec = sechdrs + src->st_shndx;
2666 if (!(sec->sh_flags & SHF_ALLOC)
2667 #ifndef CONFIG_KALLSYMS_ALL
2668 || !(sec->sh_flags & SHF_EXECINSTR)
2669 #endif
2670 || (sec->sh_entsize & INIT_OFFSET_MASK))
2671 return false;
2672
2673 return true;
2674 }
2675
2676 /*
2677 * We only allocate and copy the strings needed by the parts of symtab
2678 * we keep. This is simple, but has the effect of making multiple
2679 * copies of duplicates. We could be more sophisticated, see
2680 * linux-kernel thread starting with
2681 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2682 */
2683 static void layout_symtab(struct module *mod, struct load_info *info)
2684 {
2685 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2686 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2687 const Elf_Sym *src;
2688 unsigned int i, nsrc, ndst, strtab_size = 0;
2689
2690 /* Put symbol section at end of init part of module. */
2691 symsect->sh_flags |= SHF_ALLOC;
2692 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2693 info->index.sym) | INIT_OFFSET_MASK;
2694 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2695
2696 src = (void *)info->hdr + symsect->sh_offset;
2697 nsrc = symsect->sh_size / sizeof(*src);
2698
2699 /* Compute total space required for the core symbols' strtab. */
2700 for (ndst = i = 0; i < nsrc; i++) {
2701 if (i == 0 || is_livepatch_module(mod) ||
2702 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2703 info->index.pcpu)) {
2704 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2705 ndst++;
2706 }
2707 }
2708
2709 /* Append room for core symbols at end of core part. */
2710 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2711 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2712 mod->core_layout.size += strtab_size;
2713 info->core_typeoffs = mod->core_layout.size;
2714 mod->core_layout.size += ndst * sizeof(char);
2715 mod->core_layout.size = debug_align(mod->core_layout.size);
2716
2717 /* Put string table section at end of init part of module. */
2718 strsect->sh_flags |= SHF_ALLOC;
2719 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2720 info->index.str) | INIT_OFFSET_MASK;
2721 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2722
2723 /* We'll tack temporary mod_kallsyms on the end. */
2724 mod->init_layout.size = ALIGN(mod->init_layout.size,
2725 __alignof__(struct mod_kallsyms));
2726 info->mod_kallsyms_init_off = mod->init_layout.size;
2727 mod->init_layout.size += sizeof(struct mod_kallsyms);
2728 info->init_typeoffs = mod->init_layout.size;
2729 mod->init_layout.size += nsrc * sizeof(char);
2730 mod->init_layout.size = debug_align(mod->init_layout.size);
2731 }
2732
2733 /*
2734 * We use the full symtab and strtab which layout_symtab arranged to
2735 * be appended to the init section. Later we switch to the cut-down
2736 * core-only ones.
2737 */
2738 static void add_kallsyms(struct module *mod, const struct load_info *info)
2739 {
2740 unsigned int i, ndst;
2741 const Elf_Sym *src;
2742 Elf_Sym *dst;
2743 char *s;
2744 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2745
2746 /* Set up to point into init section. */
2747 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2748
2749 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2750 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2751 /* Make sure we get permanent strtab: don't use info->strtab. */
2752 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2753 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2754
2755 /*
2756 * Now populate the cut down core kallsyms for after init
2757 * and set types up while we still have access to sections.
2758 */
2759 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2760 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2761 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2762 src = mod->kallsyms->symtab;
2763 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2764 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2765 if (i == 0 || is_livepatch_module(mod) ||
2766 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2767 info->index.pcpu)) {
2768 mod->core_kallsyms.typetab[ndst] =
2769 mod->kallsyms->typetab[i];
2770 dst[ndst] = src[i];
2771 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2772 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2773 KSYM_NAME_LEN) + 1;
2774 }
2775 }
2776 mod->core_kallsyms.num_symtab = ndst;
2777 }
2778 #else
2779 static inline void layout_symtab(struct module *mod, struct load_info *info)
2780 {
2781 }
2782
2783 static void add_kallsyms(struct module *mod, const struct load_info *info)
2784 {
2785 }
2786 #endif /* CONFIG_KALLSYMS */
2787
2788 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2789 {
2790 if (!debug)
2791 return;
2792 ddebug_add_module(debug, num, mod->name);
2793 }
2794
2795 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2796 {
2797 if (debug)
2798 ddebug_remove_module(mod->name);
2799 }
2800
2801 void * __weak module_alloc(unsigned long size)
2802 {
2803 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2804 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2805 NUMA_NO_NODE, __builtin_return_address(0));
2806 }
2807
2808 bool __weak module_init_section(const char *name)
2809 {
2810 #ifndef CONFIG_MODULE_UNLOAD
2811 return strstarts(name, ".init") || module_exit_section(name);
2812 #else
2813 return strstarts(name, ".init");
2814 #endif
2815 }
2816
2817 bool __weak module_exit_section(const char *name)
2818 {
2819 return strstarts(name, ".exit");
2820 }
2821
2822 #ifdef CONFIG_DEBUG_KMEMLEAK
2823 static void kmemleak_load_module(const struct module *mod,
2824 const struct load_info *info)
2825 {
2826 unsigned int i;
2827
2828 /* only scan the sections containing data */
2829 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2830
2831 for (i = 1; i < info->hdr->e_shnum; i++) {
2832 /* Scan all writable sections that's not executable */
2833 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2834 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2835 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2836 continue;
2837
2838 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2839 info->sechdrs[i].sh_size, GFP_KERNEL);
2840 }
2841 }
2842 #else
2843 static inline void kmemleak_load_module(const struct module *mod,
2844 const struct load_info *info)
2845 {
2846 }
2847 #endif
2848
2849 #ifdef CONFIG_MODULE_SIG
2850 static int module_sig_check(struct load_info *info, int flags)
2851 {
2852 int err = -ENODATA;
2853 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2854 const char *reason;
2855 const void *mod = info->hdr;
2856
2857 /*
2858 * Require flags == 0, as a module with version information
2859 * removed is no longer the module that was signed
2860 */
2861 if (flags == 0 &&
2862 info->len > markerlen &&
2863 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2864 /* We truncate the module to discard the signature */
2865 info->len -= markerlen;
2866 err = mod_verify_sig(mod, info);
2867 if (!err) {
2868 info->sig_ok = true;
2869 return 0;
2870 }
2871 }
2872
2873 /*
2874 * We don't permit modules to be loaded into the trusted kernels
2875 * without a valid signature on them, but if we're not enforcing,
2876 * certain errors are non-fatal.
2877 */
2878 switch (err) {
2879 case -ENODATA:
2880 reason = "unsigned module";
2881 break;
2882 case -ENOPKG:
2883 reason = "module with unsupported crypto";
2884 break;
2885 case -ENOKEY:
2886 reason = "module with unavailable key";
2887 break;
2888
2889 default:
2890 /*
2891 * All other errors are fatal, including lack of memory,
2892 * unparseable signatures, and signature check failures --
2893 * even if signatures aren't required.
2894 */
2895 return err;
2896 }
2897
2898 if (is_module_sig_enforced()) {
2899 pr_notice("Loading of %s is rejected\n", reason);
2900 return -EKEYREJECTED;
2901 }
2902
2903 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2904 }
2905 #else /* !CONFIG_MODULE_SIG */
2906 static int module_sig_check(struct load_info *info, int flags)
2907 {
2908 return 0;
2909 }
2910 #endif /* !CONFIG_MODULE_SIG */
2911
2912 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2913 {
2914 unsigned long secend;
2915
2916 /*
2917 * Check for both overflow and offset/size being
2918 * too large.
2919 */
2920 secend = shdr->sh_offset + shdr->sh_size;
2921 if (secend < shdr->sh_offset || secend > info->len)
2922 return -ENOEXEC;
2923
2924 return 0;
2925 }
2926
2927 /*
2928 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2929 *
2930 * Also do basic validity checks against section offsets and sizes, the
2931 * section name string table, and the indices used for it (sh_name).
2932 */
2933 static int elf_validity_check(struct load_info *info)
2934 {
2935 unsigned int i;
2936 Elf_Shdr *shdr, *strhdr;
2937 int err;
2938
2939 if (info->len < sizeof(*(info->hdr)))
2940 return -ENOEXEC;
2941
2942 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2943 || info->hdr->e_type != ET_REL
2944 || !elf_check_arch(info->hdr)
2945 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2946 return -ENOEXEC;
2947
2948 /*
2949 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2950 * known and small. So e_shnum * sizeof(Elf_Shdr)
2951 * will not overflow unsigned long on any platform.
2952 */
2953 if (info->hdr->e_shoff >= info->len
2954 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2955 info->len - info->hdr->e_shoff))
2956 return -ENOEXEC;
2957
2958 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2959
2960 /*
2961 * Verify if the section name table index is valid.
2962 */
2963 if (info->hdr->e_shstrndx == SHN_UNDEF
2964 || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2965 return -ENOEXEC;
2966
2967 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2968 err = validate_section_offset(info, strhdr);
2969 if (err < 0)
2970 return err;
2971
2972 /*
2973 * The section name table must be NUL-terminated, as required
2974 * by the spec. This makes strcmp and pr_* calls that access
2975 * strings in the section safe.
2976 */
2977 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
2978 if (info->secstrings[strhdr->sh_size - 1] != '\0')
2979 return -ENOEXEC;
2980
2981 /*
2982 * The code assumes that section 0 has a length of zero and
2983 * an addr of zero, so check for it.
2984 */
2985 if (info->sechdrs[0].sh_type != SHT_NULL
2986 || info->sechdrs[0].sh_size != 0
2987 || info->sechdrs[0].sh_addr != 0)
2988 return -ENOEXEC;
2989
2990 for (i = 1; i < info->hdr->e_shnum; i++) {
2991 shdr = &info->sechdrs[i];
2992 switch (shdr->sh_type) {
2993 case SHT_NULL:
2994 case SHT_NOBITS:
2995 continue;
2996 case SHT_SYMTAB:
2997 if (shdr->sh_link == SHN_UNDEF
2998 || shdr->sh_link >= info->hdr->e_shnum)
2999 return -ENOEXEC;
3000 fallthrough;
3001 default:
3002 err = validate_section_offset(info, shdr);
3003 if (err < 0) {
3004 pr_err("Invalid ELF section in module (section %u type %u)\n",
3005 i, shdr->sh_type);
3006 return err;
3007 }
3008
3009 if (shdr->sh_flags & SHF_ALLOC) {
3010 if (shdr->sh_name >= strhdr->sh_size) {
3011 pr_err("Invalid ELF section name in module (section %u type %u)\n",
3012 i, shdr->sh_type);
3013 return -ENOEXEC;
3014 }
3015 }
3016 break;
3017 }
3018 }
3019
3020 return 0;
3021 }
3022
3023 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3024
3025 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3026 {
3027 do {
3028 unsigned long n = min(len, COPY_CHUNK_SIZE);
3029
3030 if (copy_from_user(dst, usrc, n) != 0)
3031 return -EFAULT;
3032 cond_resched();
3033 dst += n;
3034 usrc += n;
3035 len -= n;
3036 } while (len);
3037 return 0;
3038 }
3039
3040 #ifdef CONFIG_LIVEPATCH
3041 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3042 {
3043 if (get_modinfo(info, "livepatch")) {
3044 mod->klp = true;
3045 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3046 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3047 mod->name);
3048 }
3049
3050 return 0;
3051 }
3052 #else /* !CONFIG_LIVEPATCH */
3053 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3054 {
3055 if (get_modinfo(info, "livepatch")) {
3056 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3057 mod->name);
3058 return -ENOEXEC;
3059 }
3060
3061 return 0;
3062 }
3063 #endif /* CONFIG_LIVEPATCH */
3064
3065 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3066 {
3067 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3068 return;
3069
3070 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3071 mod->name);
3072 }
3073
3074 /* Sets info->hdr and info->len. */
3075 static int copy_module_from_user(const void __user *umod, unsigned long len,
3076 struct load_info *info)
3077 {
3078 int err;
3079
3080 info->len = len;
3081 if (info->len < sizeof(*(info->hdr)))
3082 return -ENOEXEC;
3083
3084 err = security_kernel_load_data(LOADING_MODULE, true);
3085 if (err)
3086 return err;
3087
3088 /* Suck in entire file: we'll want most of it. */
3089 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3090 if (!info->hdr)
3091 return -ENOMEM;
3092
3093 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3094 err = -EFAULT;
3095 goto out;
3096 }
3097
3098 err = security_kernel_post_load_data((char *)info->hdr, info->len,
3099 LOADING_MODULE, "init_module");
3100 out:
3101 if (err)
3102 vfree(info->hdr);
3103
3104 return err;
3105 }
3106
3107 static void free_copy(struct load_info *info)
3108 {
3109 vfree(info->hdr);
3110 }
3111
3112 static int rewrite_section_headers(struct load_info *info, int flags)
3113 {
3114 unsigned int i;
3115
3116 /* This should always be true, but let's be sure. */
3117 info->sechdrs[0].sh_addr = 0;
3118
3119 for (i = 1; i < info->hdr->e_shnum; i++) {
3120 Elf_Shdr *shdr = &info->sechdrs[i];
3121
3122 /*
3123 * Mark all sections sh_addr with their address in the
3124 * temporary image.
3125 */
3126 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3127
3128 }
3129
3130 /* Track but don't keep modinfo and version sections. */
3131 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3132 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3133
3134 return 0;
3135 }
3136
3137 /*
3138 * Set up our basic convenience variables (pointers to section headers,
3139 * search for module section index etc), and do some basic section
3140 * verification.
3141 *
3142 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3143 * will be allocated in move_module().
3144 */
3145 static int setup_load_info(struct load_info *info, int flags)
3146 {
3147 unsigned int i;
3148
3149 /* Try to find a name early so we can log errors with a module name */
3150 info->index.info = find_sec(info, ".modinfo");
3151 if (info->index.info)
3152 info->name = get_modinfo(info, "name");
3153
3154 /* Find internal symbols and strings. */
3155 for (i = 1; i < info->hdr->e_shnum; i++) {
3156 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3157 info->index.sym = i;
3158 info->index.str = info->sechdrs[i].sh_link;
3159 info->strtab = (char *)info->hdr
3160 + info->sechdrs[info->index.str].sh_offset;
3161 break;
3162 }
3163 }
3164
3165 if (info->index.sym == 0) {
3166 pr_warn("%s: module has no symbols (stripped?)\n",
3167 info->name ?: "(missing .modinfo section or name field)");
3168 return -ENOEXEC;
3169 }
3170
3171 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3172 if (!info->index.mod) {
3173 pr_warn("%s: No module found in object\n",
3174 info->name ?: "(missing .modinfo section or name field)");
3175 return -ENOEXEC;
3176 }
3177 /* This is temporary: point mod into copy of data. */
3178 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3179
3180 /*
3181 * If we didn't load the .modinfo 'name' field earlier, fall back to
3182 * on-disk struct mod 'name' field.
3183 */
3184 if (!info->name)
3185 info->name = info->mod->name;
3186
3187 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3188 info->index.vers = 0; /* Pretend no __versions section! */
3189 else
3190 info->index.vers = find_sec(info, "__versions");
3191
3192 info->index.pcpu = find_pcpusec(info);
3193
3194 return 0;
3195 }
3196
3197 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3198 {
3199 const char *modmagic = get_modinfo(info, "vermagic");
3200 int err;
3201
3202 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3203 modmagic = NULL;
3204
3205 /* This is allowed: modprobe --force will invalidate it. */
3206 if (!modmagic) {
3207 err = try_to_force_load(mod, "bad vermagic");
3208 if (err)
3209 return err;
3210 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3211 pr_err("%s: version magic '%s' should be '%s'\n",
3212 info->name, modmagic, vermagic);
3213 return -ENOEXEC;
3214 }
3215
3216 if (!get_modinfo(info, "intree")) {
3217 if (!test_taint(TAINT_OOT_MODULE))
3218 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3219 mod->name);
3220 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3221 }
3222
3223 check_modinfo_retpoline(mod, info);
3224
3225 if (get_modinfo(info, "staging")) {
3226 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3227 pr_warn("%s: module is from the staging directory, the quality "
3228 "is unknown, you have been warned.\n", mod->name);
3229 }
3230
3231 err = check_modinfo_livepatch(mod, info);
3232 if (err)
3233 return err;
3234
3235 /* Set up license info based on the info section */
3236 set_license(mod, get_modinfo(info, "license"));
3237
3238 return 0;
3239 }
3240
3241 static int find_module_sections(struct module *mod, struct load_info *info)
3242 {
3243 mod->kp = section_objs(info, "__param",
3244 sizeof(*mod->kp), &mod->num_kp);
3245 mod->syms = section_objs(info, "__ksymtab",
3246 sizeof(*mod->syms), &mod->num_syms);
3247 mod->crcs = section_addr(info, "__kcrctab");
3248 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3249 sizeof(*mod->gpl_syms),
3250 &mod->num_gpl_syms);
3251 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3252
3253 #ifdef CONFIG_CONSTRUCTORS
3254 mod->ctors = section_objs(info, ".ctors",
3255 sizeof(*mod->ctors), &mod->num_ctors);
3256 if (!mod->ctors)
3257 mod->ctors = section_objs(info, ".init_array",
3258 sizeof(*mod->ctors), &mod->num_ctors);
3259 else if (find_sec(info, ".init_array")) {
3260 /*
3261 * This shouldn't happen with same compiler and binutils
3262 * building all parts of the module.
3263 */
3264 pr_warn("%s: has both .ctors and .init_array.\n",
3265 mod->name);
3266 return -EINVAL;
3267 }
3268 #endif
3269
3270 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3271 &mod->noinstr_text_size);
3272
3273 #ifdef CONFIG_TRACEPOINTS
3274 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3275 sizeof(*mod->tracepoints_ptrs),
3276 &mod->num_tracepoints);
3277 #endif
3278 #ifdef CONFIG_TREE_SRCU
3279 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3280 sizeof(*mod->srcu_struct_ptrs),
3281 &mod->num_srcu_structs);
3282 #endif
3283 #ifdef CONFIG_BPF_EVENTS
3284 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3285 sizeof(*mod->bpf_raw_events),
3286 &mod->num_bpf_raw_events);
3287 #endif
3288 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3289 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3290 #endif
3291 #ifdef CONFIG_JUMP_LABEL
3292 mod->jump_entries = section_objs(info, "__jump_table",
3293 sizeof(*mod->jump_entries),
3294 &mod->num_jump_entries);
3295 #endif
3296 #ifdef CONFIG_EVENT_TRACING
3297 mod->trace_events = section_objs(info, "_ftrace_events",
3298 sizeof(*mod->trace_events),
3299 &mod->num_trace_events);
3300 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3301 sizeof(*mod->trace_evals),
3302 &mod->num_trace_evals);
3303 #endif
3304 #ifdef CONFIG_TRACING
3305 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3306 sizeof(*mod->trace_bprintk_fmt_start),
3307 &mod->num_trace_bprintk_fmt);
3308 #endif
3309 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3310 /* sechdrs[0].sh_size is always zero */
3311 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3312 sizeof(*mod->ftrace_callsites),
3313 &mod->num_ftrace_callsites);
3314 #endif
3315 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3316 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3317 sizeof(*mod->ei_funcs),
3318 &mod->num_ei_funcs);
3319 #endif
3320 #ifdef CONFIG_KPROBES
3321 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3322 &mod->kprobes_text_size);
3323 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3324 sizeof(unsigned long),
3325 &mod->num_kprobe_blacklist);
3326 #endif
3327 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3328 mod->static_call_sites = section_objs(info, ".static_call_sites",
3329 sizeof(*mod->static_call_sites),
3330 &mod->num_static_call_sites);
3331 #endif
3332 mod->extable = section_objs(info, "__ex_table",
3333 sizeof(*mod->extable), &mod->num_exentries);
3334
3335 if (section_addr(info, "__obsparm"))
3336 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3337
3338 info->debug = section_objs(info, "__dyndbg",
3339 sizeof(*info->debug), &info->num_debug);
3340
3341 return 0;
3342 }
3343
3344 static int move_module(struct module *mod, struct load_info *info)
3345 {
3346 int i;
3347 void *ptr;
3348
3349 /* Do the allocs. */
3350 ptr = module_alloc(mod->core_layout.size);
3351 /*
3352 * The pointer to this block is stored in the module structure
3353 * which is inside the block. Just mark it as not being a
3354 * leak.
3355 */
3356 kmemleak_not_leak(ptr);
3357 if (!ptr)
3358 return -ENOMEM;
3359
3360 memset(ptr, 0, mod->core_layout.size);
3361 mod->core_layout.base = ptr;
3362
3363 if (mod->init_layout.size) {
3364 ptr = module_alloc(mod->init_layout.size);
3365 /*
3366 * The pointer to this block is stored in the module structure
3367 * which is inside the block. This block doesn't need to be
3368 * scanned as it contains data and code that will be freed
3369 * after the module is initialized.
3370 */
3371 kmemleak_ignore(ptr);
3372 if (!ptr) {
3373 module_memfree(mod->core_layout.base);
3374 return -ENOMEM;
3375 }
3376 memset(ptr, 0, mod->init_layout.size);
3377 mod->init_layout.base = ptr;
3378 } else
3379 mod->init_layout.base = NULL;
3380
3381 /* Transfer each section which specifies SHF_ALLOC */
3382 pr_debug("final section addresses:\n");
3383 for (i = 0; i < info->hdr->e_shnum; i++) {
3384 void *dest;
3385 Elf_Shdr *shdr = &info->sechdrs[i];
3386
3387 if (!(shdr->sh_flags & SHF_ALLOC))
3388 continue;
3389
3390 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3391 dest = mod->init_layout.base
3392 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3393 else
3394 dest = mod->core_layout.base + shdr->sh_entsize;
3395
3396 if (shdr->sh_type != SHT_NOBITS)
3397 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3398 /* Update sh_addr to point to copy in image. */
3399 shdr->sh_addr = (unsigned long)dest;
3400 pr_debug("\t0x%lx %s\n",
3401 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3402 }
3403
3404 return 0;
3405 }
3406
3407 static int check_module_license_and_versions(struct module *mod)
3408 {
3409 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3410
3411 /*
3412 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3413 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3414 * using GPL-only symbols it needs.
3415 */
3416 if (strcmp(mod->name, "ndiswrapper") == 0)
3417 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3418
3419 /* driverloader was caught wrongly pretending to be under GPL */
3420 if (strcmp(mod->name, "driverloader") == 0)
3421 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3422 LOCKDEP_NOW_UNRELIABLE);
3423
3424 /* lve claims to be GPL but upstream won't provide source */
3425 if (strcmp(mod->name, "lve") == 0)
3426 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3427 LOCKDEP_NOW_UNRELIABLE);
3428
3429 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3430 pr_warn("%s: module license taints kernel.\n", mod->name);
3431
3432 #ifdef CONFIG_MODVERSIONS
3433 if ((mod->num_syms && !mod->crcs) ||
3434 (mod->num_gpl_syms && !mod->gpl_crcs)) {
3435 return try_to_force_load(mod,
3436 "no versions for exported symbols");
3437 }
3438 #endif
3439 return 0;
3440 }
3441
3442 static void flush_module_icache(const struct module *mod)
3443 {
3444 /*
3445 * Flush the instruction cache, since we've played with text.
3446 * Do it before processing of module parameters, so the module
3447 * can provide parameter accessor functions of its own.
3448 */
3449 if (mod->init_layout.base)
3450 flush_icache_range((unsigned long)mod->init_layout.base,
3451 (unsigned long)mod->init_layout.base
3452 + mod->init_layout.size);
3453 flush_icache_range((unsigned long)mod->core_layout.base,
3454 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3455 }
3456
3457 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3458 Elf_Shdr *sechdrs,
3459 char *secstrings,
3460 struct module *mod)
3461 {
3462 return 0;
3463 }
3464
3465 /* module_blacklist is a comma-separated list of module names */
3466 static char *module_blacklist;
3467 static bool blacklisted(const char *module_name)
3468 {
3469 const char *p;
3470 size_t len;
3471
3472 if (!module_blacklist)
3473 return false;
3474
3475 for (p = module_blacklist; *p; p += len) {
3476 len = strcspn(p, ",");
3477 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3478 return true;
3479 if (p[len] == ',')
3480 len++;
3481 }
3482 return false;
3483 }
3484 core_param(module_blacklist, module_blacklist, charp, 0400);
3485
3486 static struct module *layout_and_allocate(struct load_info *info, int flags)
3487 {
3488 struct module *mod;
3489 unsigned int ndx;
3490 int err;
3491
3492 err = check_modinfo(info->mod, info, flags);
3493 if (err)
3494 return ERR_PTR(err);
3495
3496 /* Allow arches to frob section contents and sizes. */
3497 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3498 info->secstrings, info->mod);
3499 if (err < 0)
3500 return ERR_PTR(err);
3501
3502 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3503 info->secstrings, info->mod);
3504 if (err < 0)
3505 return ERR_PTR(err);
3506
3507 /* We will do a special allocation for per-cpu sections later. */
3508 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3509
3510 /*
3511 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3512 * layout_sections() can put it in the right place.
3513 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3514 */
3515 ndx = find_sec(info, ".data..ro_after_init");
3516 if (ndx)
3517 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3518 /*
3519 * Mark the __jump_table section as ro_after_init as well: these data
3520 * structures are never modified, with the exception of entries that
3521 * refer to code in the __init section, which are annotated as such
3522 * at module load time.
3523 */
3524 ndx = find_sec(info, "__jump_table");
3525 if (ndx)
3526 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3527
3528 /*
3529 * Determine total sizes, and put offsets in sh_entsize. For now
3530 * this is done generically; there doesn't appear to be any
3531 * special cases for the architectures.
3532 */
3533 layout_sections(info->mod, info);
3534 layout_symtab(info->mod, info);
3535
3536 /* Allocate and move to the final place */
3537 err = move_module(info->mod, info);
3538 if (err)
3539 return ERR_PTR(err);
3540
3541 /* Module has been copied to its final place now: return it. */
3542 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3543 kmemleak_load_module(mod, info);
3544 return mod;
3545 }
3546
3547 /* mod is no longer valid after this! */
3548 static void module_deallocate(struct module *mod, struct load_info *info)
3549 {
3550 percpu_modfree(mod);
3551 module_arch_freeing_init(mod);
3552 module_memfree(mod->init_layout.base);
3553 module_memfree(mod->core_layout.base);
3554 }
3555
3556 int __weak module_finalize(const Elf_Ehdr *hdr,
3557 const Elf_Shdr *sechdrs,
3558 struct module *me)
3559 {
3560 return 0;
3561 }
3562
3563 static int post_relocation(struct module *mod, const struct load_info *info)
3564 {
3565 /* Sort exception table now relocations are done. */
3566 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3567
3568 /* Copy relocated percpu area over. */
3569 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3570 info->sechdrs[info->index.pcpu].sh_size);
3571
3572 /* Setup kallsyms-specific fields. */
3573 add_kallsyms(mod, info);
3574
3575 /* Arch-specific module finalizing. */
3576 return module_finalize(info->hdr, info->sechdrs, mod);
3577 }
3578
3579 /* Is this module of this name done loading? No locks held. */
3580 static bool finished_loading(const char *name)
3581 {
3582 struct module *mod;
3583 bool ret;
3584
3585 /*
3586 * The module_mutex should not be a heavily contended lock;
3587 * if we get the occasional sleep here, we'll go an extra iteration
3588 * in the wait_event_interruptible(), which is harmless.
3589 */
3590 sched_annotate_sleep();
3591 mutex_lock(&module_mutex);
3592 mod = find_module_all(name, strlen(name), true);
3593 ret = !mod || mod->state == MODULE_STATE_LIVE;
3594 mutex_unlock(&module_mutex);
3595
3596 return ret;
3597 }
3598
3599 /* Call module constructors. */
3600 static void do_mod_ctors(struct module *mod)
3601 {
3602 #ifdef CONFIG_CONSTRUCTORS
3603 unsigned long i;
3604
3605 for (i = 0; i < mod->num_ctors; i++)
3606 mod->ctors[i]();
3607 #endif
3608 }
3609
3610 /* For freeing module_init on success, in case kallsyms traversing */
3611 struct mod_initfree {
3612 struct llist_node node;
3613 void *module_init;
3614 };
3615
3616 static void do_free_init(struct work_struct *w)
3617 {
3618 struct llist_node *pos, *n, *list;
3619 struct mod_initfree *initfree;
3620
3621 list = llist_del_all(&init_free_list);
3622
3623 synchronize_rcu();
3624
3625 llist_for_each_safe(pos, n, list) {
3626 initfree = container_of(pos, struct mod_initfree, node);
3627 module_memfree(initfree->module_init);
3628 kfree(initfree);
3629 }
3630 }
3631
3632 /*
3633 * This is where the real work happens.
3634 *
3635 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3636 * helper command 'lx-symbols'.
3637 */
3638 static noinline int do_init_module(struct module *mod)
3639 {
3640 int ret = 0;
3641 struct mod_initfree *freeinit;
3642
3643 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3644 if (!freeinit) {
3645 ret = -ENOMEM;
3646 goto fail;
3647 }
3648 freeinit->module_init = mod->init_layout.base;
3649
3650 /*
3651 * We want to find out whether @mod uses async during init. Clear
3652 * PF_USED_ASYNC. async_schedule*() will set it.
3653 */
3654 current->flags &= ~PF_USED_ASYNC;
3655
3656 do_mod_ctors(mod);
3657 /* Start the module */
3658 if (mod->init != NULL)
3659 ret = do_one_initcall(mod->init);
3660 if (ret < 0) {
3661 goto fail_free_freeinit;
3662 }
3663 if (ret > 0) {
3664 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3665 "follow 0/-E convention\n"
3666 "%s: loading module anyway...\n",
3667 __func__, mod->name, ret, __func__);
3668 dump_stack();
3669 }
3670
3671 /* Now it's a first class citizen! */
3672 mod->state = MODULE_STATE_LIVE;
3673 blocking_notifier_call_chain(&module_notify_list,
3674 MODULE_STATE_LIVE, mod);
3675
3676 /* Delay uevent until module has finished its init routine */
3677 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3678
3679 /*
3680 * We need to finish all async code before the module init sequence
3681 * is done. This has potential to deadlock. For example, a newly
3682 * detected block device can trigger request_module() of the
3683 * default iosched from async probing task. Once userland helper
3684 * reaches here, async_synchronize_full() will wait on the async
3685 * task waiting on request_module() and deadlock.
3686 *
3687 * This deadlock is avoided by perfomring async_synchronize_full()
3688 * iff module init queued any async jobs. This isn't a full
3689 * solution as it will deadlock the same if module loading from
3690 * async jobs nests more than once; however, due to the various
3691 * constraints, this hack seems to be the best option for now.
3692 * Please refer to the following thread for details.
3693 *
3694 * http://thread.gmane.org/gmane.linux.kernel/1420814
3695 */
3696 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3697 async_synchronize_full();
3698
3699 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3700 mod->init_layout.size);
3701 mutex_lock(&module_mutex);
3702 /* Drop initial reference. */
3703 module_put(mod);
3704 trim_init_extable(mod);
3705 #ifdef CONFIG_KALLSYMS
3706 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3707 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3708 #endif
3709 module_enable_ro(mod, true);
3710 mod_tree_remove_init(mod);
3711 module_arch_freeing_init(mod);
3712 mod->init_layout.base = NULL;
3713 mod->init_layout.size = 0;
3714 mod->init_layout.ro_size = 0;
3715 mod->init_layout.ro_after_init_size = 0;
3716 mod->init_layout.text_size = 0;
3717 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3718 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3719 mod->btf_data = NULL;
3720 #endif
3721 /*
3722 * We want to free module_init, but be aware that kallsyms may be
3723 * walking this with preempt disabled. In all the failure paths, we
3724 * call synchronize_rcu(), but we don't want to slow down the success
3725 * path. module_memfree() cannot be called in an interrupt, so do the
3726 * work and call synchronize_rcu() in a work queue.
3727 *
3728 * Note that module_alloc() on most architectures creates W+X page
3729 * mappings which won't be cleaned up until do_free_init() runs. Any
3730 * code such as mark_rodata_ro() which depends on those mappings to
3731 * be cleaned up needs to sync with the queued work - ie
3732 * rcu_barrier()
3733 */
3734 if (llist_add(&freeinit->node, &init_free_list))
3735 schedule_work(&init_free_wq);
3736
3737 mutex_unlock(&module_mutex);
3738 wake_up_all(&module_wq);
3739
3740 return 0;
3741
3742 fail_free_freeinit:
3743 kfree(freeinit);
3744 fail:
3745 /* Try to protect us from buggy refcounters. */
3746 mod->state = MODULE_STATE_GOING;
3747 synchronize_rcu();
3748 module_put(mod);
3749 blocking_notifier_call_chain(&module_notify_list,
3750 MODULE_STATE_GOING, mod);
3751 klp_module_going(mod);
3752 ftrace_release_mod(mod);
3753 free_module(mod);
3754 wake_up_all(&module_wq);
3755 return ret;
3756 }
3757
3758 static int may_init_module(void)
3759 {
3760 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3761 return -EPERM;
3762
3763 return 0;
3764 }
3765
3766 /*
3767 * We try to place it in the list now to make sure it's unique before
3768 * we dedicate too many resources. In particular, temporary percpu
3769 * memory exhaustion.
3770 */
3771 static int add_unformed_module(struct module *mod)
3772 {
3773 int err;
3774 struct module *old;
3775
3776 mod->state = MODULE_STATE_UNFORMED;
3777
3778 again:
3779 mutex_lock(&module_mutex);
3780 old = find_module_all(mod->name, strlen(mod->name), true);
3781 if (old != NULL) {
3782 if (old->state != MODULE_STATE_LIVE) {
3783 /* Wait in case it fails to load. */
3784 mutex_unlock(&module_mutex);
3785 err = wait_event_interruptible(module_wq,
3786 finished_loading(mod->name));
3787 if (err)
3788 goto out_unlocked;
3789 goto again;
3790 }
3791 err = -EEXIST;
3792 goto out;
3793 }
3794 mod_update_bounds(mod);
3795 list_add_rcu(&mod->list, &modules);
3796 mod_tree_insert(mod);
3797 err = 0;
3798
3799 out:
3800 mutex_unlock(&module_mutex);
3801 out_unlocked:
3802 return err;
3803 }
3804
3805 static int complete_formation(struct module *mod, struct load_info *info)
3806 {
3807 int err;
3808
3809 mutex_lock(&module_mutex);
3810
3811 /* Find duplicate symbols (must be called under lock). */
3812 err = verify_exported_symbols(mod);
3813 if (err < 0)
3814 goto out;
3815
3816 /* This relies on module_mutex for list integrity. */
3817 module_bug_finalize(info->hdr, info->sechdrs, mod);
3818
3819 module_enable_ro(mod, false);
3820 module_enable_nx(mod);
3821 module_enable_x(mod);
3822
3823 /*
3824 * Mark state as coming so strong_try_module_get() ignores us,
3825 * but kallsyms etc. can see us.
3826 */
3827 mod->state = MODULE_STATE_COMING;
3828 mutex_unlock(&module_mutex);
3829
3830 return 0;
3831
3832 out:
3833 mutex_unlock(&module_mutex);
3834 return err;
3835 }
3836
3837 static int prepare_coming_module(struct module *mod)
3838 {
3839 int err;
3840
3841 ftrace_module_enable(mod);
3842 err = klp_module_coming(mod);
3843 if (err)
3844 return err;
3845
3846 err = blocking_notifier_call_chain_robust(&module_notify_list,
3847 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3848 err = notifier_to_errno(err);
3849 if (err)
3850 klp_module_going(mod);
3851
3852 return err;
3853 }
3854
3855 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3856 void *arg)
3857 {
3858 struct module *mod = arg;
3859 int ret;
3860
3861 if (strcmp(param, "async_probe") == 0) {
3862 mod->async_probe_requested = true;
3863 return 0;
3864 }
3865
3866 /* Check for magic 'dyndbg' arg */
3867 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3868 if (ret != 0)
3869 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3870 return 0;
3871 }
3872
3873 static void cfi_init(struct module *mod);
3874
3875 /*
3876 * Allocate and load the module: note that size of section 0 is always
3877 * zero, and we rely on this for optional sections.
3878 */
3879 static int load_module(struct load_info *info, const char __user *uargs,
3880 int flags)
3881 {
3882 struct module *mod;
3883 long err = 0;
3884 char *after_dashes;
3885
3886 /*
3887 * Do the signature check (if any) first. All that
3888 * the signature check needs is info->len, it does
3889 * not need any of the section info. That can be
3890 * set up later. This will minimize the chances
3891 * of a corrupt module causing problems before
3892 * we even get to the signature check.
3893 *
3894 * The check will also adjust info->len by stripping
3895 * off the sig length at the end of the module, making
3896 * checks against info->len more correct.
3897 */
3898 err = module_sig_check(info, flags);
3899 if (err)
3900 goto free_copy;
3901
3902 /*
3903 * Do basic sanity checks against the ELF header and
3904 * sections.
3905 */
3906 err = elf_validity_check(info);
3907 if (err) {
3908 pr_err("Module has invalid ELF structures\n");
3909 goto free_copy;
3910 }
3911
3912 /*
3913 * Everything checks out, so set up the section info
3914 * in the info structure.
3915 */
3916 err = setup_load_info(info, flags);
3917 if (err)
3918 goto free_copy;
3919
3920 /*
3921 * Now that we know we have the correct module name, check
3922 * if it's blacklisted.
3923 */
3924 if (blacklisted(info->name)) {
3925 err = -EPERM;
3926 pr_err("Module %s is blacklisted\n", info->name);
3927 goto free_copy;
3928 }
3929
3930 err = rewrite_section_headers(info, flags);
3931 if (err)
3932 goto free_copy;
3933
3934 /* Check module struct version now, before we try to use module. */
3935 if (!check_modstruct_version(info, info->mod)) {
3936 err = -ENOEXEC;
3937 goto free_copy;
3938 }
3939
3940 /* Figure out module layout, and allocate all the memory. */
3941 mod = layout_and_allocate(info, flags);
3942 if (IS_ERR(mod)) {
3943 err = PTR_ERR(mod);
3944 goto free_copy;
3945 }
3946
3947 audit_log_kern_module(mod->name);
3948
3949 /* Reserve our place in the list. */
3950 err = add_unformed_module(mod);
3951 if (err)
3952 goto free_module;
3953
3954 #ifdef CONFIG_MODULE_SIG
3955 mod->sig_ok = info->sig_ok;
3956 if (!mod->sig_ok) {
3957 pr_notice_once("%s: module verification failed: signature "
3958 "and/or required key missing - tainting "
3959 "kernel\n", mod->name);
3960 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3961 }
3962 #endif
3963
3964 /* To avoid stressing percpu allocator, do this once we're unique. */
3965 err = percpu_modalloc(mod, info);
3966 if (err)
3967 goto unlink_mod;
3968
3969 /* Now module is in final location, initialize linked lists, etc. */
3970 err = module_unload_init(mod);
3971 if (err)
3972 goto unlink_mod;
3973
3974 init_param_lock(mod);
3975
3976 /*
3977 * Now we've got everything in the final locations, we can
3978 * find optional sections.
3979 */
3980 err = find_module_sections(mod, info);
3981 if (err)
3982 goto free_unload;
3983
3984 err = check_module_license_and_versions(mod);
3985 if (err)
3986 goto free_unload;
3987
3988 /* Set up MODINFO_ATTR fields */
3989 setup_modinfo(mod, info);
3990
3991 /* Fix up syms, so that st_value is a pointer to location. */
3992 err = simplify_symbols(mod, info);
3993 if (err < 0)
3994 goto free_modinfo;
3995
3996 err = apply_relocations(mod, info);
3997 if (err < 0)
3998 goto free_modinfo;
3999
4000 err = post_relocation(mod, info);
4001 if (err < 0)
4002 goto free_modinfo;
4003
4004 flush_module_icache(mod);
4005
4006 /* Setup CFI for the module. */
4007 cfi_init(mod);
4008
4009 /* Now copy in args */
4010 mod->args = strndup_user(uargs, ~0UL >> 1);
4011 if (IS_ERR(mod->args)) {
4012 err = PTR_ERR(mod->args);
4013 goto free_arch_cleanup;
4014 }
4015
4016 dynamic_debug_setup(mod, info->debug, info->num_debug);
4017
4018 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4019 ftrace_module_init(mod);
4020
4021 /* Finally it's fully formed, ready to start executing. */
4022 err = complete_formation(mod, info);
4023 if (err)
4024 goto ddebug_cleanup;
4025
4026 err = prepare_coming_module(mod);
4027 if (err)
4028 goto bug_cleanup;
4029
4030 /* Module is ready to execute: parsing args may do that. */
4031 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4032 -32768, 32767, mod,
4033 unknown_module_param_cb);
4034 if (IS_ERR(after_dashes)) {
4035 err = PTR_ERR(after_dashes);
4036 goto coming_cleanup;
4037 } else if (after_dashes) {
4038 pr_warn("%s: parameters '%s' after `--' ignored\n",
4039 mod->name, after_dashes);
4040 }
4041
4042 /* Link in to sysfs. */
4043 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4044 if (err < 0)
4045 goto coming_cleanup;
4046
4047 if (is_livepatch_module(mod)) {
4048 err = copy_module_elf(mod, info);
4049 if (err < 0)
4050 goto sysfs_cleanup;
4051 }
4052
4053 /* Get rid of temporary copy. */
4054 free_copy(info);
4055
4056 /* Done! */
4057 trace_module_load(mod);
4058
4059 return do_init_module(mod);
4060
4061 sysfs_cleanup:
4062 mod_sysfs_teardown(mod);
4063 coming_cleanup:
4064 mod->state = MODULE_STATE_GOING;
4065 destroy_params(mod->kp, mod->num_kp);
4066 blocking_notifier_call_chain(&module_notify_list,
4067 MODULE_STATE_GOING, mod);
4068 klp_module_going(mod);
4069 bug_cleanup:
4070 mod->state = MODULE_STATE_GOING;
4071 /* module_bug_cleanup needs module_mutex protection */
4072 mutex_lock(&module_mutex);
4073 module_bug_cleanup(mod);
4074 mutex_unlock(&module_mutex);
4075
4076 ddebug_cleanup:
4077 ftrace_release_mod(mod);
4078 dynamic_debug_remove(mod, info->debug);
4079 synchronize_rcu();
4080 kfree(mod->args);
4081 free_arch_cleanup:
4082 cfi_cleanup(mod);
4083 module_arch_cleanup(mod);
4084 free_modinfo:
4085 free_modinfo(mod);
4086 free_unload:
4087 module_unload_free(mod);
4088 unlink_mod:
4089 mutex_lock(&module_mutex);
4090 /* Unlink carefully: kallsyms could be walking list. */
4091 list_del_rcu(&mod->list);
4092 mod_tree_remove(mod);
4093 wake_up_all(&module_wq);
4094 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4095 synchronize_rcu();
4096 mutex_unlock(&module_mutex);
4097 free_module:
4098 /* Free lock-classes; relies on the preceding sync_rcu() */
4099 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4100
4101 module_deallocate(mod, info);
4102 free_copy:
4103 free_copy(info);
4104 return err;
4105 }
4106
4107 SYSCALL_DEFINE3(init_module, void __user *, umod,
4108 unsigned long, len, const char __user *, uargs)
4109 {
4110 int err;
4111 struct load_info info = { };
4112
4113 err = may_init_module();
4114 if (err)
4115 return err;
4116
4117 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4118 umod, len, uargs);
4119
4120 err = copy_module_from_user(umod, len, &info);
4121 if (err)
4122 return err;
4123
4124 return load_module(&info, uargs, 0);
4125 }
4126
4127 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4128 {
4129 struct load_info info = { };
4130 void *hdr = NULL;
4131 int err;
4132
4133 err = may_init_module();
4134 if (err)
4135 return err;
4136
4137 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4138
4139 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4140 |MODULE_INIT_IGNORE_VERMAGIC))
4141 return -EINVAL;
4142
4143 err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4144 READING_MODULE);
4145 if (err < 0)
4146 return err;
4147 info.hdr = hdr;
4148 info.len = err;
4149
4150 return load_module(&info, uargs, flags);
4151 }
4152
4153 static inline int within(unsigned long addr, void *start, unsigned long size)
4154 {
4155 return ((void *)addr >= start && (void *)addr < start + size);
4156 }
4157
4158 #ifdef CONFIG_KALLSYMS
4159 /*
4160 * This ignores the intensely annoying "mapping symbols" found
4161 * in ARM ELF files: $a, $t and $d.
4162 */
4163 static inline int is_arm_mapping_symbol(const char *str)
4164 {
4165 if (str[0] == '.' && str[1] == 'L')
4166 return true;
4167 return str[0] == '$' && strchr("axtd", str[1])
4168 && (str[2] == '\0' || str[2] == '.');
4169 }
4170
4171 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4172 {
4173 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4174 }
4175
4176 /*
4177 * Given a module and address, find the corresponding symbol and return its name
4178 * while providing its size and offset if needed.
4179 */
4180 static const char *find_kallsyms_symbol(struct module *mod,
4181 unsigned long addr,
4182 unsigned long *size,
4183 unsigned long *offset)
4184 {
4185 unsigned int i, best = 0;
4186 unsigned long nextval, bestval;
4187 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4188
4189 /* At worse, next value is at end of module */
4190 if (within_module_init(addr, mod))
4191 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4192 else
4193 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4194
4195 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4196
4197 /*
4198 * Scan for closest preceding symbol, and next symbol. (ELF
4199 * starts real symbols at 1).
4200 */
4201 for (i = 1; i < kallsyms->num_symtab; i++) {
4202 const Elf_Sym *sym = &kallsyms->symtab[i];
4203 unsigned long thisval = kallsyms_symbol_value(sym);
4204
4205 if (sym->st_shndx == SHN_UNDEF)
4206 continue;
4207
4208 /*
4209 * We ignore unnamed symbols: they're uninformative
4210 * and inserted at a whim.
4211 */
4212 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4213 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4214 continue;
4215
4216 if (thisval <= addr && thisval > bestval) {
4217 best = i;
4218 bestval = thisval;
4219 }
4220 if (thisval > addr && thisval < nextval)
4221 nextval = thisval;
4222 }
4223
4224 if (!best)
4225 return NULL;
4226
4227 if (size)
4228 *size = nextval - bestval;
4229 if (offset)
4230 *offset = addr - bestval;
4231
4232 return kallsyms_symbol_name(kallsyms, best);
4233 }
4234
4235 void * __weak dereference_module_function_descriptor(struct module *mod,
4236 void *ptr)
4237 {
4238 return ptr;
4239 }
4240
4241 /*
4242 * For kallsyms to ask for address resolution. NULL means not found. Careful
4243 * not to lock to avoid deadlock on oopses, simply disable preemption.
4244 */
4245 const char *module_address_lookup(unsigned long addr,
4246 unsigned long *size,
4247 unsigned long *offset,
4248 char **modname,
4249 char *namebuf)
4250 {
4251 const char *ret = NULL;
4252 struct module *mod;
4253
4254 preempt_disable();
4255 mod = __module_address(addr);
4256 if (mod) {
4257 if (modname)
4258 *modname = mod->name;
4259
4260 ret = find_kallsyms_symbol(mod, addr, size, offset);
4261 }
4262 /* Make a copy in here where it's safe */
4263 if (ret) {
4264 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4265 ret = namebuf;
4266 }
4267 preempt_enable();
4268
4269 return ret;
4270 }
4271
4272 int lookup_module_symbol_name(unsigned long addr, char *symname)
4273 {
4274 struct module *mod;
4275
4276 preempt_disable();
4277 list_for_each_entry_rcu(mod, &modules, list) {
4278 if (mod->state == MODULE_STATE_UNFORMED)
4279 continue;
4280 if (within_module(addr, mod)) {
4281 const char *sym;
4282
4283 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4284 if (!sym)
4285 goto out;
4286
4287 strlcpy(symname, sym, KSYM_NAME_LEN);
4288 preempt_enable();
4289 return 0;
4290 }
4291 }
4292 out:
4293 preempt_enable();
4294 return -ERANGE;
4295 }
4296
4297 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4298 unsigned long *offset, char *modname, char *name)
4299 {
4300 struct module *mod;
4301
4302 preempt_disable();
4303 list_for_each_entry_rcu(mod, &modules, list) {
4304 if (mod->state == MODULE_STATE_UNFORMED)
4305 continue;
4306 if (within_module(addr, mod)) {
4307 const char *sym;
4308
4309 sym = find_kallsyms_symbol(mod, addr, size, offset);
4310 if (!sym)
4311 goto out;
4312 if (modname)
4313 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4314 if (name)
4315 strlcpy(name, sym, KSYM_NAME_LEN);
4316 preempt_enable();
4317 return 0;
4318 }
4319 }
4320 out:
4321 preempt_enable();
4322 return -ERANGE;
4323 }
4324
4325 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4326 char *name, char *module_name, int *exported)
4327 {
4328 struct module *mod;
4329
4330 preempt_disable();
4331 list_for_each_entry_rcu(mod, &modules, list) {
4332 struct mod_kallsyms *kallsyms;
4333
4334 if (mod->state == MODULE_STATE_UNFORMED)
4335 continue;
4336 kallsyms = rcu_dereference_sched(mod->kallsyms);
4337 if (symnum < kallsyms->num_symtab) {
4338 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4339
4340 *value = kallsyms_symbol_value(sym);
4341 *type = kallsyms->typetab[symnum];
4342 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4343 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4344 *exported = is_exported(name, *value, mod);
4345 preempt_enable();
4346 return 0;
4347 }
4348 symnum -= kallsyms->num_symtab;
4349 }
4350 preempt_enable();
4351 return -ERANGE;
4352 }
4353
4354 /* Given a module and name of symbol, find and return the symbol's value */
4355 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4356 {
4357 unsigned int i;
4358 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4359
4360 for (i = 0; i < kallsyms->num_symtab; i++) {
4361 const Elf_Sym *sym = &kallsyms->symtab[i];
4362
4363 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4364 sym->st_shndx != SHN_UNDEF)
4365 return kallsyms_symbol_value(sym);
4366 }
4367 return 0;
4368 }
4369
4370 /* Look for this name: can be of form module:name. */
4371 unsigned long module_kallsyms_lookup_name(const char *name)
4372 {
4373 struct module *mod;
4374 char *colon;
4375 unsigned long ret = 0;
4376
4377 /* Don't lock: we're in enough trouble already. */
4378 preempt_disable();
4379 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4380 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4381 ret = find_kallsyms_symbol_value(mod, colon+1);
4382 } else {
4383 list_for_each_entry_rcu(mod, &modules, list) {
4384 if (mod->state == MODULE_STATE_UNFORMED)
4385 continue;
4386 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4387 break;
4388 }
4389 }
4390 preempt_enable();
4391 return ret;
4392 }
4393
4394 #ifdef CONFIG_LIVEPATCH
4395 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4396 struct module *, unsigned long),
4397 void *data)
4398 {
4399 struct module *mod;
4400 unsigned int i;
4401 int ret = 0;
4402
4403 mutex_lock(&module_mutex);
4404 list_for_each_entry(mod, &modules, list) {
4405 /* We hold module_mutex: no need for rcu_dereference_sched */
4406 struct mod_kallsyms *kallsyms = mod->kallsyms;
4407
4408 if (mod->state == MODULE_STATE_UNFORMED)
4409 continue;
4410 for (i = 0; i < kallsyms->num_symtab; i++) {
4411 const Elf_Sym *sym = &kallsyms->symtab[i];
4412
4413 if (sym->st_shndx == SHN_UNDEF)
4414 continue;
4415
4416 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4417 mod, kallsyms_symbol_value(sym));
4418 if (ret != 0)
4419 break;
4420 }
4421 }
4422 mutex_unlock(&module_mutex);
4423 return ret;
4424 }
4425 #endif /* CONFIG_LIVEPATCH */
4426 #endif /* CONFIG_KALLSYMS */
4427
4428 static void cfi_init(struct module *mod)
4429 {
4430 #ifdef CONFIG_CFI_CLANG
4431 initcall_t *init;
4432 exitcall_t *exit;
4433
4434 rcu_read_lock_sched();
4435 mod->cfi_check = (cfi_check_fn)
4436 find_kallsyms_symbol_value(mod, "__cfi_check");
4437 init = (initcall_t *)
4438 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4439 exit = (exitcall_t *)
4440 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4441 rcu_read_unlock_sched();
4442
4443 /* Fix init/exit functions to point to the CFI jump table */
4444 if (init)
4445 mod->init = *init;
4446 if (exit)
4447 mod->exit = *exit;
4448
4449 cfi_module_add(mod, module_addr_min);
4450 #endif
4451 }
4452
4453 static void cfi_cleanup(struct module *mod)
4454 {
4455 #ifdef CONFIG_CFI_CLANG
4456 cfi_module_remove(mod, module_addr_min);
4457 #endif
4458 }
4459
4460 /* Maximum number of characters written by module_flags() */
4461 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4462
4463 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4464 static char *module_flags(struct module *mod, char *buf)
4465 {
4466 int bx = 0;
4467
4468 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4469 if (mod->taints ||
4470 mod->state == MODULE_STATE_GOING ||
4471 mod->state == MODULE_STATE_COMING) {
4472 buf[bx++] = '(';
4473 bx += module_flags_taint(mod, buf + bx);
4474 /* Show a - for module-is-being-unloaded */
4475 if (mod->state == MODULE_STATE_GOING)
4476 buf[bx++] = '-';
4477 /* Show a + for module-is-being-loaded */
4478 if (mod->state == MODULE_STATE_COMING)
4479 buf[bx++] = '+';
4480 buf[bx++] = ')';
4481 }
4482 buf[bx] = '\0';
4483
4484 return buf;
4485 }
4486
4487 #ifdef CONFIG_PROC_FS
4488 /* Called by the /proc file system to return a list of modules. */
4489 static void *m_start(struct seq_file *m, loff_t *pos)
4490 {
4491 mutex_lock(&module_mutex);
4492 return seq_list_start(&modules, *pos);
4493 }
4494
4495 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4496 {
4497 return seq_list_next(p, &modules, pos);
4498 }
4499
4500 static void m_stop(struct seq_file *m, void *p)
4501 {
4502 mutex_unlock(&module_mutex);
4503 }
4504
4505 static int m_show(struct seq_file *m, void *p)
4506 {
4507 struct module *mod = list_entry(p, struct module, list);
4508 char buf[MODULE_FLAGS_BUF_SIZE];
4509 void *value;
4510
4511 /* We always ignore unformed modules. */
4512 if (mod->state == MODULE_STATE_UNFORMED)
4513 return 0;
4514
4515 seq_printf(m, "%s %u",
4516 mod->name, mod->init_layout.size + mod->core_layout.size);
4517 print_unload_info(m, mod);
4518
4519 /* Informative for users. */
4520 seq_printf(m, " %s",
4521 mod->state == MODULE_STATE_GOING ? "Unloading" :
4522 mod->state == MODULE_STATE_COMING ? "Loading" :
4523 "Live");
4524 /* Used by oprofile and other similar tools. */
4525 value = m->private ? NULL : mod->core_layout.base;
4526 seq_printf(m, " 0x%px", value);
4527
4528 /* Taints info */
4529 if (mod->taints)
4530 seq_printf(m, " %s", module_flags(mod, buf));
4531
4532 seq_puts(m, "\n");
4533 return 0;
4534 }
4535
4536 /*
4537 * Format: modulename size refcount deps address
4538 *
4539 * Where refcount is a number or -, and deps is a comma-separated list
4540 * of depends or -.
4541 */
4542 static const struct seq_operations modules_op = {
4543 .start = m_start,
4544 .next = m_next,
4545 .stop = m_stop,
4546 .show = m_show
4547 };
4548
4549 /*
4550 * This also sets the "private" pointer to non-NULL if the
4551 * kernel pointers should be hidden (so you can just test
4552 * "m->private" to see if you should keep the values private).
4553 *
4554 * We use the same logic as for /proc/kallsyms.
4555 */
4556 static int modules_open(struct inode *inode, struct file *file)
4557 {
4558 int err = seq_open(file, &modules_op);
4559
4560 if (!err) {
4561 struct seq_file *m = file->private_data;
4562 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4563 }
4564
4565 return err;
4566 }
4567
4568 static const struct proc_ops modules_proc_ops = {
4569 .proc_flags = PROC_ENTRY_PERMANENT,
4570 .proc_open = modules_open,
4571 .proc_read = seq_read,
4572 .proc_lseek = seq_lseek,
4573 .proc_release = seq_release,
4574 };
4575
4576 static int __init proc_modules_init(void)
4577 {
4578 proc_create("modules", 0, NULL, &modules_proc_ops);
4579 return 0;
4580 }
4581 module_init(proc_modules_init);
4582 #endif
4583
4584 /* Given an address, look for it in the module exception tables. */
4585 const struct exception_table_entry *search_module_extables(unsigned long addr)
4586 {
4587 const struct exception_table_entry *e = NULL;
4588 struct module *mod;
4589
4590 preempt_disable();
4591 mod = __module_address(addr);
4592 if (!mod)
4593 goto out;
4594
4595 if (!mod->num_exentries)
4596 goto out;
4597
4598 e = search_extable(mod->extable,
4599 mod->num_exentries,
4600 addr);
4601 out:
4602 preempt_enable();
4603
4604 /*
4605 * Now, if we found one, we are running inside it now, hence
4606 * we cannot unload the module, hence no refcnt needed.
4607 */
4608 return e;
4609 }
4610
4611 /**
4612 * is_module_address() - is this address inside a module?
4613 * @addr: the address to check.
4614 *
4615 * See is_module_text_address() if you simply want to see if the address
4616 * is code (not data).
4617 */
4618 bool is_module_address(unsigned long addr)
4619 {
4620 bool ret;
4621
4622 preempt_disable();
4623 ret = __module_address(addr) != NULL;
4624 preempt_enable();
4625
4626 return ret;
4627 }
4628
4629 /**
4630 * __module_address() - get the module which contains an address.
4631 * @addr: the address.
4632 *
4633 * Must be called with preempt disabled or module mutex held so that
4634 * module doesn't get freed during this.
4635 */
4636 struct module *__module_address(unsigned long addr)
4637 {
4638 struct module *mod;
4639
4640 if (addr < module_addr_min || addr > module_addr_max)
4641 return NULL;
4642
4643 module_assert_mutex_or_preempt();
4644
4645 mod = mod_find(addr);
4646 if (mod) {
4647 BUG_ON(!within_module(addr, mod));
4648 if (mod->state == MODULE_STATE_UNFORMED)
4649 mod = NULL;
4650 }
4651 return mod;
4652 }
4653
4654 /**
4655 * is_module_text_address() - is this address inside module code?
4656 * @addr: the address to check.
4657 *
4658 * See is_module_address() if you simply want to see if the address is
4659 * anywhere in a module. See kernel_text_address() for testing if an
4660 * address corresponds to kernel or module code.
4661 */
4662 bool is_module_text_address(unsigned long addr)
4663 {
4664 bool ret;
4665
4666 preempt_disable();
4667 ret = __module_text_address(addr) != NULL;
4668 preempt_enable();
4669
4670 return ret;
4671 }
4672
4673 /**
4674 * __module_text_address() - get the module whose code contains an address.
4675 * @addr: the address.
4676 *
4677 * Must be called with preempt disabled or module mutex held so that
4678 * module doesn't get freed during this.
4679 */
4680 struct module *__module_text_address(unsigned long addr)
4681 {
4682 struct module *mod = __module_address(addr);
4683 if (mod) {
4684 /* Make sure it's within the text section. */
4685 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4686 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4687 mod = NULL;
4688 }
4689 return mod;
4690 }
4691
4692 /* Don't grab lock, we're oopsing. */
4693 void print_modules(void)
4694 {
4695 struct module *mod;
4696 char buf[MODULE_FLAGS_BUF_SIZE];
4697
4698 printk(KERN_DEFAULT "Modules linked in:");
4699 /* Most callers should already have preempt disabled, but make sure */
4700 preempt_disable();
4701 list_for_each_entry_rcu(mod, &modules, list) {
4702 if (mod->state == MODULE_STATE_UNFORMED)
4703 continue;
4704 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4705 }
4706 preempt_enable();
4707 if (last_unloaded_module[0])
4708 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4709 pr_cont("\n");
4710 }
4711
4712 #ifdef CONFIG_MODVERSIONS
4713 /*
4714 * Generate the signature for all relevant module structures here.
4715 * If these change, we don't want to try to parse the module.
4716 */
4717 void module_layout(struct module *mod,
4718 struct modversion_info *ver,
4719 struct kernel_param *kp,
4720 struct kernel_symbol *ks,
4721 struct tracepoint * const *tp)
4722 {
4723 }
4724 EXPORT_SYMBOL(module_layout);
4725 #endif