]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/module.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[mirror_ubuntu-artful-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/module.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61
62 #if 0
63 #define DEBUGP printk
64 #else
65 #define DEBUGP(fmt , a...)
66 #endif
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /* If this is set, the section belongs in the init part of the module */
73 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
74
75 /* List of modules, protected by module_mutex or preempt_disable
76 * (delete uses stop_machine/add uses RCU list operations). */
77 DEFINE_MUTEX(module_mutex);
78 EXPORT_SYMBOL_GPL(module_mutex);
79 static LIST_HEAD(modules);
80 #ifdef CONFIG_KGDB_KDB
81 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
82 #endif /* CONFIG_KGDB_KDB */
83
84
85 /* Block module loading/unloading? */
86 int modules_disabled = 0;
87
88 /* Waiting for a module to finish initializing? */
89 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
90
91 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
92
93 /* Bounds of module allocation, for speeding __module_address */
94 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
95
96 int register_module_notifier(struct notifier_block * nb)
97 {
98 return blocking_notifier_chain_register(&module_notify_list, nb);
99 }
100 EXPORT_SYMBOL(register_module_notifier);
101
102 int unregister_module_notifier(struct notifier_block * nb)
103 {
104 return blocking_notifier_chain_unregister(&module_notify_list, nb);
105 }
106 EXPORT_SYMBOL(unregister_module_notifier);
107
108 /* We require a truly strong try_module_get(): 0 means failure due to
109 ongoing or failed initialization etc. */
110 static inline int strong_try_module_get(struct module *mod)
111 {
112 if (mod && mod->state == MODULE_STATE_COMING)
113 return -EBUSY;
114 if (try_module_get(mod))
115 return 0;
116 else
117 return -ENOENT;
118 }
119
120 static inline void add_taint_module(struct module *mod, unsigned flag)
121 {
122 add_taint(flag);
123 mod->taints |= (1U << flag);
124 }
125
126 /*
127 * A thread that wants to hold a reference to a module only while it
128 * is running can call this to safely exit. nfsd and lockd use this.
129 */
130 void __module_put_and_exit(struct module *mod, long code)
131 {
132 module_put(mod);
133 do_exit(code);
134 }
135 EXPORT_SYMBOL(__module_put_and_exit);
136
137 /* Find a module section: 0 means not found. */
138 static unsigned int find_sec(Elf_Ehdr *hdr,
139 Elf_Shdr *sechdrs,
140 const char *secstrings,
141 const char *name)
142 {
143 unsigned int i;
144
145 for (i = 1; i < hdr->e_shnum; i++)
146 /* Alloc bit cleared means "ignore it." */
147 if ((sechdrs[i].sh_flags & SHF_ALLOC)
148 && strcmp(secstrings+sechdrs[i].sh_name, name) == 0)
149 return i;
150 return 0;
151 }
152
153 /* Find a module section, or NULL. */
154 static void *section_addr(Elf_Ehdr *hdr, Elf_Shdr *shdrs,
155 const char *secstrings, const char *name)
156 {
157 /* Section 0 has sh_addr 0. */
158 return (void *)shdrs[find_sec(hdr, shdrs, secstrings, name)].sh_addr;
159 }
160
161 /* Find a module section, or NULL. Fill in number of "objects" in section. */
162 static void *section_objs(Elf_Ehdr *hdr,
163 Elf_Shdr *sechdrs,
164 const char *secstrings,
165 const char *name,
166 size_t object_size,
167 unsigned int *num)
168 {
169 unsigned int sec = find_sec(hdr, sechdrs, secstrings, name);
170
171 /* Section 0 has sh_addr 0 and sh_size 0. */
172 *num = sechdrs[sec].sh_size / object_size;
173 return (void *)sechdrs[sec].sh_addr;
174 }
175
176 /* Provided by the linker */
177 extern const struct kernel_symbol __start___ksymtab[];
178 extern const struct kernel_symbol __stop___ksymtab[];
179 extern const struct kernel_symbol __start___ksymtab_gpl[];
180 extern const struct kernel_symbol __stop___ksymtab_gpl[];
181 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
182 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
183 extern const unsigned long __start___kcrctab[];
184 extern const unsigned long __start___kcrctab_gpl[];
185 extern const unsigned long __start___kcrctab_gpl_future[];
186 #ifdef CONFIG_UNUSED_SYMBOLS
187 extern const struct kernel_symbol __start___ksymtab_unused[];
188 extern const struct kernel_symbol __stop___ksymtab_unused[];
189 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
190 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
191 extern const unsigned long __start___kcrctab_unused[];
192 extern const unsigned long __start___kcrctab_unused_gpl[];
193 #endif
194
195 #ifndef CONFIG_MODVERSIONS
196 #define symversion(base, idx) NULL
197 #else
198 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
199 #endif
200
201 static bool each_symbol_in_section(const struct symsearch *arr,
202 unsigned int arrsize,
203 struct module *owner,
204 bool (*fn)(const struct symsearch *syms,
205 struct module *owner,
206 unsigned int symnum, void *data),
207 void *data)
208 {
209 unsigned int i, j;
210
211 for (j = 0; j < arrsize; j++) {
212 for (i = 0; i < arr[j].stop - arr[j].start; i++)
213 if (fn(&arr[j], owner, i, data))
214 return true;
215 }
216
217 return false;
218 }
219
220 /* Returns true as soon as fn returns true, otherwise false. */
221 bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
222 unsigned int symnum, void *data), void *data)
223 {
224 struct module *mod;
225 const struct symsearch arr[] = {
226 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
227 NOT_GPL_ONLY, false },
228 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
229 __start___kcrctab_gpl,
230 GPL_ONLY, false },
231 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
232 __start___kcrctab_gpl_future,
233 WILL_BE_GPL_ONLY, false },
234 #ifdef CONFIG_UNUSED_SYMBOLS
235 { __start___ksymtab_unused, __stop___ksymtab_unused,
236 __start___kcrctab_unused,
237 NOT_GPL_ONLY, true },
238 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
239 __start___kcrctab_unused_gpl,
240 GPL_ONLY, true },
241 #endif
242 };
243
244 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
245 return true;
246
247 list_for_each_entry_rcu(mod, &modules, list) {
248 struct symsearch arr[] = {
249 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
250 NOT_GPL_ONLY, false },
251 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
252 mod->gpl_crcs,
253 GPL_ONLY, false },
254 { mod->gpl_future_syms,
255 mod->gpl_future_syms + mod->num_gpl_future_syms,
256 mod->gpl_future_crcs,
257 WILL_BE_GPL_ONLY, false },
258 #ifdef CONFIG_UNUSED_SYMBOLS
259 { mod->unused_syms,
260 mod->unused_syms + mod->num_unused_syms,
261 mod->unused_crcs,
262 NOT_GPL_ONLY, true },
263 { mod->unused_gpl_syms,
264 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
265 mod->unused_gpl_crcs,
266 GPL_ONLY, true },
267 #endif
268 };
269
270 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
271 return true;
272 }
273 return false;
274 }
275 EXPORT_SYMBOL_GPL(each_symbol);
276
277 struct find_symbol_arg {
278 /* Input */
279 const char *name;
280 bool gplok;
281 bool warn;
282
283 /* Output */
284 struct module *owner;
285 const unsigned long *crc;
286 const struct kernel_symbol *sym;
287 };
288
289 static bool find_symbol_in_section(const struct symsearch *syms,
290 struct module *owner,
291 unsigned int symnum, void *data)
292 {
293 struct find_symbol_arg *fsa = data;
294
295 if (strcmp(syms->start[symnum].name, fsa->name) != 0)
296 return false;
297
298 if (!fsa->gplok) {
299 if (syms->licence == GPL_ONLY)
300 return false;
301 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
302 printk(KERN_WARNING "Symbol %s is being used "
303 "by a non-GPL module, which will not "
304 "be allowed in the future\n", fsa->name);
305 printk(KERN_WARNING "Please see the file "
306 "Documentation/feature-removal-schedule.txt "
307 "in the kernel source tree for more details.\n");
308 }
309 }
310
311 #ifdef CONFIG_UNUSED_SYMBOLS
312 if (syms->unused && fsa->warn) {
313 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
314 "however this module is using it.\n", fsa->name);
315 printk(KERN_WARNING
316 "This symbol will go away in the future.\n");
317 printk(KERN_WARNING
318 "Please evalute if this is the right api to use and if "
319 "it really is, submit a report the linux kernel "
320 "mailinglist together with submitting your code for "
321 "inclusion.\n");
322 }
323 #endif
324
325 fsa->owner = owner;
326 fsa->crc = symversion(syms->crcs, symnum);
327 fsa->sym = &syms->start[symnum];
328 return true;
329 }
330
331 /* Find a symbol and return it, along with, (optional) crc and
332 * (optional) module which owns it */
333 const struct kernel_symbol *find_symbol(const char *name,
334 struct module **owner,
335 const unsigned long **crc,
336 bool gplok,
337 bool warn)
338 {
339 struct find_symbol_arg fsa;
340
341 fsa.name = name;
342 fsa.gplok = gplok;
343 fsa.warn = warn;
344
345 if (each_symbol(find_symbol_in_section, &fsa)) {
346 if (owner)
347 *owner = fsa.owner;
348 if (crc)
349 *crc = fsa.crc;
350 return fsa.sym;
351 }
352
353 DEBUGP("Failed to find symbol %s\n", name);
354 return NULL;
355 }
356 EXPORT_SYMBOL_GPL(find_symbol);
357
358 /* Search for module by name: must hold module_mutex. */
359 struct module *find_module(const char *name)
360 {
361 struct module *mod;
362
363 list_for_each_entry(mod, &modules, list) {
364 if (strcmp(mod->name, name) == 0)
365 return mod;
366 }
367 return NULL;
368 }
369 EXPORT_SYMBOL_GPL(find_module);
370
371 #ifdef CONFIG_SMP
372
373 static inline void __percpu *mod_percpu(struct module *mod)
374 {
375 return mod->percpu;
376 }
377
378 static int percpu_modalloc(struct module *mod,
379 unsigned long size, unsigned long align)
380 {
381 if (align > PAGE_SIZE) {
382 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
383 mod->name, align, PAGE_SIZE);
384 align = PAGE_SIZE;
385 }
386
387 mod->percpu = __alloc_reserved_percpu(size, align);
388 if (!mod->percpu) {
389 printk(KERN_WARNING
390 "Could not allocate %lu bytes percpu data\n", size);
391 return -ENOMEM;
392 }
393 mod->percpu_size = size;
394 return 0;
395 }
396
397 static void percpu_modfree(struct module *mod)
398 {
399 free_percpu(mod->percpu);
400 }
401
402 static unsigned int find_pcpusec(Elf_Ehdr *hdr,
403 Elf_Shdr *sechdrs,
404 const char *secstrings)
405 {
406 return find_sec(hdr, sechdrs, secstrings, ".data.percpu");
407 }
408
409 static void percpu_modcopy(struct module *mod,
410 const void *from, unsigned long size)
411 {
412 int cpu;
413
414 for_each_possible_cpu(cpu)
415 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
416 }
417
418 /**
419 * is_module_percpu_address - test whether address is from module static percpu
420 * @addr: address to test
421 *
422 * Test whether @addr belongs to module static percpu area.
423 *
424 * RETURNS:
425 * %true if @addr is from module static percpu area
426 */
427 bool is_module_percpu_address(unsigned long addr)
428 {
429 struct module *mod;
430 unsigned int cpu;
431
432 preempt_disable();
433
434 list_for_each_entry_rcu(mod, &modules, list) {
435 if (!mod->percpu_size)
436 continue;
437 for_each_possible_cpu(cpu) {
438 void *start = per_cpu_ptr(mod->percpu, cpu);
439
440 if ((void *)addr >= start &&
441 (void *)addr < start + mod->percpu_size) {
442 preempt_enable();
443 return true;
444 }
445 }
446 }
447
448 preempt_enable();
449 return false;
450 }
451
452 #else /* ... !CONFIG_SMP */
453
454 static inline void __percpu *mod_percpu(struct module *mod)
455 {
456 return NULL;
457 }
458 static inline int percpu_modalloc(struct module *mod,
459 unsigned long size, unsigned long align)
460 {
461 return -ENOMEM;
462 }
463 static inline void percpu_modfree(struct module *mod)
464 {
465 }
466 static inline unsigned int find_pcpusec(Elf_Ehdr *hdr,
467 Elf_Shdr *sechdrs,
468 const char *secstrings)
469 {
470 return 0;
471 }
472 static inline void percpu_modcopy(struct module *mod,
473 const void *from, unsigned long size)
474 {
475 /* pcpusec should be 0, and size of that section should be 0. */
476 BUG_ON(size != 0);
477 }
478 bool is_module_percpu_address(unsigned long addr)
479 {
480 return false;
481 }
482
483 #endif /* CONFIG_SMP */
484
485 #define MODINFO_ATTR(field) \
486 static void setup_modinfo_##field(struct module *mod, const char *s) \
487 { \
488 mod->field = kstrdup(s, GFP_KERNEL); \
489 } \
490 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
491 struct module *mod, char *buffer) \
492 { \
493 return sprintf(buffer, "%s\n", mod->field); \
494 } \
495 static int modinfo_##field##_exists(struct module *mod) \
496 { \
497 return mod->field != NULL; \
498 } \
499 static void free_modinfo_##field(struct module *mod) \
500 { \
501 kfree(mod->field); \
502 mod->field = NULL; \
503 } \
504 static struct module_attribute modinfo_##field = { \
505 .attr = { .name = __stringify(field), .mode = 0444 }, \
506 .show = show_modinfo_##field, \
507 .setup = setup_modinfo_##field, \
508 .test = modinfo_##field##_exists, \
509 .free = free_modinfo_##field, \
510 };
511
512 MODINFO_ATTR(version);
513 MODINFO_ATTR(srcversion);
514
515 static char last_unloaded_module[MODULE_NAME_LEN+1];
516
517 #ifdef CONFIG_MODULE_UNLOAD
518
519 EXPORT_TRACEPOINT_SYMBOL(module_get);
520
521 /* Init the unload section of the module. */
522 static void module_unload_init(struct module *mod)
523 {
524 int cpu;
525
526 INIT_LIST_HEAD(&mod->modules_which_use_me);
527 for_each_possible_cpu(cpu) {
528 per_cpu_ptr(mod->refptr, cpu)->incs = 0;
529 per_cpu_ptr(mod->refptr, cpu)->decs = 0;
530 }
531
532 /* Hold reference count during initialization. */
533 __this_cpu_write(mod->refptr->incs, 1);
534 /* Backwards compatibility macros put refcount during init. */
535 mod->waiter = current;
536 }
537
538 /* modules using other modules */
539 struct module_use
540 {
541 struct list_head list;
542 struct module *module_which_uses;
543 };
544
545 /* Does a already use b? */
546 static int already_uses(struct module *a, struct module *b)
547 {
548 struct module_use *use;
549
550 list_for_each_entry(use, &b->modules_which_use_me, list) {
551 if (use->module_which_uses == a) {
552 DEBUGP("%s uses %s!\n", a->name, b->name);
553 return 1;
554 }
555 }
556 DEBUGP("%s does not use %s!\n", a->name, b->name);
557 return 0;
558 }
559
560 /* Module a uses b */
561 int use_module(struct module *a, struct module *b)
562 {
563 struct module_use *use;
564 int no_warn, err;
565
566 if (b == NULL || already_uses(a, b))
567 return 0;
568
569 /* If we're interrupted or time out, we fail. */
570 err = strong_try_module_get(b);
571 if (err)
572 return err;
573
574 DEBUGP("Allocating new usage for %s.\n", a->name);
575 use = kmalloc(sizeof(*use), GFP_ATOMIC);
576 if (!use) {
577 printk("%s: out of memory loading\n", a->name);
578 module_put(b);
579 return -ENOMEM;
580 }
581
582 use->module_which_uses = a;
583 list_add(&use->list, &b->modules_which_use_me);
584 no_warn = sysfs_create_link(b->holders_dir, &a->mkobj.kobj, a->name);
585 return 0;
586 }
587 EXPORT_SYMBOL_GPL(use_module);
588
589 /* Clear the unload stuff of the module. */
590 static void module_unload_free(struct module *mod)
591 {
592 struct module *i;
593
594 list_for_each_entry(i, &modules, list) {
595 struct module_use *use;
596
597 list_for_each_entry(use, &i->modules_which_use_me, list) {
598 if (use->module_which_uses == mod) {
599 DEBUGP("%s unusing %s\n", mod->name, i->name);
600 module_put(i);
601 list_del(&use->list);
602 kfree(use);
603 sysfs_remove_link(i->holders_dir, mod->name);
604 /* There can be at most one match. */
605 break;
606 }
607 }
608 }
609 }
610
611 #ifdef CONFIG_MODULE_FORCE_UNLOAD
612 static inline int try_force_unload(unsigned int flags)
613 {
614 int ret = (flags & O_TRUNC);
615 if (ret)
616 add_taint(TAINT_FORCED_RMMOD);
617 return ret;
618 }
619 #else
620 static inline int try_force_unload(unsigned int flags)
621 {
622 return 0;
623 }
624 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
625
626 struct stopref
627 {
628 struct module *mod;
629 int flags;
630 int *forced;
631 };
632
633 /* Whole machine is stopped with interrupts off when this runs. */
634 static int __try_stop_module(void *_sref)
635 {
636 struct stopref *sref = _sref;
637
638 /* If it's not unused, quit unless we're forcing. */
639 if (module_refcount(sref->mod) != 0) {
640 if (!(*sref->forced = try_force_unload(sref->flags)))
641 return -EWOULDBLOCK;
642 }
643
644 /* Mark it as dying. */
645 sref->mod->state = MODULE_STATE_GOING;
646 return 0;
647 }
648
649 static int try_stop_module(struct module *mod, int flags, int *forced)
650 {
651 if (flags & O_NONBLOCK) {
652 struct stopref sref = { mod, flags, forced };
653
654 return stop_machine(__try_stop_module, &sref, NULL);
655 } else {
656 /* We don't need to stop the machine for this. */
657 mod->state = MODULE_STATE_GOING;
658 synchronize_sched();
659 return 0;
660 }
661 }
662
663 unsigned int module_refcount(struct module *mod)
664 {
665 unsigned int incs = 0, decs = 0;
666 int cpu;
667
668 for_each_possible_cpu(cpu)
669 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
670 /*
671 * ensure the incs are added up after the decs.
672 * module_put ensures incs are visible before decs with smp_wmb.
673 *
674 * This 2-count scheme avoids the situation where the refcount
675 * for CPU0 is read, then CPU0 increments the module refcount,
676 * then CPU1 drops that refcount, then the refcount for CPU1 is
677 * read. We would record a decrement but not its corresponding
678 * increment so we would see a low count (disaster).
679 *
680 * Rare situation? But module_refcount can be preempted, and we
681 * might be tallying up 4096+ CPUs. So it is not impossible.
682 */
683 smp_rmb();
684 for_each_possible_cpu(cpu)
685 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
686 return incs - decs;
687 }
688 EXPORT_SYMBOL(module_refcount);
689
690 /* This exists whether we can unload or not */
691 static void free_module(struct module *mod);
692
693 static void wait_for_zero_refcount(struct module *mod)
694 {
695 /* Since we might sleep for some time, release the mutex first */
696 mutex_unlock(&module_mutex);
697 for (;;) {
698 DEBUGP("Looking at refcount...\n");
699 set_current_state(TASK_UNINTERRUPTIBLE);
700 if (module_refcount(mod) == 0)
701 break;
702 schedule();
703 }
704 current->state = TASK_RUNNING;
705 mutex_lock(&module_mutex);
706 }
707
708 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
709 unsigned int, flags)
710 {
711 struct module *mod;
712 char name[MODULE_NAME_LEN];
713 int ret, forced = 0;
714
715 if (!capable(CAP_SYS_MODULE) || modules_disabled)
716 return -EPERM;
717
718 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
719 return -EFAULT;
720 name[MODULE_NAME_LEN-1] = '\0';
721
722 if (mutex_lock_interruptible(&module_mutex) != 0)
723 return -EINTR;
724
725 mod = find_module(name);
726 if (!mod) {
727 ret = -ENOENT;
728 goto out;
729 }
730
731 if (!list_empty(&mod->modules_which_use_me)) {
732 /* Other modules depend on us: get rid of them first. */
733 ret = -EWOULDBLOCK;
734 goto out;
735 }
736
737 /* Doing init or already dying? */
738 if (mod->state != MODULE_STATE_LIVE) {
739 /* FIXME: if (force), slam module count and wake up
740 waiter --RR */
741 DEBUGP("%s already dying\n", mod->name);
742 ret = -EBUSY;
743 goto out;
744 }
745
746 /* If it has an init func, it must have an exit func to unload */
747 if (mod->init && !mod->exit) {
748 forced = try_force_unload(flags);
749 if (!forced) {
750 /* This module can't be removed */
751 ret = -EBUSY;
752 goto out;
753 }
754 }
755
756 /* Set this up before setting mod->state */
757 mod->waiter = current;
758
759 /* Stop the machine so refcounts can't move and disable module. */
760 ret = try_stop_module(mod, flags, &forced);
761 if (ret != 0)
762 goto out;
763
764 /* Never wait if forced. */
765 if (!forced && module_refcount(mod) != 0)
766 wait_for_zero_refcount(mod);
767
768 mutex_unlock(&module_mutex);
769 /* Final destruction now noone is using it. */
770 if (mod->exit != NULL)
771 mod->exit();
772 blocking_notifier_call_chain(&module_notify_list,
773 MODULE_STATE_GOING, mod);
774 async_synchronize_full();
775 mutex_lock(&module_mutex);
776 /* Store the name of the last unloaded module for diagnostic purposes */
777 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
778 ddebug_remove_module(mod->name);
779 free_module(mod);
780
781 out:
782 mutex_unlock(&module_mutex);
783 return ret;
784 }
785
786 static inline void print_unload_info(struct seq_file *m, struct module *mod)
787 {
788 struct module_use *use;
789 int printed_something = 0;
790
791 seq_printf(m, " %u ", module_refcount(mod));
792
793 /* Always include a trailing , so userspace can differentiate
794 between this and the old multi-field proc format. */
795 list_for_each_entry(use, &mod->modules_which_use_me, list) {
796 printed_something = 1;
797 seq_printf(m, "%s,", use->module_which_uses->name);
798 }
799
800 if (mod->init != NULL && mod->exit == NULL) {
801 printed_something = 1;
802 seq_printf(m, "[permanent],");
803 }
804
805 if (!printed_something)
806 seq_printf(m, "-");
807 }
808
809 void __symbol_put(const char *symbol)
810 {
811 struct module *owner;
812
813 preempt_disable();
814 if (!find_symbol(symbol, &owner, NULL, true, false))
815 BUG();
816 module_put(owner);
817 preempt_enable();
818 }
819 EXPORT_SYMBOL(__symbol_put);
820
821 /* Note this assumes addr is a function, which it currently always is. */
822 void symbol_put_addr(void *addr)
823 {
824 struct module *modaddr;
825 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
826
827 if (core_kernel_text(a))
828 return;
829
830 /* module_text_address is safe here: we're supposed to have reference
831 * to module from symbol_get, so it can't go away. */
832 modaddr = __module_text_address(a);
833 BUG_ON(!modaddr);
834 module_put(modaddr);
835 }
836 EXPORT_SYMBOL_GPL(symbol_put_addr);
837
838 static ssize_t show_refcnt(struct module_attribute *mattr,
839 struct module *mod, char *buffer)
840 {
841 return sprintf(buffer, "%u\n", module_refcount(mod));
842 }
843
844 static struct module_attribute refcnt = {
845 .attr = { .name = "refcnt", .mode = 0444 },
846 .show = show_refcnt,
847 };
848
849 void module_put(struct module *module)
850 {
851 if (module) {
852 preempt_disable();
853 smp_wmb(); /* see comment in module_refcount */
854 __this_cpu_inc(module->refptr->decs);
855
856 trace_module_put(module, _RET_IP_);
857 /* Maybe they're waiting for us to drop reference? */
858 if (unlikely(!module_is_live(module)))
859 wake_up_process(module->waiter);
860 preempt_enable();
861 }
862 }
863 EXPORT_SYMBOL(module_put);
864
865 #else /* !CONFIG_MODULE_UNLOAD */
866 static inline void print_unload_info(struct seq_file *m, struct module *mod)
867 {
868 /* We don't know the usage count, or what modules are using. */
869 seq_printf(m, " - -");
870 }
871
872 static inline void module_unload_free(struct module *mod)
873 {
874 }
875
876 int use_module(struct module *a, struct module *b)
877 {
878 return strong_try_module_get(b);
879 }
880 EXPORT_SYMBOL_GPL(use_module);
881
882 static inline void module_unload_init(struct module *mod)
883 {
884 }
885 #endif /* CONFIG_MODULE_UNLOAD */
886
887 static ssize_t show_initstate(struct module_attribute *mattr,
888 struct module *mod, char *buffer)
889 {
890 const char *state = "unknown";
891
892 switch (mod->state) {
893 case MODULE_STATE_LIVE:
894 state = "live";
895 break;
896 case MODULE_STATE_COMING:
897 state = "coming";
898 break;
899 case MODULE_STATE_GOING:
900 state = "going";
901 break;
902 }
903 return sprintf(buffer, "%s\n", state);
904 }
905
906 static struct module_attribute initstate = {
907 .attr = { .name = "initstate", .mode = 0444 },
908 .show = show_initstate,
909 };
910
911 static struct module_attribute *modinfo_attrs[] = {
912 &modinfo_version,
913 &modinfo_srcversion,
914 &initstate,
915 #ifdef CONFIG_MODULE_UNLOAD
916 &refcnt,
917 #endif
918 NULL,
919 };
920
921 static const char vermagic[] = VERMAGIC_STRING;
922
923 static int try_to_force_load(struct module *mod, const char *reason)
924 {
925 #ifdef CONFIG_MODULE_FORCE_LOAD
926 if (!test_taint(TAINT_FORCED_MODULE))
927 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
928 mod->name, reason);
929 add_taint_module(mod, TAINT_FORCED_MODULE);
930 return 0;
931 #else
932 return -ENOEXEC;
933 #endif
934 }
935
936 #ifdef CONFIG_MODVERSIONS
937 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
938 static unsigned long maybe_relocated(unsigned long crc,
939 const struct module *crc_owner)
940 {
941 #ifdef ARCH_RELOCATES_KCRCTAB
942 if (crc_owner == NULL)
943 return crc - (unsigned long)reloc_start;
944 #endif
945 return crc;
946 }
947
948 static int check_version(Elf_Shdr *sechdrs,
949 unsigned int versindex,
950 const char *symname,
951 struct module *mod,
952 const unsigned long *crc,
953 const struct module *crc_owner)
954 {
955 unsigned int i, num_versions;
956 struct modversion_info *versions;
957
958 /* Exporting module didn't supply crcs? OK, we're already tainted. */
959 if (!crc)
960 return 1;
961
962 /* No versions at all? modprobe --force does this. */
963 if (versindex == 0)
964 return try_to_force_load(mod, symname) == 0;
965
966 versions = (void *) sechdrs[versindex].sh_addr;
967 num_versions = sechdrs[versindex].sh_size
968 / sizeof(struct modversion_info);
969
970 for (i = 0; i < num_versions; i++) {
971 if (strcmp(versions[i].name, symname) != 0)
972 continue;
973
974 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
975 return 1;
976 DEBUGP("Found checksum %lX vs module %lX\n",
977 maybe_relocated(*crc, crc_owner), versions[i].crc);
978 goto bad_version;
979 }
980
981 printk(KERN_WARNING "%s: no symbol version for %s\n",
982 mod->name, symname);
983 return 0;
984
985 bad_version:
986 printk("%s: disagrees about version of symbol %s\n",
987 mod->name, symname);
988 return 0;
989 }
990
991 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
992 unsigned int versindex,
993 struct module *mod)
994 {
995 const unsigned long *crc;
996
997 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
998 &crc, true, false))
999 BUG();
1000 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1001 NULL);
1002 }
1003
1004 /* First part is kernel version, which we ignore if module has crcs. */
1005 static inline int same_magic(const char *amagic, const char *bmagic,
1006 bool has_crcs)
1007 {
1008 if (has_crcs) {
1009 amagic += strcspn(amagic, " ");
1010 bmagic += strcspn(bmagic, " ");
1011 }
1012 return strcmp(amagic, bmagic) == 0;
1013 }
1014 #else
1015 static inline int check_version(Elf_Shdr *sechdrs,
1016 unsigned int versindex,
1017 const char *symname,
1018 struct module *mod,
1019 const unsigned long *crc,
1020 const struct module *crc_owner)
1021 {
1022 return 1;
1023 }
1024
1025 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1026 unsigned int versindex,
1027 struct module *mod)
1028 {
1029 return 1;
1030 }
1031
1032 static inline int same_magic(const char *amagic, const char *bmagic,
1033 bool has_crcs)
1034 {
1035 return strcmp(amagic, bmagic) == 0;
1036 }
1037 #endif /* CONFIG_MODVERSIONS */
1038
1039 /* Resolve a symbol for this module. I.e. if we find one, record usage.
1040 Must be holding module_mutex. */
1041 static const struct kernel_symbol *resolve_symbol(Elf_Shdr *sechdrs,
1042 unsigned int versindex,
1043 const char *name,
1044 struct module *mod)
1045 {
1046 struct module *owner;
1047 const struct kernel_symbol *sym;
1048 const unsigned long *crc;
1049 DEFINE_WAIT(wait);
1050 int err;
1051 long timeleft = 30 * HZ;
1052
1053 again:
1054 sym = find_symbol(name, &owner, &crc,
1055 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1056 if (!sym)
1057 return NULL;
1058
1059 if (!check_version(sechdrs, versindex, name, mod, crc, owner))
1060 return NULL;
1061
1062 prepare_to_wait(&module_wq, &wait, TASK_INTERRUPTIBLE);
1063 err = use_module(mod, owner);
1064 if (likely(!err) || err != -EBUSY || signal_pending(current)) {
1065 finish_wait(&module_wq, &wait);
1066 return err ? NULL : sym;
1067 }
1068
1069 /* Module is still loading. Drop lock and wait. */
1070 mutex_unlock(&module_mutex);
1071 timeleft = schedule_timeout(timeleft);
1072 mutex_lock(&module_mutex);
1073 finish_wait(&module_wq, &wait);
1074
1075 /* Module might be gone entirely, or replaced. Re-lookup. */
1076 if (timeleft)
1077 goto again;
1078
1079 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1080 mod->name, owner->name);
1081 return NULL;
1082 }
1083
1084 /*
1085 * /sys/module/foo/sections stuff
1086 * J. Corbet <corbet@lwn.net>
1087 */
1088 #if defined(CONFIG_KALLSYMS) && defined(CONFIG_SYSFS)
1089
1090 static inline bool sect_empty(const Elf_Shdr *sect)
1091 {
1092 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1093 }
1094
1095 struct module_sect_attr
1096 {
1097 struct module_attribute mattr;
1098 char *name;
1099 unsigned long address;
1100 };
1101
1102 struct module_sect_attrs
1103 {
1104 struct attribute_group grp;
1105 unsigned int nsections;
1106 struct module_sect_attr attrs[0];
1107 };
1108
1109 static ssize_t module_sect_show(struct module_attribute *mattr,
1110 struct module *mod, char *buf)
1111 {
1112 struct module_sect_attr *sattr =
1113 container_of(mattr, struct module_sect_attr, mattr);
1114 return sprintf(buf, "0x%lx\n", sattr->address);
1115 }
1116
1117 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1118 {
1119 unsigned int section;
1120
1121 for (section = 0; section < sect_attrs->nsections; section++)
1122 kfree(sect_attrs->attrs[section].name);
1123 kfree(sect_attrs);
1124 }
1125
1126 static void add_sect_attrs(struct module *mod, unsigned int nsect,
1127 char *secstrings, Elf_Shdr *sechdrs)
1128 {
1129 unsigned int nloaded = 0, i, size[2];
1130 struct module_sect_attrs *sect_attrs;
1131 struct module_sect_attr *sattr;
1132 struct attribute **gattr;
1133
1134 /* Count loaded sections and allocate structures */
1135 for (i = 0; i < nsect; i++)
1136 if (!sect_empty(&sechdrs[i]))
1137 nloaded++;
1138 size[0] = ALIGN(sizeof(*sect_attrs)
1139 + nloaded * sizeof(sect_attrs->attrs[0]),
1140 sizeof(sect_attrs->grp.attrs[0]));
1141 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1142 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1143 if (sect_attrs == NULL)
1144 return;
1145
1146 /* Setup section attributes. */
1147 sect_attrs->grp.name = "sections";
1148 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1149
1150 sect_attrs->nsections = 0;
1151 sattr = &sect_attrs->attrs[0];
1152 gattr = &sect_attrs->grp.attrs[0];
1153 for (i = 0; i < nsect; i++) {
1154 if (sect_empty(&sechdrs[i]))
1155 continue;
1156 sattr->address = sechdrs[i].sh_addr;
1157 sattr->name = kstrdup(secstrings + sechdrs[i].sh_name,
1158 GFP_KERNEL);
1159 if (sattr->name == NULL)
1160 goto out;
1161 sect_attrs->nsections++;
1162 sysfs_attr_init(&sattr->mattr.attr);
1163 sattr->mattr.show = module_sect_show;
1164 sattr->mattr.store = NULL;
1165 sattr->mattr.attr.name = sattr->name;
1166 sattr->mattr.attr.mode = S_IRUGO;
1167 *(gattr++) = &(sattr++)->mattr.attr;
1168 }
1169 *gattr = NULL;
1170
1171 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1172 goto out;
1173
1174 mod->sect_attrs = sect_attrs;
1175 return;
1176 out:
1177 free_sect_attrs(sect_attrs);
1178 }
1179
1180 static void remove_sect_attrs(struct module *mod)
1181 {
1182 if (mod->sect_attrs) {
1183 sysfs_remove_group(&mod->mkobj.kobj,
1184 &mod->sect_attrs->grp);
1185 /* We are positive that no one is using any sect attrs
1186 * at this point. Deallocate immediately. */
1187 free_sect_attrs(mod->sect_attrs);
1188 mod->sect_attrs = NULL;
1189 }
1190 }
1191
1192 /*
1193 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1194 */
1195
1196 struct module_notes_attrs {
1197 struct kobject *dir;
1198 unsigned int notes;
1199 struct bin_attribute attrs[0];
1200 };
1201
1202 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1203 struct bin_attribute *bin_attr,
1204 char *buf, loff_t pos, size_t count)
1205 {
1206 /*
1207 * The caller checked the pos and count against our size.
1208 */
1209 memcpy(buf, bin_attr->private + pos, count);
1210 return count;
1211 }
1212
1213 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1214 unsigned int i)
1215 {
1216 if (notes_attrs->dir) {
1217 while (i-- > 0)
1218 sysfs_remove_bin_file(notes_attrs->dir,
1219 &notes_attrs->attrs[i]);
1220 kobject_put(notes_attrs->dir);
1221 }
1222 kfree(notes_attrs);
1223 }
1224
1225 static void add_notes_attrs(struct module *mod, unsigned int nsect,
1226 char *secstrings, Elf_Shdr *sechdrs)
1227 {
1228 unsigned int notes, loaded, i;
1229 struct module_notes_attrs *notes_attrs;
1230 struct bin_attribute *nattr;
1231
1232 /* failed to create section attributes, so can't create notes */
1233 if (!mod->sect_attrs)
1234 return;
1235
1236 /* Count notes sections and allocate structures. */
1237 notes = 0;
1238 for (i = 0; i < nsect; i++)
1239 if (!sect_empty(&sechdrs[i]) &&
1240 (sechdrs[i].sh_type == SHT_NOTE))
1241 ++notes;
1242
1243 if (notes == 0)
1244 return;
1245
1246 notes_attrs = kzalloc(sizeof(*notes_attrs)
1247 + notes * sizeof(notes_attrs->attrs[0]),
1248 GFP_KERNEL);
1249 if (notes_attrs == NULL)
1250 return;
1251
1252 notes_attrs->notes = notes;
1253 nattr = &notes_attrs->attrs[0];
1254 for (loaded = i = 0; i < nsect; ++i) {
1255 if (sect_empty(&sechdrs[i]))
1256 continue;
1257 if (sechdrs[i].sh_type == SHT_NOTE) {
1258 sysfs_bin_attr_init(nattr);
1259 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1260 nattr->attr.mode = S_IRUGO;
1261 nattr->size = sechdrs[i].sh_size;
1262 nattr->private = (void *) sechdrs[i].sh_addr;
1263 nattr->read = module_notes_read;
1264 ++nattr;
1265 }
1266 ++loaded;
1267 }
1268
1269 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1270 if (!notes_attrs->dir)
1271 goto out;
1272
1273 for (i = 0; i < notes; ++i)
1274 if (sysfs_create_bin_file(notes_attrs->dir,
1275 &notes_attrs->attrs[i]))
1276 goto out;
1277
1278 mod->notes_attrs = notes_attrs;
1279 return;
1280
1281 out:
1282 free_notes_attrs(notes_attrs, i);
1283 }
1284
1285 static void remove_notes_attrs(struct module *mod)
1286 {
1287 if (mod->notes_attrs)
1288 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1289 }
1290
1291 #else
1292
1293 static inline void add_sect_attrs(struct module *mod, unsigned int nsect,
1294 char *sectstrings, Elf_Shdr *sechdrs)
1295 {
1296 }
1297
1298 static inline void remove_sect_attrs(struct module *mod)
1299 {
1300 }
1301
1302 static inline void add_notes_attrs(struct module *mod, unsigned int nsect,
1303 char *sectstrings, Elf_Shdr *sechdrs)
1304 {
1305 }
1306
1307 static inline void remove_notes_attrs(struct module *mod)
1308 {
1309 }
1310 #endif
1311
1312 #ifdef CONFIG_SYSFS
1313 int module_add_modinfo_attrs(struct module *mod)
1314 {
1315 struct module_attribute *attr;
1316 struct module_attribute *temp_attr;
1317 int error = 0;
1318 int i;
1319
1320 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1321 (ARRAY_SIZE(modinfo_attrs) + 1)),
1322 GFP_KERNEL);
1323 if (!mod->modinfo_attrs)
1324 return -ENOMEM;
1325
1326 temp_attr = mod->modinfo_attrs;
1327 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1328 if (!attr->test ||
1329 (attr->test && attr->test(mod))) {
1330 memcpy(temp_attr, attr, sizeof(*temp_attr));
1331 sysfs_attr_init(&temp_attr->attr);
1332 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1333 ++temp_attr;
1334 }
1335 }
1336 return error;
1337 }
1338
1339 void module_remove_modinfo_attrs(struct module *mod)
1340 {
1341 struct module_attribute *attr;
1342 int i;
1343
1344 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1345 /* pick a field to test for end of list */
1346 if (!attr->attr.name)
1347 break;
1348 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1349 if (attr->free)
1350 attr->free(mod);
1351 }
1352 kfree(mod->modinfo_attrs);
1353 }
1354
1355 int mod_sysfs_init(struct module *mod)
1356 {
1357 int err;
1358 struct kobject *kobj;
1359
1360 if (!module_sysfs_initialized) {
1361 printk(KERN_ERR "%s: module sysfs not initialized\n",
1362 mod->name);
1363 err = -EINVAL;
1364 goto out;
1365 }
1366
1367 kobj = kset_find_obj(module_kset, mod->name);
1368 if (kobj) {
1369 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1370 kobject_put(kobj);
1371 err = -EINVAL;
1372 goto out;
1373 }
1374
1375 mod->mkobj.mod = mod;
1376
1377 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1378 mod->mkobj.kobj.kset = module_kset;
1379 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1380 "%s", mod->name);
1381 if (err)
1382 kobject_put(&mod->mkobj.kobj);
1383
1384 /* delay uevent until full sysfs population */
1385 out:
1386 return err;
1387 }
1388
1389 int mod_sysfs_setup(struct module *mod,
1390 struct kernel_param *kparam,
1391 unsigned int num_params)
1392 {
1393 int err;
1394
1395 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1396 if (!mod->holders_dir) {
1397 err = -ENOMEM;
1398 goto out_unreg;
1399 }
1400
1401 err = module_param_sysfs_setup(mod, kparam, num_params);
1402 if (err)
1403 goto out_unreg_holders;
1404
1405 err = module_add_modinfo_attrs(mod);
1406 if (err)
1407 goto out_unreg_param;
1408
1409 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1410 return 0;
1411
1412 out_unreg_param:
1413 module_param_sysfs_remove(mod);
1414 out_unreg_holders:
1415 kobject_put(mod->holders_dir);
1416 out_unreg:
1417 kobject_put(&mod->mkobj.kobj);
1418 return err;
1419 }
1420
1421 static void mod_sysfs_fini(struct module *mod)
1422 {
1423 kobject_put(&mod->mkobj.kobj);
1424 }
1425
1426 #else /* CONFIG_SYSFS */
1427
1428 static void mod_sysfs_fini(struct module *mod)
1429 {
1430 }
1431
1432 #endif /* CONFIG_SYSFS */
1433
1434 static void mod_kobject_remove(struct module *mod)
1435 {
1436 module_remove_modinfo_attrs(mod);
1437 module_param_sysfs_remove(mod);
1438 kobject_put(mod->mkobj.drivers_dir);
1439 kobject_put(mod->holders_dir);
1440 mod_sysfs_fini(mod);
1441 }
1442
1443 /*
1444 * unlink the module with the whole machine is stopped with interrupts off
1445 * - this defends against kallsyms not taking locks
1446 */
1447 static int __unlink_module(void *_mod)
1448 {
1449 struct module *mod = _mod;
1450 list_del(&mod->list);
1451 return 0;
1452 }
1453
1454 /* Free a module, remove from lists, etc (must hold module_mutex). */
1455 static void free_module(struct module *mod)
1456 {
1457 trace_module_free(mod);
1458
1459 /* Delete from various lists */
1460 stop_machine(__unlink_module, mod, NULL);
1461 remove_notes_attrs(mod);
1462 remove_sect_attrs(mod);
1463 mod_kobject_remove(mod);
1464
1465 /* Arch-specific cleanup. */
1466 module_arch_cleanup(mod);
1467
1468 /* Module unload stuff */
1469 module_unload_free(mod);
1470
1471 /* Free any allocated parameters. */
1472 destroy_params(mod->kp, mod->num_kp);
1473
1474 /* This may be NULL, but that's OK */
1475 module_free(mod, mod->module_init);
1476 kfree(mod->args);
1477 percpu_modfree(mod);
1478 #if defined(CONFIG_MODULE_UNLOAD)
1479 if (mod->refptr)
1480 free_percpu(mod->refptr);
1481 #endif
1482 /* Free lock-classes: */
1483 lockdep_free_key_range(mod->module_core, mod->core_size);
1484
1485 /* Finally, free the core (containing the module structure) */
1486 module_free(mod, mod->module_core);
1487
1488 #ifdef CONFIG_MPU
1489 update_protections(current->mm);
1490 #endif
1491 }
1492
1493 void *__symbol_get(const char *symbol)
1494 {
1495 struct module *owner;
1496 const struct kernel_symbol *sym;
1497
1498 preempt_disable();
1499 sym = find_symbol(symbol, &owner, NULL, true, true);
1500 if (sym && strong_try_module_get(owner))
1501 sym = NULL;
1502 preempt_enable();
1503
1504 return sym ? (void *)sym->value : NULL;
1505 }
1506 EXPORT_SYMBOL_GPL(__symbol_get);
1507
1508 /*
1509 * Ensure that an exported symbol [global namespace] does not already exist
1510 * in the kernel or in some other module's exported symbol table.
1511 */
1512 static int verify_export_symbols(struct module *mod)
1513 {
1514 unsigned int i;
1515 struct module *owner;
1516 const struct kernel_symbol *s;
1517 struct {
1518 const struct kernel_symbol *sym;
1519 unsigned int num;
1520 } arr[] = {
1521 { mod->syms, mod->num_syms },
1522 { mod->gpl_syms, mod->num_gpl_syms },
1523 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1524 #ifdef CONFIG_UNUSED_SYMBOLS
1525 { mod->unused_syms, mod->num_unused_syms },
1526 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1527 #endif
1528 };
1529
1530 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1531 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1532 if (find_symbol(s->name, &owner, NULL, true, false)) {
1533 printk(KERN_ERR
1534 "%s: exports duplicate symbol %s"
1535 " (owned by %s)\n",
1536 mod->name, s->name, module_name(owner));
1537 return -ENOEXEC;
1538 }
1539 }
1540 }
1541 return 0;
1542 }
1543
1544 /* Change all symbols so that st_value encodes the pointer directly. */
1545 static int simplify_symbols(Elf_Shdr *sechdrs,
1546 unsigned int symindex,
1547 const char *strtab,
1548 unsigned int versindex,
1549 unsigned int pcpuindex,
1550 struct module *mod)
1551 {
1552 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
1553 unsigned long secbase;
1554 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1555 int ret = 0;
1556 const struct kernel_symbol *ksym;
1557
1558 for (i = 1; i < n; i++) {
1559 switch (sym[i].st_shndx) {
1560 case SHN_COMMON:
1561 /* We compiled with -fno-common. These are not
1562 supposed to happen. */
1563 DEBUGP("Common symbol: %s\n", strtab + sym[i].st_name);
1564 printk("%s: please compile with -fno-common\n",
1565 mod->name);
1566 ret = -ENOEXEC;
1567 break;
1568
1569 case SHN_ABS:
1570 /* Don't need to do anything */
1571 DEBUGP("Absolute symbol: 0x%08lx\n",
1572 (long)sym[i].st_value);
1573 break;
1574
1575 case SHN_UNDEF:
1576 ksym = resolve_symbol(sechdrs, versindex,
1577 strtab + sym[i].st_name, mod);
1578 /* Ok if resolved. */
1579 if (ksym) {
1580 sym[i].st_value = ksym->value;
1581 break;
1582 }
1583
1584 /* Ok if weak. */
1585 if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1586 break;
1587
1588 printk(KERN_WARNING "%s: Unknown symbol %s\n",
1589 mod->name, strtab + sym[i].st_name);
1590 ret = -ENOENT;
1591 break;
1592
1593 default:
1594 /* Divert to percpu allocation if a percpu var. */
1595 if (sym[i].st_shndx == pcpuindex)
1596 secbase = (unsigned long)mod_percpu(mod);
1597 else
1598 secbase = sechdrs[sym[i].st_shndx].sh_addr;
1599 sym[i].st_value += secbase;
1600 break;
1601 }
1602 }
1603
1604 return ret;
1605 }
1606
1607 /* Additional bytes needed by arch in front of individual sections */
1608 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1609 unsigned int section)
1610 {
1611 /* default implementation just returns zero */
1612 return 0;
1613 }
1614
1615 /* Update size with this section: return offset. */
1616 static long get_offset(struct module *mod, unsigned int *size,
1617 Elf_Shdr *sechdr, unsigned int section)
1618 {
1619 long ret;
1620
1621 *size += arch_mod_section_prepend(mod, section);
1622 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1623 *size = ret + sechdr->sh_size;
1624 return ret;
1625 }
1626
1627 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1628 might -- code, read-only data, read-write data, small data. Tally
1629 sizes, and place the offsets into sh_entsize fields: high bit means it
1630 belongs in init. */
1631 static void layout_sections(struct module *mod,
1632 const Elf_Ehdr *hdr,
1633 Elf_Shdr *sechdrs,
1634 const char *secstrings)
1635 {
1636 static unsigned long const masks[][2] = {
1637 /* NOTE: all executable code must be the first section
1638 * in this array; otherwise modify the text_size
1639 * finder in the two loops below */
1640 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1641 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1642 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1643 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1644 };
1645 unsigned int m, i;
1646
1647 for (i = 0; i < hdr->e_shnum; i++)
1648 sechdrs[i].sh_entsize = ~0UL;
1649
1650 DEBUGP("Core section allocation order:\n");
1651 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1652 for (i = 0; i < hdr->e_shnum; ++i) {
1653 Elf_Shdr *s = &sechdrs[i];
1654
1655 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1656 || (s->sh_flags & masks[m][1])
1657 || s->sh_entsize != ~0UL
1658 || strstarts(secstrings + s->sh_name, ".init"))
1659 continue;
1660 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1661 DEBUGP("\t%s\n", secstrings + s->sh_name);
1662 }
1663 if (m == 0)
1664 mod->core_text_size = mod->core_size;
1665 }
1666
1667 DEBUGP("Init section allocation order:\n");
1668 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1669 for (i = 0; i < hdr->e_shnum; ++i) {
1670 Elf_Shdr *s = &sechdrs[i];
1671
1672 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1673 || (s->sh_flags & masks[m][1])
1674 || s->sh_entsize != ~0UL
1675 || !strstarts(secstrings + s->sh_name, ".init"))
1676 continue;
1677 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1678 | INIT_OFFSET_MASK);
1679 DEBUGP("\t%s\n", secstrings + s->sh_name);
1680 }
1681 if (m == 0)
1682 mod->init_text_size = mod->init_size;
1683 }
1684 }
1685
1686 static void set_license(struct module *mod, const char *license)
1687 {
1688 if (!license)
1689 license = "unspecified";
1690
1691 if (!license_is_gpl_compatible(license)) {
1692 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1693 printk(KERN_WARNING "%s: module license '%s' taints "
1694 "kernel.\n", mod->name, license);
1695 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1696 }
1697 }
1698
1699 /* Parse tag=value strings from .modinfo section */
1700 static char *next_string(char *string, unsigned long *secsize)
1701 {
1702 /* Skip non-zero chars */
1703 while (string[0]) {
1704 string++;
1705 if ((*secsize)-- <= 1)
1706 return NULL;
1707 }
1708
1709 /* Skip any zero padding. */
1710 while (!string[0]) {
1711 string++;
1712 if ((*secsize)-- <= 1)
1713 return NULL;
1714 }
1715 return string;
1716 }
1717
1718 static char *get_modinfo(Elf_Shdr *sechdrs,
1719 unsigned int info,
1720 const char *tag)
1721 {
1722 char *p;
1723 unsigned int taglen = strlen(tag);
1724 unsigned long size = sechdrs[info].sh_size;
1725
1726 for (p = (char *)sechdrs[info].sh_addr; p; p = next_string(p, &size)) {
1727 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1728 return p + taglen + 1;
1729 }
1730 return NULL;
1731 }
1732
1733 static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs,
1734 unsigned int infoindex)
1735 {
1736 struct module_attribute *attr;
1737 int i;
1738
1739 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1740 if (attr->setup)
1741 attr->setup(mod,
1742 get_modinfo(sechdrs,
1743 infoindex,
1744 attr->attr.name));
1745 }
1746 }
1747
1748 static void free_modinfo(struct module *mod)
1749 {
1750 struct module_attribute *attr;
1751 int i;
1752
1753 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1754 if (attr->free)
1755 attr->free(mod);
1756 }
1757 }
1758
1759 #ifdef CONFIG_KALLSYMS
1760
1761 /* lookup symbol in given range of kernel_symbols */
1762 static const struct kernel_symbol *lookup_symbol(const char *name,
1763 const struct kernel_symbol *start,
1764 const struct kernel_symbol *stop)
1765 {
1766 const struct kernel_symbol *ks = start;
1767 for (; ks < stop; ks++)
1768 if (strcmp(ks->name, name) == 0)
1769 return ks;
1770 return NULL;
1771 }
1772
1773 static int is_exported(const char *name, unsigned long value,
1774 const struct module *mod)
1775 {
1776 const struct kernel_symbol *ks;
1777 if (!mod)
1778 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
1779 else
1780 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
1781 return ks != NULL && ks->value == value;
1782 }
1783
1784 /* As per nm */
1785 static char elf_type(const Elf_Sym *sym,
1786 Elf_Shdr *sechdrs,
1787 const char *secstrings,
1788 struct module *mod)
1789 {
1790 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
1791 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
1792 return 'v';
1793 else
1794 return 'w';
1795 }
1796 if (sym->st_shndx == SHN_UNDEF)
1797 return 'U';
1798 if (sym->st_shndx == SHN_ABS)
1799 return 'a';
1800 if (sym->st_shndx >= SHN_LORESERVE)
1801 return '?';
1802 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
1803 return 't';
1804 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
1805 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
1806 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
1807 return 'r';
1808 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1809 return 'g';
1810 else
1811 return 'd';
1812 }
1813 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1814 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1815 return 's';
1816 else
1817 return 'b';
1818 }
1819 if (strstarts(secstrings + sechdrs[sym->st_shndx].sh_name, ".debug"))
1820 return 'n';
1821 return '?';
1822 }
1823
1824 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
1825 unsigned int shnum)
1826 {
1827 const Elf_Shdr *sec;
1828
1829 if (src->st_shndx == SHN_UNDEF
1830 || src->st_shndx >= shnum
1831 || !src->st_name)
1832 return false;
1833
1834 sec = sechdrs + src->st_shndx;
1835 if (!(sec->sh_flags & SHF_ALLOC)
1836 #ifndef CONFIG_KALLSYMS_ALL
1837 || !(sec->sh_flags & SHF_EXECINSTR)
1838 #endif
1839 || (sec->sh_entsize & INIT_OFFSET_MASK))
1840 return false;
1841
1842 return true;
1843 }
1844
1845 static unsigned long layout_symtab(struct module *mod,
1846 Elf_Shdr *sechdrs,
1847 unsigned int symindex,
1848 unsigned int strindex,
1849 const Elf_Ehdr *hdr,
1850 const char *secstrings,
1851 unsigned long *pstroffs,
1852 unsigned long *strmap)
1853 {
1854 unsigned long symoffs;
1855 Elf_Shdr *symsect = sechdrs + symindex;
1856 Elf_Shdr *strsect = sechdrs + strindex;
1857 const Elf_Sym *src;
1858 const char *strtab;
1859 unsigned int i, nsrc, ndst;
1860
1861 /* Put symbol section at end of init part of module. */
1862 symsect->sh_flags |= SHF_ALLOC;
1863 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
1864 symindex) | INIT_OFFSET_MASK;
1865 DEBUGP("\t%s\n", secstrings + symsect->sh_name);
1866
1867 src = (void *)hdr + symsect->sh_offset;
1868 nsrc = symsect->sh_size / sizeof(*src);
1869 strtab = (void *)hdr + strsect->sh_offset;
1870 for (ndst = i = 1; i < nsrc; ++i, ++src)
1871 if (is_core_symbol(src, sechdrs, hdr->e_shnum)) {
1872 unsigned int j = src->st_name;
1873
1874 while(!__test_and_set_bit(j, strmap) && strtab[j])
1875 ++j;
1876 ++ndst;
1877 }
1878
1879 /* Append room for core symbols at end of core part. */
1880 symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
1881 mod->core_size = symoffs + ndst * sizeof(Elf_Sym);
1882
1883 /* Put string table section at end of init part of module. */
1884 strsect->sh_flags |= SHF_ALLOC;
1885 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
1886 strindex) | INIT_OFFSET_MASK;
1887 DEBUGP("\t%s\n", secstrings + strsect->sh_name);
1888
1889 /* Append room for core symbols' strings at end of core part. */
1890 *pstroffs = mod->core_size;
1891 __set_bit(0, strmap);
1892 mod->core_size += bitmap_weight(strmap, strsect->sh_size);
1893
1894 return symoffs;
1895 }
1896
1897 static void add_kallsyms(struct module *mod,
1898 Elf_Shdr *sechdrs,
1899 unsigned int shnum,
1900 unsigned int symindex,
1901 unsigned int strindex,
1902 unsigned long symoffs,
1903 unsigned long stroffs,
1904 const char *secstrings,
1905 unsigned long *strmap)
1906 {
1907 unsigned int i, ndst;
1908 const Elf_Sym *src;
1909 Elf_Sym *dst;
1910 char *s;
1911
1912 mod->symtab = (void *)sechdrs[symindex].sh_addr;
1913 mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1914 mod->strtab = (void *)sechdrs[strindex].sh_addr;
1915
1916 /* Set types up while we still have access to sections. */
1917 for (i = 0; i < mod->num_symtab; i++)
1918 mod->symtab[i].st_info
1919 = elf_type(&mod->symtab[i], sechdrs, secstrings, mod);
1920
1921 mod->core_symtab = dst = mod->module_core + symoffs;
1922 src = mod->symtab;
1923 *dst = *src;
1924 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
1925 if (!is_core_symbol(src, sechdrs, shnum))
1926 continue;
1927 dst[ndst] = *src;
1928 dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name);
1929 ++ndst;
1930 }
1931 mod->core_num_syms = ndst;
1932
1933 mod->core_strtab = s = mod->module_core + stroffs;
1934 for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i)
1935 if (test_bit(i, strmap))
1936 *++s = mod->strtab[i];
1937 }
1938 #else
1939 static inline unsigned long layout_symtab(struct module *mod,
1940 Elf_Shdr *sechdrs,
1941 unsigned int symindex,
1942 unsigned int strindex,
1943 const Elf_Ehdr *hdr,
1944 const char *secstrings,
1945 unsigned long *pstroffs,
1946 unsigned long *strmap)
1947 {
1948 return 0;
1949 }
1950
1951 static inline void add_kallsyms(struct module *mod,
1952 Elf_Shdr *sechdrs,
1953 unsigned int shnum,
1954 unsigned int symindex,
1955 unsigned int strindex,
1956 unsigned long symoffs,
1957 unsigned long stroffs,
1958 const char *secstrings,
1959 const unsigned long *strmap)
1960 {
1961 }
1962 #endif /* CONFIG_KALLSYMS */
1963
1964 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
1965 {
1966 #ifdef CONFIG_DYNAMIC_DEBUG
1967 if (ddebug_add_module(debug, num, debug->modname))
1968 printk(KERN_ERR "dynamic debug error adding module: %s\n",
1969 debug->modname);
1970 #endif
1971 }
1972
1973 static void *module_alloc_update_bounds(unsigned long size)
1974 {
1975 void *ret = module_alloc(size);
1976
1977 if (ret) {
1978 /* Update module bounds. */
1979 if ((unsigned long)ret < module_addr_min)
1980 module_addr_min = (unsigned long)ret;
1981 if ((unsigned long)ret + size > module_addr_max)
1982 module_addr_max = (unsigned long)ret + size;
1983 }
1984 return ret;
1985 }
1986
1987 #ifdef CONFIG_DEBUG_KMEMLEAK
1988 static void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
1989 Elf_Shdr *sechdrs, char *secstrings)
1990 {
1991 unsigned int i;
1992
1993 /* only scan the sections containing data */
1994 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
1995
1996 for (i = 1; i < hdr->e_shnum; i++) {
1997 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
1998 continue;
1999 if (strncmp(secstrings + sechdrs[i].sh_name, ".data", 5) != 0
2000 && strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) != 0)
2001 continue;
2002
2003 kmemleak_scan_area((void *)sechdrs[i].sh_addr,
2004 sechdrs[i].sh_size, GFP_KERNEL);
2005 }
2006 }
2007 #else
2008 static inline void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
2009 Elf_Shdr *sechdrs, char *secstrings)
2010 {
2011 }
2012 #endif
2013
2014 /* Allocate and load the module: note that size of section 0 is always
2015 zero, and we rely on this for optional sections. */
2016 static noinline struct module *load_module(void __user *umod,
2017 unsigned long len,
2018 const char __user *uargs)
2019 {
2020 Elf_Ehdr *hdr;
2021 Elf_Shdr *sechdrs;
2022 char *secstrings, *args, *modmagic, *strtab = NULL;
2023 char *staging;
2024 unsigned int i;
2025 unsigned int symindex = 0;
2026 unsigned int strindex = 0;
2027 unsigned int modindex, versindex, infoindex, pcpuindex;
2028 struct module *mod;
2029 long err = 0;
2030 void *ptr = NULL; /* Stops spurious gcc warning */
2031 unsigned long symoffs, stroffs, *strmap;
2032
2033 mm_segment_t old_fs;
2034
2035 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2036 umod, len, uargs);
2037 if (len < sizeof(*hdr))
2038 return ERR_PTR(-ENOEXEC);
2039
2040 /* Suck in entire file: we'll want most of it. */
2041 /* vmalloc barfs on "unusual" numbers. Check here */
2042 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2043 return ERR_PTR(-ENOMEM);
2044
2045 if (copy_from_user(hdr, umod, len) != 0) {
2046 err = -EFAULT;
2047 goto free_hdr;
2048 }
2049
2050 /* Sanity checks against insmoding binaries or wrong arch,
2051 weird elf version */
2052 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2053 || hdr->e_type != ET_REL
2054 || !elf_check_arch(hdr)
2055 || hdr->e_shentsize != sizeof(*sechdrs)) {
2056 err = -ENOEXEC;
2057 goto free_hdr;
2058 }
2059
2060 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr))
2061 goto truncated;
2062
2063 /* Convenience variables */
2064 sechdrs = (void *)hdr + hdr->e_shoff;
2065 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
2066 sechdrs[0].sh_addr = 0;
2067
2068 for (i = 1; i < hdr->e_shnum; i++) {
2069 if (sechdrs[i].sh_type != SHT_NOBITS
2070 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size)
2071 goto truncated;
2072
2073 /* Mark all sections sh_addr with their address in the
2074 temporary image. */
2075 sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset;
2076
2077 /* Internal symbols and strings. */
2078 if (sechdrs[i].sh_type == SHT_SYMTAB) {
2079 symindex = i;
2080 strindex = sechdrs[i].sh_link;
2081 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
2082 }
2083 #ifndef CONFIG_MODULE_UNLOAD
2084 /* Don't load .exit sections */
2085 if (strstarts(secstrings+sechdrs[i].sh_name, ".exit"))
2086 sechdrs[i].sh_flags &= ~(unsigned long)SHF_ALLOC;
2087 #endif
2088 }
2089
2090 modindex = find_sec(hdr, sechdrs, secstrings,
2091 ".gnu.linkonce.this_module");
2092 if (!modindex) {
2093 printk(KERN_WARNING "No module found in object\n");
2094 err = -ENOEXEC;
2095 goto free_hdr;
2096 }
2097 /* This is temporary: point mod into copy of data. */
2098 mod = (void *)sechdrs[modindex].sh_addr;
2099
2100 if (symindex == 0) {
2101 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2102 mod->name);
2103 err = -ENOEXEC;
2104 goto free_hdr;
2105 }
2106
2107 versindex = find_sec(hdr, sechdrs, secstrings, "__versions");
2108 infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo");
2109 pcpuindex = find_pcpusec(hdr, sechdrs, secstrings);
2110
2111 /* Don't keep modinfo and version sections. */
2112 sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2113 sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2114
2115 /* Check module struct version now, before we try to use module. */
2116 if (!check_modstruct_version(sechdrs, versindex, mod)) {
2117 err = -ENOEXEC;
2118 goto free_hdr;
2119 }
2120
2121 modmagic = get_modinfo(sechdrs, infoindex, "vermagic");
2122 /* This is allowed: modprobe --force will invalidate it. */
2123 if (!modmagic) {
2124 err = try_to_force_load(mod, "bad vermagic");
2125 if (err)
2126 goto free_hdr;
2127 } else if (!same_magic(modmagic, vermagic, versindex)) {
2128 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2129 mod->name, modmagic, vermagic);
2130 err = -ENOEXEC;
2131 goto free_hdr;
2132 }
2133
2134 staging = get_modinfo(sechdrs, infoindex, "staging");
2135 if (staging) {
2136 add_taint_module(mod, TAINT_CRAP);
2137 printk(KERN_WARNING "%s: module is from the staging directory,"
2138 " the quality is unknown, you have been warned.\n",
2139 mod->name);
2140 }
2141
2142 /* Now copy in args */
2143 args = strndup_user(uargs, ~0UL >> 1);
2144 if (IS_ERR(args)) {
2145 err = PTR_ERR(args);
2146 goto free_hdr;
2147 }
2148
2149 strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size)
2150 * sizeof(long), GFP_KERNEL);
2151 if (!strmap) {
2152 err = -ENOMEM;
2153 goto free_mod;
2154 }
2155
2156 if (find_module(mod->name)) {
2157 err = -EEXIST;
2158 goto free_mod;
2159 }
2160
2161 mod->state = MODULE_STATE_COMING;
2162
2163 /* Allow arches to frob section contents and sizes. */
2164 err = module_frob_arch_sections(hdr, sechdrs, secstrings, mod);
2165 if (err < 0)
2166 goto free_mod;
2167
2168 if (pcpuindex) {
2169 /* We have a special allocation for this section. */
2170 err = percpu_modalloc(mod, sechdrs[pcpuindex].sh_size,
2171 sechdrs[pcpuindex].sh_addralign);
2172 if (err)
2173 goto free_mod;
2174 sechdrs[pcpuindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2175 }
2176
2177 /* Determine total sizes, and put offsets in sh_entsize. For now
2178 this is done generically; there doesn't appear to be any
2179 special cases for the architectures. */
2180 layout_sections(mod, hdr, sechdrs, secstrings);
2181 symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr,
2182 secstrings, &stroffs, strmap);
2183
2184 /* Do the allocs. */
2185 ptr = module_alloc_update_bounds(mod->core_size);
2186 /*
2187 * The pointer to this block is stored in the module structure
2188 * which is inside the block. Just mark it as not being a
2189 * leak.
2190 */
2191 kmemleak_not_leak(ptr);
2192 if (!ptr) {
2193 err = -ENOMEM;
2194 goto free_percpu;
2195 }
2196 memset(ptr, 0, mod->core_size);
2197 mod->module_core = ptr;
2198
2199 ptr = module_alloc_update_bounds(mod->init_size);
2200 /*
2201 * The pointer to this block is stored in the module structure
2202 * which is inside the block. This block doesn't need to be
2203 * scanned as it contains data and code that will be freed
2204 * after the module is initialized.
2205 */
2206 kmemleak_ignore(ptr);
2207 if (!ptr && mod->init_size) {
2208 err = -ENOMEM;
2209 goto free_core;
2210 }
2211 memset(ptr, 0, mod->init_size);
2212 mod->module_init = ptr;
2213
2214 /* Transfer each section which specifies SHF_ALLOC */
2215 DEBUGP("final section addresses:\n");
2216 for (i = 0; i < hdr->e_shnum; i++) {
2217 void *dest;
2218
2219 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2220 continue;
2221
2222 if (sechdrs[i].sh_entsize & INIT_OFFSET_MASK)
2223 dest = mod->module_init
2224 + (sechdrs[i].sh_entsize & ~INIT_OFFSET_MASK);
2225 else
2226 dest = mod->module_core + sechdrs[i].sh_entsize;
2227
2228 if (sechdrs[i].sh_type != SHT_NOBITS)
2229 memcpy(dest, (void *)sechdrs[i].sh_addr,
2230 sechdrs[i].sh_size);
2231 /* Update sh_addr to point to copy in image. */
2232 sechdrs[i].sh_addr = (unsigned long)dest;
2233 DEBUGP("\t0x%lx %s\n", sechdrs[i].sh_addr, secstrings + sechdrs[i].sh_name);
2234 }
2235 /* Module has been moved. */
2236 mod = (void *)sechdrs[modindex].sh_addr;
2237 kmemleak_load_module(mod, hdr, sechdrs, secstrings);
2238
2239 #if defined(CONFIG_MODULE_UNLOAD)
2240 mod->refptr = alloc_percpu(struct module_ref);
2241 if (!mod->refptr) {
2242 err = -ENOMEM;
2243 goto free_init;
2244 }
2245 #endif
2246 /* Now we've moved module, initialize linked lists, etc. */
2247 module_unload_init(mod);
2248
2249 /* add kobject, so we can reference it. */
2250 err = mod_sysfs_init(mod);
2251 if (err)
2252 goto free_unload;
2253
2254 /* Set up license info based on the info section */
2255 set_license(mod, get_modinfo(sechdrs, infoindex, "license"));
2256
2257 /*
2258 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2259 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2260 * using GPL-only symbols it needs.
2261 */
2262 if (strcmp(mod->name, "ndiswrapper") == 0)
2263 add_taint(TAINT_PROPRIETARY_MODULE);
2264
2265 /* driverloader was caught wrongly pretending to be under GPL */
2266 if (strcmp(mod->name, "driverloader") == 0)
2267 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2268
2269 /* Set up MODINFO_ATTR fields */
2270 setup_modinfo(mod, sechdrs, infoindex);
2271
2272 /* Fix up syms, so that st_value is a pointer to location. */
2273 err = simplify_symbols(sechdrs, symindex, strtab, versindex, pcpuindex,
2274 mod);
2275 if (err < 0)
2276 goto cleanup;
2277
2278 /* Now we've got everything in the final locations, we can
2279 * find optional sections. */
2280 mod->kp = section_objs(hdr, sechdrs, secstrings, "__param",
2281 sizeof(*mod->kp), &mod->num_kp);
2282 mod->syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab",
2283 sizeof(*mod->syms), &mod->num_syms);
2284 mod->crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab");
2285 mod->gpl_syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab_gpl",
2286 sizeof(*mod->gpl_syms),
2287 &mod->num_gpl_syms);
2288 mod->gpl_crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab_gpl");
2289 mod->gpl_future_syms = section_objs(hdr, sechdrs, secstrings,
2290 "__ksymtab_gpl_future",
2291 sizeof(*mod->gpl_future_syms),
2292 &mod->num_gpl_future_syms);
2293 mod->gpl_future_crcs = section_addr(hdr, sechdrs, secstrings,
2294 "__kcrctab_gpl_future");
2295
2296 #ifdef CONFIG_UNUSED_SYMBOLS
2297 mod->unused_syms = section_objs(hdr, sechdrs, secstrings,
2298 "__ksymtab_unused",
2299 sizeof(*mod->unused_syms),
2300 &mod->num_unused_syms);
2301 mod->unused_crcs = section_addr(hdr, sechdrs, secstrings,
2302 "__kcrctab_unused");
2303 mod->unused_gpl_syms = section_objs(hdr, sechdrs, secstrings,
2304 "__ksymtab_unused_gpl",
2305 sizeof(*mod->unused_gpl_syms),
2306 &mod->num_unused_gpl_syms);
2307 mod->unused_gpl_crcs = section_addr(hdr, sechdrs, secstrings,
2308 "__kcrctab_unused_gpl");
2309 #endif
2310 #ifdef CONFIG_CONSTRUCTORS
2311 mod->ctors = section_objs(hdr, sechdrs, secstrings, ".ctors",
2312 sizeof(*mod->ctors), &mod->num_ctors);
2313 #endif
2314
2315 #ifdef CONFIG_TRACEPOINTS
2316 mod->tracepoints = section_objs(hdr, sechdrs, secstrings,
2317 "__tracepoints",
2318 sizeof(*mod->tracepoints),
2319 &mod->num_tracepoints);
2320 #endif
2321 #ifdef CONFIG_EVENT_TRACING
2322 mod->trace_events = section_objs(hdr, sechdrs, secstrings,
2323 "_ftrace_events",
2324 sizeof(*mod->trace_events),
2325 &mod->num_trace_events);
2326 /*
2327 * This section contains pointers to allocated objects in the trace
2328 * code and not scanning it leads to false positives.
2329 */
2330 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2331 mod->num_trace_events, GFP_KERNEL);
2332 #endif
2333 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2334 /* sechdrs[0].sh_size is always zero */
2335 mod->ftrace_callsites = section_objs(hdr, sechdrs, secstrings,
2336 "__mcount_loc",
2337 sizeof(*mod->ftrace_callsites),
2338 &mod->num_ftrace_callsites);
2339 #endif
2340 #ifdef CONFIG_MODVERSIONS
2341 if ((mod->num_syms && !mod->crcs)
2342 || (mod->num_gpl_syms && !mod->gpl_crcs)
2343 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2344 #ifdef CONFIG_UNUSED_SYMBOLS
2345 || (mod->num_unused_syms && !mod->unused_crcs)
2346 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2347 #endif
2348 ) {
2349 err = try_to_force_load(mod,
2350 "no versions for exported symbols");
2351 if (err)
2352 goto cleanup;
2353 }
2354 #endif
2355
2356 /* Now do relocations. */
2357 for (i = 1; i < hdr->e_shnum; i++) {
2358 const char *strtab = (char *)sechdrs[strindex].sh_addr;
2359 unsigned int info = sechdrs[i].sh_info;
2360
2361 /* Not a valid relocation section? */
2362 if (info >= hdr->e_shnum)
2363 continue;
2364
2365 /* Don't bother with non-allocated sections */
2366 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
2367 continue;
2368
2369 if (sechdrs[i].sh_type == SHT_REL)
2370 err = apply_relocate(sechdrs, strtab, symindex, i,mod);
2371 else if (sechdrs[i].sh_type == SHT_RELA)
2372 err = apply_relocate_add(sechdrs, strtab, symindex, i,
2373 mod);
2374 if (err < 0)
2375 goto cleanup;
2376 }
2377
2378 /* Find duplicate symbols */
2379 err = verify_export_symbols(mod);
2380 if (err < 0)
2381 goto cleanup;
2382
2383 /* Set up and sort exception table */
2384 mod->extable = section_objs(hdr, sechdrs, secstrings, "__ex_table",
2385 sizeof(*mod->extable), &mod->num_exentries);
2386 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2387
2388 /* Finally, copy percpu area over. */
2389 percpu_modcopy(mod, (void *)sechdrs[pcpuindex].sh_addr,
2390 sechdrs[pcpuindex].sh_size);
2391
2392 add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex,
2393 symoffs, stroffs, secstrings, strmap);
2394 kfree(strmap);
2395 strmap = NULL;
2396
2397 if (!mod->taints) {
2398 struct _ddebug *debug;
2399 unsigned int num_debug;
2400
2401 debug = section_objs(hdr, sechdrs, secstrings, "__verbose",
2402 sizeof(*debug), &num_debug);
2403 if (debug)
2404 dynamic_debug_setup(debug, num_debug);
2405 }
2406
2407 err = module_finalize(hdr, sechdrs, mod);
2408 if (err < 0)
2409 goto cleanup;
2410
2411 /* flush the icache in correct context */
2412 old_fs = get_fs();
2413 set_fs(KERNEL_DS);
2414
2415 /*
2416 * Flush the instruction cache, since we've played with text.
2417 * Do it before processing of module parameters, so the module
2418 * can provide parameter accessor functions of its own.
2419 */
2420 if (mod->module_init)
2421 flush_icache_range((unsigned long)mod->module_init,
2422 (unsigned long)mod->module_init
2423 + mod->init_size);
2424 flush_icache_range((unsigned long)mod->module_core,
2425 (unsigned long)mod->module_core + mod->core_size);
2426
2427 set_fs(old_fs);
2428
2429 mod->args = args;
2430 if (section_addr(hdr, sechdrs, secstrings, "__obsparm"))
2431 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2432 mod->name);
2433
2434 /* Now sew it into the lists so we can get lockdep and oops
2435 * info during argument parsing. Noone should access us, since
2436 * strong_try_module_get() will fail.
2437 * lockdep/oops can run asynchronous, so use the RCU list insertion
2438 * function to insert in a way safe to concurrent readers.
2439 * The mutex protects against concurrent writers.
2440 */
2441 list_add_rcu(&mod->list, &modules);
2442
2443 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2444 if (err < 0)
2445 goto unlink;
2446
2447 err = mod_sysfs_setup(mod, mod->kp, mod->num_kp);
2448 if (err < 0)
2449 goto unlink;
2450 add_sect_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2451 add_notes_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2452
2453 /* Get rid of temporary copy */
2454 vfree(hdr);
2455
2456 trace_module_load(mod);
2457
2458 /* Done! */
2459 return mod;
2460
2461 unlink:
2462 /* Unlink carefully: kallsyms could be walking list. */
2463 list_del_rcu(&mod->list);
2464 synchronize_sched();
2465 module_arch_cleanup(mod);
2466 cleanup:
2467 free_modinfo(mod);
2468 kobject_del(&mod->mkobj.kobj);
2469 kobject_put(&mod->mkobj.kobj);
2470 free_unload:
2471 module_unload_free(mod);
2472 #if defined(CONFIG_MODULE_UNLOAD)
2473 free_percpu(mod->refptr);
2474 free_init:
2475 #endif
2476 module_free(mod, mod->module_init);
2477 free_core:
2478 module_free(mod, mod->module_core);
2479 /* mod will be freed with core. Don't access it beyond this line! */
2480 free_percpu:
2481 percpu_modfree(mod);
2482 free_mod:
2483 kfree(args);
2484 kfree(strmap);
2485 free_hdr:
2486 vfree(hdr);
2487 return ERR_PTR(err);
2488
2489 truncated:
2490 printk(KERN_ERR "Module len %lu truncated\n", len);
2491 err = -ENOEXEC;
2492 goto free_hdr;
2493 }
2494
2495 /* Call module constructors. */
2496 static void do_mod_ctors(struct module *mod)
2497 {
2498 #ifdef CONFIG_CONSTRUCTORS
2499 unsigned long i;
2500
2501 for (i = 0; i < mod->num_ctors; i++)
2502 mod->ctors[i]();
2503 #endif
2504 }
2505
2506 /* This is where the real work happens */
2507 SYSCALL_DEFINE3(init_module, void __user *, umod,
2508 unsigned long, len, const char __user *, uargs)
2509 {
2510 struct module *mod;
2511 int ret = 0;
2512
2513 /* Must have permission */
2514 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2515 return -EPERM;
2516
2517 /* Only one module load at a time, please */
2518 if (mutex_lock_interruptible(&module_mutex) != 0)
2519 return -EINTR;
2520
2521 /* Do all the hard work */
2522 mod = load_module(umod, len, uargs);
2523 if (IS_ERR(mod)) {
2524 mutex_unlock(&module_mutex);
2525 return PTR_ERR(mod);
2526 }
2527
2528 /* Drop lock so they can recurse */
2529 mutex_unlock(&module_mutex);
2530
2531 blocking_notifier_call_chain(&module_notify_list,
2532 MODULE_STATE_COMING, mod);
2533
2534 do_mod_ctors(mod);
2535 /* Start the module */
2536 if (mod->init != NULL)
2537 ret = do_one_initcall(mod->init);
2538 if (ret < 0) {
2539 /* Init routine failed: abort. Try to protect us from
2540 buggy refcounters. */
2541 mod->state = MODULE_STATE_GOING;
2542 synchronize_sched();
2543 module_put(mod);
2544 blocking_notifier_call_chain(&module_notify_list,
2545 MODULE_STATE_GOING, mod);
2546 mutex_lock(&module_mutex);
2547 free_module(mod);
2548 mutex_unlock(&module_mutex);
2549 wake_up(&module_wq);
2550 return ret;
2551 }
2552 if (ret > 0) {
2553 printk(KERN_WARNING
2554 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2555 "%s: loading module anyway...\n",
2556 __func__, mod->name, ret,
2557 __func__);
2558 dump_stack();
2559 }
2560
2561 /* Now it's a first class citizen! Wake up anyone waiting for it. */
2562 mod->state = MODULE_STATE_LIVE;
2563 wake_up(&module_wq);
2564 blocking_notifier_call_chain(&module_notify_list,
2565 MODULE_STATE_LIVE, mod);
2566
2567 /* We need to finish all async code before the module init sequence is done */
2568 async_synchronize_full();
2569
2570 mutex_lock(&module_mutex);
2571 /* Drop initial reference. */
2572 module_put(mod);
2573 trim_init_extable(mod);
2574 #ifdef CONFIG_KALLSYMS
2575 mod->num_symtab = mod->core_num_syms;
2576 mod->symtab = mod->core_symtab;
2577 mod->strtab = mod->core_strtab;
2578 #endif
2579 module_free(mod, mod->module_init);
2580 mod->module_init = NULL;
2581 mod->init_size = 0;
2582 mod->init_text_size = 0;
2583 mutex_unlock(&module_mutex);
2584
2585 return 0;
2586 }
2587
2588 static inline int within(unsigned long addr, void *start, unsigned long size)
2589 {
2590 return ((void *)addr >= start && (void *)addr < start + size);
2591 }
2592
2593 #ifdef CONFIG_KALLSYMS
2594 /*
2595 * This ignores the intensely annoying "mapping symbols" found
2596 * in ARM ELF files: $a, $t and $d.
2597 */
2598 static inline int is_arm_mapping_symbol(const char *str)
2599 {
2600 return str[0] == '$' && strchr("atd", str[1])
2601 && (str[2] == '\0' || str[2] == '.');
2602 }
2603
2604 static const char *get_ksymbol(struct module *mod,
2605 unsigned long addr,
2606 unsigned long *size,
2607 unsigned long *offset)
2608 {
2609 unsigned int i, best = 0;
2610 unsigned long nextval;
2611
2612 /* At worse, next value is at end of module */
2613 if (within_module_init(addr, mod))
2614 nextval = (unsigned long)mod->module_init+mod->init_text_size;
2615 else
2616 nextval = (unsigned long)mod->module_core+mod->core_text_size;
2617
2618 /* Scan for closest preceeding symbol, and next symbol. (ELF
2619 starts real symbols at 1). */
2620 for (i = 1; i < mod->num_symtab; i++) {
2621 if (mod->symtab[i].st_shndx == SHN_UNDEF)
2622 continue;
2623
2624 /* We ignore unnamed symbols: they're uninformative
2625 * and inserted at a whim. */
2626 if (mod->symtab[i].st_value <= addr
2627 && mod->symtab[i].st_value > mod->symtab[best].st_value
2628 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2629 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2630 best = i;
2631 if (mod->symtab[i].st_value > addr
2632 && mod->symtab[i].st_value < nextval
2633 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2634 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2635 nextval = mod->symtab[i].st_value;
2636 }
2637
2638 if (!best)
2639 return NULL;
2640
2641 if (size)
2642 *size = nextval - mod->symtab[best].st_value;
2643 if (offset)
2644 *offset = addr - mod->symtab[best].st_value;
2645 return mod->strtab + mod->symtab[best].st_name;
2646 }
2647
2648 /* For kallsyms to ask for address resolution. NULL means not found. Careful
2649 * not to lock to avoid deadlock on oopses, simply disable preemption. */
2650 const char *module_address_lookup(unsigned long addr,
2651 unsigned long *size,
2652 unsigned long *offset,
2653 char **modname,
2654 char *namebuf)
2655 {
2656 struct module *mod;
2657 const char *ret = NULL;
2658
2659 preempt_disable();
2660 list_for_each_entry_rcu(mod, &modules, list) {
2661 if (within_module_init(addr, mod) ||
2662 within_module_core(addr, mod)) {
2663 if (modname)
2664 *modname = mod->name;
2665 ret = get_ksymbol(mod, addr, size, offset);
2666 break;
2667 }
2668 }
2669 /* Make a copy in here where it's safe */
2670 if (ret) {
2671 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
2672 ret = namebuf;
2673 }
2674 preempt_enable();
2675 return ret;
2676 }
2677
2678 int lookup_module_symbol_name(unsigned long addr, char *symname)
2679 {
2680 struct module *mod;
2681
2682 preempt_disable();
2683 list_for_each_entry_rcu(mod, &modules, list) {
2684 if (within_module_init(addr, mod) ||
2685 within_module_core(addr, mod)) {
2686 const char *sym;
2687
2688 sym = get_ksymbol(mod, addr, NULL, NULL);
2689 if (!sym)
2690 goto out;
2691 strlcpy(symname, sym, KSYM_NAME_LEN);
2692 preempt_enable();
2693 return 0;
2694 }
2695 }
2696 out:
2697 preempt_enable();
2698 return -ERANGE;
2699 }
2700
2701 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
2702 unsigned long *offset, char *modname, char *name)
2703 {
2704 struct module *mod;
2705
2706 preempt_disable();
2707 list_for_each_entry_rcu(mod, &modules, list) {
2708 if (within_module_init(addr, mod) ||
2709 within_module_core(addr, mod)) {
2710 const char *sym;
2711
2712 sym = get_ksymbol(mod, addr, size, offset);
2713 if (!sym)
2714 goto out;
2715 if (modname)
2716 strlcpy(modname, mod->name, MODULE_NAME_LEN);
2717 if (name)
2718 strlcpy(name, sym, KSYM_NAME_LEN);
2719 preempt_enable();
2720 return 0;
2721 }
2722 }
2723 out:
2724 preempt_enable();
2725 return -ERANGE;
2726 }
2727
2728 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2729 char *name, char *module_name, int *exported)
2730 {
2731 struct module *mod;
2732
2733 preempt_disable();
2734 list_for_each_entry_rcu(mod, &modules, list) {
2735 if (symnum < mod->num_symtab) {
2736 *value = mod->symtab[symnum].st_value;
2737 *type = mod->symtab[symnum].st_info;
2738 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
2739 KSYM_NAME_LEN);
2740 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
2741 *exported = is_exported(name, *value, mod);
2742 preempt_enable();
2743 return 0;
2744 }
2745 symnum -= mod->num_symtab;
2746 }
2747 preempt_enable();
2748 return -ERANGE;
2749 }
2750
2751 static unsigned long mod_find_symname(struct module *mod, const char *name)
2752 {
2753 unsigned int i;
2754
2755 for (i = 0; i < mod->num_symtab; i++)
2756 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
2757 mod->symtab[i].st_info != 'U')
2758 return mod->symtab[i].st_value;
2759 return 0;
2760 }
2761
2762 /* Look for this name: can be of form module:name. */
2763 unsigned long module_kallsyms_lookup_name(const char *name)
2764 {
2765 struct module *mod;
2766 char *colon;
2767 unsigned long ret = 0;
2768
2769 /* Don't lock: we're in enough trouble already. */
2770 preempt_disable();
2771 if ((colon = strchr(name, ':')) != NULL) {
2772 *colon = '\0';
2773 if ((mod = find_module(name)) != NULL)
2774 ret = mod_find_symname(mod, colon+1);
2775 *colon = ':';
2776 } else {
2777 list_for_each_entry_rcu(mod, &modules, list)
2778 if ((ret = mod_find_symname(mod, name)) != 0)
2779 break;
2780 }
2781 preempt_enable();
2782 return ret;
2783 }
2784
2785 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
2786 struct module *, unsigned long),
2787 void *data)
2788 {
2789 struct module *mod;
2790 unsigned int i;
2791 int ret;
2792
2793 list_for_each_entry(mod, &modules, list) {
2794 for (i = 0; i < mod->num_symtab; i++) {
2795 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
2796 mod, mod->symtab[i].st_value);
2797 if (ret != 0)
2798 return ret;
2799 }
2800 }
2801 return 0;
2802 }
2803 #endif /* CONFIG_KALLSYMS */
2804
2805 static char *module_flags(struct module *mod, char *buf)
2806 {
2807 int bx = 0;
2808
2809 if (mod->taints ||
2810 mod->state == MODULE_STATE_GOING ||
2811 mod->state == MODULE_STATE_COMING) {
2812 buf[bx++] = '(';
2813 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
2814 buf[bx++] = 'P';
2815 if (mod->taints & (1 << TAINT_FORCED_MODULE))
2816 buf[bx++] = 'F';
2817 if (mod->taints & (1 << TAINT_CRAP))
2818 buf[bx++] = 'C';
2819 /*
2820 * TAINT_FORCED_RMMOD: could be added.
2821 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
2822 * apply to modules.
2823 */
2824
2825 /* Show a - for module-is-being-unloaded */
2826 if (mod->state == MODULE_STATE_GOING)
2827 buf[bx++] = '-';
2828 /* Show a + for module-is-being-loaded */
2829 if (mod->state == MODULE_STATE_COMING)
2830 buf[bx++] = '+';
2831 buf[bx++] = ')';
2832 }
2833 buf[bx] = '\0';
2834
2835 return buf;
2836 }
2837
2838 #ifdef CONFIG_PROC_FS
2839 /* Called by the /proc file system to return a list of modules. */
2840 static void *m_start(struct seq_file *m, loff_t *pos)
2841 {
2842 mutex_lock(&module_mutex);
2843 return seq_list_start(&modules, *pos);
2844 }
2845
2846 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
2847 {
2848 return seq_list_next(p, &modules, pos);
2849 }
2850
2851 static void m_stop(struct seq_file *m, void *p)
2852 {
2853 mutex_unlock(&module_mutex);
2854 }
2855
2856 static int m_show(struct seq_file *m, void *p)
2857 {
2858 struct module *mod = list_entry(p, struct module, list);
2859 char buf[8];
2860
2861 seq_printf(m, "%s %u",
2862 mod->name, mod->init_size + mod->core_size);
2863 print_unload_info(m, mod);
2864
2865 /* Informative for users. */
2866 seq_printf(m, " %s",
2867 mod->state == MODULE_STATE_GOING ? "Unloading":
2868 mod->state == MODULE_STATE_COMING ? "Loading":
2869 "Live");
2870 /* Used by oprofile and other similar tools. */
2871 seq_printf(m, " 0x%p", mod->module_core);
2872
2873 /* Taints info */
2874 if (mod->taints)
2875 seq_printf(m, " %s", module_flags(mod, buf));
2876
2877 seq_printf(m, "\n");
2878 return 0;
2879 }
2880
2881 /* Format: modulename size refcount deps address
2882
2883 Where refcount is a number or -, and deps is a comma-separated list
2884 of depends or -.
2885 */
2886 static const struct seq_operations modules_op = {
2887 .start = m_start,
2888 .next = m_next,
2889 .stop = m_stop,
2890 .show = m_show
2891 };
2892
2893 static int modules_open(struct inode *inode, struct file *file)
2894 {
2895 return seq_open(file, &modules_op);
2896 }
2897
2898 static const struct file_operations proc_modules_operations = {
2899 .open = modules_open,
2900 .read = seq_read,
2901 .llseek = seq_lseek,
2902 .release = seq_release,
2903 };
2904
2905 static int __init proc_modules_init(void)
2906 {
2907 proc_create("modules", 0, NULL, &proc_modules_operations);
2908 return 0;
2909 }
2910 module_init(proc_modules_init);
2911 #endif
2912
2913 /* Given an address, look for it in the module exception tables. */
2914 const struct exception_table_entry *search_module_extables(unsigned long addr)
2915 {
2916 const struct exception_table_entry *e = NULL;
2917 struct module *mod;
2918
2919 preempt_disable();
2920 list_for_each_entry_rcu(mod, &modules, list) {
2921 if (mod->num_exentries == 0)
2922 continue;
2923
2924 e = search_extable(mod->extable,
2925 mod->extable + mod->num_exentries - 1,
2926 addr);
2927 if (e)
2928 break;
2929 }
2930 preempt_enable();
2931
2932 /* Now, if we found one, we are running inside it now, hence
2933 we cannot unload the module, hence no refcnt needed. */
2934 return e;
2935 }
2936
2937 /*
2938 * is_module_address - is this address inside a module?
2939 * @addr: the address to check.
2940 *
2941 * See is_module_text_address() if you simply want to see if the address
2942 * is code (not data).
2943 */
2944 bool is_module_address(unsigned long addr)
2945 {
2946 bool ret;
2947
2948 preempt_disable();
2949 ret = __module_address(addr) != NULL;
2950 preempt_enable();
2951
2952 return ret;
2953 }
2954
2955 /*
2956 * __module_address - get the module which contains an address.
2957 * @addr: the address.
2958 *
2959 * Must be called with preempt disabled or module mutex held so that
2960 * module doesn't get freed during this.
2961 */
2962 struct module *__module_address(unsigned long addr)
2963 {
2964 struct module *mod;
2965
2966 if (addr < module_addr_min || addr > module_addr_max)
2967 return NULL;
2968
2969 list_for_each_entry_rcu(mod, &modules, list)
2970 if (within_module_core(addr, mod)
2971 || within_module_init(addr, mod))
2972 return mod;
2973 return NULL;
2974 }
2975 EXPORT_SYMBOL_GPL(__module_address);
2976
2977 /*
2978 * is_module_text_address - is this address inside module code?
2979 * @addr: the address to check.
2980 *
2981 * See is_module_address() if you simply want to see if the address is
2982 * anywhere in a module. See kernel_text_address() for testing if an
2983 * address corresponds to kernel or module code.
2984 */
2985 bool is_module_text_address(unsigned long addr)
2986 {
2987 bool ret;
2988
2989 preempt_disable();
2990 ret = __module_text_address(addr) != NULL;
2991 preempt_enable();
2992
2993 return ret;
2994 }
2995
2996 /*
2997 * __module_text_address - get the module whose code contains an address.
2998 * @addr: the address.
2999 *
3000 * Must be called with preempt disabled or module mutex held so that
3001 * module doesn't get freed during this.
3002 */
3003 struct module *__module_text_address(unsigned long addr)
3004 {
3005 struct module *mod = __module_address(addr);
3006 if (mod) {
3007 /* Make sure it's within the text section. */
3008 if (!within(addr, mod->module_init, mod->init_text_size)
3009 && !within(addr, mod->module_core, mod->core_text_size))
3010 mod = NULL;
3011 }
3012 return mod;
3013 }
3014 EXPORT_SYMBOL_GPL(__module_text_address);
3015
3016 /* Don't grab lock, we're oopsing. */
3017 void print_modules(void)
3018 {
3019 struct module *mod;
3020 char buf[8];
3021
3022 printk(KERN_DEFAULT "Modules linked in:");
3023 /* Most callers should already have preempt disabled, but make sure */
3024 preempt_disable();
3025 list_for_each_entry_rcu(mod, &modules, list)
3026 printk(" %s%s", mod->name, module_flags(mod, buf));
3027 preempt_enable();
3028 if (last_unloaded_module[0])
3029 printk(" [last unloaded: %s]", last_unloaded_module);
3030 printk("\n");
3031 }
3032
3033 #ifdef CONFIG_MODVERSIONS
3034 /* Generate the signature for all relevant module structures here.
3035 * If these change, we don't want to try to parse the module. */
3036 void module_layout(struct module *mod,
3037 struct modversion_info *ver,
3038 struct kernel_param *kp,
3039 struct kernel_symbol *ks,
3040 struct tracepoint *tp)
3041 {
3042 }
3043 EXPORT_SYMBOL(module_layout);
3044 #endif
3045
3046 #ifdef CONFIG_TRACEPOINTS
3047 void module_update_tracepoints(void)
3048 {
3049 struct module *mod;
3050
3051 mutex_lock(&module_mutex);
3052 list_for_each_entry(mod, &modules, list)
3053 if (!mod->taints)
3054 tracepoint_update_probe_range(mod->tracepoints,
3055 mod->tracepoints + mod->num_tracepoints);
3056 mutex_unlock(&module_mutex);
3057 }
3058
3059 /*
3060 * Returns 0 if current not found.
3061 * Returns 1 if current found.
3062 */
3063 int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3064 {
3065 struct module *iter_mod;
3066 int found = 0;
3067
3068 mutex_lock(&module_mutex);
3069 list_for_each_entry(iter_mod, &modules, list) {
3070 if (!iter_mod->taints) {
3071 /*
3072 * Sorted module list
3073 */
3074 if (iter_mod < iter->module)
3075 continue;
3076 else if (iter_mod > iter->module)
3077 iter->tracepoint = NULL;
3078 found = tracepoint_get_iter_range(&iter->tracepoint,
3079 iter_mod->tracepoints,
3080 iter_mod->tracepoints
3081 + iter_mod->num_tracepoints);
3082 if (found) {
3083 iter->module = iter_mod;
3084 break;
3085 }
3086 }
3087 }
3088 mutex_unlock(&module_mutex);
3089 return found;
3090 }
3091 #endif