]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/module.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[mirror_ubuntu-artful-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/module.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61
62 #if 0
63 #define DEBUGP printk
64 #else
65 #define DEBUGP(fmt , a...)
66 #endif
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /* If this is set, the section belongs in the init part of the module */
73 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
74
75 /* List of modules, protected by module_mutex or preempt_disable
76 * (delete uses stop_machine/add uses RCU list operations). */
77 DEFINE_MUTEX(module_mutex);
78 EXPORT_SYMBOL_GPL(module_mutex);
79 static LIST_HEAD(modules);
80 #ifdef CONFIG_KGDB_KDB
81 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
82 #endif /* CONFIG_KGDB_KDB */
83
84
85 /* Block module loading/unloading? */
86 int modules_disabled = 0;
87
88 /* Waiting for a module to finish initializing? */
89 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
90
91 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
92
93 /* Bounds of module allocation, for speeding __module_address */
94 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
95
96 int register_module_notifier(struct notifier_block * nb)
97 {
98 return blocking_notifier_chain_register(&module_notify_list, nb);
99 }
100 EXPORT_SYMBOL(register_module_notifier);
101
102 int unregister_module_notifier(struct notifier_block * nb)
103 {
104 return blocking_notifier_chain_unregister(&module_notify_list, nb);
105 }
106 EXPORT_SYMBOL(unregister_module_notifier);
107
108 /* We require a truly strong try_module_get(): 0 means failure due to
109 ongoing or failed initialization etc. */
110 static inline int strong_try_module_get(struct module *mod)
111 {
112 if (mod && mod->state == MODULE_STATE_COMING)
113 return -EBUSY;
114 if (try_module_get(mod))
115 return 0;
116 else
117 return -ENOENT;
118 }
119
120 static inline void add_taint_module(struct module *mod, unsigned flag)
121 {
122 add_taint(flag);
123 mod->taints |= (1U << flag);
124 }
125
126 /*
127 * A thread that wants to hold a reference to a module only while it
128 * is running can call this to safely exit. nfsd and lockd use this.
129 */
130 void __module_put_and_exit(struct module *mod, long code)
131 {
132 module_put(mod);
133 do_exit(code);
134 }
135 EXPORT_SYMBOL(__module_put_and_exit);
136
137 /* Find a module section: 0 means not found. */
138 static unsigned int find_sec(Elf_Ehdr *hdr,
139 Elf_Shdr *sechdrs,
140 const char *secstrings,
141 const char *name)
142 {
143 unsigned int i;
144
145 for (i = 1; i < hdr->e_shnum; i++)
146 /* Alloc bit cleared means "ignore it." */
147 if ((sechdrs[i].sh_flags & SHF_ALLOC)
148 && strcmp(secstrings+sechdrs[i].sh_name, name) == 0)
149 return i;
150 return 0;
151 }
152
153 /* Find a module section, or NULL. */
154 static void *section_addr(Elf_Ehdr *hdr, Elf_Shdr *shdrs,
155 const char *secstrings, const char *name)
156 {
157 /* Section 0 has sh_addr 0. */
158 return (void *)shdrs[find_sec(hdr, shdrs, secstrings, name)].sh_addr;
159 }
160
161 /* Find a module section, or NULL. Fill in number of "objects" in section. */
162 static void *section_objs(Elf_Ehdr *hdr,
163 Elf_Shdr *sechdrs,
164 const char *secstrings,
165 const char *name,
166 size_t object_size,
167 unsigned int *num)
168 {
169 unsigned int sec = find_sec(hdr, sechdrs, secstrings, name);
170
171 /* Section 0 has sh_addr 0 and sh_size 0. */
172 *num = sechdrs[sec].sh_size / object_size;
173 return (void *)sechdrs[sec].sh_addr;
174 }
175
176 /* Provided by the linker */
177 extern const struct kernel_symbol __start___ksymtab[];
178 extern const struct kernel_symbol __stop___ksymtab[];
179 extern const struct kernel_symbol __start___ksymtab_gpl[];
180 extern const struct kernel_symbol __stop___ksymtab_gpl[];
181 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
182 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
183 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
184 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
185 extern const unsigned long __start___kcrctab[];
186 extern const unsigned long __start___kcrctab_gpl[];
187 extern const unsigned long __start___kcrctab_gpl_future[];
188 #ifdef CONFIG_UNUSED_SYMBOLS
189 extern const struct kernel_symbol __start___ksymtab_unused[];
190 extern const struct kernel_symbol __stop___ksymtab_unused[];
191 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
192 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
193 extern const unsigned long __start___kcrctab_unused[];
194 extern const unsigned long __start___kcrctab_unused_gpl[];
195 #endif
196
197 #ifndef CONFIG_MODVERSIONS
198 #define symversion(base, idx) NULL
199 #else
200 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
201 #endif
202
203 static bool each_symbol_in_section(const struct symsearch *arr,
204 unsigned int arrsize,
205 struct module *owner,
206 bool (*fn)(const struct symsearch *syms,
207 struct module *owner,
208 unsigned int symnum, void *data),
209 void *data)
210 {
211 unsigned int i, j;
212
213 for (j = 0; j < arrsize; j++) {
214 for (i = 0; i < arr[j].stop - arr[j].start; i++)
215 if (fn(&arr[j], owner, i, data))
216 return true;
217 }
218
219 return false;
220 }
221
222 /* Returns true as soon as fn returns true, otherwise false. */
223 bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
224 unsigned int symnum, void *data), void *data)
225 {
226 struct module *mod;
227 const struct symsearch arr[] = {
228 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
229 NOT_GPL_ONLY, false },
230 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
231 __start___kcrctab_gpl,
232 GPL_ONLY, false },
233 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
234 __start___kcrctab_gpl_future,
235 WILL_BE_GPL_ONLY, false },
236 #ifdef CONFIG_UNUSED_SYMBOLS
237 { __start___ksymtab_unused, __stop___ksymtab_unused,
238 __start___kcrctab_unused,
239 NOT_GPL_ONLY, true },
240 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
241 __start___kcrctab_unused_gpl,
242 GPL_ONLY, true },
243 #endif
244 };
245
246 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
247 return true;
248
249 list_for_each_entry_rcu(mod, &modules, list) {
250 struct symsearch arr[] = {
251 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
252 NOT_GPL_ONLY, false },
253 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
254 mod->gpl_crcs,
255 GPL_ONLY, false },
256 { mod->gpl_future_syms,
257 mod->gpl_future_syms + mod->num_gpl_future_syms,
258 mod->gpl_future_crcs,
259 WILL_BE_GPL_ONLY, false },
260 #ifdef CONFIG_UNUSED_SYMBOLS
261 { mod->unused_syms,
262 mod->unused_syms + mod->num_unused_syms,
263 mod->unused_crcs,
264 NOT_GPL_ONLY, true },
265 { mod->unused_gpl_syms,
266 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
267 mod->unused_gpl_crcs,
268 GPL_ONLY, true },
269 #endif
270 };
271
272 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
273 return true;
274 }
275 return false;
276 }
277 EXPORT_SYMBOL_GPL(each_symbol);
278
279 struct find_symbol_arg {
280 /* Input */
281 const char *name;
282 bool gplok;
283 bool warn;
284
285 /* Output */
286 struct module *owner;
287 const unsigned long *crc;
288 const struct kernel_symbol *sym;
289 };
290
291 static bool find_symbol_in_section(const struct symsearch *syms,
292 struct module *owner,
293 unsigned int symnum, void *data)
294 {
295 struct find_symbol_arg *fsa = data;
296
297 if (strcmp(syms->start[symnum].name, fsa->name) != 0)
298 return false;
299
300 if (!fsa->gplok) {
301 if (syms->licence == GPL_ONLY)
302 return false;
303 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
304 printk(KERN_WARNING "Symbol %s is being used "
305 "by a non-GPL module, which will not "
306 "be allowed in the future\n", fsa->name);
307 printk(KERN_WARNING "Please see the file "
308 "Documentation/feature-removal-schedule.txt "
309 "in the kernel source tree for more details.\n");
310 }
311 }
312
313 #ifdef CONFIG_UNUSED_SYMBOLS
314 if (syms->unused && fsa->warn) {
315 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
316 "however this module is using it.\n", fsa->name);
317 printk(KERN_WARNING
318 "This symbol will go away in the future.\n");
319 printk(KERN_WARNING
320 "Please evalute if this is the right api to use and if "
321 "it really is, submit a report the linux kernel "
322 "mailinglist together with submitting your code for "
323 "inclusion.\n");
324 }
325 #endif
326
327 fsa->owner = owner;
328 fsa->crc = symversion(syms->crcs, symnum);
329 fsa->sym = &syms->start[symnum];
330 return true;
331 }
332
333 /* Find a symbol and return it, along with, (optional) crc and
334 * (optional) module which owns it */
335 const struct kernel_symbol *find_symbol(const char *name,
336 struct module **owner,
337 const unsigned long **crc,
338 bool gplok,
339 bool warn)
340 {
341 struct find_symbol_arg fsa;
342
343 fsa.name = name;
344 fsa.gplok = gplok;
345 fsa.warn = warn;
346
347 if (each_symbol(find_symbol_in_section, &fsa)) {
348 if (owner)
349 *owner = fsa.owner;
350 if (crc)
351 *crc = fsa.crc;
352 return fsa.sym;
353 }
354
355 DEBUGP("Failed to find symbol %s\n", name);
356 return NULL;
357 }
358 EXPORT_SYMBOL_GPL(find_symbol);
359
360 /* Search for module by name: must hold module_mutex. */
361 struct module *find_module(const char *name)
362 {
363 struct module *mod;
364
365 list_for_each_entry(mod, &modules, list) {
366 if (strcmp(mod->name, name) == 0)
367 return mod;
368 }
369 return NULL;
370 }
371 EXPORT_SYMBOL_GPL(find_module);
372
373 #ifdef CONFIG_SMP
374
375 static inline void __percpu *mod_percpu(struct module *mod)
376 {
377 return mod->percpu;
378 }
379
380 static int percpu_modalloc(struct module *mod,
381 unsigned long size, unsigned long align)
382 {
383 if (align > PAGE_SIZE) {
384 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
385 mod->name, align, PAGE_SIZE);
386 align = PAGE_SIZE;
387 }
388
389 mod->percpu = __alloc_reserved_percpu(size, align);
390 if (!mod->percpu) {
391 printk(KERN_WARNING
392 "Could not allocate %lu bytes percpu data\n", size);
393 return -ENOMEM;
394 }
395 mod->percpu_size = size;
396 return 0;
397 }
398
399 static void percpu_modfree(struct module *mod)
400 {
401 free_percpu(mod->percpu);
402 }
403
404 static unsigned int find_pcpusec(Elf_Ehdr *hdr,
405 Elf_Shdr *sechdrs,
406 const char *secstrings)
407 {
408 return find_sec(hdr, sechdrs, secstrings, ".data.percpu");
409 }
410
411 static void percpu_modcopy(struct module *mod,
412 const void *from, unsigned long size)
413 {
414 int cpu;
415
416 for_each_possible_cpu(cpu)
417 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
418 }
419
420 /**
421 * is_module_percpu_address - test whether address is from module static percpu
422 * @addr: address to test
423 *
424 * Test whether @addr belongs to module static percpu area.
425 *
426 * RETURNS:
427 * %true if @addr is from module static percpu area
428 */
429 bool is_module_percpu_address(unsigned long addr)
430 {
431 struct module *mod;
432 unsigned int cpu;
433
434 preempt_disable();
435
436 list_for_each_entry_rcu(mod, &modules, list) {
437 if (!mod->percpu_size)
438 continue;
439 for_each_possible_cpu(cpu) {
440 void *start = per_cpu_ptr(mod->percpu, cpu);
441
442 if ((void *)addr >= start &&
443 (void *)addr < start + mod->percpu_size) {
444 preempt_enable();
445 return true;
446 }
447 }
448 }
449
450 preempt_enable();
451 return false;
452 }
453
454 #else /* ... !CONFIG_SMP */
455
456 static inline void __percpu *mod_percpu(struct module *mod)
457 {
458 return NULL;
459 }
460 static inline int percpu_modalloc(struct module *mod,
461 unsigned long size, unsigned long align)
462 {
463 return -ENOMEM;
464 }
465 static inline void percpu_modfree(struct module *mod)
466 {
467 }
468 static inline unsigned int find_pcpusec(Elf_Ehdr *hdr,
469 Elf_Shdr *sechdrs,
470 const char *secstrings)
471 {
472 return 0;
473 }
474 static inline void percpu_modcopy(struct module *mod,
475 const void *from, unsigned long size)
476 {
477 /* pcpusec should be 0, and size of that section should be 0. */
478 BUG_ON(size != 0);
479 }
480 bool is_module_percpu_address(unsigned long addr)
481 {
482 return false;
483 }
484
485 #endif /* CONFIG_SMP */
486
487 #define MODINFO_ATTR(field) \
488 static void setup_modinfo_##field(struct module *mod, const char *s) \
489 { \
490 mod->field = kstrdup(s, GFP_KERNEL); \
491 } \
492 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
493 struct module *mod, char *buffer) \
494 { \
495 return sprintf(buffer, "%s\n", mod->field); \
496 } \
497 static int modinfo_##field##_exists(struct module *mod) \
498 { \
499 return mod->field != NULL; \
500 } \
501 static void free_modinfo_##field(struct module *mod) \
502 { \
503 kfree(mod->field); \
504 mod->field = NULL; \
505 } \
506 static struct module_attribute modinfo_##field = { \
507 .attr = { .name = __stringify(field), .mode = 0444 }, \
508 .show = show_modinfo_##field, \
509 .setup = setup_modinfo_##field, \
510 .test = modinfo_##field##_exists, \
511 .free = free_modinfo_##field, \
512 };
513
514 MODINFO_ATTR(version);
515 MODINFO_ATTR(srcversion);
516
517 static char last_unloaded_module[MODULE_NAME_LEN+1];
518
519 #ifdef CONFIG_MODULE_UNLOAD
520
521 EXPORT_TRACEPOINT_SYMBOL(module_get);
522
523 /* Init the unload section of the module. */
524 static void module_unload_init(struct module *mod)
525 {
526 int cpu;
527
528 INIT_LIST_HEAD(&mod->modules_which_use_me);
529 for_each_possible_cpu(cpu) {
530 per_cpu_ptr(mod->refptr, cpu)->incs = 0;
531 per_cpu_ptr(mod->refptr, cpu)->decs = 0;
532 }
533
534 /* Hold reference count during initialization. */
535 __this_cpu_write(mod->refptr->incs, 1);
536 /* Backwards compatibility macros put refcount during init. */
537 mod->waiter = current;
538 }
539
540 /* modules using other modules */
541 struct module_use
542 {
543 struct list_head list;
544 struct module *module_which_uses;
545 };
546
547 /* Does a already use b? */
548 static int already_uses(struct module *a, struct module *b)
549 {
550 struct module_use *use;
551
552 list_for_each_entry(use, &b->modules_which_use_me, list) {
553 if (use->module_which_uses == a) {
554 DEBUGP("%s uses %s!\n", a->name, b->name);
555 return 1;
556 }
557 }
558 DEBUGP("%s does not use %s!\n", a->name, b->name);
559 return 0;
560 }
561
562 /* Module a uses b */
563 int use_module(struct module *a, struct module *b)
564 {
565 struct module_use *use;
566 int no_warn, err;
567
568 if (b == NULL || already_uses(a, b)) return 1;
569
570 /* If we're interrupted or time out, we fail. */
571 if (wait_event_interruptible_timeout(
572 module_wq, (err = strong_try_module_get(b)) != -EBUSY,
573 30 * HZ) <= 0) {
574 printk("%s: gave up waiting for init of module %s.\n",
575 a->name, b->name);
576 return 0;
577 }
578
579 /* If strong_try_module_get() returned a different error, we fail. */
580 if (err)
581 return 0;
582
583 DEBUGP("Allocating new usage for %s.\n", a->name);
584 use = kmalloc(sizeof(*use), GFP_ATOMIC);
585 if (!use) {
586 printk("%s: out of memory loading\n", a->name);
587 module_put(b);
588 return 0;
589 }
590
591 use->module_which_uses = a;
592 list_add(&use->list, &b->modules_which_use_me);
593 no_warn = sysfs_create_link(b->holders_dir, &a->mkobj.kobj, a->name);
594 return 1;
595 }
596 EXPORT_SYMBOL_GPL(use_module);
597
598 /* Clear the unload stuff of the module. */
599 static void module_unload_free(struct module *mod)
600 {
601 struct module *i;
602
603 list_for_each_entry(i, &modules, list) {
604 struct module_use *use;
605
606 list_for_each_entry(use, &i->modules_which_use_me, list) {
607 if (use->module_which_uses == mod) {
608 DEBUGP("%s unusing %s\n", mod->name, i->name);
609 module_put(i);
610 list_del(&use->list);
611 kfree(use);
612 sysfs_remove_link(i->holders_dir, mod->name);
613 /* There can be at most one match. */
614 break;
615 }
616 }
617 }
618 }
619
620 #ifdef CONFIG_MODULE_FORCE_UNLOAD
621 static inline int try_force_unload(unsigned int flags)
622 {
623 int ret = (flags & O_TRUNC);
624 if (ret)
625 add_taint(TAINT_FORCED_RMMOD);
626 return ret;
627 }
628 #else
629 static inline int try_force_unload(unsigned int flags)
630 {
631 return 0;
632 }
633 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
634
635 struct stopref
636 {
637 struct module *mod;
638 int flags;
639 int *forced;
640 };
641
642 /* Whole machine is stopped with interrupts off when this runs. */
643 static int __try_stop_module(void *_sref)
644 {
645 struct stopref *sref = _sref;
646
647 /* If it's not unused, quit unless we're forcing. */
648 if (module_refcount(sref->mod) != 0) {
649 if (!(*sref->forced = try_force_unload(sref->flags)))
650 return -EWOULDBLOCK;
651 }
652
653 /* Mark it as dying. */
654 sref->mod->state = MODULE_STATE_GOING;
655 return 0;
656 }
657
658 static int try_stop_module(struct module *mod, int flags, int *forced)
659 {
660 if (flags & O_NONBLOCK) {
661 struct stopref sref = { mod, flags, forced };
662
663 return stop_machine(__try_stop_module, &sref, NULL);
664 } else {
665 /* We don't need to stop the machine for this. */
666 mod->state = MODULE_STATE_GOING;
667 synchronize_sched();
668 return 0;
669 }
670 }
671
672 unsigned int module_refcount(struct module *mod)
673 {
674 unsigned int incs = 0, decs = 0;
675 int cpu;
676
677 for_each_possible_cpu(cpu)
678 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
679 /*
680 * ensure the incs are added up after the decs.
681 * module_put ensures incs are visible before decs with smp_wmb.
682 *
683 * This 2-count scheme avoids the situation where the refcount
684 * for CPU0 is read, then CPU0 increments the module refcount,
685 * then CPU1 drops that refcount, then the refcount for CPU1 is
686 * read. We would record a decrement but not its corresponding
687 * increment so we would see a low count (disaster).
688 *
689 * Rare situation? But module_refcount can be preempted, and we
690 * might be tallying up 4096+ CPUs. So it is not impossible.
691 */
692 smp_rmb();
693 for_each_possible_cpu(cpu)
694 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
695 return incs - decs;
696 }
697 EXPORT_SYMBOL(module_refcount);
698
699 /* This exists whether we can unload or not */
700 static void free_module(struct module *mod);
701
702 static void wait_for_zero_refcount(struct module *mod)
703 {
704 /* Since we might sleep for some time, release the mutex first */
705 mutex_unlock(&module_mutex);
706 for (;;) {
707 DEBUGP("Looking at refcount...\n");
708 set_current_state(TASK_UNINTERRUPTIBLE);
709 if (module_refcount(mod) == 0)
710 break;
711 schedule();
712 }
713 current->state = TASK_RUNNING;
714 mutex_lock(&module_mutex);
715 }
716
717 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
718 unsigned int, flags)
719 {
720 struct module *mod;
721 char name[MODULE_NAME_LEN];
722 int ret, forced = 0;
723
724 if (!capable(CAP_SYS_MODULE) || modules_disabled)
725 return -EPERM;
726
727 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
728 return -EFAULT;
729 name[MODULE_NAME_LEN-1] = '\0';
730
731 if (mutex_lock_interruptible(&module_mutex) != 0)
732 return -EINTR;
733
734 mod = find_module(name);
735 if (!mod) {
736 ret = -ENOENT;
737 goto out;
738 }
739
740 if (!list_empty(&mod->modules_which_use_me)) {
741 /* Other modules depend on us: get rid of them first. */
742 ret = -EWOULDBLOCK;
743 goto out;
744 }
745
746 /* Doing init or already dying? */
747 if (mod->state != MODULE_STATE_LIVE) {
748 /* FIXME: if (force), slam module count and wake up
749 waiter --RR */
750 DEBUGP("%s already dying\n", mod->name);
751 ret = -EBUSY;
752 goto out;
753 }
754
755 /* If it has an init func, it must have an exit func to unload */
756 if (mod->init && !mod->exit) {
757 forced = try_force_unload(flags);
758 if (!forced) {
759 /* This module can't be removed */
760 ret = -EBUSY;
761 goto out;
762 }
763 }
764
765 /* Set this up before setting mod->state */
766 mod->waiter = current;
767
768 /* Stop the machine so refcounts can't move and disable module. */
769 ret = try_stop_module(mod, flags, &forced);
770 if (ret != 0)
771 goto out;
772
773 /* Never wait if forced. */
774 if (!forced && module_refcount(mod) != 0)
775 wait_for_zero_refcount(mod);
776
777 mutex_unlock(&module_mutex);
778 /* Final destruction now noone is using it. */
779 if (mod->exit != NULL)
780 mod->exit();
781 blocking_notifier_call_chain(&module_notify_list,
782 MODULE_STATE_GOING, mod);
783 async_synchronize_full();
784 mutex_lock(&module_mutex);
785 /* Store the name of the last unloaded module for diagnostic purposes */
786 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
787 ddebug_remove_module(mod->name);
788 free_module(mod);
789
790 out:
791 mutex_unlock(&module_mutex);
792 return ret;
793 }
794
795 static inline void print_unload_info(struct seq_file *m, struct module *mod)
796 {
797 struct module_use *use;
798 int printed_something = 0;
799
800 seq_printf(m, " %u ", module_refcount(mod));
801
802 /* Always include a trailing , so userspace can differentiate
803 between this and the old multi-field proc format. */
804 list_for_each_entry(use, &mod->modules_which_use_me, list) {
805 printed_something = 1;
806 seq_printf(m, "%s,", use->module_which_uses->name);
807 }
808
809 if (mod->init != NULL && mod->exit == NULL) {
810 printed_something = 1;
811 seq_printf(m, "[permanent],");
812 }
813
814 if (!printed_something)
815 seq_printf(m, "-");
816 }
817
818 void __symbol_put(const char *symbol)
819 {
820 struct module *owner;
821
822 preempt_disable();
823 if (!find_symbol(symbol, &owner, NULL, true, false))
824 BUG();
825 module_put(owner);
826 preempt_enable();
827 }
828 EXPORT_SYMBOL(__symbol_put);
829
830 /* Note this assumes addr is a function, which it currently always is. */
831 void symbol_put_addr(void *addr)
832 {
833 struct module *modaddr;
834 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
835
836 if (core_kernel_text(a))
837 return;
838
839 /* module_text_address is safe here: we're supposed to have reference
840 * to module from symbol_get, so it can't go away. */
841 modaddr = __module_text_address(a);
842 BUG_ON(!modaddr);
843 module_put(modaddr);
844 }
845 EXPORT_SYMBOL_GPL(symbol_put_addr);
846
847 static ssize_t show_refcnt(struct module_attribute *mattr,
848 struct module *mod, char *buffer)
849 {
850 return sprintf(buffer, "%u\n", module_refcount(mod));
851 }
852
853 static struct module_attribute refcnt = {
854 .attr = { .name = "refcnt", .mode = 0444 },
855 .show = show_refcnt,
856 };
857
858 void module_put(struct module *module)
859 {
860 if (module) {
861 preempt_disable();
862 smp_wmb(); /* see comment in module_refcount */
863 __this_cpu_inc(module->refptr->decs);
864
865 trace_module_put(module, _RET_IP_);
866 /* Maybe they're waiting for us to drop reference? */
867 if (unlikely(!module_is_live(module)))
868 wake_up_process(module->waiter);
869 preempt_enable();
870 }
871 }
872 EXPORT_SYMBOL(module_put);
873
874 #else /* !CONFIG_MODULE_UNLOAD */
875 static inline void print_unload_info(struct seq_file *m, struct module *mod)
876 {
877 /* We don't know the usage count, or what modules are using. */
878 seq_printf(m, " - -");
879 }
880
881 static inline void module_unload_free(struct module *mod)
882 {
883 }
884
885 int use_module(struct module *a, struct module *b)
886 {
887 return strong_try_module_get(b) == 0;
888 }
889 EXPORT_SYMBOL_GPL(use_module);
890
891 static inline void module_unload_init(struct module *mod)
892 {
893 }
894 #endif /* CONFIG_MODULE_UNLOAD */
895
896 static ssize_t show_initstate(struct module_attribute *mattr,
897 struct module *mod, char *buffer)
898 {
899 const char *state = "unknown";
900
901 switch (mod->state) {
902 case MODULE_STATE_LIVE:
903 state = "live";
904 break;
905 case MODULE_STATE_COMING:
906 state = "coming";
907 break;
908 case MODULE_STATE_GOING:
909 state = "going";
910 break;
911 }
912 return sprintf(buffer, "%s\n", state);
913 }
914
915 static struct module_attribute initstate = {
916 .attr = { .name = "initstate", .mode = 0444 },
917 .show = show_initstate,
918 };
919
920 static struct module_attribute *modinfo_attrs[] = {
921 &modinfo_version,
922 &modinfo_srcversion,
923 &initstate,
924 #ifdef CONFIG_MODULE_UNLOAD
925 &refcnt,
926 #endif
927 NULL,
928 };
929
930 static const char vermagic[] = VERMAGIC_STRING;
931
932 static int try_to_force_load(struct module *mod, const char *reason)
933 {
934 #ifdef CONFIG_MODULE_FORCE_LOAD
935 if (!test_taint(TAINT_FORCED_MODULE))
936 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
937 mod->name, reason);
938 add_taint_module(mod, TAINT_FORCED_MODULE);
939 return 0;
940 #else
941 return -ENOEXEC;
942 #endif
943 }
944
945 #ifdef CONFIG_MODVERSIONS
946 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
947 static unsigned long maybe_relocated(unsigned long crc,
948 const struct module *crc_owner)
949 {
950 #ifdef ARCH_RELOCATES_KCRCTAB
951 if (crc_owner == NULL)
952 return crc - (unsigned long)reloc_start;
953 #endif
954 return crc;
955 }
956
957 static int check_version(Elf_Shdr *sechdrs,
958 unsigned int versindex,
959 const char *symname,
960 struct module *mod,
961 const unsigned long *crc,
962 const struct module *crc_owner)
963 {
964 unsigned int i, num_versions;
965 struct modversion_info *versions;
966
967 /* Exporting module didn't supply crcs? OK, we're already tainted. */
968 if (!crc)
969 return 1;
970
971 /* No versions at all? modprobe --force does this. */
972 if (versindex == 0)
973 return try_to_force_load(mod, symname) == 0;
974
975 versions = (void *) sechdrs[versindex].sh_addr;
976 num_versions = sechdrs[versindex].sh_size
977 / sizeof(struct modversion_info);
978
979 for (i = 0; i < num_versions; i++) {
980 if (strcmp(versions[i].name, symname) != 0)
981 continue;
982
983 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
984 return 1;
985 DEBUGP("Found checksum %lX vs module %lX\n",
986 maybe_relocated(*crc, crc_owner), versions[i].crc);
987 goto bad_version;
988 }
989
990 printk(KERN_WARNING "%s: no symbol version for %s\n",
991 mod->name, symname);
992 return 0;
993
994 bad_version:
995 printk("%s: disagrees about version of symbol %s\n",
996 mod->name, symname);
997 return 0;
998 }
999
1000 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1001 unsigned int versindex,
1002 struct module *mod)
1003 {
1004 const unsigned long *crc;
1005
1006 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1007 &crc, true, false))
1008 BUG();
1009 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1010 NULL);
1011 }
1012
1013 /* First part is kernel version, which we ignore if module has crcs. */
1014 static inline int same_magic(const char *amagic, const char *bmagic,
1015 bool has_crcs)
1016 {
1017 if (has_crcs) {
1018 amagic += strcspn(amagic, " ");
1019 bmagic += strcspn(bmagic, " ");
1020 }
1021 return strcmp(amagic, bmagic) == 0;
1022 }
1023 #else
1024 static inline int check_version(Elf_Shdr *sechdrs,
1025 unsigned int versindex,
1026 const char *symname,
1027 struct module *mod,
1028 const unsigned long *crc,
1029 const struct module *crc_owner)
1030 {
1031 return 1;
1032 }
1033
1034 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1035 unsigned int versindex,
1036 struct module *mod)
1037 {
1038 return 1;
1039 }
1040
1041 static inline int same_magic(const char *amagic, const char *bmagic,
1042 bool has_crcs)
1043 {
1044 return strcmp(amagic, bmagic) == 0;
1045 }
1046 #endif /* CONFIG_MODVERSIONS */
1047
1048 /* Resolve a symbol for this module. I.e. if we find one, record usage.
1049 Must be holding module_mutex. */
1050 static const struct kernel_symbol *resolve_symbol(Elf_Shdr *sechdrs,
1051 unsigned int versindex,
1052 const char *name,
1053 struct module *mod)
1054 {
1055 struct module *owner;
1056 const struct kernel_symbol *sym;
1057 const unsigned long *crc;
1058
1059 sym = find_symbol(name, &owner, &crc,
1060 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1061 /* use_module can fail due to OOM,
1062 or module initialization or unloading */
1063 if (sym) {
1064 if (!check_version(sechdrs, versindex, name, mod, crc, owner)
1065 || !use_module(mod, owner))
1066 sym = NULL;
1067 }
1068 return sym;
1069 }
1070
1071 /*
1072 * /sys/module/foo/sections stuff
1073 * J. Corbet <corbet@lwn.net>
1074 */
1075 #if defined(CONFIG_KALLSYMS) && defined(CONFIG_SYSFS)
1076
1077 static inline bool sect_empty(const Elf_Shdr *sect)
1078 {
1079 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1080 }
1081
1082 struct module_sect_attr
1083 {
1084 struct module_attribute mattr;
1085 char *name;
1086 unsigned long address;
1087 };
1088
1089 struct module_sect_attrs
1090 {
1091 struct attribute_group grp;
1092 unsigned int nsections;
1093 struct module_sect_attr attrs[0];
1094 };
1095
1096 static ssize_t module_sect_show(struct module_attribute *mattr,
1097 struct module *mod, char *buf)
1098 {
1099 struct module_sect_attr *sattr =
1100 container_of(mattr, struct module_sect_attr, mattr);
1101 return sprintf(buf, "0x%lx\n", sattr->address);
1102 }
1103
1104 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1105 {
1106 unsigned int section;
1107
1108 for (section = 0; section < sect_attrs->nsections; section++)
1109 kfree(sect_attrs->attrs[section].name);
1110 kfree(sect_attrs);
1111 }
1112
1113 static void add_sect_attrs(struct module *mod, unsigned int nsect,
1114 char *secstrings, Elf_Shdr *sechdrs)
1115 {
1116 unsigned int nloaded = 0, i, size[2];
1117 struct module_sect_attrs *sect_attrs;
1118 struct module_sect_attr *sattr;
1119 struct attribute **gattr;
1120
1121 /* Count loaded sections and allocate structures */
1122 for (i = 0; i < nsect; i++)
1123 if (!sect_empty(&sechdrs[i]))
1124 nloaded++;
1125 size[0] = ALIGN(sizeof(*sect_attrs)
1126 + nloaded * sizeof(sect_attrs->attrs[0]),
1127 sizeof(sect_attrs->grp.attrs[0]));
1128 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1129 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1130 if (sect_attrs == NULL)
1131 return;
1132
1133 /* Setup section attributes. */
1134 sect_attrs->grp.name = "sections";
1135 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1136
1137 sect_attrs->nsections = 0;
1138 sattr = &sect_attrs->attrs[0];
1139 gattr = &sect_attrs->grp.attrs[0];
1140 for (i = 0; i < nsect; i++) {
1141 if (sect_empty(&sechdrs[i]))
1142 continue;
1143 sattr->address = sechdrs[i].sh_addr;
1144 sattr->name = kstrdup(secstrings + sechdrs[i].sh_name,
1145 GFP_KERNEL);
1146 if (sattr->name == NULL)
1147 goto out;
1148 sect_attrs->nsections++;
1149 sysfs_attr_init(&sattr->mattr.attr);
1150 sattr->mattr.show = module_sect_show;
1151 sattr->mattr.store = NULL;
1152 sattr->mattr.attr.name = sattr->name;
1153 sattr->mattr.attr.mode = S_IRUGO;
1154 *(gattr++) = &(sattr++)->mattr.attr;
1155 }
1156 *gattr = NULL;
1157
1158 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1159 goto out;
1160
1161 mod->sect_attrs = sect_attrs;
1162 return;
1163 out:
1164 free_sect_attrs(sect_attrs);
1165 }
1166
1167 static void remove_sect_attrs(struct module *mod)
1168 {
1169 if (mod->sect_attrs) {
1170 sysfs_remove_group(&mod->mkobj.kobj,
1171 &mod->sect_attrs->grp);
1172 /* We are positive that no one is using any sect attrs
1173 * at this point. Deallocate immediately. */
1174 free_sect_attrs(mod->sect_attrs);
1175 mod->sect_attrs = NULL;
1176 }
1177 }
1178
1179 /*
1180 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1181 */
1182
1183 struct module_notes_attrs {
1184 struct kobject *dir;
1185 unsigned int notes;
1186 struct bin_attribute attrs[0];
1187 };
1188
1189 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1190 struct bin_attribute *bin_attr,
1191 char *buf, loff_t pos, size_t count)
1192 {
1193 /*
1194 * The caller checked the pos and count against our size.
1195 */
1196 memcpy(buf, bin_attr->private + pos, count);
1197 return count;
1198 }
1199
1200 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1201 unsigned int i)
1202 {
1203 if (notes_attrs->dir) {
1204 while (i-- > 0)
1205 sysfs_remove_bin_file(notes_attrs->dir,
1206 &notes_attrs->attrs[i]);
1207 kobject_put(notes_attrs->dir);
1208 }
1209 kfree(notes_attrs);
1210 }
1211
1212 static void add_notes_attrs(struct module *mod, unsigned int nsect,
1213 char *secstrings, Elf_Shdr *sechdrs)
1214 {
1215 unsigned int notes, loaded, i;
1216 struct module_notes_attrs *notes_attrs;
1217 struct bin_attribute *nattr;
1218
1219 /* failed to create section attributes, so can't create notes */
1220 if (!mod->sect_attrs)
1221 return;
1222
1223 /* Count notes sections and allocate structures. */
1224 notes = 0;
1225 for (i = 0; i < nsect; i++)
1226 if (!sect_empty(&sechdrs[i]) &&
1227 (sechdrs[i].sh_type == SHT_NOTE))
1228 ++notes;
1229
1230 if (notes == 0)
1231 return;
1232
1233 notes_attrs = kzalloc(sizeof(*notes_attrs)
1234 + notes * sizeof(notes_attrs->attrs[0]),
1235 GFP_KERNEL);
1236 if (notes_attrs == NULL)
1237 return;
1238
1239 notes_attrs->notes = notes;
1240 nattr = &notes_attrs->attrs[0];
1241 for (loaded = i = 0; i < nsect; ++i) {
1242 if (sect_empty(&sechdrs[i]))
1243 continue;
1244 if (sechdrs[i].sh_type == SHT_NOTE) {
1245 sysfs_bin_attr_init(nattr);
1246 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1247 nattr->attr.mode = S_IRUGO;
1248 nattr->size = sechdrs[i].sh_size;
1249 nattr->private = (void *) sechdrs[i].sh_addr;
1250 nattr->read = module_notes_read;
1251 ++nattr;
1252 }
1253 ++loaded;
1254 }
1255
1256 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1257 if (!notes_attrs->dir)
1258 goto out;
1259
1260 for (i = 0; i < notes; ++i)
1261 if (sysfs_create_bin_file(notes_attrs->dir,
1262 &notes_attrs->attrs[i]))
1263 goto out;
1264
1265 mod->notes_attrs = notes_attrs;
1266 return;
1267
1268 out:
1269 free_notes_attrs(notes_attrs, i);
1270 }
1271
1272 static void remove_notes_attrs(struct module *mod)
1273 {
1274 if (mod->notes_attrs)
1275 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1276 }
1277
1278 #else
1279
1280 static inline void add_sect_attrs(struct module *mod, unsigned int nsect,
1281 char *sectstrings, Elf_Shdr *sechdrs)
1282 {
1283 }
1284
1285 static inline void remove_sect_attrs(struct module *mod)
1286 {
1287 }
1288
1289 static inline void add_notes_attrs(struct module *mod, unsigned int nsect,
1290 char *sectstrings, Elf_Shdr *sechdrs)
1291 {
1292 }
1293
1294 static inline void remove_notes_attrs(struct module *mod)
1295 {
1296 }
1297 #endif
1298
1299 #ifdef CONFIG_SYSFS
1300 int module_add_modinfo_attrs(struct module *mod)
1301 {
1302 struct module_attribute *attr;
1303 struct module_attribute *temp_attr;
1304 int error = 0;
1305 int i;
1306
1307 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1308 (ARRAY_SIZE(modinfo_attrs) + 1)),
1309 GFP_KERNEL);
1310 if (!mod->modinfo_attrs)
1311 return -ENOMEM;
1312
1313 temp_attr = mod->modinfo_attrs;
1314 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1315 if (!attr->test ||
1316 (attr->test && attr->test(mod))) {
1317 memcpy(temp_attr, attr, sizeof(*temp_attr));
1318 sysfs_attr_init(&temp_attr->attr);
1319 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1320 ++temp_attr;
1321 }
1322 }
1323 return error;
1324 }
1325
1326 void module_remove_modinfo_attrs(struct module *mod)
1327 {
1328 struct module_attribute *attr;
1329 int i;
1330
1331 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1332 /* pick a field to test for end of list */
1333 if (!attr->attr.name)
1334 break;
1335 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1336 if (attr->free)
1337 attr->free(mod);
1338 }
1339 kfree(mod->modinfo_attrs);
1340 }
1341
1342 int mod_sysfs_init(struct module *mod)
1343 {
1344 int err;
1345 struct kobject *kobj;
1346
1347 if (!module_sysfs_initialized) {
1348 printk(KERN_ERR "%s: module sysfs not initialized\n",
1349 mod->name);
1350 err = -EINVAL;
1351 goto out;
1352 }
1353
1354 kobj = kset_find_obj(module_kset, mod->name);
1355 if (kobj) {
1356 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1357 kobject_put(kobj);
1358 err = -EINVAL;
1359 goto out;
1360 }
1361
1362 mod->mkobj.mod = mod;
1363
1364 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1365 mod->mkobj.kobj.kset = module_kset;
1366 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1367 "%s", mod->name);
1368 if (err)
1369 kobject_put(&mod->mkobj.kobj);
1370
1371 /* delay uevent until full sysfs population */
1372 out:
1373 return err;
1374 }
1375
1376 int mod_sysfs_setup(struct module *mod,
1377 struct kernel_param *kparam,
1378 unsigned int num_params)
1379 {
1380 int err;
1381
1382 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1383 if (!mod->holders_dir) {
1384 err = -ENOMEM;
1385 goto out_unreg;
1386 }
1387
1388 err = module_param_sysfs_setup(mod, kparam, num_params);
1389 if (err)
1390 goto out_unreg_holders;
1391
1392 err = module_add_modinfo_attrs(mod);
1393 if (err)
1394 goto out_unreg_param;
1395
1396 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1397 return 0;
1398
1399 out_unreg_param:
1400 module_param_sysfs_remove(mod);
1401 out_unreg_holders:
1402 kobject_put(mod->holders_dir);
1403 out_unreg:
1404 kobject_put(&mod->mkobj.kobj);
1405 return err;
1406 }
1407
1408 static void mod_sysfs_fini(struct module *mod)
1409 {
1410 kobject_put(&mod->mkobj.kobj);
1411 }
1412
1413 #else /* CONFIG_SYSFS */
1414
1415 static void mod_sysfs_fini(struct module *mod)
1416 {
1417 }
1418
1419 #endif /* CONFIG_SYSFS */
1420
1421 static void mod_kobject_remove(struct module *mod)
1422 {
1423 module_remove_modinfo_attrs(mod);
1424 module_param_sysfs_remove(mod);
1425 kobject_put(mod->mkobj.drivers_dir);
1426 kobject_put(mod->holders_dir);
1427 mod_sysfs_fini(mod);
1428 }
1429
1430 /*
1431 * unlink the module with the whole machine is stopped with interrupts off
1432 * - this defends against kallsyms not taking locks
1433 */
1434 static int __unlink_module(void *_mod)
1435 {
1436 struct module *mod = _mod;
1437 list_del(&mod->list);
1438 return 0;
1439 }
1440
1441 /* Free a module, remove from lists, etc (must hold module_mutex). */
1442 static void free_module(struct module *mod)
1443 {
1444 trace_module_free(mod);
1445
1446 /* Delete from various lists */
1447 stop_machine(__unlink_module, mod, NULL);
1448 remove_notes_attrs(mod);
1449 remove_sect_attrs(mod);
1450 mod_kobject_remove(mod);
1451
1452 /* Arch-specific cleanup. */
1453 module_arch_cleanup(mod);
1454
1455 /* Module unload stuff */
1456 module_unload_free(mod);
1457
1458 /* Free any allocated parameters. */
1459 destroy_params(mod->kp, mod->num_kp);
1460
1461 /* This may be NULL, but that's OK */
1462 module_free(mod, mod->module_init);
1463 kfree(mod->args);
1464 percpu_modfree(mod);
1465 #if defined(CONFIG_MODULE_UNLOAD)
1466 if (mod->refptr)
1467 free_percpu(mod->refptr);
1468 #endif
1469 /* Free lock-classes: */
1470 lockdep_free_key_range(mod->module_core, mod->core_size);
1471
1472 /* Finally, free the core (containing the module structure) */
1473 module_free(mod, mod->module_core);
1474
1475 #ifdef CONFIG_MPU
1476 update_protections(current->mm);
1477 #endif
1478 }
1479
1480 void *__symbol_get(const char *symbol)
1481 {
1482 struct module *owner;
1483 const struct kernel_symbol *sym;
1484
1485 preempt_disable();
1486 sym = find_symbol(symbol, &owner, NULL, true, true);
1487 if (sym && strong_try_module_get(owner))
1488 sym = NULL;
1489 preempt_enable();
1490
1491 return sym ? (void *)sym->value : NULL;
1492 }
1493 EXPORT_SYMBOL_GPL(__symbol_get);
1494
1495 /*
1496 * Ensure that an exported symbol [global namespace] does not already exist
1497 * in the kernel or in some other module's exported symbol table.
1498 */
1499 static int verify_export_symbols(struct module *mod)
1500 {
1501 unsigned int i;
1502 struct module *owner;
1503 const struct kernel_symbol *s;
1504 struct {
1505 const struct kernel_symbol *sym;
1506 unsigned int num;
1507 } arr[] = {
1508 { mod->syms, mod->num_syms },
1509 { mod->gpl_syms, mod->num_gpl_syms },
1510 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1511 #ifdef CONFIG_UNUSED_SYMBOLS
1512 { mod->unused_syms, mod->num_unused_syms },
1513 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1514 #endif
1515 };
1516
1517 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1518 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1519 if (find_symbol(s->name, &owner, NULL, true, false)) {
1520 printk(KERN_ERR
1521 "%s: exports duplicate symbol %s"
1522 " (owned by %s)\n",
1523 mod->name, s->name, module_name(owner));
1524 return -ENOEXEC;
1525 }
1526 }
1527 }
1528 return 0;
1529 }
1530
1531 /* Change all symbols so that st_value encodes the pointer directly. */
1532 static int simplify_symbols(Elf_Shdr *sechdrs,
1533 unsigned int symindex,
1534 const char *strtab,
1535 unsigned int versindex,
1536 unsigned int pcpuindex,
1537 struct module *mod)
1538 {
1539 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
1540 unsigned long secbase;
1541 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1542 int ret = 0;
1543 const struct kernel_symbol *ksym;
1544
1545 for (i = 1; i < n; i++) {
1546 switch (sym[i].st_shndx) {
1547 case SHN_COMMON:
1548 /* We compiled with -fno-common. These are not
1549 supposed to happen. */
1550 DEBUGP("Common symbol: %s\n", strtab + sym[i].st_name);
1551 printk("%s: please compile with -fno-common\n",
1552 mod->name);
1553 ret = -ENOEXEC;
1554 break;
1555
1556 case SHN_ABS:
1557 /* Don't need to do anything */
1558 DEBUGP("Absolute symbol: 0x%08lx\n",
1559 (long)sym[i].st_value);
1560 break;
1561
1562 case SHN_UNDEF:
1563 ksym = resolve_symbol(sechdrs, versindex,
1564 strtab + sym[i].st_name, mod);
1565 /* Ok if resolved. */
1566 if (ksym) {
1567 sym[i].st_value = ksym->value;
1568 break;
1569 }
1570
1571 /* Ok if weak. */
1572 if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1573 break;
1574
1575 printk(KERN_WARNING "%s: Unknown symbol %s\n",
1576 mod->name, strtab + sym[i].st_name);
1577 ret = -ENOENT;
1578 break;
1579
1580 default:
1581 /* Divert to percpu allocation if a percpu var. */
1582 if (sym[i].st_shndx == pcpuindex)
1583 secbase = (unsigned long)mod_percpu(mod);
1584 else
1585 secbase = sechdrs[sym[i].st_shndx].sh_addr;
1586 sym[i].st_value += secbase;
1587 break;
1588 }
1589 }
1590
1591 return ret;
1592 }
1593
1594 /* Additional bytes needed by arch in front of individual sections */
1595 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1596 unsigned int section)
1597 {
1598 /* default implementation just returns zero */
1599 return 0;
1600 }
1601
1602 /* Update size with this section: return offset. */
1603 static long get_offset(struct module *mod, unsigned int *size,
1604 Elf_Shdr *sechdr, unsigned int section)
1605 {
1606 long ret;
1607
1608 *size += arch_mod_section_prepend(mod, section);
1609 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1610 *size = ret + sechdr->sh_size;
1611 return ret;
1612 }
1613
1614 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1615 might -- code, read-only data, read-write data, small data. Tally
1616 sizes, and place the offsets into sh_entsize fields: high bit means it
1617 belongs in init. */
1618 static void layout_sections(struct module *mod,
1619 const Elf_Ehdr *hdr,
1620 Elf_Shdr *sechdrs,
1621 const char *secstrings)
1622 {
1623 static unsigned long const masks[][2] = {
1624 /* NOTE: all executable code must be the first section
1625 * in this array; otherwise modify the text_size
1626 * finder in the two loops below */
1627 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1628 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1629 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1630 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1631 };
1632 unsigned int m, i;
1633
1634 for (i = 0; i < hdr->e_shnum; i++)
1635 sechdrs[i].sh_entsize = ~0UL;
1636
1637 DEBUGP("Core section allocation order:\n");
1638 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1639 for (i = 0; i < hdr->e_shnum; ++i) {
1640 Elf_Shdr *s = &sechdrs[i];
1641
1642 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1643 || (s->sh_flags & masks[m][1])
1644 || s->sh_entsize != ~0UL
1645 || strstarts(secstrings + s->sh_name, ".init"))
1646 continue;
1647 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1648 DEBUGP("\t%s\n", secstrings + s->sh_name);
1649 }
1650 if (m == 0)
1651 mod->core_text_size = mod->core_size;
1652 }
1653
1654 DEBUGP("Init section allocation order:\n");
1655 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1656 for (i = 0; i < hdr->e_shnum; ++i) {
1657 Elf_Shdr *s = &sechdrs[i];
1658
1659 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1660 || (s->sh_flags & masks[m][1])
1661 || s->sh_entsize != ~0UL
1662 || !strstarts(secstrings + s->sh_name, ".init"))
1663 continue;
1664 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1665 | INIT_OFFSET_MASK);
1666 DEBUGP("\t%s\n", secstrings + s->sh_name);
1667 }
1668 if (m == 0)
1669 mod->init_text_size = mod->init_size;
1670 }
1671 }
1672
1673 static void set_license(struct module *mod, const char *license)
1674 {
1675 if (!license)
1676 license = "unspecified";
1677
1678 if (!license_is_gpl_compatible(license)) {
1679 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1680 printk(KERN_WARNING "%s: module license '%s' taints "
1681 "kernel.\n", mod->name, license);
1682 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1683 }
1684 }
1685
1686 /* Parse tag=value strings from .modinfo section */
1687 static char *next_string(char *string, unsigned long *secsize)
1688 {
1689 /* Skip non-zero chars */
1690 while (string[0]) {
1691 string++;
1692 if ((*secsize)-- <= 1)
1693 return NULL;
1694 }
1695
1696 /* Skip any zero padding. */
1697 while (!string[0]) {
1698 string++;
1699 if ((*secsize)-- <= 1)
1700 return NULL;
1701 }
1702 return string;
1703 }
1704
1705 static char *get_modinfo(Elf_Shdr *sechdrs,
1706 unsigned int info,
1707 const char *tag)
1708 {
1709 char *p;
1710 unsigned int taglen = strlen(tag);
1711 unsigned long size = sechdrs[info].sh_size;
1712
1713 for (p = (char *)sechdrs[info].sh_addr; p; p = next_string(p, &size)) {
1714 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1715 return p + taglen + 1;
1716 }
1717 return NULL;
1718 }
1719
1720 static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs,
1721 unsigned int infoindex)
1722 {
1723 struct module_attribute *attr;
1724 int i;
1725
1726 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1727 if (attr->setup)
1728 attr->setup(mod,
1729 get_modinfo(sechdrs,
1730 infoindex,
1731 attr->attr.name));
1732 }
1733 }
1734
1735 static void free_modinfo(struct module *mod)
1736 {
1737 struct module_attribute *attr;
1738 int i;
1739
1740 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1741 if (attr->free)
1742 attr->free(mod);
1743 }
1744 }
1745
1746 #ifdef CONFIG_KALLSYMS
1747
1748 /* lookup symbol in given range of kernel_symbols */
1749 static const struct kernel_symbol *lookup_symbol(const char *name,
1750 const struct kernel_symbol *start,
1751 const struct kernel_symbol *stop)
1752 {
1753 const struct kernel_symbol *ks = start;
1754 for (; ks < stop; ks++)
1755 if (strcmp(ks->name, name) == 0)
1756 return ks;
1757 return NULL;
1758 }
1759
1760 static int is_exported(const char *name, unsigned long value,
1761 const struct module *mod)
1762 {
1763 const struct kernel_symbol *ks;
1764 if (!mod)
1765 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
1766 else
1767 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
1768 return ks != NULL && ks->value == value;
1769 }
1770
1771 /* As per nm */
1772 static char elf_type(const Elf_Sym *sym,
1773 Elf_Shdr *sechdrs,
1774 const char *secstrings,
1775 struct module *mod)
1776 {
1777 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
1778 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
1779 return 'v';
1780 else
1781 return 'w';
1782 }
1783 if (sym->st_shndx == SHN_UNDEF)
1784 return 'U';
1785 if (sym->st_shndx == SHN_ABS)
1786 return 'a';
1787 if (sym->st_shndx >= SHN_LORESERVE)
1788 return '?';
1789 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
1790 return 't';
1791 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
1792 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
1793 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
1794 return 'r';
1795 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1796 return 'g';
1797 else
1798 return 'd';
1799 }
1800 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1801 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1802 return 's';
1803 else
1804 return 'b';
1805 }
1806 if (strstarts(secstrings + sechdrs[sym->st_shndx].sh_name, ".debug"))
1807 return 'n';
1808 return '?';
1809 }
1810
1811 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
1812 unsigned int shnum)
1813 {
1814 const Elf_Shdr *sec;
1815
1816 if (src->st_shndx == SHN_UNDEF
1817 || src->st_shndx >= shnum
1818 || !src->st_name)
1819 return false;
1820
1821 sec = sechdrs + src->st_shndx;
1822 if (!(sec->sh_flags & SHF_ALLOC)
1823 #ifndef CONFIG_KALLSYMS_ALL
1824 || !(sec->sh_flags & SHF_EXECINSTR)
1825 #endif
1826 || (sec->sh_entsize & INIT_OFFSET_MASK))
1827 return false;
1828
1829 return true;
1830 }
1831
1832 static unsigned long layout_symtab(struct module *mod,
1833 Elf_Shdr *sechdrs,
1834 unsigned int symindex,
1835 unsigned int strindex,
1836 const Elf_Ehdr *hdr,
1837 const char *secstrings,
1838 unsigned long *pstroffs,
1839 unsigned long *strmap)
1840 {
1841 unsigned long symoffs;
1842 Elf_Shdr *symsect = sechdrs + symindex;
1843 Elf_Shdr *strsect = sechdrs + strindex;
1844 const Elf_Sym *src;
1845 const char *strtab;
1846 unsigned int i, nsrc, ndst;
1847
1848 /* Put symbol section at end of init part of module. */
1849 symsect->sh_flags |= SHF_ALLOC;
1850 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
1851 symindex) | INIT_OFFSET_MASK;
1852 DEBUGP("\t%s\n", secstrings + symsect->sh_name);
1853
1854 src = (void *)hdr + symsect->sh_offset;
1855 nsrc = symsect->sh_size / sizeof(*src);
1856 strtab = (void *)hdr + strsect->sh_offset;
1857 for (ndst = i = 1; i < nsrc; ++i, ++src)
1858 if (is_core_symbol(src, sechdrs, hdr->e_shnum)) {
1859 unsigned int j = src->st_name;
1860
1861 while(!__test_and_set_bit(j, strmap) && strtab[j])
1862 ++j;
1863 ++ndst;
1864 }
1865
1866 /* Append room for core symbols at end of core part. */
1867 symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
1868 mod->core_size = symoffs + ndst * sizeof(Elf_Sym);
1869
1870 /* Put string table section at end of init part of module. */
1871 strsect->sh_flags |= SHF_ALLOC;
1872 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
1873 strindex) | INIT_OFFSET_MASK;
1874 DEBUGP("\t%s\n", secstrings + strsect->sh_name);
1875
1876 /* Append room for core symbols' strings at end of core part. */
1877 *pstroffs = mod->core_size;
1878 __set_bit(0, strmap);
1879 mod->core_size += bitmap_weight(strmap, strsect->sh_size);
1880
1881 return symoffs;
1882 }
1883
1884 static void add_kallsyms(struct module *mod,
1885 Elf_Shdr *sechdrs,
1886 unsigned int shnum,
1887 unsigned int symindex,
1888 unsigned int strindex,
1889 unsigned long symoffs,
1890 unsigned long stroffs,
1891 const char *secstrings,
1892 unsigned long *strmap)
1893 {
1894 unsigned int i, ndst;
1895 const Elf_Sym *src;
1896 Elf_Sym *dst;
1897 char *s;
1898
1899 mod->symtab = (void *)sechdrs[symindex].sh_addr;
1900 mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1901 mod->strtab = (void *)sechdrs[strindex].sh_addr;
1902
1903 /* Set types up while we still have access to sections. */
1904 for (i = 0; i < mod->num_symtab; i++)
1905 mod->symtab[i].st_info
1906 = elf_type(&mod->symtab[i], sechdrs, secstrings, mod);
1907
1908 mod->core_symtab = dst = mod->module_core + symoffs;
1909 src = mod->symtab;
1910 *dst = *src;
1911 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
1912 if (!is_core_symbol(src, sechdrs, shnum))
1913 continue;
1914 dst[ndst] = *src;
1915 dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name);
1916 ++ndst;
1917 }
1918 mod->core_num_syms = ndst;
1919
1920 mod->core_strtab = s = mod->module_core + stroffs;
1921 for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i)
1922 if (test_bit(i, strmap))
1923 *++s = mod->strtab[i];
1924 }
1925 #else
1926 static inline unsigned long layout_symtab(struct module *mod,
1927 Elf_Shdr *sechdrs,
1928 unsigned int symindex,
1929 unsigned int strindex,
1930 const Elf_Ehdr *hdr,
1931 const char *secstrings,
1932 unsigned long *pstroffs,
1933 unsigned long *strmap)
1934 {
1935 return 0;
1936 }
1937
1938 static inline void add_kallsyms(struct module *mod,
1939 Elf_Shdr *sechdrs,
1940 unsigned int shnum,
1941 unsigned int symindex,
1942 unsigned int strindex,
1943 unsigned long symoffs,
1944 unsigned long stroffs,
1945 const char *secstrings,
1946 const unsigned long *strmap)
1947 {
1948 }
1949 #endif /* CONFIG_KALLSYMS */
1950
1951 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
1952 {
1953 #ifdef CONFIG_DYNAMIC_DEBUG
1954 if (ddebug_add_module(debug, num, debug->modname))
1955 printk(KERN_ERR "dynamic debug error adding module: %s\n",
1956 debug->modname);
1957 #endif
1958 }
1959
1960 static void *module_alloc_update_bounds(unsigned long size)
1961 {
1962 void *ret = module_alloc(size);
1963
1964 if (ret) {
1965 /* Update module bounds. */
1966 if ((unsigned long)ret < module_addr_min)
1967 module_addr_min = (unsigned long)ret;
1968 if ((unsigned long)ret + size > module_addr_max)
1969 module_addr_max = (unsigned long)ret + size;
1970 }
1971 return ret;
1972 }
1973
1974 #ifdef CONFIG_DEBUG_KMEMLEAK
1975 static void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
1976 Elf_Shdr *sechdrs, char *secstrings)
1977 {
1978 unsigned int i;
1979
1980 /* only scan the sections containing data */
1981 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
1982
1983 for (i = 1; i < hdr->e_shnum; i++) {
1984 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
1985 continue;
1986 if (strncmp(secstrings + sechdrs[i].sh_name, ".data", 5) != 0
1987 && strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) != 0)
1988 continue;
1989
1990 kmemleak_scan_area((void *)sechdrs[i].sh_addr,
1991 sechdrs[i].sh_size, GFP_KERNEL);
1992 }
1993 }
1994 #else
1995 static inline void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
1996 Elf_Shdr *sechdrs, char *secstrings)
1997 {
1998 }
1999 #endif
2000
2001 /* Allocate and load the module: note that size of section 0 is always
2002 zero, and we rely on this for optional sections. */
2003 static noinline struct module *load_module(void __user *umod,
2004 unsigned long len,
2005 const char __user *uargs)
2006 {
2007 Elf_Ehdr *hdr;
2008 Elf_Shdr *sechdrs;
2009 char *secstrings, *args, *modmagic, *strtab = NULL;
2010 char *staging;
2011 unsigned int i;
2012 unsigned int symindex = 0;
2013 unsigned int strindex = 0;
2014 unsigned int modindex, versindex, infoindex, pcpuindex;
2015 struct module *mod;
2016 long err = 0;
2017 void *ptr = NULL; /* Stops spurious gcc warning */
2018 unsigned long symoffs, stroffs, *strmap;
2019
2020 mm_segment_t old_fs;
2021
2022 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2023 umod, len, uargs);
2024 if (len < sizeof(*hdr))
2025 return ERR_PTR(-ENOEXEC);
2026
2027 /* Suck in entire file: we'll want most of it. */
2028 /* vmalloc barfs on "unusual" numbers. Check here */
2029 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2030 return ERR_PTR(-ENOMEM);
2031
2032 if (copy_from_user(hdr, umod, len) != 0) {
2033 err = -EFAULT;
2034 goto free_hdr;
2035 }
2036
2037 /* Sanity checks against insmoding binaries or wrong arch,
2038 weird elf version */
2039 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2040 || hdr->e_type != ET_REL
2041 || !elf_check_arch(hdr)
2042 || hdr->e_shentsize != sizeof(*sechdrs)) {
2043 err = -ENOEXEC;
2044 goto free_hdr;
2045 }
2046
2047 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr))
2048 goto truncated;
2049
2050 /* Convenience variables */
2051 sechdrs = (void *)hdr + hdr->e_shoff;
2052 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
2053 sechdrs[0].sh_addr = 0;
2054
2055 for (i = 1; i < hdr->e_shnum; i++) {
2056 if (sechdrs[i].sh_type != SHT_NOBITS
2057 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size)
2058 goto truncated;
2059
2060 /* Mark all sections sh_addr with their address in the
2061 temporary image. */
2062 sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset;
2063
2064 /* Internal symbols and strings. */
2065 if (sechdrs[i].sh_type == SHT_SYMTAB) {
2066 symindex = i;
2067 strindex = sechdrs[i].sh_link;
2068 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
2069 }
2070 #ifndef CONFIG_MODULE_UNLOAD
2071 /* Don't load .exit sections */
2072 if (strstarts(secstrings+sechdrs[i].sh_name, ".exit"))
2073 sechdrs[i].sh_flags &= ~(unsigned long)SHF_ALLOC;
2074 #endif
2075 }
2076
2077 modindex = find_sec(hdr, sechdrs, secstrings,
2078 ".gnu.linkonce.this_module");
2079 if (!modindex) {
2080 printk(KERN_WARNING "No module found in object\n");
2081 err = -ENOEXEC;
2082 goto free_hdr;
2083 }
2084 /* This is temporary: point mod into copy of data. */
2085 mod = (void *)sechdrs[modindex].sh_addr;
2086
2087 if (symindex == 0) {
2088 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2089 mod->name);
2090 err = -ENOEXEC;
2091 goto free_hdr;
2092 }
2093
2094 versindex = find_sec(hdr, sechdrs, secstrings, "__versions");
2095 infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo");
2096 pcpuindex = find_pcpusec(hdr, sechdrs, secstrings);
2097
2098 /* Don't keep modinfo and version sections. */
2099 sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2100 sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2101
2102 /* Check module struct version now, before we try to use module. */
2103 if (!check_modstruct_version(sechdrs, versindex, mod)) {
2104 err = -ENOEXEC;
2105 goto free_hdr;
2106 }
2107
2108 modmagic = get_modinfo(sechdrs, infoindex, "vermagic");
2109 /* This is allowed: modprobe --force will invalidate it. */
2110 if (!modmagic) {
2111 err = try_to_force_load(mod, "bad vermagic");
2112 if (err)
2113 goto free_hdr;
2114 } else if (!same_magic(modmagic, vermagic, versindex)) {
2115 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2116 mod->name, modmagic, vermagic);
2117 err = -ENOEXEC;
2118 goto free_hdr;
2119 }
2120
2121 staging = get_modinfo(sechdrs, infoindex, "staging");
2122 if (staging) {
2123 add_taint_module(mod, TAINT_CRAP);
2124 printk(KERN_WARNING "%s: module is from the staging directory,"
2125 " the quality is unknown, you have been warned.\n",
2126 mod->name);
2127 }
2128
2129 /* Now copy in args */
2130 args = strndup_user(uargs, ~0UL >> 1);
2131 if (IS_ERR(args)) {
2132 err = PTR_ERR(args);
2133 goto free_hdr;
2134 }
2135
2136 strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size)
2137 * sizeof(long), GFP_KERNEL);
2138 if (!strmap) {
2139 err = -ENOMEM;
2140 goto free_mod;
2141 }
2142
2143 if (find_module(mod->name)) {
2144 err = -EEXIST;
2145 goto free_mod;
2146 }
2147
2148 mod->state = MODULE_STATE_COMING;
2149
2150 /* Allow arches to frob section contents and sizes. */
2151 err = module_frob_arch_sections(hdr, sechdrs, secstrings, mod);
2152 if (err < 0)
2153 goto free_mod;
2154
2155 if (pcpuindex) {
2156 /* We have a special allocation for this section. */
2157 err = percpu_modalloc(mod, sechdrs[pcpuindex].sh_size,
2158 sechdrs[pcpuindex].sh_addralign);
2159 if (err)
2160 goto free_mod;
2161 sechdrs[pcpuindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2162 }
2163
2164 /* Determine total sizes, and put offsets in sh_entsize. For now
2165 this is done generically; there doesn't appear to be any
2166 special cases for the architectures. */
2167 layout_sections(mod, hdr, sechdrs, secstrings);
2168 symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr,
2169 secstrings, &stroffs, strmap);
2170
2171 /* Do the allocs. */
2172 ptr = module_alloc_update_bounds(mod->core_size);
2173 /*
2174 * The pointer to this block is stored in the module structure
2175 * which is inside the block. Just mark it as not being a
2176 * leak.
2177 */
2178 kmemleak_not_leak(ptr);
2179 if (!ptr) {
2180 err = -ENOMEM;
2181 goto free_percpu;
2182 }
2183 memset(ptr, 0, mod->core_size);
2184 mod->module_core = ptr;
2185
2186 ptr = module_alloc_update_bounds(mod->init_size);
2187 /*
2188 * The pointer to this block is stored in the module structure
2189 * which is inside the block. This block doesn't need to be
2190 * scanned as it contains data and code that will be freed
2191 * after the module is initialized.
2192 */
2193 kmemleak_ignore(ptr);
2194 if (!ptr && mod->init_size) {
2195 err = -ENOMEM;
2196 goto free_core;
2197 }
2198 memset(ptr, 0, mod->init_size);
2199 mod->module_init = ptr;
2200
2201 /* Transfer each section which specifies SHF_ALLOC */
2202 DEBUGP("final section addresses:\n");
2203 for (i = 0; i < hdr->e_shnum; i++) {
2204 void *dest;
2205
2206 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2207 continue;
2208
2209 if (sechdrs[i].sh_entsize & INIT_OFFSET_MASK)
2210 dest = mod->module_init
2211 + (sechdrs[i].sh_entsize & ~INIT_OFFSET_MASK);
2212 else
2213 dest = mod->module_core + sechdrs[i].sh_entsize;
2214
2215 if (sechdrs[i].sh_type != SHT_NOBITS)
2216 memcpy(dest, (void *)sechdrs[i].sh_addr,
2217 sechdrs[i].sh_size);
2218 /* Update sh_addr to point to copy in image. */
2219 sechdrs[i].sh_addr = (unsigned long)dest;
2220 DEBUGP("\t0x%lx %s\n", sechdrs[i].sh_addr, secstrings + sechdrs[i].sh_name);
2221 }
2222 /* Module has been moved. */
2223 mod = (void *)sechdrs[modindex].sh_addr;
2224 kmemleak_load_module(mod, hdr, sechdrs, secstrings);
2225
2226 #if defined(CONFIG_MODULE_UNLOAD)
2227 mod->refptr = alloc_percpu(struct module_ref);
2228 if (!mod->refptr) {
2229 err = -ENOMEM;
2230 goto free_init;
2231 }
2232 #endif
2233 /* Now we've moved module, initialize linked lists, etc. */
2234 module_unload_init(mod);
2235
2236 /* add kobject, so we can reference it. */
2237 err = mod_sysfs_init(mod);
2238 if (err)
2239 goto free_unload;
2240
2241 /* Set up license info based on the info section */
2242 set_license(mod, get_modinfo(sechdrs, infoindex, "license"));
2243
2244 /*
2245 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2246 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2247 * using GPL-only symbols it needs.
2248 */
2249 if (strcmp(mod->name, "ndiswrapper") == 0)
2250 add_taint(TAINT_PROPRIETARY_MODULE);
2251
2252 /* driverloader was caught wrongly pretending to be under GPL */
2253 if (strcmp(mod->name, "driverloader") == 0)
2254 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2255
2256 /* Set up MODINFO_ATTR fields */
2257 setup_modinfo(mod, sechdrs, infoindex);
2258
2259 /* Fix up syms, so that st_value is a pointer to location. */
2260 err = simplify_symbols(sechdrs, symindex, strtab, versindex, pcpuindex,
2261 mod);
2262 if (err < 0)
2263 goto cleanup;
2264
2265 /* Now we've got everything in the final locations, we can
2266 * find optional sections. */
2267 mod->kp = section_objs(hdr, sechdrs, secstrings, "__param",
2268 sizeof(*mod->kp), &mod->num_kp);
2269 mod->syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab",
2270 sizeof(*mod->syms), &mod->num_syms);
2271 mod->crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab");
2272 mod->gpl_syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab_gpl",
2273 sizeof(*mod->gpl_syms),
2274 &mod->num_gpl_syms);
2275 mod->gpl_crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab_gpl");
2276 mod->gpl_future_syms = section_objs(hdr, sechdrs, secstrings,
2277 "__ksymtab_gpl_future",
2278 sizeof(*mod->gpl_future_syms),
2279 &mod->num_gpl_future_syms);
2280 mod->gpl_future_crcs = section_addr(hdr, sechdrs, secstrings,
2281 "__kcrctab_gpl_future");
2282
2283 #ifdef CONFIG_UNUSED_SYMBOLS
2284 mod->unused_syms = section_objs(hdr, sechdrs, secstrings,
2285 "__ksymtab_unused",
2286 sizeof(*mod->unused_syms),
2287 &mod->num_unused_syms);
2288 mod->unused_crcs = section_addr(hdr, sechdrs, secstrings,
2289 "__kcrctab_unused");
2290 mod->unused_gpl_syms = section_objs(hdr, sechdrs, secstrings,
2291 "__ksymtab_unused_gpl",
2292 sizeof(*mod->unused_gpl_syms),
2293 &mod->num_unused_gpl_syms);
2294 mod->unused_gpl_crcs = section_addr(hdr, sechdrs, secstrings,
2295 "__kcrctab_unused_gpl");
2296 #endif
2297 #ifdef CONFIG_CONSTRUCTORS
2298 mod->ctors = section_objs(hdr, sechdrs, secstrings, ".ctors",
2299 sizeof(*mod->ctors), &mod->num_ctors);
2300 #endif
2301
2302 #ifdef CONFIG_TRACEPOINTS
2303 mod->tracepoints = section_objs(hdr, sechdrs, secstrings,
2304 "__tracepoints",
2305 sizeof(*mod->tracepoints),
2306 &mod->num_tracepoints);
2307 #endif
2308 #ifdef CONFIG_EVENT_TRACING
2309 mod->trace_events = section_objs(hdr, sechdrs, secstrings,
2310 "_ftrace_events",
2311 sizeof(*mod->trace_events),
2312 &mod->num_trace_events);
2313 /*
2314 * This section contains pointers to allocated objects in the trace
2315 * code and not scanning it leads to false positives.
2316 */
2317 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2318 mod->num_trace_events, GFP_KERNEL);
2319 #endif
2320 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2321 /* sechdrs[0].sh_size is always zero */
2322 mod->ftrace_callsites = section_objs(hdr, sechdrs, secstrings,
2323 "__mcount_loc",
2324 sizeof(*mod->ftrace_callsites),
2325 &mod->num_ftrace_callsites);
2326 #endif
2327 #ifdef CONFIG_MODVERSIONS
2328 if ((mod->num_syms && !mod->crcs)
2329 || (mod->num_gpl_syms && !mod->gpl_crcs)
2330 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2331 #ifdef CONFIG_UNUSED_SYMBOLS
2332 || (mod->num_unused_syms && !mod->unused_crcs)
2333 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2334 #endif
2335 ) {
2336 err = try_to_force_load(mod,
2337 "no versions for exported symbols");
2338 if (err)
2339 goto cleanup;
2340 }
2341 #endif
2342
2343 /* Now do relocations. */
2344 for (i = 1; i < hdr->e_shnum; i++) {
2345 const char *strtab = (char *)sechdrs[strindex].sh_addr;
2346 unsigned int info = sechdrs[i].sh_info;
2347
2348 /* Not a valid relocation section? */
2349 if (info >= hdr->e_shnum)
2350 continue;
2351
2352 /* Don't bother with non-allocated sections */
2353 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
2354 continue;
2355
2356 if (sechdrs[i].sh_type == SHT_REL)
2357 err = apply_relocate(sechdrs, strtab, symindex, i,mod);
2358 else if (sechdrs[i].sh_type == SHT_RELA)
2359 err = apply_relocate_add(sechdrs, strtab, symindex, i,
2360 mod);
2361 if (err < 0)
2362 goto cleanup;
2363 }
2364
2365 /* Find duplicate symbols */
2366 err = verify_export_symbols(mod);
2367 if (err < 0)
2368 goto cleanup;
2369
2370 /* Set up and sort exception table */
2371 mod->extable = section_objs(hdr, sechdrs, secstrings, "__ex_table",
2372 sizeof(*mod->extable), &mod->num_exentries);
2373 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2374
2375 /* Finally, copy percpu area over. */
2376 percpu_modcopy(mod, (void *)sechdrs[pcpuindex].sh_addr,
2377 sechdrs[pcpuindex].sh_size);
2378
2379 add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex,
2380 symoffs, stroffs, secstrings, strmap);
2381 kfree(strmap);
2382 strmap = NULL;
2383
2384 if (!mod->taints) {
2385 struct _ddebug *debug;
2386 unsigned int num_debug;
2387
2388 debug = section_objs(hdr, sechdrs, secstrings, "__verbose",
2389 sizeof(*debug), &num_debug);
2390 if (debug)
2391 dynamic_debug_setup(debug, num_debug);
2392 }
2393
2394 err = module_finalize(hdr, sechdrs, mod);
2395 if (err < 0)
2396 goto cleanup;
2397
2398 /* flush the icache in correct context */
2399 old_fs = get_fs();
2400 set_fs(KERNEL_DS);
2401
2402 /*
2403 * Flush the instruction cache, since we've played with text.
2404 * Do it before processing of module parameters, so the module
2405 * can provide parameter accessor functions of its own.
2406 */
2407 if (mod->module_init)
2408 flush_icache_range((unsigned long)mod->module_init,
2409 (unsigned long)mod->module_init
2410 + mod->init_size);
2411 flush_icache_range((unsigned long)mod->module_core,
2412 (unsigned long)mod->module_core + mod->core_size);
2413
2414 set_fs(old_fs);
2415
2416 mod->args = args;
2417 if (section_addr(hdr, sechdrs, secstrings, "__obsparm"))
2418 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2419 mod->name);
2420
2421 /* Now sew it into the lists so we can get lockdep and oops
2422 * info during argument parsing. Noone should access us, since
2423 * strong_try_module_get() will fail.
2424 * lockdep/oops can run asynchronous, so use the RCU list insertion
2425 * function to insert in a way safe to concurrent readers.
2426 * The mutex protects against concurrent writers.
2427 */
2428 list_add_rcu(&mod->list, &modules);
2429
2430 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2431 if (err < 0)
2432 goto unlink;
2433
2434 err = mod_sysfs_setup(mod, mod->kp, mod->num_kp);
2435 if (err < 0)
2436 goto unlink;
2437 add_sect_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2438 add_notes_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2439
2440 /* Get rid of temporary copy */
2441 vfree(hdr);
2442
2443 trace_module_load(mod);
2444
2445 /* Done! */
2446 return mod;
2447
2448 unlink:
2449 /* Unlink carefully: kallsyms could be walking list. */
2450 list_del_rcu(&mod->list);
2451 synchronize_sched();
2452 module_arch_cleanup(mod);
2453 cleanup:
2454 free_modinfo(mod);
2455 kobject_del(&mod->mkobj.kobj);
2456 kobject_put(&mod->mkobj.kobj);
2457 free_unload:
2458 module_unload_free(mod);
2459 #if defined(CONFIG_MODULE_UNLOAD)
2460 free_percpu(mod->refptr);
2461 free_init:
2462 #endif
2463 module_free(mod, mod->module_init);
2464 free_core:
2465 module_free(mod, mod->module_core);
2466 /* mod will be freed with core. Don't access it beyond this line! */
2467 free_percpu:
2468 percpu_modfree(mod);
2469 free_mod:
2470 kfree(args);
2471 kfree(strmap);
2472 free_hdr:
2473 vfree(hdr);
2474 return ERR_PTR(err);
2475
2476 truncated:
2477 printk(KERN_ERR "Module len %lu truncated\n", len);
2478 err = -ENOEXEC;
2479 goto free_hdr;
2480 }
2481
2482 /* Call module constructors. */
2483 static void do_mod_ctors(struct module *mod)
2484 {
2485 #ifdef CONFIG_CONSTRUCTORS
2486 unsigned long i;
2487
2488 for (i = 0; i < mod->num_ctors; i++)
2489 mod->ctors[i]();
2490 #endif
2491 }
2492
2493 /* This is where the real work happens */
2494 SYSCALL_DEFINE3(init_module, void __user *, umod,
2495 unsigned long, len, const char __user *, uargs)
2496 {
2497 struct module *mod;
2498 int ret = 0;
2499
2500 /* Must have permission */
2501 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2502 return -EPERM;
2503
2504 /* Only one module load at a time, please */
2505 if (mutex_lock_interruptible(&module_mutex) != 0)
2506 return -EINTR;
2507
2508 /* Do all the hard work */
2509 mod = load_module(umod, len, uargs);
2510 if (IS_ERR(mod)) {
2511 mutex_unlock(&module_mutex);
2512 return PTR_ERR(mod);
2513 }
2514
2515 /* Drop lock so they can recurse */
2516 mutex_unlock(&module_mutex);
2517
2518 blocking_notifier_call_chain(&module_notify_list,
2519 MODULE_STATE_COMING, mod);
2520
2521 do_mod_ctors(mod);
2522 /* Start the module */
2523 if (mod->init != NULL)
2524 ret = do_one_initcall(mod->init);
2525 if (ret < 0) {
2526 /* Init routine failed: abort. Try to protect us from
2527 buggy refcounters. */
2528 mod->state = MODULE_STATE_GOING;
2529 synchronize_sched();
2530 module_put(mod);
2531 blocking_notifier_call_chain(&module_notify_list,
2532 MODULE_STATE_GOING, mod);
2533 mutex_lock(&module_mutex);
2534 free_module(mod);
2535 mutex_unlock(&module_mutex);
2536 wake_up(&module_wq);
2537 return ret;
2538 }
2539 if (ret > 0) {
2540 printk(KERN_WARNING
2541 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2542 "%s: loading module anyway...\n",
2543 __func__, mod->name, ret,
2544 __func__);
2545 dump_stack();
2546 }
2547
2548 /* Now it's a first class citizen! Wake up anyone waiting for it. */
2549 mod->state = MODULE_STATE_LIVE;
2550 wake_up(&module_wq);
2551 blocking_notifier_call_chain(&module_notify_list,
2552 MODULE_STATE_LIVE, mod);
2553
2554 /* We need to finish all async code before the module init sequence is done */
2555 async_synchronize_full();
2556
2557 mutex_lock(&module_mutex);
2558 /* Drop initial reference. */
2559 module_put(mod);
2560 trim_init_extable(mod);
2561 #ifdef CONFIG_KALLSYMS
2562 mod->num_symtab = mod->core_num_syms;
2563 mod->symtab = mod->core_symtab;
2564 mod->strtab = mod->core_strtab;
2565 #endif
2566 module_free(mod, mod->module_init);
2567 mod->module_init = NULL;
2568 mod->init_size = 0;
2569 mod->init_text_size = 0;
2570 mutex_unlock(&module_mutex);
2571
2572 return 0;
2573 }
2574
2575 static inline int within(unsigned long addr, void *start, unsigned long size)
2576 {
2577 return ((void *)addr >= start && (void *)addr < start + size);
2578 }
2579
2580 #ifdef CONFIG_KALLSYMS
2581 /*
2582 * This ignores the intensely annoying "mapping symbols" found
2583 * in ARM ELF files: $a, $t and $d.
2584 */
2585 static inline int is_arm_mapping_symbol(const char *str)
2586 {
2587 return str[0] == '$' && strchr("atd", str[1])
2588 && (str[2] == '\0' || str[2] == '.');
2589 }
2590
2591 static const char *get_ksymbol(struct module *mod,
2592 unsigned long addr,
2593 unsigned long *size,
2594 unsigned long *offset)
2595 {
2596 unsigned int i, best = 0;
2597 unsigned long nextval;
2598
2599 /* At worse, next value is at end of module */
2600 if (within_module_init(addr, mod))
2601 nextval = (unsigned long)mod->module_init+mod->init_text_size;
2602 else
2603 nextval = (unsigned long)mod->module_core+mod->core_text_size;
2604
2605 /* Scan for closest preceeding symbol, and next symbol. (ELF
2606 starts real symbols at 1). */
2607 for (i = 1; i < mod->num_symtab; i++) {
2608 if (mod->symtab[i].st_shndx == SHN_UNDEF)
2609 continue;
2610
2611 /* We ignore unnamed symbols: they're uninformative
2612 * and inserted at a whim. */
2613 if (mod->symtab[i].st_value <= addr
2614 && mod->symtab[i].st_value > mod->symtab[best].st_value
2615 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2616 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2617 best = i;
2618 if (mod->symtab[i].st_value > addr
2619 && mod->symtab[i].st_value < nextval
2620 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2621 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2622 nextval = mod->symtab[i].st_value;
2623 }
2624
2625 if (!best)
2626 return NULL;
2627
2628 if (size)
2629 *size = nextval - mod->symtab[best].st_value;
2630 if (offset)
2631 *offset = addr - mod->symtab[best].st_value;
2632 return mod->strtab + mod->symtab[best].st_name;
2633 }
2634
2635 /* For kallsyms to ask for address resolution. NULL means not found. Careful
2636 * not to lock to avoid deadlock on oopses, simply disable preemption. */
2637 const char *module_address_lookup(unsigned long addr,
2638 unsigned long *size,
2639 unsigned long *offset,
2640 char **modname,
2641 char *namebuf)
2642 {
2643 struct module *mod;
2644 const char *ret = NULL;
2645
2646 preempt_disable();
2647 list_for_each_entry_rcu(mod, &modules, list) {
2648 if (within_module_init(addr, mod) ||
2649 within_module_core(addr, mod)) {
2650 if (modname)
2651 *modname = mod->name;
2652 ret = get_ksymbol(mod, addr, size, offset);
2653 break;
2654 }
2655 }
2656 /* Make a copy in here where it's safe */
2657 if (ret) {
2658 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
2659 ret = namebuf;
2660 }
2661 preempt_enable();
2662 return ret;
2663 }
2664
2665 int lookup_module_symbol_name(unsigned long addr, char *symname)
2666 {
2667 struct module *mod;
2668
2669 preempt_disable();
2670 list_for_each_entry_rcu(mod, &modules, list) {
2671 if (within_module_init(addr, mod) ||
2672 within_module_core(addr, mod)) {
2673 const char *sym;
2674
2675 sym = get_ksymbol(mod, addr, NULL, NULL);
2676 if (!sym)
2677 goto out;
2678 strlcpy(symname, sym, KSYM_NAME_LEN);
2679 preempt_enable();
2680 return 0;
2681 }
2682 }
2683 out:
2684 preempt_enable();
2685 return -ERANGE;
2686 }
2687
2688 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
2689 unsigned long *offset, char *modname, char *name)
2690 {
2691 struct module *mod;
2692
2693 preempt_disable();
2694 list_for_each_entry_rcu(mod, &modules, list) {
2695 if (within_module_init(addr, mod) ||
2696 within_module_core(addr, mod)) {
2697 const char *sym;
2698
2699 sym = get_ksymbol(mod, addr, size, offset);
2700 if (!sym)
2701 goto out;
2702 if (modname)
2703 strlcpy(modname, mod->name, MODULE_NAME_LEN);
2704 if (name)
2705 strlcpy(name, sym, KSYM_NAME_LEN);
2706 preempt_enable();
2707 return 0;
2708 }
2709 }
2710 out:
2711 preempt_enable();
2712 return -ERANGE;
2713 }
2714
2715 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2716 char *name, char *module_name, int *exported)
2717 {
2718 struct module *mod;
2719
2720 preempt_disable();
2721 list_for_each_entry_rcu(mod, &modules, list) {
2722 if (symnum < mod->num_symtab) {
2723 *value = mod->symtab[symnum].st_value;
2724 *type = mod->symtab[symnum].st_info;
2725 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
2726 KSYM_NAME_LEN);
2727 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
2728 *exported = is_exported(name, *value, mod);
2729 preempt_enable();
2730 return 0;
2731 }
2732 symnum -= mod->num_symtab;
2733 }
2734 preempt_enable();
2735 return -ERANGE;
2736 }
2737
2738 static unsigned long mod_find_symname(struct module *mod, const char *name)
2739 {
2740 unsigned int i;
2741
2742 for (i = 0; i < mod->num_symtab; i++)
2743 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
2744 mod->symtab[i].st_info != 'U')
2745 return mod->symtab[i].st_value;
2746 return 0;
2747 }
2748
2749 /* Look for this name: can be of form module:name. */
2750 unsigned long module_kallsyms_lookup_name(const char *name)
2751 {
2752 struct module *mod;
2753 char *colon;
2754 unsigned long ret = 0;
2755
2756 /* Don't lock: we're in enough trouble already. */
2757 preempt_disable();
2758 if ((colon = strchr(name, ':')) != NULL) {
2759 *colon = '\0';
2760 if ((mod = find_module(name)) != NULL)
2761 ret = mod_find_symname(mod, colon+1);
2762 *colon = ':';
2763 } else {
2764 list_for_each_entry_rcu(mod, &modules, list)
2765 if ((ret = mod_find_symname(mod, name)) != 0)
2766 break;
2767 }
2768 preempt_enable();
2769 return ret;
2770 }
2771
2772 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
2773 struct module *, unsigned long),
2774 void *data)
2775 {
2776 struct module *mod;
2777 unsigned int i;
2778 int ret;
2779
2780 list_for_each_entry(mod, &modules, list) {
2781 for (i = 0; i < mod->num_symtab; i++) {
2782 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
2783 mod, mod->symtab[i].st_value);
2784 if (ret != 0)
2785 return ret;
2786 }
2787 }
2788 return 0;
2789 }
2790 #endif /* CONFIG_KALLSYMS */
2791
2792 static char *module_flags(struct module *mod, char *buf)
2793 {
2794 int bx = 0;
2795
2796 if (mod->taints ||
2797 mod->state == MODULE_STATE_GOING ||
2798 mod->state == MODULE_STATE_COMING) {
2799 buf[bx++] = '(';
2800 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
2801 buf[bx++] = 'P';
2802 if (mod->taints & (1 << TAINT_FORCED_MODULE))
2803 buf[bx++] = 'F';
2804 if (mod->taints & (1 << TAINT_CRAP))
2805 buf[bx++] = 'C';
2806 /*
2807 * TAINT_FORCED_RMMOD: could be added.
2808 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
2809 * apply to modules.
2810 */
2811
2812 /* Show a - for module-is-being-unloaded */
2813 if (mod->state == MODULE_STATE_GOING)
2814 buf[bx++] = '-';
2815 /* Show a + for module-is-being-loaded */
2816 if (mod->state == MODULE_STATE_COMING)
2817 buf[bx++] = '+';
2818 buf[bx++] = ')';
2819 }
2820 buf[bx] = '\0';
2821
2822 return buf;
2823 }
2824
2825 #ifdef CONFIG_PROC_FS
2826 /* Called by the /proc file system to return a list of modules. */
2827 static void *m_start(struct seq_file *m, loff_t *pos)
2828 {
2829 mutex_lock(&module_mutex);
2830 return seq_list_start(&modules, *pos);
2831 }
2832
2833 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
2834 {
2835 return seq_list_next(p, &modules, pos);
2836 }
2837
2838 static void m_stop(struct seq_file *m, void *p)
2839 {
2840 mutex_unlock(&module_mutex);
2841 }
2842
2843 static int m_show(struct seq_file *m, void *p)
2844 {
2845 struct module *mod = list_entry(p, struct module, list);
2846 char buf[8];
2847
2848 seq_printf(m, "%s %u",
2849 mod->name, mod->init_size + mod->core_size);
2850 print_unload_info(m, mod);
2851
2852 /* Informative for users. */
2853 seq_printf(m, " %s",
2854 mod->state == MODULE_STATE_GOING ? "Unloading":
2855 mod->state == MODULE_STATE_COMING ? "Loading":
2856 "Live");
2857 /* Used by oprofile and other similar tools. */
2858 seq_printf(m, " 0x%p", mod->module_core);
2859
2860 /* Taints info */
2861 if (mod->taints)
2862 seq_printf(m, " %s", module_flags(mod, buf));
2863
2864 seq_printf(m, "\n");
2865 return 0;
2866 }
2867
2868 /* Format: modulename size refcount deps address
2869
2870 Where refcount is a number or -, and deps is a comma-separated list
2871 of depends or -.
2872 */
2873 static const struct seq_operations modules_op = {
2874 .start = m_start,
2875 .next = m_next,
2876 .stop = m_stop,
2877 .show = m_show
2878 };
2879
2880 static int modules_open(struct inode *inode, struct file *file)
2881 {
2882 return seq_open(file, &modules_op);
2883 }
2884
2885 static const struct file_operations proc_modules_operations = {
2886 .open = modules_open,
2887 .read = seq_read,
2888 .llseek = seq_lseek,
2889 .release = seq_release,
2890 };
2891
2892 static int __init proc_modules_init(void)
2893 {
2894 proc_create("modules", 0, NULL, &proc_modules_operations);
2895 return 0;
2896 }
2897 module_init(proc_modules_init);
2898 #endif
2899
2900 /* Given an address, look for it in the module exception tables. */
2901 const struct exception_table_entry *search_module_extables(unsigned long addr)
2902 {
2903 const struct exception_table_entry *e = NULL;
2904 struct module *mod;
2905
2906 preempt_disable();
2907 list_for_each_entry_rcu(mod, &modules, list) {
2908 if (mod->num_exentries == 0)
2909 continue;
2910
2911 e = search_extable(mod->extable,
2912 mod->extable + mod->num_exentries - 1,
2913 addr);
2914 if (e)
2915 break;
2916 }
2917 preempt_enable();
2918
2919 /* Now, if we found one, we are running inside it now, hence
2920 we cannot unload the module, hence no refcnt needed. */
2921 return e;
2922 }
2923
2924 /*
2925 * is_module_address - is this address inside a module?
2926 * @addr: the address to check.
2927 *
2928 * See is_module_text_address() if you simply want to see if the address
2929 * is code (not data).
2930 */
2931 bool is_module_address(unsigned long addr)
2932 {
2933 bool ret;
2934
2935 preempt_disable();
2936 ret = __module_address(addr) != NULL;
2937 preempt_enable();
2938
2939 return ret;
2940 }
2941
2942 /*
2943 * __module_address - get the module which contains an address.
2944 * @addr: the address.
2945 *
2946 * Must be called with preempt disabled or module mutex held so that
2947 * module doesn't get freed during this.
2948 */
2949 struct module *__module_address(unsigned long addr)
2950 {
2951 struct module *mod;
2952
2953 if (addr < module_addr_min || addr > module_addr_max)
2954 return NULL;
2955
2956 list_for_each_entry_rcu(mod, &modules, list)
2957 if (within_module_core(addr, mod)
2958 || within_module_init(addr, mod))
2959 return mod;
2960 return NULL;
2961 }
2962 EXPORT_SYMBOL_GPL(__module_address);
2963
2964 /*
2965 * is_module_text_address - is this address inside module code?
2966 * @addr: the address to check.
2967 *
2968 * See is_module_address() if you simply want to see if the address is
2969 * anywhere in a module. See kernel_text_address() for testing if an
2970 * address corresponds to kernel or module code.
2971 */
2972 bool is_module_text_address(unsigned long addr)
2973 {
2974 bool ret;
2975
2976 preempt_disable();
2977 ret = __module_text_address(addr) != NULL;
2978 preempt_enable();
2979
2980 return ret;
2981 }
2982
2983 /*
2984 * __module_text_address - get the module whose code contains an address.
2985 * @addr: the address.
2986 *
2987 * Must be called with preempt disabled or module mutex held so that
2988 * module doesn't get freed during this.
2989 */
2990 struct module *__module_text_address(unsigned long addr)
2991 {
2992 struct module *mod = __module_address(addr);
2993 if (mod) {
2994 /* Make sure it's within the text section. */
2995 if (!within(addr, mod->module_init, mod->init_text_size)
2996 && !within(addr, mod->module_core, mod->core_text_size))
2997 mod = NULL;
2998 }
2999 return mod;
3000 }
3001 EXPORT_SYMBOL_GPL(__module_text_address);
3002
3003 /* Don't grab lock, we're oopsing. */
3004 void print_modules(void)
3005 {
3006 struct module *mod;
3007 char buf[8];
3008
3009 printk(KERN_DEFAULT "Modules linked in:");
3010 /* Most callers should already have preempt disabled, but make sure */
3011 preempt_disable();
3012 list_for_each_entry_rcu(mod, &modules, list)
3013 printk(" %s%s", mod->name, module_flags(mod, buf));
3014 preempt_enable();
3015 if (last_unloaded_module[0])
3016 printk(" [last unloaded: %s]", last_unloaded_module);
3017 printk("\n");
3018 }
3019
3020 #ifdef CONFIG_MODVERSIONS
3021 /* Generate the signature for all relevant module structures here.
3022 * If these change, we don't want to try to parse the module. */
3023 void module_layout(struct module *mod,
3024 struct modversion_info *ver,
3025 struct kernel_param *kp,
3026 struct kernel_symbol *ks,
3027 struct tracepoint *tp)
3028 {
3029 }
3030 EXPORT_SYMBOL(module_layout);
3031 #endif
3032
3033 #ifdef CONFIG_TRACEPOINTS
3034 void module_update_tracepoints(void)
3035 {
3036 struct module *mod;
3037
3038 mutex_lock(&module_mutex);
3039 list_for_each_entry(mod, &modules, list)
3040 if (!mod->taints)
3041 tracepoint_update_probe_range(mod->tracepoints,
3042 mod->tracepoints + mod->num_tracepoints);
3043 mutex_unlock(&module_mutex);
3044 }
3045
3046 /*
3047 * Returns 0 if current not found.
3048 * Returns 1 if current found.
3049 */
3050 int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3051 {
3052 struct module *iter_mod;
3053 int found = 0;
3054
3055 mutex_lock(&module_mutex);
3056 list_for_each_entry(iter_mod, &modules, list) {
3057 if (!iter_mod->taints) {
3058 /*
3059 * Sorted module list
3060 */
3061 if (iter_mod < iter->module)
3062 continue;
3063 else if (iter_mod > iter->module)
3064 iter->tracepoint = NULL;
3065 found = tracepoint_get_iter_range(&iter->tracepoint,
3066 iter_mod->tracepoints,
3067 iter_mod->tracepoints
3068 + iter_mod->num_tracepoints);
3069 if (found) {
3070 iter->module = iter_mod;
3071 break;
3072 }
3073 }
3074 }
3075 mutex_unlock(&module_mutex);
3076 return found;
3077 }
3078 #endif