]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/module.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[mirror_ubuntu-artful-kernel.git] / kernel / module.c
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/module.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61
62 #if 0
63 #define DEBUGP printk
64 #else
65 #define DEBUGP(fmt , a...)
66 #endif
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /* If this is set, the section belongs in the init part of the module */
73 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
74
75 /* List of modules, protected by module_mutex or preempt_disable
76 * (delete uses stop_machine/add uses RCU list operations). */
77 DEFINE_MUTEX(module_mutex);
78 EXPORT_SYMBOL_GPL(module_mutex);
79 static LIST_HEAD(modules);
80 #ifdef CONFIG_KGDB_KDB
81 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
82 #endif /* CONFIG_KGDB_KDB */
83
84
85 /* Block module loading/unloading? */
86 int modules_disabled = 0;
87
88 /* Waiting for a module to finish initializing? */
89 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
90
91 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
92
93 /* Bounds of module allocation, for speeding __module_address */
94 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
95
96 int register_module_notifier(struct notifier_block * nb)
97 {
98 return blocking_notifier_chain_register(&module_notify_list, nb);
99 }
100 EXPORT_SYMBOL(register_module_notifier);
101
102 int unregister_module_notifier(struct notifier_block * nb)
103 {
104 return blocking_notifier_chain_unregister(&module_notify_list, nb);
105 }
106 EXPORT_SYMBOL(unregister_module_notifier);
107
108 /* We require a truly strong try_module_get(): 0 means failure due to
109 ongoing or failed initialization etc. */
110 static inline int strong_try_module_get(struct module *mod)
111 {
112 if (mod && mod->state == MODULE_STATE_COMING)
113 return -EBUSY;
114 if (try_module_get(mod))
115 return 0;
116 else
117 return -ENOENT;
118 }
119
120 static inline void add_taint_module(struct module *mod, unsigned flag)
121 {
122 add_taint(flag);
123 mod->taints |= (1U << flag);
124 }
125
126 /*
127 * A thread that wants to hold a reference to a module only while it
128 * is running can call this to safely exit. nfsd and lockd use this.
129 */
130 void __module_put_and_exit(struct module *mod, long code)
131 {
132 module_put(mod);
133 do_exit(code);
134 }
135 EXPORT_SYMBOL(__module_put_and_exit);
136
137 /* Find a module section: 0 means not found. */
138 static unsigned int find_sec(Elf_Ehdr *hdr,
139 Elf_Shdr *sechdrs,
140 const char *secstrings,
141 const char *name)
142 {
143 unsigned int i;
144
145 for (i = 1; i < hdr->e_shnum; i++)
146 /* Alloc bit cleared means "ignore it." */
147 if ((sechdrs[i].sh_flags & SHF_ALLOC)
148 && strcmp(secstrings+sechdrs[i].sh_name, name) == 0)
149 return i;
150 return 0;
151 }
152
153 /* Find a module section, or NULL. */
154 static void *section_addr(Elf_Ehdr *hdr, Elf_Shdr *shdrs,
155 const char *secstrings, const char *name)
156 {
157 /* Section 0 has sh_addr 0. */
158 return (void *)shdrs[find_sec(hdr, shdrs, secstrings, name)].sh_addr;
159 }
160
161 /* Find a module section, or NULL. Fill in number of "objects" in section. */
162 static void *section_objs(Elf_Ehdr *hdr,
163 Elf_Shdr *sechdrs,
164 const char *secstrings,
165 const char *name,
166 size_t object_size,
167 unsigned int *num)
168 {
169 unsigned int sec = find_sec(hdr, sechdrs, secstrings, name);
170
171 /* Section 0 has sh_addr 0 and sh_size 0. */
172 *num = sechdrs[sec].sh_size / object_size;
173 return (void *)sechdrs[sec].sh_addr;
174 }
175
176 /* Provided by the linker */
177 extern const struct kernel_symbol __start___ksymtab[];
178 extern const struct kernel_symbol __stop___ksymtab[];
179 extern const struct kernel_symbol __start___ksymtab_gpl[];
180 extern const struct kernel_symbol __stop___ksymtab_gpl[];
181 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
182 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
183 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
184 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
185 extern const unsigned long __start___kcrctab[];
186 extern const unsigned long __start___kcrctab_gpl[];
187 extern const unsigned long __start___kcrctab_gpl_future[];
188 #ifdef CONFIG_UNUSED_SYMBOLS
189 extern const struct kernel_symbol __start___ksymtab_unused[];
190 extern const struct kernel_symbol __stop___ksymtab_unused[];
191 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
192 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
193 extern const unsigned long __start___kcrctab_unused[];
194 extern const unsigned long __start___kcrctab_unused_gpl[];
195 #endif
196
197 #ifndef CONFIG_MODVERSIONS
198 #define symversion(base, idx) NULL
199 #else
200 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
201 #endif
202
203 static bool each_symbol_in_section(const struct symsearch *arr,
204 unsigned int arrsize,
205 struct module *owner,
206 bool (*fn)(const struct symsearch *syms,
207 struct module *owner,
208 unsigned int symnum, void *data),
209 void *data)
210 {
211 unsigned int i, j;
212
213 for (j = 0; j < arrsize; j++) {
214 for (i = 0; i < arr[j].stop - arr[j].start; i++)
215 if (fn(&arr[j], owner, i, data))
216 return true;
217 }
218
219 return false;
220 }
221
222 /* Returns true as soon as fn returns true, otherwise false. */
223 bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
224 unsigned int symnum, void *data), void *data)
225 {
226 struct module *mod;
227 const struct symsearch arr[] = {
228 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
229 NOT_GPL_ONLY, false },
230 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
231 __start___kcrctab_gpl,
232 GPL_ONLY, false },
233 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
234 __start___kcrctab_gpl_future,
235 WILL_BE_GPL_ONLY, false },
236 #ifdef CONFIG_UNUSED_SYMBOLS
237 { __start___ksymtab_unused, __stop___ksymtab_unused,
238 __start___kcrctab_unused,
239 NOT_GPL_ONLY, true },
240 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
241 __start___kcrctab_unused_gpl,
242 GPL_ONLY, true },
243 #endif
244 };
245
246 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
247 return true;
248
249 list_for_each_entry_rcu(mod, &modules, list) {
250 struct symsearch arr[] = {
251 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
252 NOT_GPL_ONLY, false },
253 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
254 mod->gpl_crcs,
255 GPL_ONLY, false },
256 { mod->gpl_future_syms,
257 mod->gpl_future_syms + mod->num_gpl_future_syms,
258 mod->gpl_future_crcs,
259 WILL_BE_GPL_ONLY, false },
260 #ifdef CONFIG_UNUSED_SYMBOLS
261 { mod->unused_syms,
262 mod->unused_syms + mod->num_unused_syms,
263 mod->unused_crcs,
264 NOT_GPL_ONLY, true },
265 { mod->unused_gpl_syms,
266 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
267 mod->unused_gpl_crcs,
268 GPL_ONLY, true },
269 #endif
270 };
271
272 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
273 return true;
274 }
275 return false;
276 }
277 EXPORT_SYMBOL_GPL(each_symbol);
278
279 struct find_symbol_arg {
280 /* Input */
281 const char *name;
282 bool gplok;
283 bool warn;
284
285 /* Output */
286 struct module *owner;
287 const unsigned long *crc;
288 const struct kernel_symbol *sym;
289 };
290
291 static bool find_symbol_in_section(const struct symsearch *syms,
292 struct module *owner,
293 unsigned int symnum, void *data)
294 {
295 struct find_symbol_arg *fsa = data;
296
297 if (strcmp(syms->start[symnum].name, fsa->name) != 0)
298 return false;
299
300 if (!fsa->gplok) {
301 if (syms->licence == GPL_ONLY)
302 return false;
303 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
304 printk(KERN_WARNING "Symbol %s is being used "
305 "by a non-GPL module, which will not "
306 "be allowed in the future\n", fsa->name);
307 printk(KERN_WARNING "Please see the file "
308 "Documentation/feature-removal-schedule.txt "
309 "in the kernel source tree for more details.\n");
310 }
311 }
312
313 #ifdef CONFIG_UNUSED_SYMBOLS
314 if (syms->unused && fsa->warn) {
315 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
316 "however this module is using it.\n", fsa->name);
317 printk(KERN_WARNING
318 "This symbol will go away in the future.\n");
319 printk(KERN_WARNING
320 "Please evalute if this is the right api to use and if "
321 "it really is, submit a report the linux kernel "
322 "mailinglist together with submitting your code for "
323 "inclusion.\n");
324 }
325 #endif
326
327 fsa->owner = owner;
328 fsa->crc = symversion(syms->crcs, symnum);
329 fsa->sym = &syms->start[symnum];
330 return true;
331 }
332
333 /* Find a symbol and return it, along with, (optional) crc and
334 * (optional) module which owns it */
335 const struct kernel_symbol *find_symbol(const char *name,
336 struct module **owner,
337 const unsigned long **crc,
338 bool gplok,
339 bool warn)
340 {
341 struct find_symbol_arg fsa;
342
343 fsa.name = name;
344 fsa.gplok = gplok;
345 fsa.warn = warn;
346
347 if (each_symbol(find_symbol_in_section, &fsa)) {
348 if (owner)
349 *owner = fsa.owner;
350 if (crc)
351 *crc = fsa.crc;
352 return fsa.sym;
353 }
354
355 DEBUGP("Failed to find symbol %s\n", name);
356 return NULL;
357 }
358 EXPORT_SYMBOL_GPL(find_symbol);
359
360 /* Search for module by name: must hold module_mutex. */
361 struct module *find_module(const char *name)
362 {
363 struct module *mod;
364
365 list_for_each_entry(mod, &modules, list) {
366 if (strcmp(mod->name, name) == 0)
367 return mod;
368 }
369 return NULL;
370 }
371 EXPORT_SYMBOL_GPL(find_module);
372
373 #ifdef CONFIG_SMP
374
375 static inline void __percpu *mod_percpu(struct module *mod)
376 {
377 return mod->percpu;
378 }
379
380 static int percpu_modalloc(struct module *mod,
381 unsigned long size, unsigned long align)
382 {
383 if (align > PAGE_SIZE) {
384 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
385 mod->name, align, PAGE_SIZE);
386 align = PAGE_SIZE;
387 }
388
389 mod->percpu = __alloc_reserved_percpu(size, align);
390 if (!mod->percpu) {
391 printk(KERN_WARNING
392 "Could not allocate %lu bytes percpu data\n", size);
393 return -ENOMEM;
394 }
395 mod->percpu_size = size;
396 return 0;
397 }
398
399 static void percpu_modfree(struct module *mod)
400 {
401 free_percpu(mod->percpu);
402 }
403
404 static unsigned int find_pcpusec(Elf_Ehdr *hdr,
405 Elf_Shdr *sechdrs,
406 const char *secstrings)
407 {
408 return find_sec(hdr, sechdrs, secstrings, ".data.percpu");
409 }
410
411 static void percpu_modcopy(struct module *mod,
412 const void *from, unsigned long size)
413 {
414 int cpu;
415
416 for_each_possible_cpu(cpu)
417 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
418 }
419
420 /**
421 * is_module_percpu_address - test whether address is from module static percpu
422 * @addr: address to test
423 *
424 * Test whether @addr belongs to module static percpu area.
425 *
426 * RETURNS:
427 * %true if @addr is from module static percpu area
428 */
429 bool is_module_percpu_address(unsigned long addr)
430 {
431 struct module *mod;
432 unsigned int cpu;
433
434 preempt_disable();
435
436 list_for_each_entry_rcu(mod, &modules, list) {
437 if (!mod->percpu_size)
438 continue;
439 for_each_possible_cpu(cpu) {
440 void *start = per_cpu_ptr(mod->percpu, cpu);
441
442 if ((void *)addr >= start &&
443 (void *)addr < start + mod->percpu_size) {
444 preempt_enable();
445 return true;
446 }
447 }
448 }
449
450 preempt_enable();
451 return false;
452 }
453
454 #else /* ... !CONFIG_SMP */
455
456 static inline void __percpu *mod_percpu(struct module *mod)
457 {
458 return NULL;
459 }
460 static inline int percpu_modalloc(struct module *mod,
461 unsigned long size, unsigned long align)
462 {
463 return -ENOMEM;
464 }
465 static inline void percpu_modfree(struct module *mod)
466 {
467 }
468 static inline unsigned int find_pcpusec(Elf_Ehdr *hdr,
469 Elf_Shdr *sechdrs,
470 const char *secstrings)
471 {
472 return 0;
473 }
474 static inline void percpu_modcopy(struct module *mod,
475 const void *from, unsigned long size)
476 {
477 /* pcpusec should be 0, and size of that section should be 0. */
478 BUG_ON(size != 0);
479 }
480 bool is_module_percpu_address(unsigned long addr)
481 {
482 return false;
483 }
484
485 #endif /* CONFIG_SMP */
486
487 #define MODINFO_ATTR(field) \
488 static void setup_modinfo_##field(struct module *mod, const char *s) \
489 { \
490 mod->field = kstrdup(s, GFP_KERNEL); \
491 } \
492 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
493 struct module *mod, char *buffer) \
494 { \
495 return sprintf(buffer, "%s\n", mod->field); \
496 } \
497 static int modinfo_##field##_exists(struct module *mod) \
498 { \
499 return mod->field != NULL; \
500 } \
501 static void free_modinfo_##field(struct module *mod) \
502 { \
503 kfree(mod->field); \
504 mod->field = NULL; \
505 } \
506 static struct module_attribute modinfo_##field = { \
507 .attr = { .name = __stringify(field), .mode = 0444 }, \
508 .show = show_modinfo_##field, \
509 .setup = setup_modinfo_##field, \
510 .test = modinfo_##field##_exists, \
511 .free = free_modinfo_##field, \
512 };
513
514 MODINFO_ATTR(version);
515 MODINFO_ATTR(srcversion);
516
517 static char last_unloaded_module[MODULE_NAME_LEN+1];
518
519 #ifdef CONFIG_MODULE_UNLOAD
520
521 EXPORT_TRACEPOINT_SYMBOL(module_get);
522
523 /* Init the unload section of the module. */
524 static void module_unload_init(struct module *mod)
525 {
526 int cpu;
527
528 INIT_LIST_HEAD(&mod->modules_which_use_me);
529 for_each_possible_cpu(cpu) {
530 per_cpu_ptr(mod->refptr, cpu)->incs = 0;
531 per_cpu_ptr(mod->refptr, cpu)->decs = 0;
532 }
533
534 /* Hold reference count during initialization. */
535 __this_cpu_write(mod->refptr->incs, 1);
536 /* Backwards compatibility macros put refcount during init. */
537 mod->waiter = current;
538 }
539
540 /* modules using other modules */
541 struct module_use
542 {
543 struct list_head list;
544 struct module *module_which_uses;
545 };
546
547 /* Does a already use b? */
548 static int already_uses(struct module *a, struct module *b)
549 {
550 struct module_use *use;
551
552 list_for_each_entry(use, &b->modules_which_use_me, list) {
553 if (use->module_which_uses == a) {
554 DEBUGP("%s uses %s!\n", a->name, b->name);
555 return 1;
556 }
557 }
558 DEBUGP("%s does not use %s!\n", a->name, b->name);
559 return 0;
560 }
561
562 /* Module a uses b */
563 int use_module(struct module *a, struct module *b)
564 {
565 struct module_use *use;
566 int no_warn, err;
567
568 if (b == NULL || already_uses(a, b))
569 return 0;
570
571 /* If we're interrupted or time out, we fail. */
572 err = strong_try_module_get(b);
573 if (err)
574 return err;
575
576 DEBUGP("Allocating new usage for %s.\n", a->name);
577 use = kmalloc(sizeof(*use), GFP_ATOMIC);
578 if (!use) {
579 printk("%s: out of memory loading\n", a->name);
580 module_put(b);
581 return -ENOMEM;
582 }
583
584 use->module_which_uses = a;
585 list_add(&use->list, &b->modules_which_use_me);
586 no_warn = sysfs_create_link(b->holders_dir, &a->mkobj.kobj, a->name);
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(use_module);
590
591 /* Clear the unload stuff of the module. */
592 static void module_unload_free(struct module *mod)
593 {
594 struct module *i;
595
596 list_for_each_entry(i, &modules, list) {
597 struct module_use *use;
598
599 list_for_each_entry(use, &i->modules_which_use_me, list) {
600 if (use->module_which_uses == mod) {
601 DEBUGP("%s unusing %s\n", mod->name, i->name);
602 module_put(i);
603 list_del(&use->list);
604 kfree(use);
605 sysfs_remove_link(i->holders_dir, mod->name);
606 /* There can be at most one match. */
607 break;
608 }
609 }
610 }
611 }
612
613 #ifdef CONFIG_MODULE_FORCE_UNLOAD
614 static inline int try_force_unload(unsigned int flags)
615 {
616 int ret = (flags & O_TRUNC);
617 if (ret)
618 add_taint(TAINT_FORCED_RMMOD);
619 return ret;
620 }
621 #else
622 static inline int try_force_unload(unsigned int flags)
623 {
624 return 0;
625 }
626 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
627
628 struct stopref
629 {
630 struct module *mod;
631 int flags;
632 int *forced;
633 };
634
635 /* Whole machine is stopped with interrupts off when this runs. */
636 static int __try_stop_module(void *_sref)
637 {
638 struct stopref *sref = _sref;
639
640 /* If it's not unused, quit unless we're forcing. */
641 if (module_refcount(sref->mod) != 0) {
642 if (!(*sref->forced = try_force_unload(sref->flags)))
643 return -EWOULDBLOCK;
644 }
645
646 /* Mark it as dying. */
647 sref->mod->state = MODULE_STATE_GOING;
648 return 0;
649 }
650
651 static int try_stop_module(struct module *mod, int flags, int *forced)
652 {
653 if (flags & O_NONBLOCK) {
654 struct stopref sref = { mod, flags, forced };
655
656 return stop_machine(__try_stop_module, &sref, NULL);
657 } else {
658 /* We don't need to stop the machine for this. */
659 mod->state = MODULE_STATE_GOING;
660 synchronize_sched();
661 return 0;
662 }
663 }
664
665 unsigned int module_refcount(struct module *mod)
666 {
667 unsigned int incs = 0, decs = 0;
668 int cpu;
669
670 for_each_possible_cpu(cpu)
671 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
672 /*
673 * ensure the incs are added up after the decs.
674 * module_put ensures incs are visible before decs with smp_wmb.
675 *
676 * This 2-count scheme avoids the situation where the refcount
677 * for CPU0 is read, then CPU0 increments the module refcount,
678 * then CPU1 drops that refcount, then the refcount for CPU1 is
679 * read. We would record a decrement but not its corresponding
680 * increment so we would see a low count (disaster).
681 *
682 * Rare situation? But module_refcount can be preempted, and we
683 * might be tallying up 4096+ CPUs. So it is not impossible.
684 */
685 smp_rmb();
686 for_each_possible_cpu(cpu)
687 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
688 return incs - decs;
689 }
690 EXPORT_SYMBOL(module_refcount);
691
692 /* This exists whether we can unload or not */
693 static void free_module(struct module *mod);
694
695 static void wait_for_zero_refcount(struct module *mod)
696 {
697 /* Since we might sleep for some time, release the mutex first */
698 mutex_unlock(&module_mutex);
699 for (;;) {
700 DEBUGP("Looking at refcount...\n");
701 set_current_state(TASK_UNINTERRUPTIBLE);
702 if (module_refcount(mod) == 0)
703 break;
704 schedule();
705 }
706 current->state = TASK_RUNNING;
707 mutex_lock(&module_mutex);
708 }
709
710 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
711 unsigned int, flags)
712 {
713 struct module *mod;
714 char name[MODULE_NAME_LEN];
715 int ret, forced = 0;
716
717 if (!capable(CAP_SYS_MODULE) || modules_disabled)
718 return -EPERM;
719
720 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
721 return -EFAULT;
722 name[MODULE_NAME_LEN-1] = '\0';
723
724 if (mutex_lock_interruptible(&module_mutex) != 0)
725 return -EINTR;
726
727 mod = find_module(name);
728 if (!mod) {
729 ret = -ENOENT;
730 goto out;
731 }
732
733 if (!list_empty(&mod->modules_which_use_me)) {
734 /* Other modules depend on us: get rid of them first. */
735 ret = -EWOULDBLOCK;
736 goto out;
737 }
738
739 /* Doing init or already dying? */
740 if (mod->state != MODULE_STATE_LIVE) {
741 /* FIXME: if (force), slam module count and wake up
742 waiter --RR */
743 DEBUGP("%s already dying\n", mod->name);
744 ret = -EBUSY;
745 goto out;
746 }
747
748 /* If it has an init func, it must have an exit func to unload */
749 if (mod->init && !mod->exit) {
750 forced = try_force_unload(flags);
751 if (!forced) {
752 /* This module can't be removed */
753 ret = -EBUSY;
754 goto out;
755 }
756 }
757
758 /* Set this up before setting mod->state */
759 mod->waiter = current;
760
761 /* Stop the machine so refcounts can't move and disable module. */
762 ret = try_stop_module(mod, flags, &forced);
763 if (ret != 0)
764 goto out;
765
766 /* Never wait if forced. */
767 if (!forced && module_refcount(mod) != 0)
768 wait_for_zero_refcount(mod);
769
770 mutex_unlock(&module_mutex);
771 /* Final destruction now noone is using it. */
772 if (mod->exit != NULL)
773 mod->exit();
774 blocking_notifier_call_chain(&module_notify_list,
775 MODULE_STATE_GOING, mod);
776 async_synchronize_full();
777 mutex_lock(&module_mutex);
778 /* Store the name of the last unloaded module for diagnostic purposes */
779 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
780 ddebug_remove_module(mod->name);
781 free_module(mod);
782
783 out:
784 mutex_unlock(&module_mutex);
785 return ret;
786 }
787
788 static inline void print_unload_info(struct seq_file *m, struct module *mod)
789 {
790 struct module_use *use;
791 int printed_something = 0;
792
793 seq_printf(m, " %u ", module_refcount(mod));
794
795 /* Always include a trailing , so userspace can differentiate
796 between this and the old multi-field proc format. */
797 list_for_each_entry(use, &mod->modules_which_use_me, list) {
798 printed_something = 1;
799 seq_printf(m, "%s,", use->module_which_uses->name);
800 }
801
802 if (mod->init != NULL && mod->exit == NULL) {
803 printed_something = 1;
804 seq_printf(m, "[permanent],");
805 }
806
807 if (!printed_something)
808 seq_printf(m, "-");
809 }
810
811 void __symbol_put(const char *symbol)
812 {
813 struct module *owner;
814
815 preempt_disable();
816 if (!find_symbol(symbol, &owner, NULL, true, false))
817 BUG();
818 module_put(owner);
819 preempt_enable();
820 }
821 EXPORT_SYMBOL(__symbol_put);
822
823 /* Note this assumes addr is a function, which it currently always is. */
824 void symbol_put_addr(void *addr)
825 {
826 struct module *modaddr;
827 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
828
829 if (core_kernel_text(a))
830 return;
831
832 /* module_text_address is safe here: we're supposed to have reference
833 * to module from symbol_get, so it can't go away. */
834 modaddr = __module_text_address(a);
835 BUG_ON(!modaddr);
836 module_put(modaddr);
837 }
838 EXPORT_SYMBOL_GPL(symbol_put_addr);
839
840 static ssize_t show_refcnt(struct module_attribute *mattr,
841 struct module *mod, char *buffer)
842 {
843 return sprintf(buffer, "%u\n", module_refcount(mod));
844 }
845
846 static struct module_attribute refcnt = {
847 .attr = { .name = "refcnt", .mode = 0444 },
848 .show = show_refcnt,
849 };
850
851 void module_put(struct module *module)
852 {
853 if (module) {
854 preempt_disable();
855 smp_wmb(); /* see comment in module_refcount */
856 __this_cpu_inc(module->refptr->decs);
857
858 trace_module_put(module, _RET_IP_);
859 /* Maybe they're waiting for us to drop reference? */
860 if (unlikely(!module_is_live(module)))
861 wake_up_process(module->waiter);
862 preempt_enable();
863 }
864 }
865 EXPORT_SYMBOL(module_put);
866
867 #else /* !CONFIG_MODULE_UNLOAD */
868 static inline void print_unload_info(struct seq_file *m, struct module *mod)
869 {
870 /* We don't know the usage count, or what modules are using. */
871 seq_printf(m, " - -");
872 }
873
874 static inline void module_unload_free(struct module *mod)
875 {
876 }
877
878 int use_module(struct module *a, struct module *b)
879 {
880 return strong_try_module_get(b);
881 }
882 EXPORT_SYMBOL_GPL(use_module);
883
884 static inline void module_unload_init(struct module *mod)
885 {
886 }
887 #endif /* CONFIG_MODULE_UNLOAD */
888
889 static ssize_t show_initstate(struct module_attribute *mattr,
890 struct module *mod, char *buffer)
891 {
892 const char *state = "unknown";
893
894 switch (mod->state) {
895 case MODULE_STATE_LIVE:
896 state = "live";
897 break;
898 case MODULE_STATE_COMING:
899 state = "coming";
900 break;
901 case MODULE_STATE_GOING:
902 state = "going";
903 break;
904 }
905 return sprintf(buffer, "%s\n", state);
906 }
907
908 static struct module_attribute initstate = {
909 .attr = { .name = "initstate", .mode = 0444 },
910 .show = show_initstate,
911 };
912
913 static struct module_attribute *modinfo_attrs[] = {
914 &modinfo_version,
915 &modinfo_srcversion,
916 &initstate,
917 #ifdef CONFIG_MODULE_UNLOAD
918 &refcnt,
919 #endif
920 NULL,
921 };
922
923 static const char vermagic[] = VERMAGIC_STRING;
924
925 static int try_to_force_load(struct module *mod, const char *reason)
926 {
927 #ifdef CONFIG_MODULE_FORCE_LOAD
928 if (!test_taint(TAINT_FORCED_MODULE))
929 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
930 mod->name, reason);
931 add_taint_module(mod, TAINT_FORCED_MODULE);
932 return 0;
933 #else
934 return -ENOEXEC;
935 #endif
936 }
937
938 #ifdef CONFIG_MODVERSIONS
939 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
940 static unsigned long maybe_relocated(unsigned long crc,
941 const struct module *crc_owner)
942 {
943 #ifdef ARCH_RELOCATES_KCRCTAB
944 if (crc_owner == NULL)
945 return crc - (unsigned long)reloc_start;
946 #endif
947 return crc;
948 }
949
950 static int check_version(Elf_Shdr *sechdrs,
951 unsigned int versindex,
952 const char *symname,
953 struct module *mod,
954 const unsigned long *crc,
955 const struct module *crc_owner)
956 {
957 unsigned int i, num_versions;
958 struct modversion_info *versions;
959
960 /* Exporting module didn't supply crcs? OK, we're already tainted. */
961 if (!crc)
962 return 1;
963
964 /* No versions at all? modprobe --force does this. */
965 if (versindex == 0)
966 return try_to_force_load(mod, symname) == 0;
967
968 versions = (void *) sechdrs[versindex].sh_addr;
969 num_versions = sechdrs[versindex].sh_size
970 / sizeof(struct modversion_info);
971
972 for (i = 0; i < num_versions; i++) {
973 if (strcmp(versions[i].name, symname) != 0)
974 continue;
975
976 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
977 return 1;
978 DEBUGP("Found checksum %lX vs module %lX\n",
979 maybe_relocated(*crc, crc_owner), versions[i].crc);
980 goto bad_version;
981 }
982
983 printk(KERN_WARNING "%s: no symbol version for %s\n",
984 mod->name, symname);
985 return 0;
986
987 bad_version:
988 printk("%s: disagrees about version of symbol %s\n",
989 mod->name, symname);
990 return 0;
991 }
992
993 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
994 unsigned int versindex,
995 struct module *mod)
996 {
997 const unsigned long *crc;
998
999 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1000 &crc, true, false))
1001 BUG();
1002 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1003 NULL);
1004 }
1005
1006 /* First part is kernel version, which we ignore if module has crcs. */
1007 static inline int same_magic(const char *amagic, const char *bmagic,
1008 bool has_crcs)
1009 {
1010 if (has_crcs) {
1011 amagic += strcspn(amagic, " ");
1012 bmagic += strcspn(bmagic, " ");
1013 }
1014 return strcmp(amagic, bmagic) == 0;
1015 }
1016 #else
1017 static inline int check_version(Elf_Shdr *sechdrs,
1018 unsigned int versindex,
1019 const char *symname,
1020 struct module *mod,
1021 const unsigned long *crc,
1022 const struct module *crc_owner)
1023 {
1024 return 1;
1025 }
1026
1027 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1028 unsigned int versindex,
1029 struct module *mod)
1030 {
1031 return 1;
1032 }
1033
1034 static inline int same_magic(const char *amagic, const char *bmagic,
1035 bool has_crcs)
1036 {
1037 return strcmp(amagic, bmagic) == 0;
1038 }
1039 #endif /* CONFIG_MODVERSIONS */
1040
1041 /* Resolve a symbol for this module. I.e. if we find one, record usage.
1042 Must be holding module_mutex. */
1043 static const struct kernel_symbol *resolve_symbol(Elf_Shdr *sechdrs,
1044 unsigned int versindex,
1045 const char *name,
1046 struct module *mod)
1047 {
1048 struct module *owner;
1049 const struct kernel_symbol *sym;
1050 const unsigned long *crc;
1051 DEFINE_WAIT(wait);
1052 int err;
1053 long timeleft = 30 * HZ;
1054
1055 again:
1056 sym = find_symbol(name, &owner, &crc,
1057 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1058 if (!sym)
1059 return NULL;
1060
1061 if (!check_version(sechdrs, versindex, name, mod, crc, owner))
1062 return NULL;
1063
1064 prepare_to_wait(&module_wq, &wait, TASK_INTERRUPTIBLE);
1065 err = use_module(mod, owner);
1066 if (likely(!err) || err != -EBUSY || signal_pending(current)) {
1067 finish_wait(&module_wq, &wait);
1068 return err ? NULL : sym;
1069 }
1070
1071 /* Module is still loading. Drop lock and wait. */
1072 mutex_unlock(&module_mutex);
1073 timeleft = schedule_timeout(timeleft);
1074 mutex_lock(&module_mutex);
1075 finish_wait(&module_wq, &wait);
1076
1077 /* Module might be gone entirely, or replaced. Re-lookup. */
1078 if (timeleft)
1079 goto again;
1080
1081 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1082 mod->name, owner->name);
1083 return NULL;
1084 }
1085
1086 /*
1087 * /sys/module/foo/sections stuff
1088 * J. Corbet <corbet@lwn.net>
1089 */
1090 #if defined(CONFIG_KALLSYMS) && defined(CONFIG_SYSFS)
1091
1092 static inline bool sect_empty(const Elf_Shdr *sect)
1093 {
1094 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1095 }
1096
1097 struct module_sect_attr
1098 {
1099 struct module_attribute mattr;
1100 char *name;
1101 unsigned long address;
1102 };
1103
1104 struct module_sect_attrs
1105 {
1106 struct attribute_group grp;
1107 unsigned int nsections;
1108 struct module_sect_attr attrs[0];
1109 };
1110
1111 static ssize_t module_sect_show(struct module_attribute *mattr,
1112 struct module *mod, char *buf)
1113 {
1114 struct module_sect_attr *sattr =
1115 container_of(mattr, struct module_sect_attr, mattr);
1116 return sprintf(buf, "0x%lx\n", sattr->address);
1117 }
1118
1119 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1120 {
1121 unsigned int section;
1122
1123 for (section = 0; section < sect_attrs->nsections; section++)
1124 kfree(sect_attrs->attrs[section].name);
1125 kfree(sect_attrs);
1126 }
1127
1128 static void add_sect_attrs(struct module *mod, unsigned int nsect,
1129 char *secstrings, Elf_Shdr *sechdrs)
1130 {
1131 unsigned int nloaded = 0, i, size[2];
1132 struct module_sect_attrs *sect_attrs;
1133 struct module_sect_attr *sattr;
1134 struct attribute **gattr;
1135
1136 /* Count loaded sections and allocate structures */
1137 for (i = 0; i < nsect; i++)
1138 if (!sect_empty(&sechdrs[i]))
1139 nloaded++;
1140 size[0] = ALIGN(sizeof(*sect_attrs)
1141 + nloaded * sizeof(sect_attrs->attrs[0]),
1142 sizeof(sect_attrs->grp.attrs[0]));
1143 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1144 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1145 if (sect_attrs == NULL)
1146 return;
1147
1148 /* Setup section attributes. */
1149 sect_attrs->grp.name = "sections";
1150 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1151
1152 sect_attrs->nsections = 0;
1153 sattr = &sect_attrs->attrs[0];
1154 gattr = &sect_attrs->grp.attrs[0];
1155 for (i = 0; i < nsect; i++) {
1156 if (sect_empty(&sechdrs[i]))
1157 continue;
1158 sattr->address = sechdrs[i].sh_addr;
1159 sattr->name = kstrdup(secstrings + sechdrs[i].sh_name,
1160 GFP_KERNEL);
1161 if (sattr->name == NULL)
1162 goto out;
1163 sect_attrs->nsections++;
1164 sysfs_attr_init(&sattr->mattr.attr);
1165 sattr->mattr.show = module_sect_show;
1166 sattr->mattr.store = NULL;
1167 sattr->mattr.attr.name = sattr->name;
1168 sattr->mattr.attr.mode = S_IRUGO;
1169 *(gattr++) = &(sattr++)->mattr.attr;
1170 }
1171 *gattr = NULL;
1172
1173 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1174 goto out;
1175
1176 mod->sect_attrs = sect_attrs;
1177 return;
1178 out:
1179 free_sect_attrs(sect_attrs);
1180 }
1181
1182 static void remove_sect_attrs(struct module *mod)
1183 {
1184 if (mod->sect_attrs) {
1185 sysfs_remove_group(&mod->mkobj.kobj,
1186 &mod->sect_attrs->grp);
1187 /* We are positive that no one is using any sect attrs
1188 * at this point. Deallocate immediately. */
1189 free_sect_attrs(mod->sect_attrs);
1190 mod->sect_attrs = NULL;
1191 }
1192 }
1193
1194 /*
1195 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1196 */
1197
1198 struct module_notes_attrs {
1199 struct kobject *dir;
1200 unsigned int notes;
1201 struct bin_attribute attrs[0];
1202 };
1203
1204 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1205 struct bin_attribute *bin_attr,
1206 char *buf, loff_t pos, size_t count)
1207 {
1208 /*
1209 * The caller checked the pos and count against our size.
1210 */
1211 memcpy(buf, bin_attr->private + pos, count);
1212 return count;
1213 }
1214
1215 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1216 unsigned int i)
1217 {
1218 if (notes_attrs->dir) {
1219 while (i-- > 0)
1220 sysfs_remove_bin_file(notes_attrs->dir,
1221 &notes_attrs->attrs[i]);
1222 kobject_put(notes_attrs->dir);
1223 }
1224 kfree(notes_attrs);
1225 }
1226
1227 static void add_notes_attrs(struct module *mod, unsigned int nsect,
1228 char *secstrings, Elf_Shdr *sechdrs)
1229 {
1230 unsigned int notes, loaded, i;
1231 struct module_notes_attrs *notes_attrs;
1232 struct bin_attribute *nattr;
1233
1234 /* failed to create section attributes, so can't create notes */
1235 if (!mod->sect_attrs)
1236 return;
1237
1238 /* Count notes sections and allocate structures. */
1239 notes = 0;
1240 for (i = 0; i < nsect; i++)
1241 if (!sect_empty(&sechdrs[i]) &&
1242 (sechdrs[i].sh_type == SHT_NOTE))
1243 ++notes;
1244
1245 if (notes == 0)
1246 return;
1247
1248 notes_attrs = kzalloc(sizeof(*notes_attrs)
1249 + notes * sizeof(notes_attrs->attrs[0]),
1250 GFP_KERNEL);
1251 if (notes_attrs == NULL)
1252 return;
1253
1254 notes_attrs->notes = notes;
1255 nattr = &notes_attrs->attrs[0];
1256 for (loaded = i = 0; i < nsect; ++i) {
1257 if (sect_empty(&sechdrs[i]))
1258 continue;
1259 if (sechdrs[i].sh_type == SHT_NOTE) {
1260 sysfs_bin_attr_init(nattr);
1261 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1262 nattr->attr.mode = S_IRUGO;
1263 nattr->size = sechdrs[i].sh_size;
1264 nattr->private = (void *) sechdrs[i].sh_addr;
1265 nattr->read = module_notes_read;
1266 ++nattr;
1267 }
1268 ++loaded;
1269 }
1270
1271 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1272 if (!notes_attrs->dir)
1273 goto out;
1274
1275 for (i = 0; i < notes; ++i)
1276 if (sysfs_create_bin_file(notes_attrs->dir,
1277 &notes_attrs->attrs[i]))
1278 goto out;
1279
1280 mod->notes_attrs = notes_attrs;
1281 return;
1282
1283 out:
1284 free_notes_attrs(notes_attrs, i);
1285 }
1286
1287 static void remove_notes_attrs(struct module *mod)
1288 {
1289 if (mod->notes_attrs)
1290 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1291 }
1292
1293 #else
1294
1295 static inline void add_sect_attrs(struct module *mod, unsigned int nsect,
1296 char *sectstrings, Elf_Shdr *sechdrs)
1297 {
1298 }
1299
1300 static inline void remove_sect_attrs(struct module *mod)
1301 {
1302 }
1303
1304 static inline void add_notes_attrs(struct module *mod, unsigned int nsect,
1305 char *sectstrings, Elf_Shdr *sechdrs)
1306 {
1307 }
1308
1309 static inline void remove_notes_attrs(struct module *mod)
1310 {
1311 }
1312 #endif
1313
1314 #ifdef CONFIG_SYSFS
1315 int module_add_modinfo_attrs(struct module *mod)
1316 {
1317 struct module_attribute *attr;
1318 struct module_attribute *temp_attr;
1319 int error = 0;
1320 int i;
1321
1322 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1323 (ARRAY_SIZE(modinfo_attrs) + 1)),
1324 GFP_KERNEL);
1325 if (!mod->modinfo_attrs)
1326 return -ENOMEM;
1327
1328 temp_attr = mod->modinfo_attrs;
1329 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1330 if (!attr->test ||
1331 (attr->test && attr->test(mod))) {
1332 memcpy(temp_attr, attr, sizeof(*temp_attr));
1333 sysfs_attr_init(&temp_attr->attr);
1334 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1335 ++temp_attr;
1336 }
1337 }
1338 return error;
1339 }
1340
1341 void module_remove_modinfo_attrs(struct module *mod)
1342 {
1343 struct module_attribute *attr;
1344 int i;
1345
1346 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1347 /* pick a field to test for end of list */
1348 if (!attr->attr.name)
1349 break;
1350 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1351 if (attr->free)
1352 attr->free(mod);
1353 }
1354 kfree(mod->modinfo_attrs);
1355 }
1356
1357 int mod_sysfs_init(struct module *mod)
1358 {
1359 int err;
1360 struct kobject *kobj;
1361
1362 if (!module_sysfs_initialized) {
1363 printk(KERN_ERR "%s: module sysfs not initialized\n",
1364 mod->name);
1365 err = -EINVAL;
1366 goto out;
1367 }
1368
1369 kobj = kset_find_obj(module_kset, mod->name);
1370 if (kobj) {
1371 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1372 kobject_put(kobj);
1373 err = -EINVAL;
1374 goto out;
1375 }
1376
1377 mod->mkobj.mod = mod;
1378
1379 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1380 mod->mkobj.kobj.kset = module_kset;
1381 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1382 "%s", mod->name);
1383 if (err)
1384 kobject_put(&mod->mkobj.kobj);
1385
1386 /* delay uevent until full sysfs population */
1387 out:
1388 return err;
1389 }
1390
1391 int mod_sysfs_setup(struct module *mod,
1392 struct kernel_param *kparam,
1393 unsigned int num_params)
1394 {
1395 int err;
1396
1397 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1398 if (!mod->holders_dir) {
1399 err = -ENOMEM;
1400 goto out_unreg;
1401 }
1402
1403 err = module_param_sysfs_setup(mod, kparam, num_params);
1404 if (err)
1405 goto out_unreg_holders;
1406
1407 err = module_add_modinfo_attrs(mod);
1408 if (err)
1409 goto out_unreg_param;
1410
1411 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1412 return 0;
1413
1414 out_unreg_param:
1415 module_param_sysfs_remove(mod);
1416 out_unreg_holders:
1417 kobject_put(mod->holders_dir);
1418 out_unreg:
1419 kobject_put(&mod->mkobj.kobj);
1420 return err;
1421 }
1422
1423 static void mod_sysfs_fini(struct module *mod)
1424 {
1425 kobject_put(&mod->mkobj.kobj);
1426 }
1427
1428 #else /* CONFIG_SYSFS */
1429
1430 static void mod_sysfs_fini(struct module *mod)
1431 {
1432 }
1433
1434 #endif /* CONFIG_SYSFS */
1435
1436 static void mod_kobject_remove(struct module *mod)
1437 {
1438 module_remove_modinfo_attrs(mod);
1439 module_param_sysfs_remove(mod);
1440 kobject_put(mod->mkobj.drivers_dir);
1441 kobject_put(mod->holders_dir);
1442 mod_sysfs_fini(mod);
1443 }
1444
1445 /*
1446 * unlink the module with the whole machine is stopped with interrupts off
1447 * - this defends against kallsyms not taking locks
1448 */
1449 static int __unlink_module(void *_mod)
1450 {
1451 struct module *mod = _mod;
1452 list_del(&mod->list);
1453 return 0;
1454 }
1455
1456 /* Free a module, remove from lists, etc (must hold module_mutex). */
1457 static void free_module(struct module *mod)
1458 {
1459 trace_module_free(mod);
1460
1461 /* Delete from various lists */
1462 stop_machine(__unlink_module, mod, NULL);
1463 remove_notes_attrs(mod);
1464 remove_sect_attrs(mod);
1465 mod_kobject_remove(mod);
1466
1467 /* Arch-specific cleanup. */
1468 module_arch_cleanup(mod);
1469
1470 /* Module unload stuff */
1471 module_unload_free(mod);
1472
1473 /* Free any allocated parameters. */
1474 destroy_params(mod->kp, mod->num_kp);
1475
1476 /* This may be NULL, but that's OK */
1477 module_free(mod, mod->module_init);
1478 kfree(mod->args);
1479 percpu_modfree(mod);
1480 #if defined(CONFIG_MODULE_UNLOAD)
1481 if (mod->refptr)
1482 free_percpu(mod->refptr);
1483 #endif
1484 /* Free lock-classes: */
1485 lockdep_free_key_range(mod->module_core, mod->core_size);
1486
1487 /* Finally, free the core (containing the module structure) */
1488 module_free(mod, mod->module_core);
1489
1490 #ifdef CONFIG_MPU
1491 update_protections(current->mm);
1492 #endif
1493 }
1494
1495 void *__symbol_get(const char *symbol)
1496 {
1497 struct module *owner;
1498 const struct kernel_symbol *sym;
1499
1500 preempt_disable();
1501 sym = find_symbol(symbol, &owner, NULL, true, true);
1502 if (sym && strong_try_module_get(owner))
1503 sym = NULL;
1504 preempt_enable();
1505
1506 return sym ? (void *)sym->value : NULL;
1507 }
1508 EXPORT_SYMBOL_GPL(__symbol_get);
1509
1510 /*
1511 * Ensure that an exported symbol [global namespace] does not already exist
1512 * in the kernel or in some other module's exported symbol table.
1513 */
1514 static int verify_export_symbols(struct module *mod)
1515 {
1516 unsigned int i;
1517 struct module *owner;
1518 const struct kernel_symbol *s;
1519 struct {
1520 const struct kernel_symbol *sym;
1521 unsigned int num;
1522 } arr[] = {
1523 { mod->syms, mod->num_syms },
1524 { mod->gpl_syms, mod->num_gpl_syms },
1525 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1526 #ifdef CONFIG_UNUSED_SYMBOLS
1527 { mod->unused_syms, mod->num_unused_syms },
1528 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1529 #endif
1530 };
1531
1532 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1533 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1534 if (find_symbol(s->name, &owner, NULL, true, false)) {
1535 printk(KERN_ERR
1536 "%s: exports duplicate symbol %s"
1537 " (owned by %s)\n",
1538 mod->name, s->name, module_name(owner));
1539 return -ENOEXEC;
1540 }
1541 }
1542 }
1543 return 0;
1544 }
1545
1546 /* Change all symbols so that st_value encodes the pointer directly. */
1547 static int simplify_symbols(Elf_Shdr *sechdrs,
1548 unsigned int symindex,
1549 const char *strtab,
1550 unsigned int versindex,
1551 unsigned int pcpuindex,
1552 struct module *mod)
1553 {
1554 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
1555 unsigned long secbase;
1556 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1557 int ret = 0;
1558 const struct kernel_symbol *ksym;
1559
1560 for (i = 1; i < n; i++) {
1561 switch (sym[i].st_shndx) {
1562 case SHN_COMMON:
1563 /* We compiled with -fno-common. These are not
1564 supposed to happen. */
1565 DEBUGP("Common symbol: %s\n", strtab + sym[i].st_name);
1566 printk("%s: please compile with -fno-common\n",
1567 mod->name);
1568 ret = -ENOEXEC;
1569 break;
1570
1571 case SHN_ABS:
1572 /* Don't need to do anything */
1573 DEBUGP("Absolute symbol: 0x%08lx\n",
1574 (long)sym[i].st_value);
1575 break;
1576
1577 case SHN_UNDEF:
1578 ksym = resolve_symbol(sechdrs, versindex,
1579 strtab + sym[i].st_name, mod);
1580 /* Ok if resolved. */
1581 if (ksym) {
1582 sym[i].st_value = ksym->value;
1583 break;
1584 }
1585
1586 /* Ok if weak. */
1587 if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1588 break;
1589
1590 printk(KERN_WARNING "%s: Unknown symbol %s\n",
1591 mod->name, strtab + sym[i].st_name);
1592 ret = -ENOENT;
1593 break;
1594
1595 default:
1596 /* Divert to percpu allocation if a percpu var. */
1597 if (sym[i].st_shndx == pcpuindex)
1598 secbase = (unsigned long)mod_percpu(mod);
1599 else
1600 secbase = sechdrs[sym[i].st_shndx].sh_addr;
1601 sym[i].st_value += secbase;
1602 break;
1603 }
1604 }
1605
1606 return ret;
1607 }
1608
1609 /* Additional bytes needed by arch in front of individual sections */
1610 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1611 unsigned int section)
1612 {
1613 /* default implementation just returns zero */
1614 return 0;
1615 }
1616
1617 /* Update size with this section: return offset. */
1618 static long get_offset(struct module *mod, unsigned int *size,
1619 Elf_Shdr *sechdr, unsigned int section)
1620 {
1621 long ret;
1622
1623 *size += arch_mod_section_prepend(mod, section);
1624 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1625 *size = ret + sechdr->sh_size;
1626 return ret;
1627 }
1628
1629 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1630 might -- code, read-only data, read-write data, small data. Tally
1631 sizes, and place the offsets into sh_entsize fields: high bit means it
1632 belongs in init. */
1633 static void layout_sections(struct module *mod,
1634 const Elf_Ehdr *hdr,
1635 Elf_Shdr *sechdrs,
1636 const char *secstrings)
1637 {
1638 static unsigned long const masks[][2] = {
1639 /* NOTE: all executable code must be the first section
1640 * in this array; otherwise modify the text_size
1641 * finder in the two loops below */
1642 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1643 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1644 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1645 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1646 };
1647 unsigned int m, i;
1648
1649 for (i = 0; i < hdr->e_shnum; i++)
1650 sechdrs[i].sh_entsize = ~0UL;
1651
1652 DEBUGP("Core section allocation order:\n");
1653 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1654 for (i = 0; i < hdr->e_shnum; ++i) {
1655 Elf_Shdr *s = &sechdrs[i];
1656
1657 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1658 || (s->sh_flags & masks[m][1])
1659 || s->sh_entsize != ~0UL
1660 || strstarts(secstrings + s->sh_name, ".init"))
1661 continue;
1662 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1663 DEBUGP("\t%s\n", secstrings + s->sh_name);
1664 }
1665 if (m == 0)
1666 mod->core_text_size = mod->core_size;
1667 }
1668
1669 DEBUGP("Init section allocation order:\n");
1670 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1671 for (i = 0; i < hdr->e_shnum; ++i) {
1672 Elf_Shdr *s = &sechdrs[i];
1673
1674 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1675 || (s->sh_flags & masks[m][1])
1676 || s->sh_entsize != ~0UL
1677 || !strstarts(secstrings + s->sh_name, ".init"))
1678 continue;
1679 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1680 | INIT_OFFSET_MASK);
1681 DEBUGP("\t%s\n", secstrings + s->sh_name);
1682 }
1683 if (m == 0)
1684 mod->init_text_size = mod->init_size;
1685 }
1686 }
1687
1688 static void set_license(struct module *mod, const char *license)
1689 {
1690 if (!license)
1691 license = "unspecified";
1692
1693 if (!license_is_gpl_compatible(license)) {
1694 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1695 printk(KERN_WARNING "%s: module license '%s' taints "
1696 "kernel.\n", mod->name, license);
1697 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1698 }
1699 }
1700
1701 /* Parse tag=value strings from .modinfo section */
1702 static char *next_string(char *string, unsigned long *secsize)
1703 {
1704 /* Skip non-zero chars */
1705 while (string[0]) {
1706 string++;
1707 if ((*secsize)-- <= 1)
1708 return NULL;
1709 }
1710
1711 /* Skip any zero padding. */
1712 while (!string[0]) {
1713 string++;
1714 if ((*secsize)-- <= 1)
1715 return NULL;
1716 }
1717 return string;
1718 }
1719
1720 static char *get_modinfo(Elf_Shdr *sechdrs,
1721 unsigned int info,
1722 const char *tag)
1723 {
1724 char *p;
1725 unsigned int taglen = strlen(tag);
1726 unsigned long size = sechdrs[info].sh_size;
1727
1728 for (p = (char *)sechdrs[info].sh_addr; p; p = next_string(p, &size)) {
1729 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1730 return p + taglen + 1;
1731 }
1732 return NULL;
1733 }
1734
1735 static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs,
1736 unsigned int infoindex)
1737 {
1738 struct module_attribute *attr;
1739 int i;
1740
1741 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1742 if (attr->setup)
1743 attr->setup(mod,
1744 get_modinfo(sechdrs,
1745 infoindex,
1746 attr->attr.name));
1747 }
1748 }
1749
1750 static void free_modinfo(struct module *mod)
1751 {
1752 struct module_attribute *attr;
1753 int i;
1754
1755 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1756 if (attr->free)
1757 attr->free(mod);
1758 }
1759 }
1760
1761 #ifdef CONFIG_KALLSYMS
1762
1763 /* lookup symbol in given range of kernel_symbols */
1764 static const struct kernel_symbol *lookup_symbol(const char *name,
1765 const struct kernel_symbol *start,
1766 const struct kernel_symbol *stop)
1767 {
1768 const struct kernel_symbol *ks = start;
1769 for (; ks < stop; ks++)
1770 if (strcmp(ks->name, name) == 0)
1771 return ks;
1772 return NULL;
1773 }
1774
1775 static int is_exported(const char *name, unsigned long value,
1776 const struct module *mod)
1777 {
1778 const struct kernel_symbol *ks;
1779 if (!mod)
1780 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
1781 else
1782 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
1783 return ks != NULL && ks->value == value;
1784 }
1785
1786 /* As per nm */
1787 static char elf_type(const Elf_Sym *sym,
1788 Elf_Shdr *sechdrs,
1789 const char *secstrings,
1790 struct module *mod)
1791 {
1792 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
1793 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
1794 return 'v';
1795 else
1796 return 'w';
1797 }
1798 if (sym->st_shndx == SHN_UNDEF)
1799 return 'U';
1800 if (sym->st_shndx == SHN_ABS)
1801 return 'a';
1802 if (sym->st_shndx >= SHN_LORESERVE)
1803 return '?';
1804 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
1805 return 't';
1806 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
1807 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
1808 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
1809 return 'r';
1810 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1811 return 'g';
1812 else
1813 return 'd';
1814 }
1815 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1816 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
1817 return 's';
1818 else
1819 return 'b';
1820 }
1821 if (strstarts(secstrings + sechdrs[sym->st_shndx].sh_name, ".debug"))
1822 return 'n';
1823 return '?';
1824 }
1825
1826 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
1827 unsigned int shnum)
1828 {
1829 const Elf_Shdr *sec;
1830
1831 if (src->st_shndx == SHN_UNDEF
1832 || src->st_shndx >= shnum
1833 || !src->st_name)
1834 return false;
1835
1836 sec = sechdrs + src->st_shndx;
1837 if (!(sec->sh_flags & SHF_ALLOC)
1838 #ifndef CONFIG_KALLSYMS_ALL
1839 || !(sec->sh_flags & SHF_EXECINSTR)
1840 #endif
1841 || (sec->sh_entsize & INIT_OFFSET_MASK))
1842 return false;
1843
1844 return true;
1845 }
1846
1847 static unsigned long layout_symtab(struct module *mod,
1848 Elf_Shdr *sechdrs,
1849 unsigned int symindex,
1850 unsigned int strindex,
1851 const Elf_Ehdr *hdr,
1852 const char *secstrings,
1853 unsigned long *pstroffs,
1854 unsigned long *strmap)
1855 {
1856 unsigned long symoffs;
1857 Elf_Shdr *symsect = sechdrs + symindex;
1858 Elf_Shdr *strsect = sechdrs + strindex;
1859 const Elf_Sym *src;
1860 const char *strtab;
1861 unsigned int i, nsrc, ndst;
1862
1863 /* Put symbol section at end of init part of module. */
1864 symsect->sh_flags |= SHF_ALLOC;
1865 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
1866 symindex) | INIT_OFFSET_MASK;
1867 DEBUGP("\t%s\n", secstrings + symsect->sh_name);
1868
1869 src = (void *)hdr + symsect->sh_offset;
1870 nsrc = symsect->sh_size / sizeof(*src);
1871 strtab = (void *)hdr + strsect->sh_offset;
1872 for (ndst = i = 1; i < nsrc; ++i, ++src)
1873 if (is_core_symbol(src, sechdrs, hdr->e_shnum)) {
1874 unsigned int j = src->st_name;
1875
1876 while(!__test_and_set_bit(j, strmap) && strtab[j])
1877 ++j;
1878 ++ndst;
1879 }
1880
1881 /* Append room for core symbols at end of core part. */
1882 symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
1883 mod->core_size = symoffs + ndst * sizeof(Elf_Sym);
1884
1885 /* Put string table section at end of init part of module. */
1886 strsect->sh_flags |= SHF_ALLOC;
1887 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
1888 strindex) | INIT_OFFSET_MASK;
1889 DEBUGP("\t%s\n", secstrings + strsect->sh_name);
1890
1891 /* Append room for core symbols' strings at end of core part. */
1892 *pstroffs = mod->core_size;
1893 __set_bit(0, strmap);
1894 mod->core_size += bitmap_weight(strmap, strsect->sh_size);
1895
1896 return symoffs;
1897 }
1898
1899 static void add_kallsyms(struct module *mod,
1900 Elf_Shdr *sechdrs,
1901 unsigned int shnum,
1902 unsigned int symindex,
1903 unsigned int strindex,
1904 unsigned long symoffs,
1905 unsigned long stroffs,
1906 const char *secstrings,
1907 unsigned long *strmap)
1908 {
1909 unsigned int i, ndst;
1910 const Elf_Sym *src;
1911 Elf_Sym *dst;
1912 char *s;
1913
1914 mod->symtab = (void *)sechdrs[symindex].sh_addr;
1915 mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
1916 mod->strtab = (void *)sechdrs[strindex].sh_addr;
1917
1918 /* Set types up while we still have access to sections. */
1919 for (i = 0; i < mod->num_symtab; i++)
1920 mod->symtab[i].st_info
1921 = elf_type(&mod->symtab[i], sechdrs, secstrings, mod);
1922
1923 mod->core_symtab = dst = mod->module_core + symoffs;
1924 src = mod->symtab;
1925 *dst = *src;
1926 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
1927 if (!is_core_symbol(src, sechdrs, shnum))
1928 continue;
1929 dst[ndst] = *src;
1930 dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name);
1931 ++ndst;
1932 }
1933 mod->core_num_syms = ndst;
1934
1935 mod->core_strtab = s = mod->module_core + stroffs;
1936 for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i)
1937 if (test_bit(i, strmap))
1938 *++s = mod->strtab[i];
1939 }
1940 #else
1941 static inline unsigned long layout_symtab(struct module *mod,
1942 Elf_Shdr *sechdrs,
1943 unsigned int symindex,
1944 unsigned int strindex,
1945 const Elf_Ehdr *hdr,
1946 const char *secstrings,
1947 unsigned long *pstroffs,
1948 unsigned long *strmap)
1949 {
1950 return 0;
1951 }
1952
1953 static inline void add_kallsyms(struct module *mod,
1954 Elf_Shdr *sechdrs,
1955 unsigned int shnum,
1956 unsigned int symindex,
1957 unsigned int strindex,
1958 unsigned long symoffs,
1959 unsigned long stroffs,
1960 const char *secstrings,
1961 const unsigned long *strmap)
1962 {
1963 }
1964 #endif /* CONFIG_KALLSYMS */
1965
1966 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
1967 {
1968 #ifdef CONFIG_DYNAMIC_DEBUG
1969 if (ddebug_add_module(debug, num, debug->modname))
1970 printk(KERN_ERR "dynamic debug error adding module: %s\n",
1971 debug->modname);
1972 #endif
1973 }
1974
1975 static void *module_alloc_update_bounds(unsigned long size)
1976 {
1977 void *ret = module_alloc(size);
1978
1979 if (ret) {
1980 /* Update module bounds. */
1981 if ((unsigned long)ret < module_addr_min)
1982 module_addr_min = (unsigned long)ret;
1983 if ((unsigned long)ret + size > module_addr_max)
1984 module_addr_max = (unsigned long)ret + size;
1985 }
1986 return ret;
1987 }
1988
1989 #ifdef CONFIG_DEBUG_KMEMLEAK
1990 static void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
1991 Elf_Shdr *sechdrs, char *secstrings)
1992 {
1993 unsigned int i;
1994
1995 /* only scan the sections containing data */
1996 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
1997
1998 for (i = 1; i < hdr->e_shnum; i++) {
1999 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2000 continue;
2001 if (strncmp(secstrings + sechdrs[i].sh_name, ".data", 5) != 0
2002 && strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) != 0)
2003 continue;
2004
2005 kmemleak_scan_area((void *)sechdrs[i].sh_addr,
2006 sechdrs[i].sh_size, GFP_KERNEL);
2007 }
2008 }
2009 #else
2010 static inline void kmemleak_load_module(struct module *mod, Elf_Ehdr *hdr,
2011 Elf_Shdr *sechdrs, char *secstrings)
2012 {
2013 }
2014 #endif
2015
2016 /* Allocate and load the module: note that size of section 0 is always
2017 zero, and we rely on this for optional sections. */
2018 static noinline struct module *load_module(void __user *umod,
2019 unsigned long len,
2020 const char __user *uargs)
2021 {
2022 Elf_Ehdr *hdr;
2023 Elf_Shdr *sechdrs;
2024 char *secstrings, *args, *modmagic, *strtab = NULL;
2025 char *staging;
2026 unsigned int i;
2027 unsigned int symindex = 0;
2028 unsigned int strindex = 0;
2029 unsigned int modindex, versindex, infoindex, pcpuindex;
2030 struct module *mod;
2031 long err = 0;
2032 void *ptr = NULL; /* Stops spurious gcc warning */
2033 unsigned long symoffs, stroffs, *strmap;
2034
2035 mm_segment_t old_fs;
2036
2037 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2038 umod, len, uargs);
2039 if (len < sizeof(*hdr))
2040 return ERR_PTR(-ENOEXEC);
2041
2042 /* Suck in entire file: we'll want most of it. */
2043 /* vmalloc barfs on "unusual" numbers. Check here */
2044 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2045 return ERR_PTR(-ENOMEM);
2046
2047 if (copy_from_user(hdr, umod, len) != 0) {
2048 err = -EFAULT;
2049 goto free_hdr;
2050 }
2051
2052 /* Sanity checks against insmoding binaries or wrong arch,
2053 weird elf version */
2054 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2055 || hdr->e_type != ET_REL
2056 || !elf_check_arch(hdr)
2057 || hdr->e_shentsize != sizeof(*sechdrs)) {
2058 err = -ENOEXEC;
2059 goto free_hdr;
2060 }
2061
2062 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr))
2063 goto truncated;
2064
2065 /* Convenience variables */
2066 sechdrs = (void *)hdr + hdr->e_shoff;
2067 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
2068 sechdrs[0].sh_addr = 0;
2069
2070 for (i = 1; i < hdr->e_shnum; i++) {
2071 if (sechdrs[i].sh_type != SHT_NOBITS
2072 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size)
2073 goto truncated;
2074
2075 /* Mark all sections sh_addr with their address in the
2076 temporary image. */
2077 sechdrs[i].sh_addr = (size_t)hdr + sechdrs[i].sh_offset;
2078
2079 /* Internal symbols and strings. */
2080 if (sechdrs[i].sh_type == SHT_SYMTAB) {
2081 symindex = i;
2082 strindex = sechdrs[i].sh_link;
2083 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
2084 }
2085 #ifndef CONFIG_MODULE_UNLOAD
2086 /* Don't load .exit sections */
2087 if (strstarts(secstrings+sechdrs[i].sh_name, ".exit"))
2088 sechdrs[i].sh_flags &= ~(unsigned long)SHF_ALLOC;
2089 #endif
2090 }
2091
2092 modindex = find_sec(hdr, sechdrs, secstrings,
2093 ".gnu.linkonce.this_module");
2094 if (!modindex) {
2095 printk(KERN_WARNING "No module found in object\n");
2096 err = -ENOEXEC;
2097 goto free_hdr;
2098 }
2099 /* This is temporary: point mod into copy of data. */
2100 mod = (void *)sechdrs[modindex].sh_addr;
2101
2102 if (symindex == 0) {
2103 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2104 mod->name);
2105 err = -ENOEXEC;
2106 goto free_hdr;
2107 }
2108
2109 versindex = find_sec(hdr, sechdrs, secstrings, "__versions");
2110 infoindex = find_sec(hdr, sechdrs, secstrings, ".modinfo");
2111 pcpuindex = find_pcpusec(hdr, sechdrs, secstrings);
2112
2113 /* Don't keep modinfo and version sections. */
2114 sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2115 sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2116
2117 /* Check module struct version now, before we try to use module. */
2118 if (!check_modstruct_version(sechdrs, versindex, mod)) {
2119 err = -ENOEXEC;
2120 goto free_hdr;
2121 }
2122
2123 modmagic = get_modinfo(sechdrs, infoindex, "vermagic");
2124 /* This is allowed: modprobe --force will invalidate it. */
2125 if (!modmagic) {
2126 err = try_to_force_load(mod, "bad vermagic");
2127 if (err)
2128 goto free_hdr;
2129 } else if (!same_magic(modmagic, vermagic, versindex)) {
2130 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2131 mod->name, modmagic, vermagic);
2132 err = -ENOEXEC;
2133 goto free_hdr;
2134 }
2135
2136 staging = get_modinfo(sechdrs, infoindex, "staging");
2137 if (staging) {
2138 add_taint_module(mod, TAINT_CRAP);
2139 printk(KERN_WARNING "%s: module is from the staging directory,"
2140 " the quality is unknown, you have been warned.\n",
2141 mod->name);
2142 }
2143
2144 /* Now copy in args */
2145 args = strndup_user(uargs, ~0UL >> 1);
2146 if (IS_ERR(args)) {
2147 err = PTR_ERR(args);
2148 goto free_hdr;
2149 }
2150
2151 strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size)
2152 * sizeof(long), GFP_KERNEL);
2153 if (!strmap) {
2154 err = -ENOMEM;
2155 goto free_mod;
2156 }
2157
2158 if (find_module(mod->name)) {
2159 err = -EEXIST;
2160 goto free_mod;
2161 }
2162
2163 mod->state = MODULE_STATE_COMING;
2164
2165 /* Allow arches to frob section contents and sizes. */
2166 err = module_frob_arch_sections(hdr, sechdrs, secstrings, mod);
2167 if (err < 0)
2168 goto free_mod;
2169
2170 if (pcpuindex) {
2171 /* We have a special allocation for this section. */
2172 err = percpu_modalloc(mod, sechdrs[pcpuindex].sh_size,
2173 sechdrs[pcpuindex].sh_addralign);
2174 if (err)
2175 goto free_mod;
2176 sechdrs[pcpuindex].sh_flags &= ~(unsigned long)SHF_ALLOC;
2177 }
2178
2179 /* Determine total sizes, and put offsets in sh_entsize. For now
2180 this is done generically; there doesn't appear to be any
2181 special cases for the architectures. */
2182 layout_sections(mod, hdr, sechdrs, secstrings);
2183 symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr,
2184 secstrings, &stroffs, strmap);
2185
2186 /* Do the allocs. */
2187 ptr = module_alloc_update_bounds(mod->core_size);
2188 /*
2189 * The pointer to this block is stored in the module structure
2190 * which is inside the block. Just mark it as not being a
2191 * leak.
2192 */
2193 kmemleak_not_leak(ptr);
2194 if (!ptr) {
2195 err = -ENOMEM;
2196 goto free_percpu;
2197 }
2198 memset(ptr, 0, mod->core_size);
2199 mod->module_core = ptr;
2200
2201 ptr = module_alloc_update_bounds(mod->init_size);
2202 /*
2203 * The pointer to this block is stored in the module structure
2204 * which is inside the block. This block doesn't need to be
2205 * scanned as it contains data and code that will be freed
2206 * after the module is initialized.
2207 */
2208 kmemleak_ignore(ptr);
2209 if (!ptr && mod->init_size) {
2210 err = -ENOMEM;
2211 goto free_core;
2212 }
2213 memset(ptr, 0, mod->init_size);
2214 mod->module_init = ptr;
2215
2216 /* Transfer each section which specifies SHF_ALLOC */
2217 DEBUGP("final section addresses:\n");
2218 for (i = 0; i < hdr->e_shnum; i++) {
2219 void *dest;
2220
2221 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2222 continue;
2223
2224 if (sechdrs[i].sh_entsize & INIT_OFFSET_MASK)
2225 dest = mod->module_init
2226 + (sechdrs[i].sh_entsize & ~INIT_OFFSET_MASK);
2227 else
2228 dest = mod->module_core + sechdrs[i].sh_entsize;
2229
2230 if (sechdrs[i].sh_type != SHT_NOBITS)
2231 memcpy(dest, (void *)sechdrs[i].sh_addr,
2232 sechdrs[i].sh_size);
2233 /* Update sh_addr to point to copy in image. */
2234 sechdrs[i].sh_addr = (unsigned long)dest;
2235 DEBUGP("\t0x%lx %s\n", sechdrs[i].sh_addr, secstrings + sechdrs[i].sh_name);
2236 }
2237 /* Module has been moved. */
2238 mod = (void *)sechdrs[modindex].sh_addr;
2239 kmemleak_load_module(mod, hdr, sechdrs, secstrings);
2240
2241 #if defined(CONFIG_MODULE_UNLOAD)
2242 mod->refptr = alloc_percpu(struct module_ref);
2243 if (!mod->refptr) {
2244 err = -ENOMEM;
2245 goto free_init;
2246 }
2247 #endif
2248 /* Now we've moved module, initialize linked lists, etc. */
2249 module_unload_init(mod);
2250
2251 /* add kobject, so we can reference it. */
2252 err = mod_sysfs_init(mod);
2253 if (err)
2254 goto free_unload;
2255
2256 /* Set up license info based on the info section */
2257 set_license(mod, get_modinfo(sechdrs, infoindex, "license"));
2258
2259 /*
2260 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2261 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2262 * using GPL-only symbols it needs.
2263 */
2264 if (strcmp(mod->name, "ndiswrapper") == 0)
2265 add_taint(TAINT_PROPRIETARY_MODULE);
2266
2267 /* driverloader was caught wrongly pretending to be under GPL */
2268 if (strcmp(mod->name, "driverloader") == 0)
2269 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2270
2271 /* Set up MODINFO_ATTR fields */
2272 setup_modinfo(mod, sechdrs, infoindex);
2273
2274 /* Fix up syms, so that st_value is a pointer to location. */
2275 err = simplify_symbols(sechdrs, symindex, strtab, versindex, pcpuindex,
2276 mod);
2277 if (err < 0)
2278 goto cleanup;
2279
2280 /* Now we've got everything in the final locations, we can
2281 * find optional sections. */
2282 mod->kp = section_objs(hdr, sechdrs, secstrings, "__param",
2283 sizeof(*mod->kp), &mod->num_kp);
2284 mod->syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab",
2285 sizeof(*mod->syms), &mod->num_syms);
2286 mod->crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab");
2287 mod->gpl_syms = section_objs(hdr, sechdrs, secstrings, "__ksymtab_gpl",
2288 sizeof(*mod->gpl_syms),
2289 &mod->num_gpl_syms);
2290 mod->gpl_crcs = section_addr(hdr, sechdrs, secstrings, "__kcrctab_gpl");
2291 mod->gpl_future_syms = section_objs(hdr, sechdrs, secstrings,
2292 "__ksymtab_gpl_future",
2293 sizeof(*mod->gpl_future_syms),
2294 &mod->num_gpl_future_syms);
2295 mod->gpl_future_crcs = section_addr(hdr, sechdrs, secstrings,
2296 "__kcrctab_gpl_future");
2297
2298 #ifdef CONFIG_UNUSED_SYMBOLS
2299 mod->unused_syms = section_objs(hdr, sechdrs, secstrings,
2300 "__ksymtab_unused",
2301 sizeof(*mod->unused_syms),
2302 &mod->num_unused_syms);
2303 mod->unused_crcs = section_addr(hdr, sechdrs, secstrings,
2304 "__kcrctab_unused");
2305 mod->unused_gpl_syms = section_objs(hdr, sechdrs, secstrings,
2306 "__ksymtab_unused_gpl",
2307 sizeof(*mod->unused_gpl_syms),
2308 &mod->num_unused_gpl_syms);
2309 mod->unused_gpl_crcs = section_addr(hdr, sechdrs, secstrings,
2310 "__kcrctab_unused_gpl");
2311 #endif
2312 #ifdef CONFIG_CONSTRUCTORS
2313 mod->ctors = section_objs(hdr, sechdrs, secstrings, ".ctors",
2314 sizeof(*mod->ctors), &mod->num_ctors);
2315 #endif
2316
2317 #ifdef CONFIG_TRACEPOINTS
2318 mod->tracepoints = section_objs(hdr, sechdrs, secstrings,
2319 "__tracepoints",
2320 sizeof(*mod->tracepoints),
2321 &mod->num_tracepoints);
2322 #endif
2323 #ifdef CONFIG_EVENT_TRACING
2324 mod->trace_events = section_objs(hdr, sechdrs, secstrings,
2325 "_ftrace_events",
2326 sizeof(*mod->trace_events),
2327 &mod->num_trace_events);
2328 /*
2329 * This section contains pointers to allocated objects in the trace
2330 * code and not scanning it leads to false positives.
2331 */
2332 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2333 mod->num_trace_events, GFP_KERNEL);
2334 #endif
2335 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2336 /* sechdrs[0].sh_size is always zero */
2337 mod->ftrace_callsites = section_objs(hdr, sechdrs, secstrings,
2338 "__mcount_loc",
2339 sizeof(*mod->ftrace_callsites),
2340 &mod->num_ftrace_callsites);
2341 #endif
2342 #ifdef CONFIG_MODVERSIONS
2343 if ((mod->num_syms && !mod->crcs)
2344 || (mod->num_gpl_syms && !mod->gpl_crcs)
2345 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2346 #ifdef CONFIG_UNUSED_SYMBOLS
2347 || (mod->num_unused_syms && !mod->unused_crcs)
2348 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2349 #endif
2350 ) {
2351 err = try_to_force_load(mod,
2352 "no versions for exported symbols");
2353 if (err)
2354 goto cleanup;
2355 }
2356 #endif
2357
2358 /* Now do relocations. */
2359 for (i = 1; i < hdr->e_shnum; i++) {
2360 const char *strtab = (char *)sechdrs[strindex].sh_addr;
2361 unsigned int info = sechdrs[i].sh_info;
2362
2363 /* Not a valid relocation section? */
2364 if (info >= hdr->e_shnum)
2365 continue;
2366
2367 /* Don't bother with non-allocated sections */
2368 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
2369 continue;
2370
2371 if (sechdrs[i].sh_type == SHT_REL)
2372 err = apply_relocate(sechdrs, strtab, symindex, i,mod);
2373 else if (sechdrs[i].sh_type == SHT_RELA)
2374 err = apply_relocate_add(sechdrs, strtab, symindex, i,
2375 mod);
2376 if (err < 0)
2377 goto cleanup;
2378 }
2379
2380 /* Find duplicate symbols */
2381 err = verify_export_symbols(mod);
2382 if (err < 0)
2383 goto cleanup;
2384
2385 /* Set up and sort exception table */
2386 mod->extable = section_objs(hdr, sechdrs, secstrings, "__ex_table",
2387 sizeof(*mod->extable), &mod->num_exentries);
2388 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2389
2390 /* Finally, copy percpu area over. */
2391 percpu_modcopy(mod, (void *)sechdrs[pcpuindex].sh_addr,
2392 sechdrs[pcpuindex].sh_size);
2393
2394 add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex,
2395 symoffs, stroffs, secstrings, strmap);
2396 kfree(strmap);
2397 strmap = NULL;
2398
2399 if (!mod->taints) {
2400 struct _ddebug *debug;
2401 unsigned int num_debug;
2402
2403 debug = section_objs(hdr, sechdrs, secstrings, "__verbose",
2404 sizeof(*debug), &num_debug);
2405 if (debug)
2406 dynamic_debug_setup(debug, num_debug);
2407 }
2408
2409 err = module_finalize(hdr, sechdrs, mod);
2410 if (err < 0)
2411 goto cleanup;
2412
2413 /* flush the icache in correct context */
2414 old_fs = get_fs();
2415 set_fs(KERNEL_DS);
2416
2417 /*
2418 * Flush the instruction cache, since we've played with text.
2419 * Do it before processing of module parameters, so the module
2420 * can provide parameter accessor functions of its own.
2421 */
2422 if (mod->module_init)
2423 flush_icache_range((unsigned long)mod->module_init,
2424 (unsigned long)mod->module_init
2425 + mod->init_size);
2426 flush_icache_range((unsigned long)mod->module_core,
2427 (unsigned long)mod->module_core + mod->core_size);
2428
2429 set_fs(old_fs);
2430
2431 mod->args = args;
2432 if (section_addr(hdr, sechdrs, secstrings, "__obsparm"))
2433 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2434 mod->name);
2435
2436 /* Now sew it into the lists so we can get lockdep and oops
2437 * info during argument parsing. Noone should access us, since
2438 * strong_try_module_get() will fail.
2439 * lockdep/oops can run asynchronous, so use the RCU list insertion
2440 * function to insert in a way safe to concurrent readers.
2441 * The mutex protects against concurrent writers.
2442 */
2443 list_add_rcu(&mod->list, &modules);
2444
2445 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2446 if (err < 0)
2447 goto unlink;
2448
2449 err = mod_sysfs_setup(mod, mod->kp, mod->num_kp);
2450 if (err < 0)
2451 goto unlink;
2452 add_sect_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2453 add_notes_attrs(mod, hdr->e_shnum, secstrings, sechdrs);
2454
2455 /* Get rid of temporary copy */
2456 vfree(hdr);
2457
2458 trace_module_load(mod);
2459
2460 /* Done! */
2461 return mod;
2462
2463 unlink:
2464 /* Unlink carefully: kallsyms could be walking list. */
2465 list_del_rcu(&mod->list);
2466 synchronize_sched();
2467 module_arch_cleanup(mod);
2468 cleanup:
2469 free_modinfo(mod);
2470 kobject_del(&mod->mkobj.kobj);
2471 kobject_put(&mod->mkobj.kobj);
2472 free_unload:
2473 module_unload_free(mod);
2474 #if defined(CONFIG_MODULE_UNLOAD)
2475 free_percpu(mod->refptr);
2476 free_init:
2477 #endif
2478 module_free(mod, mod->module_init);
2479 free_core:
2480 module_free(mod, mod->module_core);
2481 /* mod will be freed with core. Don't access it beyond this line! */
2482 free_percpu:
2483 percpu_modfree(mod);
2484 free_mod:
2485 kfree(args);
2486 kfree(strmap);
2487 free_hdr:
2488 vfree(hdr);
2489 return ERR_PTR(err);
2490
2491 truncated:
2492 printk(KERN_ERR "Module len %lu truncated\n", len);
2493 err = -ENOEXEC;
2494 goto free_hdr;
2495 }
2496
2497 /* Call module constructors. */
2498 static void do_mod_ctors(struct module *mod)
2499 {
2500 #ifdef CONFIG_CONSTRUCTORS
2501 unsigned long i;
2502
2503 for (i = 0; i < mod->num_ctors; i++)
2504 mod->ctors[i]();
2505 #endif
2506 }
2507
2508 /* This is where the real work happens */
2509 SYSCALL_DEFINE3(init_module, void __user *, umod,
2510 unsigned long, len, const char __user *, uargs)
2511 {
2512 struct module *mod;
2513 int ret = 0;
2514
2515 /* Must have permission */
2516 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2517 return -EPERM;
2518
2519 /* Only one module load at a time, please */
2520 if (mutex_lock_interruptible(&module_mutex) != 0)
2521 return -EINTR;
2522
2523 /* Do all the hard work */
2524 mod = load_module(umod, len, uargs);
2525 if (IS_ERR(mod)) {
2526 mutex_unlock(&module_mutex);
2527 return PTR_ERR(mod);
2528 }
2529
2530 /* Drop lock so they can recurse */
2531 mutex_unlock(&module_mutex);
2532
2533 blocking_notifier_call_chain(&module_notify_list,
2534 MODULE_STATE_COMING, mod);
2535
2536 do_mod_ctors(mod);
2537 /* Start the module */
2538 if (mod->init != NULL)
2539 ret = do_one_initcall(mod->init);
2540 if (ret < 0) {
2541 /* Init routine failed: abort. Try to protect us from
2542 buggy refcounters. */
2543 mod->state = MODULE_STATE_GOING;
2544 synchronize_sched();
2545 module_put(mod);
2546 blocking_notifier_call_chain(&module_notify_list,
2547 MODULE_STATE_GOING, mod);
2548 mutex_lock(&module_mutex);
2549 free_module(mod);
2550 mutex_unlock(&module_mutex);
2551 wake_up(&module_wq);
2552 return ret;
2553 }
2554 if (ret > 0) {
2555 printk(KERN_WARNING
2556 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2557 "%s: loading module anyway...\n",
2558 __func__, mod->name, ret,
2559 __func__);
2560 dump_stack();
2561 }
2562
2563 /* Now it's a first class citizen! Wake up anyone waiting for it. */
2564 mod->state = MODULE_STATE_LIVE;
2565 wake_up(&module_wq);
2566 blocking_notifier_call_chain(&module_notify_list,
2567 MODULE_STATE_LIVE, mod);
2568
2569 /* We need to finish all async code before the module init sequence is done */
2570 async_synchronize_full();
2571
2572 mutex_lock(&module_mutex);
2573 /* Drop initial reference. */
2574 module_put(mod);
2575 trim_init_extable(mod);
2576 #ifdef CONFIG_KALLSYMS
2577 mod->num_symtab = mod->core_num_syms;
2578 mod->symtab = mod->core_symtab;
2579 mod->strtab = mod->core_strtab;
2580 #endif
2581 module_free(mod, mod->module_init);
2582 mod->module_init = NULL;
2583 mod->init_size = 0;
2584 mod->init_text_size = 0;
2585 mutex_unlock(&module_mutex);
2586
2587 return 0;
2588 }
2589
2590 static inline int within(unsigned long addr, void *start, unsigned long size)
2591 {
2592 return ((void *)addr >= start && (void *)addr < start + size);
2593 }
2594
2595 #ifdef CONFIG_KALLSYMS
2596 /*
2597 * This ignores the intensely annoying "mapping symbols" found
2598 * in ARM ELF files: $a, $t and $d.
2599 */
2600 static inline int is_arm_mapping_symbol(const char *str)
2601 {
2602 return str[0] == '$' && strchr("atd", str[1])
2603 && (str[2] == '\0' || str[2] == '.');
2604 }
2605
2606 static const char *get_ksymbol(struct module *mod,
2607 unsigned long addr,
2608 unsigned long *size,
2609 unsigned long *offset)
2610 {
2611 unsigned int i, best = 0;
2612 unsigned long nextval;
2613
2614 /* At worse, next value is at end of module */
2615 if (within_module_init(addr, mod))
2616 nextval = (unsigned long)mod->module_init+mod->init_text_size;
2617 else
2618 nextval = (unsigned long)mod->module_core+mod->core_text_size;
2619
2620 /* Scan for closest preceeding symbol, and next symbol. (ELF
2621 starts real symbols at 1). */
2622 for (i = 1; i < mod->num_symtab; i++) {
2623 if (mod->symtab[i].st_shndx == SHN_UNDEF)
2624 continue;
2625
2626 /* We ignore unnamed symbols: they're uninformative
2627 * and inserted at a whim. */
2628 if (mod->symtab[i].st_value <= addr
2629 && mod->symtab[i].st_value > mod->symtab[best].st_value
2630 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2631 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2632 best = i;
2633 if (mod->symtab[i].st_value > addr
2634 && mod->symtab[i].st_value < nextval
2635 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2636 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2637 nextval = mod->symtab[i].st_value;
2638 }
2639
2640 if (!best)
2641 return NULL;
2642
2643 if (size)
2644 *size = nextval - mod->symtab[best].st_value;
2645 if (offset)
2646 *offset = addr - mod->symtab[best].st_value;
2647 return mod->strtab + mod->symtab[best].st_name;
2648 }
2649
2650 /* For kallsyms to ask for address resolution. NULL means not found. Careful
2651 * not to lock to avoid deadlock on oopses, simply disable preemption. */
2652 const char *module_address_lookup(unsigned long addr,
2653 unsigned long *size,
2654 unsigned long *offset,
2655 char **modname,
2656 char *namebuf)
2657 {
2658 struct module *mod;
2659 const char *ret = NULL;
2660
2661 preempt_disable();
2662 list_for_each_entry_rcu(mod, &modules, list) {
2663 if (within_module_init(addr, mod) ||
2664 within_module_core(addr, mod)) {
2665 if (modname)
2666 *modname = mod->name;
2667 ret = get_ksymbol(mod, addr, size, offset);
2668 break;
2669 }
2670 }
2671 /* Make a copy in here where it's safe */
2672 if (ret) {
2673 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
2674 ret = namebuf;
2675 }
2676 preempt_enable();
2677 return ret;
2678 }
2679
2680 int lookup_module_symbol_name(unsigned long addr, char *symname)
2681 {
2682 struct module *mod;
2683
2684 preempt_disable();
2685 list_for_each_entry_rcu(mod, &modules, list) {
2686 if (within_module_init(addr, mod) ||
2687 within_module_core(addr, mod)) {
2688 const char *sym;
2689
2690 sym = get_ksymbol(mod, addr, NULL, NULL);
2691 if (!sym)
2692 goto out;
2693 strlcpy(symname, sym, KSYM_NAME_LEN);
2694 preempt_enable();
2695 return 0;
2696 }
2697 }
2698 out:
2699 preempt_enable();
2700 return -ERANGE;
2701 }
2702
2703 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
2704 unsigned long *offset, char *modname, char *name)
2705 {
2706 struct module *mod;
2707
2708 preempt_disable();
2709 list_for_each_entry_rcu(mod, &modules, list) {
2710 if (within_module_init(addr, mod) ||
2711 within_module_core(addr, mod)) {
2712 const char *sym;
2713
2714 sym = get_ksymbol(mod, addr, size, offset);
2715 if (!sym)
2716 goto out;
2717 if (modname)
2718 strlcpy(modname, mod->name, MODULE_NAME_LEN);
2719 if (name)
2720 strlcpy(name, sym, KSYM_NAME_LEN);
2721 preempt_enable();
2722 return 0;
2723 }
2724 }
2725 out:
2726 preempt_enable();
2727 return -ERANGE;
2728 }
2729
2730 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2731 char *name, char *module_name, int *exported)
2732 {
2733 struct module *mod;
2734
2735 preempt_disable();
2736 list_for_each_entry_rcu(mod, &modules, list) {
2737 if (symnum < mod->num_symtab) {
2738 *value = mod->symtab[symnum].st_value;
2739 *type = mod->symtab[symnum].st_info;
2740 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
2741 KSYM_NAME_LEN);
2742 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
2743 *exported = is_exported(name, *value, mod);
2744 preempt_enable();
2745 return 0;
2746 }
2747 symnum -= mod->num_symtab;
2748 }
2749 preempt_enable();
2750 return -ERANGE;
2751 }
2752
2753 static unsigned long mod_find_symname(struct module *mod, const char *name)
2754 {
2755 unsigned int i;
2756
2757 for (i = 0; i < mod->num_symtab; i++)
2758 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
2759 mod->symtab[i].st_info != 'U')
2760 return mod->symtab[i].st_value;
2761 return 0;
2762 }
2763
2764 /* Look for this name: can be of form module:name. */
2765 unsigned long module_kallsyms_lookup_name(const char *name)
2766 {
2767 struct module *mod;
2768 char *colon;
2769 unsigned long ret = 0;
2770
2771 /* Don't lock: we're in enough trouble already. */
2772 preempt_disable();
2773 if ((colon = strchr(name, ':')) != NULL) {
2774 *colon = '\0';
2775 if ((mod = find_module(name)) != NULL)
2776 ret = mod_find_symname(mod, colon+1);
2777 *colon = ':';
2778 } else {
2779 list_for_each_entry_rcu(mod, &modules, list)
2780 if ((ret = mod_find_symname(mod, name)) != 0)
2781 break;
2782 }
2783 preempt_enable();
2784 return ret;
2785 }
2786
2787 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
2788 struct module *, unsigned long),
2789 void *data)
2790 {
2791 struct module *mod;
2792 unsigned int i;
2793 int ret;
2794
2795 list_for_each_entry(mod, &modules, list) {
2796 for (i = 0; i < mod->num_symtab; i++) {
2797 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
2798 mod, mod->symtab[i].st_value);
2799 if (ret != 0)
2800 return ret;
2801 }
2802 }
2803 return 0;
2804 }
2805 #endif /* CONFIG_KALLSYMS */
2806
2807 static char *module_flags(struct module *mod, char *buf)
2808 {
2809 int bx = 0;
2810
2811 if (mod->taints ||
2812 mod->state == MODULE_STATE_GOING ||
2813 mod->state == MODULE_STATE_COMING) {
2814 buf[bx++] = '(';
2815 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
2816 buf[bx++] = 'P';
2817 if (mod->taints & (1 << TAINT_FORCED_MODULE))
2818 buf[bx++] = 'F';
2819 if (mod->taints & (1 << TAINT_CRAP))
2820 buf[bx++] = 'C';
2821 /*
2822 * TAINT_FORCED_RMMOD: could be added.
2823 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
2824 * apply to modules.
2825 */
2826
2827 /* Show a - for module-is-being-unloaded */
2828 if (mod->state == MODULE_STATE_GOING)
2829 buf[bx++] = '-';
2830 /* Show a + for module-is-being-loaded */
2831 if (mod->state == MODULE_STATE_COMING)
2832 buf[bx++] = '+';
2833 buf[bx++] = ')';
2834 }
2835 buf[bx] = '\0';
2836
2837 return buf;
2838 }
2839
2840 #ifdef CONFIG_PROC_FS
2841 /* Called by the /proc file system to return a list of modules. */
2842 static void *m_start(struct seq_file *m, loff_t *pos)
2843 {
2844 mutex_lock(&module_mutex);
2845 return seq_list_start(&modules, *pos);
2846 }
2847
2848 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
2849 {
2850 return seq_list_next(p, &modules, pos);
2851 }
2852
2853 static void m_stop(struct seq_file *m, void *p)
2854 {
2855 mutex_unlock(&module_mutex);
2856 }
2857
2858 static int m_show(struct seq_file *m, void *p)
2859 {
2860 struct module *mod = list_entry(p, struct module, list);
2861 char buf[8];
2862
2863 seq_printf(m, "%s %u",
2864 mod->name, mod->init_size + mod->core_size);
2865 print_unload_info(m, mod);
2866
2867 /* Informative for users. */
2868 seq_printf(m, " %s",
2869 mod->state == MODULE_STATE_GOING ? "Unloading":
2870 mod->state == MODULE_STATE_COMING ? "Loading":
2871 "Live");
2872 /* Used by oprofile and other similar tools. */
2873 seq_printf(m, " 0x%p", mod->module_core);
2874
2875 /* Taints info */
2876 if (mod->taints)
2877 seq_printf(m, " %s", module_flags(mod, buf));
2878
2879 seq_printf(m, "\n");
2880 return 0;
2881 }
2882
2883 /* Format: modulename size refcount deps address
2884
2885 Where refcount is a number or -, and deps is a comma-separated list
2886 of depends or -.
2887 */
2888 static const struct seq_operations modules_op = {
2889 .start = m_start,
2890 .next = m_next,
2891 .stop = m_stop,
2892 .show = m_show
2893 };
2894
2895 static int modules_open(struct inode *inode, struct file *file)
2896 {
2897 return seq_open(file, &modules_op);
2898 }
2899
2900 static const struct file_operations proc_modules_operations = {
2901 .open = modules_open,
2902 .read = seq_read,
2903 .llseek = seq_lseek,
2904 .release = seq_release,
2905 };
2906
2907 static int __init proc_modules_init(void)
2908 {
2909 proc_create("modules", 0, NULL, &proc_modules_operations);
2910 return 0;
2911 }
2912 module_init(proc_modules_init);
2913 #endif
2914
2915 /* Given an address, look for it in the module exception tables. */
2916 const struct exception_table_entry *search_module_extables(unsigned long addr)
2917 {
2918 const struct exception_table_entry *e = NULL;
2919 struct module *mod;
2920
2921 preempt_disable();
2922 list_for_each_entry_rcu(mod, &modules, list) {
2923 if (mod->num_exentries == 0)
2924 continue;
2925
2926 e = search_extable(mod->extable,
2927 mod->extable + mod->num_exentries - 1,
2928 addr);
2929 if (e)
2930 break;
2931 }
2932 preempt_enable();
2933
2934 /* Now, if we found one, we are running inside it now, hence
2935 we cannot unload the module, hence no refcnt needed. */
2936 return e;
2937 }
2938
2939 /*
2940 * is_module_address - is this address inside a module?
2941 * @addr: the address to check.
2942 *
2943 * See is_module_text_address() if you simply want to see if the address
2944 * is code (not data).
2945 */
2946 bool is_module_address(unsigned long addr)
2947 {
2948 bool ret;
2949
2950 preempt_disable();
2951 ret = __module_address(addr) != NULL;
2952 preempt_enable();
2953
2954 return ret;
2955 }
2956
2957 /*
2958 * __module_address - get the module which contains an address.
2959 * @addr: the address.
2960 *
2961 * Must be called with preempt disabled or module mutex held so that
2962 * module doesn't get freed during this.
2963 */
2964 struct module *__module_address(unsigned long addr)
2965 {
2966 struct module *mod;
2967
2968 if (addr < module_addr_min || addr > module_addr_max)
2969 return NULL;
2970
2971 list_for_each_entry_rcu(mod, &modules, list)
2972 if (within_module_core(addr, mod)
2973 || within_module_init(addr, mod))
2974 return mod;
2975 return NULL;
2976 }
2977 EXPORT_SYMBOL_GPL(__module_address);
2978
2979 /*
2980 * is_module_text_address - is this address inside module code?
2981 * @addr: the address to check.
2982 *
2983 * See is_module_address() if you simply want to see if the address is
2984 * anywhere in a module. See kernel_text_address() for testing if an
2985 * address corresponds to kernel or module code.
2986 */
2987 bool is_module_text_address(unsigned long addr)
2988 {
2989 bool ret;
2990
2991 preempt_disable();
2992 ret = __module_text_address(addr) != NULL;
2993 preempt_enable();
2994
2995 return ret;
2996 }
2997
2998 /*
2999 * __module_text_address - get the module whose code contains an address.
3000 * @addr: the address.
3001 *
3002 * Must be called with preempt disabled or module mutex held so that
3003 * module doesn't get freed during this.
3004 */
3005 struct module *__module_text_address(unsigned long addr)
3006 {
3007 struct module *mod = __module_address(addr);
3008 if (mod) {
3009 /* Make sure it's within the text section. */
3010 if (!within(addr, mod->module_init, mod->init_text_size)
3011 && !within(addr, mod->module_core, mod->core_text_size))
3012 mod = NULL;
3013 }
3014 return mod;
3015 }
3016 EXPORT_SYMBOL_GPL(__module_text_address);
3017
3018 /* Don't grab lock, we're oopsing. */
3019 void print_modules(void)
3020 {
3021 struct module *mod;
3022 char buf[8];
3023
3024 printk(KERN_DEFAULT "Modules linked in:");
3025 /* Most callers should already have preempt disabled, but make sure */
3026 preempt_disable();
3027 list_for_each_entry_rcu(mod, &modules, list)
3028 printk(" %s%s", mod->name, module_flags(mod, buf));
3029 preempt_enable();
3030 if (last_unloaded_module[0])
3031 printk(" [last unloaded: %s]", last_unloaded_module);
3032 printk("\n");
3033 }
3034
3035 #ifdef CONFIG_MODVERSIONS
3036 /* Generate the signature for all relevant module structures here.
3037 * If these change, we don't want to try to parse the module. */
3038 void module_layout(struct module *mod,
3039 struct modversion_info *ver,
3040 struct kernel_param *kp,
3041 struct kernel_symbol *ks,
3042 struct tracepoint *tp)
3043 {
3044 }
3045 EXPORT_SYMBOL(module_layout);
3046 #endif
3047
3048 #ifdef CONFIG_TRACEPOINTS
3049 void module_update_tracepoints(void)
3050 {
3051 struct module *mod;
3052
3053 mutex_lock(&module_mutex);
3054 list_for_each_entry(mod, &modules, list)
3055 if (!mod->taints)
3056 tracepoint_update_probe_range(mod->tracepoints,
3057 mod->tracepoints + mod->num_tracepoints);
3058 mutex_unlock(&module_mutex);
3059 }
3060
3061 /*
3062 * Returns 0 if current not found.
3063 * Returns 1 if current found.
3064 */
3065 int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3066 {
3067 struct module *iter_mod;
3068 int found = 0;
3069
3070 mutex_lock(&module_mutex);
3071 list_for_each_entry(iter_mod, &modules, list) {
3072 if (!iter_mod->taints) {
3073 /*
3074 * Sorted module list
3075 */
3076 if (iter_mod < iter->module)
3077 continue;
3078 else if (iter_mod > iter->module)
3079 iter->tracepoint = NULL;
3080 found = tracepoint_get_iter_range(&iter->tracepoint,
3081 iter_mod->tracepoints,
3082 iter_mod->tracepoints
3083 + iter_mod->num_tracepoints);
3084 if (found) {
3085 iter->module = iter_mod;
3086 break;
3087 }
3088 }
3089 }
3090 mutex_unlock(&module_mutex);
3091 return found;
3092 }
3093 #endif