]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/module.c
Merge branch 'pm-cpufreq'
[mirror_ubuntu-jammy-kernel.git] / kernel / module.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2002 Richard Henderson
4 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/elf.h>
24 #include <linux/proc_fs.h>
25 #include <linux/security.h>
26 #include <linux/seq_file.h>
27 #include <linux/syscalls.h>
28 #include <linux/fcntl.h>
29 #include <linux/rcupdate.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/moduleparam.h>
33 #include <linux/errno.h>
34 #include <linux/err.h>
35 #include <linux/vermagic.h>
36 #include <linux/notifier.h>
37 #include <linux/sched.h>
38 #include <linux/device.h>
39 #include <linux/string.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/uaccess.h>
43 #include <asm/cacheflush.h>
44 #include <linux/set_memory.h>
45 #include <asm/mmu_context.h>
46 #include <linux/license.h>
47 #include <asm/sections.h>
48 #include <linux/tracepoint.h>
49 #include <linux/ftrace.h>
50 #include <linux/livepatch.h>
51 #include <linux/async.h>
52 #include <linux/percpu.h>
53 #include <linux/kmemleak.h>
54 #include <linux/jump_label.h>
55 #include <linux/pfn.h>
56 #include <linux/bsearch.h>
57 #include <linux/dynamic_debug.h>
58 #include <linux/audit.h>
59 #include <uapi/linux/module.h>
60 #include "module-internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/module.h>
64
65 #ifndef ARCH_SHF_SMALL
66 #define ARCH_SHF_SMALL 0
67 #endif
68
69 /*
70 * Modules' sections will be aligned on page boundaries
71 * to ensure complete separation of code and data, but
72 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
73 */
74 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
75 # define debug_align(X) ALIGN(X, PAGE_SIZE)
76 #else
77 # define debug_align(X) (X)
78 #endif
79
80 /* If this is set, the section belongs in the init part of the module */
81 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
82
83 /*
84 * Mutex protects:
85 * 1) List of modules (also safely readable with preempt_disable),
86 * 2) module_use links,
87 * 3) module_addr_min/module_addr_max.
88 * (delete and add uses RCU list operations). */
89 DEFINE_MUTEX(module_mutex);
90 EXPORT_SYMBOL_GPL(module_mutex);
91 static LIST_HEAD(modules);
92
93 /* Work queue for freeing init sections in success case */
94 static struct work_struct init_free_wq;
95 static struct llist_head init_free_list;
96
97 #ifdef CONFIG_MODULES_TREE_LOOKUP
98
99 /*
100 * Use a latched RB-tree for __module_address(); this allows us to use
101 * RCU-sched lookups of the address from any context.
102 *
103 * This is conditional on PERF_EVENTS || TRACING because those can really hit
104 * __module_address() hard by doing a lot of stack unwinding; potentially from
105 * NMI context.
106 */
107
108 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
109 {
110 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
111
112 return (unsigned long)layout->base;
113 }
114
115 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
116 {
117 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
118
119 return (unsigned long)layout->size;
120 }
121
122 static __always_inline bool
123 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
124 {
125 return __mod_tree_val(a) < __mod_tree_val(b);
126 }
127
128 static __always_inline int
129 mod_tree_comp(void *key, struct latch_tree_node *n)
130 {
131 unsigned long val = (unsigned long)key;
132 unsigned long start, end;
133
134 start = __mod_tree_val(n);
135 if (val < start)
136 return -1;
137
138 end = start + __mod_tree_size(n);
139 if (val >= end)
140 return 1;
141
142 return 0;
143 }
144
145 static const struct latch_tree_ops mod_tree_ops = {
146 .less = mod_tree_less,
147 .comp = mod_tree_comp,
148 };
149
150 static struct mod_tree_root {
151 struct latch_tree_root root;
152 unsigned long addr_min;
153 unsigned long addr_max;
154 } mod_tree __cacheline_aligned = {
155 .addr_min = -1UL,
156 };
157
158 #define module_addr_min mod_tree.addr_min
159 #define module_addr_max mod_tree.addr_max
160
161 static noinline void __mod_tree_insert(struct mod_tree_node *node)
162 {
163 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
164 }
165
166 static void __mod_tree_remove(struct mod_tree_node *node)
167 {
168 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
169 }
170
171 /*
172 * These modifications: insert, remove_init and remove; are serialized by the
173 * module_mutex.
174 */
175 static void mod_tree_insert(struct module *mod)
176 {
177 mod->core_layout.mtn.mod = mod;
178 mod->init_layout.mtn.mod = mod;
179
180 __mod_tree_insert(&mod->core_layout.mtn);
181 if (mod->init_layout.size)
182 __mod_tree_insert(&mod->init_layout.mtn);
183 }
184
185 static void mod_tree_remove_init(struct module *mod)
186 {
187 if (mod->init_layout.size)
188 __mod_tree_remove(&mod->init_layout.mtn);
189 }
190
191 static void mod_tree_remove(struct module *mod)
192 {
193 __mod_tree_remove(&mod->core_layout.mtn);
194 mod_tree_remove_init(mod);
195 }
196
197 static struct module *mod_find(unsigned long addr)
198 {
199 struct latch_tree_node *ltn;
200
201 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
202 if (!ltn)
203 return NULL;
204
205 return container_of(ltn, struct mod_tree_node, node)->mod;
206 }
207
208 #else /* MODULES_TREE_LOOKUP */
209
210 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
211
212 static void mod_tree_insert(struct module *mod) { }
213 static void mod_tree_remove_init(struct module *mod) { }
214 static void mod_tree_remove(struct module *mod) { }
215
216 static struct module *mod_find(unsigned long addr)
217 {
218 struct module *mod;
219
220 list_for_each_entry_rcu(mod, &modules, list,
221 lockdep_is_held(&module_mutex)) {
222 if (within_module(addr, mod))
223 return mod;
224 }
225
226 return NULL;
227 }
228
229 #endif /* MODULES_TREE_LOOKUP */
230
231 /*
232 * Bounds of module text, for speeding up __module_address.
233 * Protected by module_mutex.
234 */
235 static void __mod_update_bounds(void *base, unsigned int size)
236 {
237 unsigned long min = (unsigned long)base;
238 unsigned long max = min + size;
239
240 if (min < module_addr_min)
241 module_addr_min = min;
242 if (max > module_addr_max)
243 module_addr_max = max;
244 }
245
246 static void mod_update_bounds(struct module *mod)
247 {
248 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
249 if (mod->init_layout.size)
250 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 }
252
253 #ifdef CONFIG_KGDB_KDB
254 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
255 #endif /* CONFIG_KGDB_KDB */
256
257 static void module_assert_mutex(void)
258 {
259 lockdep_assert_held(&module_mutex);
260 }
261
262 static void module_assert_mutex_or_preempt(void)
263 {
264 #ifdef CONFIG_LOCKDEP
265 if (unlikely(!debug_locks))
266 return;
267
268 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
269 !lockdep_is_held(&module_mutex));
270 #endif
271 }
272
273 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
274 module_param(sig_enforce, bool_enable_only, 0644);
275
276 /*
277 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
278 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
279 */
280 bool is_module_sig_enforced(void)
281 {
282 return sig_enforce;
283 }
284 EXPORT_SYMBOL(is_module_sig_enforced);
285
286 void set_module_sig_enforced(void)
287 {
288 sig_enforce = true;
289 }
290
291 /* Block module loading/unloading? */
292 int modules_disabled = 0;
293 core_param(nomodule, modules_disabled, bint, 0);
294
295 /* Waiting for a module to finish initializing? */
296 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
297
298 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
299
300 int register_module_notifier(struct notifier_block *nb)
301 {
302 return blocking_notifier_chain_register(&module_notify_list, nb);
303 }
304 EXPORT_SYMBOL(register_module_notifier);
305
306 int unregister_module_notifier(struct notifier_block *nb)
307 {
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
309 }
310 EXPORT_SYMBOL(unregister_module_notifier);
311
312 /*
313 * We require a truly strong try_module_get(): 0 means success.
314 * Otherwise an error is returned due to ongoing or failed
315 * initialization etc.
316 */
317 static inline int strong_try_module_get(struct module *mod)
318 {
319 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
320 if (mod && mod->state == MODULE_STATE_COMING)
321 return -EBUSY;
322 if (try_module_get(mod))
323 return 0;
324 else
325 return -ENOENT;
326 }
327
328 static inline void add_taint_module(struct module *mod, unsigned flag,
329 enum lockdep_ok lockdep_ok)
330 {
331 add_taint(flag, lockdep_ok);
332 set_bit(flag, &mod->taints);
333 }
334
335 /*
336 * A thread that wants to hold a reference to a module only while it
337 * is running can call this to safely exit. nfsd and lockd use this.
338 */
339 void __noreturn __module_put_and_exit(struct module *mod, long code)
340 {
341 module_put(mod);
342 do_exit(code);
343 }
344 EXPORT_SYMBOL(__module_put_and_exit);
345
346 /* Find a module section: 0 means not found. */
347 static unsigned int find_sec(const struct load_info *info, const char *name)
348 {
349 unsigned int i;
350
351 for (i = 1; i < info->hdr->e_shnum; i++) {
352 Elf_Shdr *shdr = &info->sechdrs[i];
353 /* Alloc bit cleared means "ignore it." */
354 if ((shdr->sh_flags & SHF_ALLOC)
355 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
356 return i;
357 }
358 return 0;
359 }
360
361 /* Find a module section, or NULL. */
362 static void *section_addr(const struct load_info *info, const char *name)
363 {
364 /* Section 0 has sh_addr 0. */
365 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
366 }
367
368 /* Find a module section, or NULL. Fill in number of "objects" in section. */
369 static void *section_objs(const struct load_info *info,
370 const char *name,
371 size_t object_size,
372 unsigned int *num)
373 {
374 unsigned int sec = find_sec(info, name);
375
376 /* Section 0 has sh_addr 0 and sh_size 0. */
377 *num = info->sechdrs[sec].sh_size / object_size;
378 return (void *)info->sechdrs[sec].sh_addr;
379 }
380
381 /* Provided by the linker */
382 extern const struct kernel_symbol __start___ksymtab[];
383 extern const struct kernel_symbol __stop___ksymtab[];
384 extern const struct kernel_symbol __start___ksymtab_gpl[];
385 extern const struct kernel_symbol __stop___ksymtab_gpl[];
386 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
387 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
388 extern const s32 __start___kcrctab[];
389 extern const s32 __start___kcrctab_gpl[];
390 extern const s32 __start___kcrctab_gpl_future[];
391 #ifdef CONFIG_UNUSED_SYMBOLS
392 extern const struct kernel_symbol __start___ksymtab_unused[];
393 extern const struct kernel_symbol __stop___ksymtab_unused[];
394 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
395 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
396 extern const s32 __start___kcrctab_unused[];
397 extern const s32 __start___kcrctab_unused_gpl[];
398 #endif
399
400 #ifndef CONFIG_MODVERSIONS
401 #define symversion(base, idx) NULL
402 #else
403 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
404 #endif
405
406 static bool each_symbol_in_section(const struct symsearch *arr,
407 unsigned int arrsize,
408 struct module *owner,
409 bool (*fn)(const struct symsearch *syms,
410 struct module *owner,
411 void *data),
412 void *data)
413 {
414 unsigned int j;
415
416 for (j = 0; j < arrsize; j++) {
417 if (fn(&arr[j], owner, data))
418 return true;
419 }
420
421 return false;
422 }
423
424 /* Returns true as soon as fn returns true, otherwise false. */
425 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
426 struct module *owner,
427 void *data),
428 void *data)
429 {
430 struct module *mod;
431 static const struct symsearch arr[] = {
432 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
433 NOT_GPL_ONLY, false },
434 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
435 __start___kcrctab_gpl,
436 GPL_ONLY, false },
437 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
438 __start___kcrctab_gpl_future,
439 WILL_BE_GPL_ONLY, false },
440 #ifdef CONFIG_UNUSED_SYMBOLS
441 { __start___ksymtab_unused, __stop___ksymtab_unused,
442 __start___kcrctab_unused,
443 NOT_GPL_ONLY, true },
444 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
445 __start___kcrctab_unused_gpl,
446 GPL_ONLY, true },
447 #endif
448 };
449
450 module_assert_mutex_or_preempt();
451
452 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
453 return true;
454
455 list_for_each_entry_rcu(mod, &modules, list,
456 lockdep_is_held(&module_mutex)) {
457 struct symsearch arr[] = {
458 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
459 NOT_GPL_ONLY, false },
460 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
461 mod->gpl_crcs,
462 GPL_ONLY, false },
463 { mod->gpl_future_syms,
464 mod->gpl_future_syms + mod->num_gpl_future_syms,
465 mod->gpl_future_crcs,
466 WILL_BE_GPL_ONLY, false },
467 #ifdef CONFIG_UNUSED_SYMBOLS
468 { mod->unused_syms,
469 mod->unused_syms + mod->num_unused_syms,
470 mod->unused_crcs,
471 NOT_GPL_ONLY, true },
472 { mod->unused_gpl_syms,
473 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
474 mod->unused_gpl_crcs,
475 GPL_ONLY, true },
476 #endif
477 };
478
479 if (mod->state == MODULE_STATE_UNFORMED)
480 continue;
481
482 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
483 return true;
484 }
485 return false;
486 }
487 EXPORT_SYMBOL_GPL(each_symbol_section);
488
489 struct find_symbol_arg {
490 /* Input */
491 const char *name;
492 bool gplok;
493 bool warn;
494
495 /* Output */
496 struct module *owner;
497 const s32 *crc;
498 const struct kernel_symbol *sym;
499 };
500
501 static bool check_exported_symbol(const struct symsearch *syms,
502 struct module *owner,
503 unsigned int symnum, void *data)
504 {
505 struct find_symbol_arg *fsa = data;
506
507 if (!fsa->gplok) {
508 if (syms->licence == GPL_ONLY)
509 return false;
510 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
511 pr_warn("Symbol %s is being used by a non-GPL module, "
512 "which will not be allowed in the future\n",
513 fsa->name);
514 }
515 }
516
517 #ifdef CONFIG_UNUSED_SYMBOLS
518 if (syms->unused && fsa->warn) {
519 pr_warn("Symbol %s is marked as UNUSED, however this module is "
520 "using it.\n", fsa->name);
521 pr_warn("This symbol will go away in the future.\n");
522 pr_warn("Please evaluate if this is the right api to use and "
523 "if it really is, submit a report to the linux kernel "
524 "mailing list together with submitting your code for "
525 "inclusion.\n");
526 }
527 #endif
528
529 fsa->owner = owner;
530 fsa->crc = symversion(syms->crcs, symnum);
531 fsa->sym = &syms->start[symnum];
532 return true;
533 }
534
535 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
536 {
537 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
538 return (unsigned long)offset_to_ptr(&sym->value_offset);
539 #else
540 return sym->value;
541 #endif
542 }
543
544 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
545 {
546 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
547 return offset_to_ptr(&sym->name_offset);
548 #else
549 return sym->name;
550 #endif
551 }
552
553 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
554 {
555 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
556 if (!sym->namespace_offset)
557 return NULL;
558 return offset_to_ptr(&sym->namespace_offset);
559 #else
560 return sym->namespace;
561 #endif
562 }
563
564 static int cmp_name(const void *name, const void *sym)
565 {
566 return strcmp(name, kernel_symbol_name(sym));
567 }
568
569 static bool find_exported_symbol_in_section(const struct symsearch *syms,
570 struct module *owner,
571 void *data)
572 {
573 struct find_symbol_arg *fsa = data;
574 struct kernel_symbol *sym;
575
576 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
577 sizeof(struct kernel_symbol), cmp_name);
578
579 if (sym != NULL && check_exported_symbol(syms, owner,
580 sym - syms->start, data))
581 return true;
582
583 return false;
584 }
585
586 /* Find an exported symbol and return it, along with, (optional) crc and
587 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
588 const struct kernel_symbol *find_symbol(const char *name,
589 struct module **owner,
590 const s32 **crc,
591 bool gplok,
592 bool warn)
593 {
594 struct find_symbol_arg fsa;
595
596 fsa.name = name;
597 fsa.gplok = gplok;
598 fsa.warn = warn;
599
600 if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
601 if (owner)
602 *owner = fsa.owner;
603 if (crc)
604 *crc = fsa.crc;
605 return fsa.sym;
606 }
607
608 pr_debug("Failed to find symbol %s\n", name);
609 return NULL;
610 }
611 EXPORT_SYMBOL_GPL(find_symbol);
612
613 /*
614 * Search for module by name: must hold module_mutex (or preempt disabled
615 * for read-only access).
616 */
617 static struct module *find_module_all(const char *name, size_t len,
618 bool even_unformed)
619 {
620 struct module *mod;
621
622 module_assert_mutex_or_preempt();
623
624 list_for_each_entry_rcu(mod, &modules, list,
625 lockdep_is_held(&module_mutex)) {
626 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
627 continue;
628 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
629 return mod;
630 }
631 return NULL;
632 }
633
634 struct module *find_module(const char *name)
635 {
636 module_assert_mutex();
637 return find_module_all(name, strlen(name), false);
638 }
639 EXPORT_SYMBOL_GPL(find_module);
640
641 #ifdef CONFIG_SMP
642
643 static inline void __percpu *mod_percpu(struct module *mod)
644 {
645 return mod->percpu;
646 }
647
648 static int percpu_modalloc(struct module *mod, struct load_info *info)
649 {
650 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
651 unsigned long align = pcpusec->sh_addralign;
652
653 if (!pcpusec->sh_size)
654 return 0;
655
656 if (align > PAGE_SIZE) {
657 pr_warn("%s: per-cpu alignment %li > %li\n",
658 mod->name, align, PAGE_SIZE);
659 align = PAGE_SIZE;
660 }
661
662 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
663 if (!mod->percpu) {
664 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
665 mod->name, (unsigned long)pcpusec->sh_size);
666 return -ENOMEM;
667 }
668 mod->percpu_size = pcpusec->sh_size;
669 return 0;
670 }
671
672 static void percpu_modfree(struct module *mod)
673 {
674 free_percpu(mod->percpu);
675 }
676
677 static unsigned int find_pcpusec(struct load_info *info)
678 {
679 return find_sec(info, ".data..percpu");
680 }
681
682 static void percpu_modcopy(struct module *mod,
683 const void *from, unsigned long size)
684 {
685 int cpu;
686
687 for_each_possible_cpu(cpu)
688 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
689 }
690
691 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
692 {
693 struct module *mod;
694 unsigned int cpu;
695
696 preempt_disable();
697
698 list_for_each_entry_rcu(mod, &modules, list) {
699 if (mod->state == MODULE_STATE_UNFORMED)
700 continue;
701 if (!mod->percpu_size)
702 continue;
703 for_each_possible_cpu(cpu) {
704 void *start = per_cpu_ptr(mod->percpu, cpu);
705 void *va = (void *)addr;
706
707 if (va >= start && va < start + mod->percpu_size) {
708 if (can_addr) {
709 *can_addr = (unsigned long) (va - start);
710 *can_addr += (unsigned long)
711 per_cpu_ptr(mod->percpu,
712 get_boot_cpu_id());
713 }
714 preempt_enable();
715 return true;
716 }
717 }
718 }
719
720 preempt_enable();
721 return false;
722 }
723
724 /**
725 * is_module_percpu_address - test whether address is from module static percpu
726 * @addr: address to test
727 *
728 * Test whether @addr belongs to module static percpu area.
729 *
730 * RETURNS:
731 * %true if @addr is from module static percpu area
732 */
733 bool is_module_percpu_address(unsigned long addr)
734 {
735 return __is_module_percpu_address(addr, NULL);
736 }
737
738 #else /* ... !CONFIG_SMP */
739
740 static inline void __percpu *mod_percpu(struct module *mod)
741 {
742 return NULL;
743 }
744 static int percpu_modalloc(struct module *mod, struct load_info *info)
745 {
746 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
747 if (info->sechdrs[info->index.pcpu].sh_size != 0)
748 return -ENOMEM;
749 return 0;
750 }
751 static inline void percpu_modfree(struct module *mod)
752 {
753 }
754 static unsigned int find_pcpusec(struct load_info *info)
755 {
756 return 0;
757 }
758 static inline void percpu_modcopy(struct module *mod,
759 const void *from, unsigned long size)
760 {
761 /* pcpusec should be 0, and size of that section should be 0. */
762 BUG_ON(size != 0);
763 }
764 bool is_module_percpu_address(unsigned long addr)
765 {
766 return false;
767 }
768
769 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
770 {
771 return false;
772 }
773
774 #endif /* CONFIG_SMP */
775
776 #define MODINFO_ATTR(field) \
777 static void setup_modinfo_##field(struct module *mod, const char *s) \
778 { \
779 mod->field = kstrdup(s, GFP_KERNEL); \
780 } \
781 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
782 struct module_kobject *mk, char *buffer) \
783 { \
784 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
785 } \
786 static int modinfo_##field##_exists(struct module *mod) \
787 { \
788 return mod->field != NULL; \
789 } \
790 static void free_modinfo_##field(struct module *mod) \
791 { \
792 kfree(mod->field); \
793 mod->field = NULL; \
794 } \
795 static struct module_attribute modinfo_##field = { \
796 .attr = { .name = __stringify(field), .mode = 0444 }, \
797 .show = show_modinfo_##field, \
798 .setup = setup_modinfo_##field, \
799 .test = modinfo_##field##_exists, \
800 .free = free_modinfo_##field, \
801 };
802
803 MODINFO_ATTR(version);
804 MODINFO_ATTR(srcversion);
805
806 static char last_unloaded_module[MODULE_NAME_LEN+1];
807
808 #ifdef CONFIG_MODULE_UNLOAD
809
810 EXPORT_TRACEPOINT_SYMBOL(module_get);
811
812 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
813 #define MODULE_REF_BASE 1
814
815 /* Init the unload section of the module. */
816 static int module_unload_init(struct module *mod)
817 {
818 /*
819 * Initialize reference counter to MODULE_REF_BASE.
820 * refcnt == 0 means module is going.
821 */
822 atomic_set(&mod->refcnt, MODULE_REF_BASE);
823
824 INIT_LIST_HEAD(&mod->source_list);
825 INIT_LIST_HEAD(&mod->target_list);
826
827 /* Hold reference count during initialization. */
828 atomic_inc(&mod->refcnt);
829
830 return 0;
831 }
832
833 /* Does a already use b? */
834 static int already_uses(struct module *a, struct module *b)
835 {
836 struct module_use *use;
837
838 list_for_each_entry(use, &b->source_list, source_list) {
839 if (use->source == a) {
840 pr_debug("%s uses %s!\n", a->name, b->name);
841 return 1;
842 }
843 }
844 pr_debug("%s does not use %s!\n", a->name, b->name);
845 return 0;
846 }
847
848 /*
849 * Module a uses b
850 * - we add 'a' as a "source", 'b' as a "target" of module use
851 * - the module_use is added to the list of 'b' sources (so
852 * 'b' can walk the list to see who sourced them), and of 'a'
853 * targets (so 'a' can see what modules it targets).
854 */
855 static int add_module_usage(struct module *a, struct module *b)
856 {
857 struct module_use *use;
858
859 pr_debug("Allocating new usage for %s.\n", a->name);
860 use = kmalloc(sizeof(*use), GFP_ATOMIC);
861 if (!use)
862 return -ENOMEM;
863
864 use->source = a;
865 use->target = b;
866 list_add(&use->source_list, &b->source_list);
867 list_add(&use->target_list, &a->target_list);
868 return 0;
869 }
870
871 /* Module a uses b: caller needs module_mutex() */
872 int ref_module(struct module *a, struct module *b)
873 {
874 int err;
875
876 if (b == NULL || already_uses(a, b))
877 return 0;
878
879 /* If module isn't available, we fail. */
880 err = strong_try_module_get(b);
881 if (err)
882 return err;
883
884 err = add_module_usage(a, b);
885 if (err) {
886 module_put(b);
887 return err;
888 }
889 return 0;
890 }
891 EXPORT_SYMBOL_GPL(ref_module);
892
893 /* Clear the unload stuff of the module. */
894 static void module_unload_free(struct module *mod)
895 {
896 struct module_use *use, *tmp;
897
898 mutex_lock(&module_mutex);
899 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
900 struct module *i = use->target;
901 pr_debug("%s unusing %s\n", mod->name, i->name);
902 module_put(i);
903 list_del(&use->source_list);
904 list_del(&use->target_list);
905 kfree(use);
906 }
907 mutex_unlock(&module_mutex);
908 }
909
910 #ifdef CONFIG_MODULE_FORCE_UNLOAD
911 static inline int try_force_unload(unsigned int flags)
912 {
913 int ret = (flags & O_TRUNC);
914 if (ret)
915 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
916 return ret;
917 }
918 #else
919 static inline int try_force_unload(unsigned int flags)
920 {
921 return 0;
922 }
923 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
924
925 /* Try to release refcount of module, 0 means success. */
926 static int try_release_module_ref(struct module *mod)
927 {
928 int ret;
929
930 /* Try to decrement refcnt which we set at loading */
931 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
932 BUG_ON(ret < 0);
933 if (ret)
934 /* Someone can put this right now, recover with checking */
935 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
936
937 return ret;
938 }
939
940 static int try_stop_module(struct module *mod, int flags, int *forced)
941 {
942 /* If it's not unused, quit unless we're forcing. */
943 if (try_release_module_ref(mod) != 0) {
944 *forced = try_force_unload(flags);
945 if (!(*forced))
946 return -EWOULDBLOCK;
947 }
948
949 /* Mark it as dying. */
950 mod->state = MODULE_STATE_GOING;
951
952 return 0;
953 }
954
955 /**
956 * module_refcount - return the refcount or -1 if unloading
957 *
958 * @mod: the module we're checking
959 *
960 * Returns:
961 * -1 if the module is in the process of unloading
962 * otherwise the number of references in the kernel to the module
963 */
964 int module_refcount(struct module *mod)
965 {
966 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
967 }
968 EXPORT_SYMBOL(module_refcount);
969
970 /* This exists whether we can unload or not */
971 static void free_module(struct module *mod);
972
973 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
974 unsigned int, flags)
975 {
976 struct module *mod;
977 char name[MODULE_NAME_LEN];
978 int ret, forced = 0;
979
980 if (!capable(CAP_SYS_MODULE) || modules_disabled)
981 return -EPERM;
982
983 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
984 return -EFAULT;
985 name[MODULE_NAME_LEN-1] = '\0';
986
987 audit_log_kern_module(name);
988
989 if (mutex_lock_interruptible(&module_mutex) != 0)
990 return -EINTR;
991
992 mod = find_module(name);
993 if (!mod) {
994 ret = -ENOENT;
995 goto out;
996 }
997
998 if (!list_empty(&mod->source_list)) {
999 /* Other modules depend on us: get rid of them first. */
1000 ret = -EWOULDBLOCK;
1001 goto out;
1002 }
1003
1004 /* Doing init or already dying? */
1005 if (mod->state != MODULE_STATE_LIVE) {
1006 /* FIXME: if (force), slam module count damn the torpedoes */
1007 pr_debug("%s already dying\n", mod->name);
1008 ret = -EBUSY;
1009 goto out;
1010 }
1011
1012 /* If it has an init func, it must have an exit func to unload */
1013 if (mod->init && !mod->exit) {
1014 forced = try_force_unload(flags);
1015 if (!forced) {
1016 /* This module can't be removed */
1017 ret = -EBUSY;
1018 goto out;
1019 }
1020 }
1021
1022 /* Stop the machine so refcounts can't move and disable module. */
1023 ret = try_stop_module(mod, flags, &forced);
1024 if (ret != 0)
1025 goto out;
1026
1027 mutex_unlock(&module_mutex);
1028 /* Final destruction now no one is using it. */
1029 if (mod->exit != NULL)
1030 mod->exit();
1031 blocking_notifier_call_chain(&module_notify_list,
1032 MODULE_STATE_GOING, mod);
1033 klp_module_going(mod);
1034 ftrace_release_mod(mod);
1035
1036 async_synchronize_full();
1037
1038 /* Store the name of the last unloaded module for diagnostic purposes */
1039 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1040
1041 free_module(mod);
1042 /* someone could wait for the module in add_unformed_module() */
1043 wake_up_all(&module_wq);
1044 return 0;
1045 out:
1046 mutex_unlock(&module_mutex);
1047 return ret;
1048 }
1049
1050 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1051 {
1052 struct module_use *use;
1053 int printed_something = 0;
1054
1055 seq_printf(m, " %i ", module_refcount(mod));
1056
1057 /*
1058 * Always include a trailing , so userspace can differentiate
1059 * between this and the old multi-field proc format.
1060 */
1061 list_for_each_entry(use, &mod->source_list, source_list) {
1062 printed_something = 1;
1063 seq_printf(m, "%s,", use->source->name);
1064 }
1065
1066 if (mod->init != NULL && mod->exit == NULL) {
1067 printed_something = 1;
1068 seq_puts(m, "[permanent],");
1069 }
1070
1071 if (!printed_something)
1072 seq_puts(m, "-");
1073 }
1074
1075 void __symbol_put(const char *symbol)
1076 {
1077 struct module *owner;
1078
1079 preempt_disable();
1080 if (!find_symbol(symbol, &owner, NULL, true, false))
1081 BUG();
1082 module_put(owner);
1083 preempt_enable();
1084 }
1085 EXPORT_SYMBOL(__symbol_put);
1086
1087 /* Note this assumes addr is a function, which it currently always is. */
1088 void symbol_put_addr(void *addr)
1089 {
1090 struct module *modaddr;
1091 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1092
1093 if (core_kernel_text(a))
1094 return;
1095
1096 /*
1097 * Even though we hold a reference on the module; we still need to
1098 * disable preemption in order to safely traverse the data structure.
1099 */
1100 preempt_disable();
1101 modaddr = __module_text_address(a);
1102 BUG_ON(!modaddr);
1103 module_put(modaddr);
1104 preempt_enable();
1105 }
1106 EXPORT_SYMBOL_GPL(symbol_put_addr);
1107
1108 static ssize_t show_refcnt(struct module_attribute *mattr,
1109 struct module_kobject *mk, char *buffer)
1110 {
1111 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1112 }
1113
1114 static struct module_attribute modinfo_refcnt =
1115 __ATTR(refcnt, 0444, show_refcnt, NULL);
1116
1117 void __module_get(struct module *module)
1118 {
1119 if (module) {
1120 preempt_disable();
1121 atomic_inc(&module->refcnt);
1122 trace_module_get(module, _RET_IP_);
1123 preempt_enable();
1124 }
1125 }
1126 EXPORT_SYMBOL(__module_get);
1127
1128 bool try_module_get(struct module *module)
1129 {
1130 bool ret = true;
1131
1132 if (module) {
1133 preempt_disable();
1134 /* Note: here, we can fail to get a reference */
1135 if (likely(module_is_live(module) &&
1136 atomic_inc_not_zero(&module->refcnt) != 0))
1137 trace_module_get(module, _RET_IP_);
1138 else
1139 ret = false;
1140
1141 preempt_enable();
1142 }
1143 return ret;
1144 }
1145 EXPORT_SYMBOL(try_module_get);
1146
1147 void module_put(struct module *module)
1148 {
1149 int ret;
1150
1151 if (module) {
1152 preempt_disable();
1153 ret = atomic_dec_if_positive(&module->refcnt);
1154 WARN_ON(ret < 0); /* Failed to put refcount */
1155 trace_module_put(module, _RET_IP_);
1156 preempt_enable();
1157 }
1158 }
1159 EXPORT_SYMBOL(module_put);
1160
1161 #else /* !CONFIG_MODULE_UNLOAD */
1162 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1163 {
1164 /* We don't know the usage count, or what modules are using. */
1165 seq_puts(m, " - -");
1166 }
1167
1168 static inline void module_unload_free(struct module *mod)
1169 {
1170 }
1171
1172 int ref_module(struct module *a, struct module *b)
1173 {
1174 return strong_try_module_get(b);
1175 }
1176 EXPORT_SYMBOL_GPL(ref_module);
1177
1178 static inline int module_unload_init(struct module *mod)
1179 {
1180 return 0;
1181 }
1182 #endif /* CONFIG_MODULE_UNLOAD */
1183
1184 static size_t module_flags_taint(struct module *mod, char *buf)
1185 {
1186 size_t l = 0;
1187 int i;
1188
1189 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1190 if (taint_flags[i].module && test_bit(i, &mod->taints))
1191 buf[l++] = taint_flags[i].c_true;
1192 }
1193
1194 return l;
1195 }
1196
1197 static ssize_t show_initstate(struct module_attribute *mattr,
1198 struct module_kobject *mk, char *buffer)
1199 {
1200 const char *state = "unknown";
1201
1202 switch (mk->mod->state) {
1203 case MODULE_STATE_LIVE:
1204 state = "live";
1205 break;
1206 case MODULE_STATE_COMING:
1207 state = "coming";
1208 break;
1209 case MODULE_STATE_GOING:
1210 state = "going";
1211 break;
1212 default:
1213 BUG();
1214 }
1215 return sprintf(buffer, "%s\n", state);
1216 }
1217
1218 static struct module_attribute modinfo_initstate =
1219 __ATTR(initstate, 0444, show_initstate, NULL);
1220
1221 static ssize_t store_uevent(struct module_attribute *mattr,
1222 struct module_kobject *mk,
1223 const char *buffer, size_t count)
1224 {
1225 int rc;
1226
1227 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1228 return rc ? rc : count;
1229 }
1230
1231 struct module_attribute module_uevent =
1232 __ATTR(uevent, 0200, NULL, store_uevent);
1233
1234 static ssize_t show_coresize(struct module_attribute *mattr,
1235 struct module_kobject *mk, char *buffer)
1236 {
1237 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1238 }
1239
1240 static struct module_attribute modinfo_coresize =
1241 __ATTR(coresize, 0444, show_coresize, NULL);
1242
1243 static ssize_t show_initsize(struct module_attribute *mattr,
1244 struct module_kobject *mk, char *buffer)
1245 {
1246 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1247 }
1248
1249 static struct module_attribute modinfo_initsize =
1250 __ATTR(initsize, 0444, show_initsize, NULL);
1251
1252 static ssize_t show_taint(struct module_attribute *mattr,
1253 struct module_kobject *mk, char *buffer)
1254 {
1255 size_t l;
1256
1257 l = module_flags_taint(mk->mod, buffer);
1258 buffer[l++] = '\n';
1259 return l;
1260 }
1261
1262 static struct module_attribute modinfo_taint =
1263 __ATTR(taint, 0444, show_taint, NULL);
1264
1265 static struct module_attribute *modinfo_attrs[] = {
1266 &module_uevent,
1267 &modinfo_version,
1268 &modinfo_srcversion,
1269 &modinfo_initstate,
1270 &modinfo_coresize,
1271 &modinfo_initsize,
1272 &modinfo_taint,
1273 #ifdef CONFIG_MODULE_UNLOAD
1274 &modinfo_refcnt,
1275 #endif
1276 NULL,
1277 };
1278
1279 static const char vermagic[] = VERMAGIC_STRING;
1280
1281 static int try_to_force_load(struct module *mod, const char *reason)
1282 {
1283 #ifdef CONFIG_MODULE_FORCE_LOAD
1284 if (!test_taint(TAINT_FORCED_MODULE))
1285 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1286 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1287 return 0;
1288 #else
1289 return -ENOEXEC;
1290 #endif
1291 }
1292
1293 #ifdef CONFIG_MODVERSIONS
1294
1295 static u32 resolve_rel_crc(const s32 *crc)
1296 {
1297 return *(u32 *)((void *)crc + *crc);
1298 }
1299
1300 static int check_version(const struct load_info *info,
1301 const char *symname,
1302 struct module *mod,
1303 const s32 *crc)
1304 {
1305 Elf_Shdr *sechdrs = info->sechdrs;
1306 unsigned int versindex = info->index.vers;
1307 unsigned int i, num_versions;
1308 struct modversion_info *versions;
1309
1310 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1311 if (!crc)
1312 return 1;
1313
1314 /* No versions at all? modprobe --force does this. */
1315 if (versindex == 0)
1316 return try_to_force_load(mod, symname) == 0;
1317
1318 versions = (void *) sechdrs[versindex].sh_addr;
1319 num_versions = sechdrs[versindex].sh_size
1320 / sizeof(struct modversion_info);
1321
1322 for (i = 0; i < num_versions; i++) {
1323 u32 crcval;
1324
1325 if (strcmp(versions[i].name, symname) != 0)
1326 continue;
1327
1328 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1329 crcval = resolve_rel_crc(crc);
1330 else
1331 crcval = *crc;
1332 if (versions[i].crc == crcval)
1333 return 1;
1334 pr_debug("Found checksum %X vs module %lX\n",
1335 crcval, versions[i].crc);
1336 goto bad_version;
1337 }
1338
1339 /* Broken toolchain. Warn once, then let it go.. */
1340 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1341 return 1;
1342
1343 bad_version:
1344 pr_warn("%s: disagrees about version of symbol %s\n",
1345 info->name, symname);
1346 return 0;
1347 }
1348
1349 static inline int check_modstruct_version(const struct load_info *info,
1350 struct module *mod)
1351 {
1352 const s32 *crc;
1353
1354 /*
1355 * Since this should be found in kernel (which can't be removed), no
1356 * locking is necessary -- use preempt_disable() to placate lockdep.
1357 */
1358 preempt_disable();
1359 if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1360 preempt_enable();
1361 BUG();
1362 }
1363 preempt_enable();
1364 return check_version(info, "module_layout", mod, crc);
1365 }
1366
1367 /* First part is kernel version, which we ignore if module has crcs. */
1368 static inline int same_magic(const char *amagic, const char *bmagic,
1369 bool has_crcs)
1370 {
1371 if (has_crcs) {
1372 amagic += strcspn(amagic, " ");
1373 bmagic += strcspn(bmagic, " ");
1374 }
1375 return strcmp(amagic, bmagic) == 0;
1376 }
1377 #else
1378 static inline int check_version(const struct load_info *info,
1379 const char *symname,
1380 struct module *mod,
1381 const s32 *crc)
1382 {
1383 return 1;
1384 }
1385
1386 static inline int check_modstruct_version(const struct load_info *info,
1387 struct module *mod)
1388 {
1389 return 1;
1390 }
1391
1392 static inline int same_magic(const char *amagic, const char *bmagic,
1393 bool has_crcs)
1394 {
1395 return strcmp(amagic, bmagic) == 0;
1396 }
1397 #endif /* CONFIG_MODVERSIONS */
1398
1399 static char *get_modinfo(const struct load_info *info, const char *tag);
1400 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1401 char *prev);
1402
1403 static int verify_namespace_is_imported(const struct load_info *info,
1404 const struct kernel_symbol *sym,
1405 struct module *mod)
1406 {
1407 const char *namespace;
1408 char *imported_namespace;
1409
1410 namespace = kernel_symbol_namespace(sym);
1411 if (namespace && namespace[0]) {
1412 imported_namespace = get_modinfo(info, "import_ns");
1413 while (imported_namespace) {
1414 if (strcmp(namespace, imported_namespace) == 0)
1415 return 0;
1416 imported_namespace = get_next_modinfo(
1417 info, "import_ns", imported_namespace);
1418 }
1419 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1420 pr_warn(
1421 #else
1422 pr_err(
1423 #endif
1424 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1425 mod->name, kernel_symbol_name(sym), namespace);
1426 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1427 return -EINVAL;
1428 #endif
1429 }
1430 return 0;
1431 }
1432
1433
1434 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1435 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1436 const struct load_info *info,
1437 const char *name,
1438 char ownername[])
1439 {
1440 struct module *owner;
1441 const struct kernel_symbol *sym;
1442 const s32 *crc;
1443 int err;
1444
1445 /*
1446 * The module_mutex should not be a heavily contended lock;
1447 * if we get the occasional sleep here, we'll go an extra iteration
1448 * in the wait_event_interruptible(), which is harmless.
1449 */
1450 sched_annotate_sleep();
1451 mutex_lock(&module_mutex);
1452 sym = find_symbol(name, &owner, &crc,
1453 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1454 if (!sym)
1455 goto unlock;
1456
1457 if (!check_version(info, name, mod, crc)) {
1458 sym = ERR_PTR(-EINVAL);
1459 goto getname;
1460 }
1461
1462 err = verify_namespace_is_imported(info, sym, mod);
1463 if (err) {
1464 sym = ERR_PTR(err);
1465 goto getname;
1466 }
1467
1468 err = ref_module(mod, owner);
1469 if (err) {
1470 sym = ERR_PTR(err);
1471 goto getname;
1472 }
1473
1474 getname:
1475 /* We must make copy under the lock if we failed to get ref. */
1476 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1477 unlock:
1478 mutex_unlock(&module_mutex);
1479 return sym;
1480 }
1481
1482 static const struct kernel_symbol *
1483 resolve_symbol_wait(struct module *mod,
1484 const struct load_info *info,
1485 const char *name)
1486 {
1487 const struct kernel_symbol *ksym;
1488 char owner[MODULE_NAME_LEN];
1489
1490 if (wait_event_interruptible_timeout(module_wq,
1491 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1492 || PTR_ERR(ksym) != -EBUSY,
1493 30 * HZ) <= 0) {
1494 pr_warn("%s: gave up waiting for init of module %s.\n",
1495 mod->name, owner);
1496 }
1497 return ksym;
1498 }
1499
1500 /*
1501 * /sys/module/foo/sections stuff
1502 * J. Corbet <corbet@lwn.net>
1503 */
1504 #ifdef CONFIG_SYSFS
1505
1506 #ifdef CONFIG_KALLSYMS
1507 static inline bool sect_empty(const Elf_Shdr *sect)
1508 {
1509 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1510 }
1511
1512 struct module_sect_attr {
1513 struct bin_attribute battr;
1514 unsigned long address;
1515 };
1516
1517 struct module_sect_attrs {
1518 struct attribute_group grp;
1519 unsigned int nsections;
1520 struct module_sect_attr attrs[];
1521 };
1522
1523 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1524 struct bin_attribute *battr,
1525 char *buf, loff_t pos, size_t count)
1526 {
1527 struct module_sect_attr *sattr =
1528 container_of(battr, struct module_sect_attr, battr);
1529
1530 if (pos != 0)
1531 return -EINVAL;
1532
1533 return sprintf(buf, "0x%px\n",
1534 kallsyms_show_value(file->f_cred) ? (void *)sattr->address : NULL);
1535 }
1536
1537 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1538 {
1539 unsigned int section;
1540
1541 for (section = 0; section < sect_attrs->nsections; section++)
1542 kfree(sect_attrs->attrs[section].battr.attr.name);
1543 kfree(sect_attrs);
1544 }
1545
1546 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1547 {
1548 unsigned int nloaded = 0, i, size[2];
1549 struct module_sect_attrs *sect_attrs;
1550 struct module_sect_attr *sattr;
1551 struct bin_attribute **gattr;
1552
1553 /* Count loaded sections and allocate structures */
1554 for (i = 0; i < info->hdr->e_shnum; i++)
1555 if (!sect_empty(&info->sechdrs[i]))
1556 nloaded++;
1557 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1558 sizeof(sect_attrs->grp.bin_attrs[0]));
1559 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1560 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1561 if (sect_attrs == NULL)
1562 return;
1563
1564 /* Setup section attributes. */
1565 sect_attrs->grp.name = "sections";
1566 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1567
1568 sect_attrs->nsections = 0;
1569 sattr = &sect_attrs->attrs[0];
1570 gattr = &sect_attrs->grp.bin_attrs[0];
1571 for (i = 0; i < info->hdr->e_shnum; i++) {
1572 Elf_Shdr *sec = &info->sechdrs[i];
1573 if (sect_empty(sec))
1574 continue;
1575 sysfs_bin_attr_init(&sattr->battr);
1576 sattr->address = sec->sh_addr;
1577 sattr->battr.attr.name =
1578 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1579 if (sattr->battr.attr.name == NULL)
1580 goto out;
1581 sect_attrs->nsections++;
1582 sattr->battr.read = module_sect_read;
1583 sattr->battr.size = 3 /* "0x", "\n" */ + (BITS_PER_LONG / 4);
1584 sattr->battr.attr.mode = 0400;
1585 *(gattr++) = &(sattr++)->battr;
1586 }
1587 *gattr = NULL;
1588
1589 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1590 goto out;
1591
1592 mod->sect_attrs = sect_attrs;
1593 return;
1594 out:
1595 free_sect_attrs(sect_attrs);
1596 }
1597
1598 static void remove_sect_attrs(struct module *mod)
1599 {
1600 if (mod->sect_attrs) {
1601 sysfs_remove_group(&mod->mkobj.kobj,
1602 &mod->sect_attrs->grp);
1603 /* We are positive that no one is using any sect attrs
1604 * at this point. Deallocate immediately. */
1605 free_sect_attrs(mod->sect_attrs);
1606 mod->sect_attrs = NULL;
1607 }
1608 }
1609
1610 /*
1611 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1612 */
1613
1614 struct module_notes_attrs {
1615 struct kobject *dir;
1616 unsigned int notes;
1617 struct bin_attribute attrs[];
1618 };
1619
1620 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1621 struct bin_attribute *bin_attr,
1622 char *buf, loff_t pos, size_t count)
1623 {
1624 /*
1625 * The caller checked the pos and count against our size.
1626 */
1627 memcpy(buf, bin_attr->private + pos, count);
1628 return count;
1629 }
1630
1631 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1632 unsigned int i)
1633 {
1634 if (notes_attrs->dir) {
1635 while (i-- > 0)
1636 sysfs_remove_bin_file(notes_attrs->dir,
1637 &notes_attrs->attrs[i]);
1638 kobject_put(notes_attrs->dir);
1639 }
1640 kfree(notes_attrs);
1641 }
1642
1643 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1644 {
1645 unsigned int notes, loaded, i;
1646 struct module_notes_attrs *notes_attrs;
1647 struct bin_attribute *nattr;
1648
1649 /* failed to create section attributes, so can't create notes */
1650 if (!mod->sect_attrs)
1651 return;
1652
1653 /* Count notes sections and allocate structures. */
1654 notes = 0;
1655 for (i = 0; i < info->hdr->e_shnum; i++)
1656 if (!sect_empty(&info->sechdrs[i]) &&
1657 (info->sechdrs[i].sh_type == SHT_NOTE))
1658 ++notes;
1659
1660 if (notes == 0)
1661 return;
1662
1663 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1664 GFP_KERNEL);
1665 if (notes_attrs == NULL)
1666 return;
1667
1668 notes_attrs->notes = notes;
1669 nattr = &notes_attrs->attrs[0];
1670 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1671 if (sect_empty(&info->sechdrs[i]))
1672 continue;
1673 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1674 sysfs_bin_attr_init(nattr);
1675 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1676 nattr->attr.mode = S_IRUGO;
1677 nattr->size = info->sechdrs[i].sh_size;
1678 nattr->private = (void *) info->sechdrs[i].sh_addr;
1679 nattr->read = module_notes_read;
1680 ++nattr;
1681 }
1682 ++loaded;
1683 }
1684
1685 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1686 if (!notes_attrs->dir)
1687 goto out;
1688
1689 for (i = 0; i < notes; ++i)
1690 if (sysfs_create_bin_file(notes_attrs->dir,
1691 &notes_attrs->attrs[i]))
1692 goto out;
1693
1694 mod->notes_attrs = notes_attrs;
1695 return;
1696
1697 out:
1698 free_notes_attrs(notes_attrs, i);
1699 }
1700
1701 static void remove_notes_attrs(struct module *mod)
1702 {
1703 if (mod->notes_attrs)
1704 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1705 }
1706
1707 #else
1708
1709 static inline void add_sect_attrs(struct module *mod,
1710 const struct load_info *info)
1711 {
1712 }
1713
1714 static inline void remove_sect_attrs(struct module *mod)
1715 {
1716 }
1717
1718 static inline void add_notes_attrs(struct module *mod,
1719 const struct load_info *info)
1720 {
1721 }
1722
1723 static inline void remove_notes_attrs(struct module *mod)
1724 {
1725 }
1726 #endif /* CONFIG_KALLSYMS */
1727
1728 static void del_usage_links(struct module *mod)
1729 {
1730 #ifdef CONFIG_MODULE_UNLOAD
1731 struct module_use *use;
1732
1733 mutex_lock(&module_mutex);
1734 list_for_each_entry(use, &mod->target_list, target_list)
1735 sysfs_remove_link(use->target->holders_dir, mod->name);
1736 mutex_unlock(&module_mutex);
1737 #endif
1738 }
1739
1740 static int add_usage_links(struct module *mod)
1741 {
1742 int ret = 0;
1743 #ifdef CONFIG_MODULE_UNLOAD
1744 struct module_use *use;
1745
1746 mutex_lock(&module_mutex);
1747 list_for_each_entry(use, &mod->target_list, target_list) {
1748 ret = sysfs_create_link(use->target->holders_dir,
1749 &mod->mkobj.kobj, mod->name);
1750 if (ret)
1751 break;
1752 }
1753 mutex_unlock(&module_mutex);
1754 if (ret)
1755 del_usage_links(mod);
1756 #endif
1757 return ret;
1758 }
1759
1760 static void module_remove_modinfo_attrs(struct module *mod, int end);
1761
1762 static int module_add_modinfo_attrs(struct module *mod)
1763 {
1764 struct module_attribute *attr;
1765 struct module_attribute *temp_attr;
1766 int error = 0;
1767 int i;
1768
1769 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1770 (ARRAY_SIZE(modinfo_attrs) + 1)),
1771 GFP_KERNEL);
1772 if (!mod->modinfo_attrs)
1773 return -ENOMEM;
1774
1775 temp_attr = mod->modinfo_attrs;
1776 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1777 if (!attr->test || attr->test(mod)) {
1778 memcpy(temp_attr, attr, sizeof(*temp_attr));
1779 sysfs_attr_init(&temp_attr->attr);
1780 error = sysfs_create_file(&mod->mkobj.kobj,
1781 &temp_attr->attr);
1782 if (error)
1783 goto error_out;
1784 ++temp_attr;
1785 }
1786 }
1787
1788 return 0;
1789
1790 error_out:
1791 if (i > 0)
1792 module_remove_modinfo_attrs(mod, --i);
1793 else
1794 kfree(mod->modinfo_attrs);
1795 return error;
1796 }
1797
1798 static void module_remove_modinfo_attrs(struct module *mod, int end)
1799 {
1800 struct module_attribute *attr;
1801 int i;
1802
1803 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1804 if (end >= 0 && i > end)
1805 break;
1806 /* pick a field to test for end of list */
1807 if (!attr->attr.name)
1808 break;
1809 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1810 if (attr->free)
1811 attr->free(mod);
1812 }
1813 kfree(mod->modinfo_attrs);
1814 }
1815
1816 static void mod_kobject_put(struct module *mod)
1817 {
1818 DECLARE_COMPLETION_ONSTACK(c);
1819 mod->mkobj.kobj_completion = &c;
1820 kobject_put(&mod->mkobj.kobj);
1821 wait_for_completion(&c);
1822 }
1823
1824 static int mod_sysfs_init(struct module *mod)
1825 {
1826 int err;
1827 struct kobject *kobj;
1828
1829 if (!module_sysfs_initialized) {
1830 pr_err("%s: module sysfs not initialized\n", mod->name);
1831 err = -EINVAL;
1832 goto out;
1833 }
1834
1835 kobj = kset_find_obj(module_kset, mod->name);
1836 if (kobj) {
1837 pr_err("%s: module is already loaded\n", mod->name);
1838 kobject_put(kobj);
1839 err = -EINVAL;
1840 goto out;
1841 }
1842
1843 mod->mkobj.mod = mod;
1844
1845 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1846 mod->mkobj.kobj.kset = module_kset;
1847 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1848 "%s", mod->name);
1849 if (err)
1850 mod_kobject_put(mod);
1851
1852 /* delay uevent until full sysfs population */
1853 out:
1854 return err;
1855 }
1856
1857 static int mod_sysfs_setup(struct module *mod,
1858 const struct load_info *info,
1859 struct kernel_param *kparam,
1860 unsigned int num_params)
1861 {
1862 int err;
1863
1864 err = mod_sysfs_init(mod);
1865 if (err)
1866 goto out;
1867
1868 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1869 if (!mod->holders_dir) {
1870 err = -ENOMEM;
1871 goto out_unreg;
1872 }
1873
1874 err = module_param_sysfs_setup(mod, kparam, num_params);
1875 if (err)
1876 goto out_unreg_holders;
1877
1878 err = module_add_modinfo_attrs(mod);
1879 if (err)
1880 goto out_unreg_param;
1881
1882 err = add_usage_links(mod);
1883 if (err)
1884 goto out_unreg_modinfo_attrs;
1885
1886 add_sect_attrs(mod, info);
1887 add_notes_attrs(mod, info);
1888
1889 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1890 return 0;
1891
1892 out_unreg_modinfo_attrs:
1893 module_remove_modinfo_attrs(mod, -1);
1894 out_unreg_param:
1895 module_param_sysfs_remove(mod);
1896 out_unreg_holders:
1897 kobject_put(mod->holders_dir);
1898 out_unreg:
1899 mod_kobject_put(mod);
1900 out:
1901 return err;
1902 }
1903
1904 static void mod_sysfs_fini(struct module *mod)
1905 {
1906 remove_notes_attrs(mod);
1907 remove_sect_attrs(mod);
1908 mod_kobject_put(mod);
1909 }
1910
1911 static void init_param_lock(struct module *mod)
1912 {
1913 mutex_init(&mod->param_lock);
1914 }
1915 #else /* !CONFIG_SYSFS */
1916
1917 static int mod_sysfs_setup(struct module *mod,
1918 const struct load_info *info,
1919 struct kernel_param *kparam,
1920 unsigned int num_params)
1921 {
1922 return 0;
1923 }
1924
1925 static void mod_sysfs_fini(struct module *mod)
1926 {
1927 }
1928
1929 static void module_remove_modinfo_attrs(struct module *mod, int end)
1930 {
1931 }
1932
1933 static void del_usage_links(struct module *mod)
1934 {
1935 }
1936
1937 static void init_param_lock(struct module *mod)
1938 {
1939 }
1940 #endif /* CONFIG_SYSFS */
1941
1942 static void mod_sysfs_teardown(struct module *mod)
1943 {
1944 del_usage_links(mod);
1945 module_remove_modinfo_attrs(mod, -1);
1946 module_param_sysfs_remove(mod);
1947 kobject_put(mod->mkobj.drivers_dir);
1948 kobject_put(mod->holders_dir);
1949 mod_sysfs_fini(mod);
1950 }
1951
1952 /*
1953 * LKM RO/NX protection: protect module's text/ro-data
1954 * from modification and any data from execution.
1955 *
1956 * General layout of module is:
1957 * [text] [read-only-data] [ro-after-init] [writable data]
1958 * text_size -----^ ^ ^ ^
1959 * ro_size ------------------------| | |
1960 * ro_after_init_size -----------------------------| |
1961 * size -----------------------------------------------------------|
1962 *
1963 * These values are always page-aligned (as is base)
1964 */
1965
1966 /*
1967 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1968 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1969 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1970 * whether we are strict.
1971 */
1972 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1973 static void frob_text(const struct module_layout *layout,
1974 int (*set_memory)(unsigned long start, int num_pages))
1975 {
1976 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1977 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1978 set_memory((unsigned long)layout->base,
1979 layout->text_size >> PAGE_SHIFT);
1980 }
1981
1982 static void module_enable_x(const struct module *mod)
1983 {
1984 frob_text(&mod->core_layout, set_memory_x);
1985 frob_text(&mod->init_layout, set_memory_x);
1986 }
1987 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1988 static void module_enable_x(const struct module *mod) { }
1989 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1990
1991 #ifdef CONFIG_STRICT_MODULE_RWX
1992 static void frob_rodata(const struct module_layout *layout,
1993 int (*set_memory)(unsigned long start, int num_pages))
1994 {
1995 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1996 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1997 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1998 set_memory((unsigned long)layout->base + layout->text_size,
1999 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2000 }
2001
2002 static void frob_ro_after_init(const struct module_layout *layout,
2003 int (*set_memory)(unsigned long start, int num_pages))
2004 {
2005 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2006 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2007 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2008 set_memory((unsigned long)layout->base + layout->ro_size,
2009 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2010 }
2011
2012 static void frob_writable_data(const struct module_layout *layout,
2013 int (*set_memory)(unsigned long start, int num_pages))
2014 {
2015 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2016 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2017 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2018 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2019 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2020 }
2021
2022 static void module_enable_ro(const struct module *mod, bool after_init)
2023 {
2024 if (!rodata_enabled)
2025 return;
2026
2027 set_vm_flush_reset_perms(mod->core_layout.base);
2028 set_vm_flush_reset_perms(mod->init_layout.base);
2029 frob_text(&mod->core_layout, set_memory_ro);
2030
2031 frob_rodata(&mod->core_layout, set_memory_ro);
2032 frob_text(&mod->init_layout, set_memory_ro);
2033 frob_rodata(&mod->init_layout, set_memory_ro);
2034
2035 if (after_init)
2036 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2037 }
2038
2039 static void module_enable_nx(const struct module *mod)
2040 {
2041 frob_rodata(&mod->core_layout, set_memory_nx);
2042 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2043 frob_writable_data(&mod->core_layout, set_memory_nx);
2044 frob_rodata(&mod->init_layout, set_memory_nx);
2045 frob_writable_data(&mod->init_layout, set_memory_nx);
2046 }
2047
2048 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2049 char *secstrings, struct module *mod)
2050 {
2051 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2052 int i;
2053
2054 for (i = 0; i < hdr->e_shnum; i++) {
2055 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx)
2056 return -ENOEXEC;
2057 }
2058
2059 return 0;
2060 }
2061
2062 #else /* !CONFIG_STRICT_MODULE_RWX */
2063 static void module_enable_nx(const struct module *mod) { }
2064 static void module_enable_ro(const struct module *mod, bool after_init) {}
2065 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2066 char *secstrings, struct module *mod)
2067 {
2068 return 0;
2069 }
2070 #endif /* CONFIG_STRICT_MODULE_RWX */
2071
2072 #ifdef CONFIG_LIVEPATCH
2073 /*
2074 * Persist Elf information about a module. Copy the Elf header,
2075 * section header table, section string table, and symtab section
2076 * index from info to mod->klp_info.
2077 */
2078 static int copy_module_elf(struct module *mod, struct load_info *info)
2079 {
2080 unsigned int size, symndx;
2081 int ret;
2082
2083 size = sizeof(*mod->klp_info);
2084 mod->klp_info = kmalloc(size, GFP_KERNEL);
2085 if (mod->klp_info == NULL)
2086 return -ENOMEM;
2087
2088 /* Elf header */
2089 size = sizeof(mod->klp_info->hdr);
2090 memcpy(&mod->klp_info->hdr, info->hdr, size);
2091
2092 /* Elf section header table */
2093 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2094 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2095 if (mod->klp_info->sechdrs == NULL) {
2096 ret = -ENOMEM;
2097 goto free_info;
2098 }
2099
2100 /* Elf section name string table */
2101 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2102 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2103 if (mod->klp_info->secstrings == NULL) {
2104 ret = -ENOMEM;
2105 goto free_sechdrs;
2106 }
2107
2108 /* Elf symbol section index */
2109 symndx = info->index.sym;
2110 mod->klp_info->symndx = symndx;
2111
2112 /*
2113 * For livepatch modules, core_kallsyms.symtab is a complete
2114 * copy of the original symbol table. Adjust sh_addr to point
2115 * to core_kallsyms.symtab since the copy of the symtab in module
2116 * init memory is freed at the end of do_init_module().
2117 */
2118 mod->klp_info->sechdrs[symndx].sh_addr = \
2119 (unsigned long) mod->core_kallsyms.symtab;
2120
2121 return 0;
2122
2123 free_sechdrs:
2124 kfree(mod->klp_info->sechdrs);
2125 free_info:
2126 kfree(mod->klp_info);
2127 return ret;
2128 }
2129
2130 static void free_module_elf(struct module *mod)
2131 {
2132 kfree(mod->klp_info->sechdrs);
2133 kfree(mod->klp_info->secstrings);
2134 kfree(mod->klp_info);
2135 }
2136 #else /* !CONFIG_LIVEPATCH */
2137 static int copy_module_elf(struct module *mod, struct load_info *info)
2138 {
2139 return 0;
2140 }
2141
2142 static void free_module_elf(struct module *mod)
2143 {
2144 }
2145 #endif /* CONFIG_LIVEPATCH */
2146
2147 void __weak module_memfree(void *module_region)
2148 {
2149 /*
2150 * This memory may be RO, and freeing RO memory in an interrupt is not
2151 * supported by vmalloc.
2152 */
2153 WARN_ON(in_interrupt());
2154 vfree(module_region);
2155 }
2156
2157 void __weak module_arch_cleanup(struct module *mod)
2158 {
2159 }
2160
2161 void __weak module_arch_freeing_init(struct module *mod)
2162 {
2163 }
2164
2165 /* Free a module, remove from lists, etc. */
2166 static void free_module(struct module *mod)
2167 {
2168 trace_module_free(mod);
2169
2170 mod_sysfs_teardown(mod);
2171
2172 /* We leave it in list to prevent duplicate loads, but make sure
2173 * that noone uses it while it's being deconstructed. */
2174 mutex_lock(&module_mutex);
2175 mod->state = MODULE_STATE_UNFORMED;
2176 mutex_unlock(&module_mutex);
2177
2178 /* Remove dynamic debug info */
2179 ddebug_remove_module(mod->name);
2180
2181 /* Arch-specific cleanup. */
2182 module_arch_cleanup(mod);
2183
2184 /* Module unload stuff */
2185 module_unload_free(mod);
2186
2187 /* Free any allocated parameters. */
2188 destroy_params(mod->kp, mod->num_kp);
2189
2190 if (is_livepatch_module(mod))
2191 free_module_elf(mod);
2192
2193 /* Now we can delete it from the lists */
2194 mutex_lock(&module_mutex);
2195 /* Unlink carefully: kallsyms could be walking list. */
2196 list_del_rcu(&mod->list);
2197 mod_tree_remove(mod);
2198 /* Remove this module from bug list, this uses list_del_rcu */
2199 module_bug_cleanup(mod);
2200 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2201 synchronize_rcu();
2202 mutex_unlock(&module_mutex);
2203
2204 /* This may be empty, but that's OK */
2205 module_arch_freeing_init(mod);
2206 module_memfree(mod->init_layout.base);
2207 kfree(mod->args);
2208 percpu_modfree(mod);
2209
2210 /* Free lock-classes; relies on the preceding sync_rcu(). */
2211 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2212
2213 /* Finally, free the core (containing the module structure) */
2214 module_memfree(mod->core_layout.base);
2215 }
2216
2217 void *__symbol_get(const char *symbol)
2218 {
2219 struct module *owner;
2220 const struct kernel_symbol *sym;
2221
2222 preempt_disable();
2223 sym = find_symbol(symbol, &owner, NULL, true, true);
2224 if (sym && strong_try_module_get(owner))
2225 sym = NULL;
2226 preempt_enable();
2227
2228 return sym ? (void *)kernel_symbol_value(sym) : NULL;
2229 }
2230 EXPORT_SYMBOL_GPL(__symbol_get);
2231
2232 /*
2233 * Ensure that an exported symbol [global namespace] does not already exist
2234 * in the kernel or in some other module's exported symbol table.
2235 *
2236 * You must hold the module_mutex.
2237 */
2238 static int verify_exported_symbols(struct module *mod)
2239 {
2240 unsigned int i;
2241 struct module *owner;
2242 const struct kernel_symbol *s;
2243 struct {
2244 const struct kernel_symbol *sym;
2245 unsigned int num;
2246 } arr[] = {
2247 { mod->syms, mod->num_syms },
2248 { mod->gpl_syms, mod->num_gpl_syms },
2249 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2250 #ifdef CONFIG_UNUSED_SYMBOLS
2251 { mod->unused_syms, mod->num_unused_syms },
2252 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2253 #endif
2254 };
2255
2256 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2257 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2258 if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2259 true, false)) {
2260 pr_err("%s: exports duplicate symbol %s"
2261 " (owned by %s)\n",
2262 mod->name, kernel_symbol_name(s),
2263 module_name(owner));
2264 return -ENOEXEC;
2265 }
2266 }
2267 }
2268 return 0;
2269 }
2270
2271 /* Change all symbols so that st_value encodes the pointer directly. */
2272 static int simplify_symbols(struct module *mod, const struct load_info *info)
2273 {
2274 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2275 Elf_Sym *sym = (void *)symsec->sh_addr;
2276 unsigned long secbase;
2277 unsigned int i;
2278 int ret = 0;
2279 const struct kernel_symbol *ksym;
2280
2281 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2282 const char *name = info->strtab + sym[i].st_name;
2283
2284 switch (sym[i].st_shndx) {
2285 case SHN_COMMON:
2286 /* Ignore common symbols */
2287 if (!strncmp(name, "__gnu_lto", 9))
2288 break;
2289
2290 /* We compiled with -fno-common. These are not
2291 supposed to happen. */
2292 pr_debug("Common symbol: %s\n", name);
2293 pr_warn("%s: please compile with -fno-common\n",
2294 mod->name);
2295 ret = -ENOEXEC;
2296 break;
2297
2298 case SHN_ABS:
2299 /* Don't need to do anything */
2300 pr_debug("Absolute symbol: 0x%08lx\n",
2301 (long)sym[i].st_value);
2302 break;
2303
2304 case SHN_LIVEPATCH:
2305 /* Livepatch symbols are resolved by livepatch */
2306 break;
2307
2308 case SHN_UNDEF:
2309 ksym = resolve_symbol_wait(mod, info, name);
2310 /* Ok if resolved. */
2311 if (ksym && !IS_ERR(ksym)) {
2312 sym[i].st_value = kernel_symbol_value(ksym);
2313 break;
2314 }
2315
2316 /* Ok if weak. */
2317 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2318 break;
2319
2320 ret = PTR_ERR(ksym) ?: -ENOENT;
2321 pr_warn("%s: Unknown symbol %s (err %d)\n",
2322 mod->name, name, ret);
2323 break;
2324
2325 default:
2326 /* Divert to percpu allocation if a percpu var. */
2327 if (sym[i].st_shndx == info->index.pcpu)
2328 secbase = (unsigned long)mod_percpu(mod);
2329 else
2330 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2331 sym[i].st_value += secbase;
2332 break;
2333 }
2334 }
2335
2336 return ret;
2337 }
2338
2339 static int apply_relocations(struct module *mod, const struct load_info *info)
2340 {
2341 unsigned int i;
2342 int err = 0;
2343
2344 /* Now do relocations. */
2345 for (i = 1; i < info->hdr->e_shnum; i++) {
2346 unsigned int infosec = info->sechdrs[i].sh_info;
2347
2348 /* Not a valid relocation section? */
2349 if (infosec >= info->hdr->e_shnum)
2350 continue;
2351
2352 /* Don't bother with non-allocated sections */
2353 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2354 continue;
2355
2356 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2357 err = klp_apply_section_relocs(mod, info->sechdrs,
2358 info->secstrings,
2359 info->strtab,
2360 info->index.sym, i,
2361 NULL);
2362 else if (info->sechdrs[i].sh_type == SHT_REL)
2363 err = apply_relocate(info->sechdrs, info->strtab,
2364 info->index.sym, i, mod);
2365 else if (info->sechdrs[i].sh_type == SHT_RELA)
2366 err = apply_relocate_add(info->sechdrs, info->strtab,
2367 info->index.sym, i, mod);
2368 if (err < 0)
2369 break;
2370 }
2371 return err;
2372 }
2373
2374 /* Additional bytes needed by arch in front of individual sections */
2375 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2376 unsigned int section)
2377 {
2378 /* default implementation just returns zero */
2379 return 0;
2380 }
2381
2382 /* Update size with this section: return offset. */
2383 static long get_offset(struct module *mod, unsigned int *size,
2384 Elf_Shdr *sechdr, unsigned int section)
2385 {
2386 long ret;
2387
2388 *size += arch_mod_section_prepend(mod, section);
2389 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2390 *size = ret + sechdr->sh_size;
2391 return ret;
2392 }
2393
2394 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2395 might -- code, read-only data, read-write data, small data. Tally
2396 sizes, and place the offsets into sh_entsize fields: high bit means it
2397 belongs in init. */
2398 static void layout_sections(struct module *mod, struct load_info *info)
2399 {
2400 static unsigned long const masks[][2] = {
2401 /* NOTE: all executable code must be the first section
2402 * in this array; otherwise modify the text_size
2403 * finder in the two loops below */
2404 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2405 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2406 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2407 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2408 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2409 };
2410 unsigned int m, i;
2411
2412 for (i = 0; i < info->hdr->e_shnum; i++)
2413 info->sechdrs[i].sh_entsize = ~0UL;
2414
2415 pr_debug("Core section allocation order:\n");
2416 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2417 for (i = 0; i < info->hdr->e_shnum; ++i) {
2418 Elf_Shdr *s = &info->sechdrs[i];
2419 const char *sname = info->secstrings + s->sh_name;
2420
2421 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2422 || (s->sh_flags & masks[m][1])
2423 || s->sh_entsize != ~0UL
2424 || module_init_section(sname))
2425 continue;
2426 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2427 pr_debug("\t%s\n", sname);
2428 }
2429 switch (m) {
2430 case 0: /* executable */
2431 mod->core_layout.size = debug_align(mod->core_layout.size);
2432 mod->core_layout.text_size = mod->core_layout.size;
2433 break;
2434 case 1: /* RO: text and ro-data */
2435 mod->core_layout.size = debug_align(mod->core_layout.size);
2436 mod->core_layout.ro_size = mod->core_layout.size;
2437 break;
2438 case 2: /* RO after init */
2439 mod->core_layout.size = debug_align(mod->core_layout.size);
2440 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2441 break;
2442 case 4: /* whole core */
2443 mod->core_layout.size = debug_align(mod->core_layout.size);
2444 break;
2445 }
2446 }
2447
2448 pr_debug("Init section allocation order:\n");
2449 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2450 for (i = 0; i < info->hdr->e_shnum; ++i) {
2451 Elf_Shdr *s = &info->sechdrs[i];
2452 const char *sname = info->secstrings + s->sh_name;
2453
2454 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2455 || (s->sh_flags & masks[m][1])
2456 || s->sh_entsize != ~0UL
2457 || !module_init_section(sname))
2458 continue;
2459 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2460 | INIT_OFFSET_MASK);
2461 pr_debug("\t%s\n", sname);
2462 }
2463 switch (m) {
2464 case 0: /* executable */
2465 mod->init_layout.size = debug_align(mod->init_layout.size);
2466 mod->init_layout.text_size = mod->init_layout.size;
2467 break;
2468 case 1: /* RO: text and ro-data */
2469 mod->init_layout.size = debug_align(mod->init_layout.size);
2470 mod->init_layout.ro_size = mod->init_layout.size;
2471 break;
2472 case 2:
2473 /*
2474 * RO after init doesn't apply to init_layout (only
2475 * core_layout), so it just takes the value of ro_size.
2476 */
2477 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2478 break;
2479 case 4: /* whole init */
2480 mod->init_layout.size = debug_align(mod->init_layout.size);
2481 break;
2482 }
2483 }
2484 }
2485
2486 static void set_license(struct module *mod, const char *license)
2487 {
2488 if (!license)
2489 license = "unspecified";
2490
2491 if (!license_is_gpl_compatible(license)) {
2492 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2493 pr_warn("%s: module license '%s' taints kernel.\n",
2494 mod->name, license);
2495 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2496 LOCKDEP_NOW_UNRELIABLE);
2497 }
2498 }
2499
2500 /* Parse tag=value strings from .modinfo section */
2501 static char *next_string(char *string, unsigned long *secsize)
2502 {
2503 /* Skip non-zero chars */
2504 while (string[0]) {
2505 string++;
2506 if ((*secsize)-- <= 1)
2507 return NULL;
2508 }
2509
2510 /* Skip any zero padding. */
2511 while (!string[0]) {
2512 string++;
2513 if ((*secsize)-- <= 1)
2514 return NULL;
2515 }
2516 return string;
2517 }
2518
2519 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2520 char *prev)
2521 {
2522 char *p;
2523 unsigned int taglen = strlen(tag);
2524 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2525 unsigned long size = infosec->sh_size;
2526
2527 /*
2528 * get_modinfo() calls made before rewrite_section_headers()
2529 * must use sh_offset, as sh_addr isn't set!
2530 */
2531 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2532
2533 if (prev) {
2534 size -= prev - modinfo;
2535 modinfo = next_string(prev, &size);
2536 }
2537
2538 for (p = modinfo; p; p = next_string(p, &size)) {
2539 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2540 return p + taglen + 1;
2541 }
2542 return NULL;
2543 }
2544
2545 static char *get_modinfo(const struct load_info *info, const char *tag)
2546 {
2547 return get_next_modinfo(info, tag, NULL);
2548 }
2549
2550 static void setup_modinfo(struct module *mod, struct load_info *info)
2551 {
2552 struct module_attribute *attr;
2553 int i;
2554
2555 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2556 if (attr->setup)
2557 attr->setup(mod, get_modinfo(info, attr->attr.name));
2558 }
2559 }
2560
2561 static void free_modinfo(struct module *mod)
2562 {
2563 struct module_attribute *attr;
2564 int i;
2565
2566 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2567 if (attr->free)
2568 attr->free(mod);
2569 }
2570 }
2571
2572 #ifdef CONFIG_KALLSYMS
2573
2574 /* Lookup exported symbol in given range of kernel_symbols */
2575 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2576 const struct kernel_symbol *start,
2577 const struct kernel_symbol *stop)
2578 {
2579 return bsearch(name, start, stop - start,
2580 sizeof(struct kernel_symbol), cmp_name);
2581 }
2582
2583 static int is_exported(const char *name, unsigned long value,
2584 const struct module *mod)
2585 {
2586 const struct kernel_symbol *ks;
2587 if (!mod)
2588 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2589 else
2590 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2591
2592 return ks != NULL && kernel_symbol_value(ks) == value;
2593 }
2594
2595 /* As per nm */
2596 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2597 {
2598 const Elf_Shdr *sechdrs = info->sechdrs;
2599
2600 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2601 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2602 return 'v';
2603 else
2604 return 'w';
2605 }
2606 if (sym->st_shndx == SHN_UNDEF)
2607 return 'U';
2608 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2609 return 'a';
2610 if (sym->st_shndx >= SHN_LORESERVE)
2611 return '?';
2612 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2613 return 't';
2614 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2615 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2616 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2617 return 'r';
2618 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2619 return 'g';
2620 else
2621 return 'd';
2622 }
2623 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2624 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2625 return 's';
2626 else
2627 return 'b';
2628 }
2629 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2630 ".debug")) {
2631 return 'n';
2632 }
2633 return '?';
2634 }
2635
2636 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2637 unsigned int shnum, unsigned int pcpundx)
2638 {
2639 const Elf_Shdr *sec;
2640
2641 if (src->st_shndx == SHN_UNDEF
2642 || src->st_shndx >= shnum
2643 || !src->st_name)
2644 return false;
2645
2646 #ifdef CONFIG_KALLSYMS_ALL
2647 if (src->st_shndx == pcpundx)
2648 return true;
2649 #endif
2650
2651 sec = sechdrs + src->st_shndx;
2652 if (!(sec->sh_flags & SHF_ALLOC)
2653 #ifndef CONFIG_KALLSYMS_ALL
2654 || !(sec->sh_flags & SHF_EXECINSTR)
2655 #endif
2656 || (sec->sh_entsize & INIT_OFFSET_MASK))
2657 return false;
2658
2659 return true;
2660 }
2661
2662 /*
2663 * We only allocate and copy the strings needed by the parts of symtab
2664 * we keep. This is simple, but has the effect of making multiple
2665 * copies of duplicates. We could be more sophisticated, see
2666 * linux-kernel thread starting with
2667 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2668 */
2669 static void layout_symtab(struct module *mod, struct load_info *info)
2670 {
2671 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2672 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2673 const Elf_Sym *src;
2674 unsigned int i, nsrc, ndst, strtab_size = 0;
2675
2676 /* Put symbol section at end of init part of module. */
2677 symsect->sh_flags |= SHF_ALLOC;
2678 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2679 info->index.sym) | INIT_OFFSET_MASK;
2680 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2681
2682 src = (void *)info->hdr + symsect->sh_offset;
2683 nsrc = symsect->sh_size / sizeof(*src);
2684
2685 /* Compute total space required for the core symbols' strtab. */
2686 for (ndst = i = 0; i < nsrc; i++) {
2687 if (i == 0 || is_livepatch_module(mod) ||
2688 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2689 info->index.pcpu)) {
2690 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2691 ndst++;
2692 }
2693 }
2694
2695 /* Append room for core symbols at end of core part. */
2696 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2697 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2698 mod->core_layout.size += strtab_size;
2699 info->core_typeoffs = mod->core_layout.size;
2700 mod->core_layout.size += ndst * sizeof(char);
2701 mod->core_layout.size = debug_align(mod->core_layout.size);
2702
2703 /* Put string table section at end of init part of module. */
2704 strsect->sh_flags |= SHF_ALLOC;
2705 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2706 info->index.str) | INIT_OFFSET_MASK;
2707 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2708
2709 /* We'll tack temporary mod_kallsyms on the end. */
2710 mod->init_layout.size = ALIGN(mod->init_layout.size,
2711 __alignof__(struct mod_kallsyms));
2712 info->mod_kallsyms_init_off = mod->init_layout.size;
2713 mod->init_layout.size += sizeof(struct mod_kallsyms);
2714 info->init_typeoffs = mod->init_layout.size;
2715 mod->init_layout.size += nsrc * sizeof(char);
2716 mod->init_layout.size = debug_align(mod->init_layout.size);
2717 }
2718
2719 /*
2720 * We use the full symtab and strtab which layout_symtab arranged to
2721 * be appended to the init section. Later we switch to the cut-down
2722 * core-only ones.
2723 */
2724 static void add_kallsyms(struct module *mod, const struct load_info *info)
2725 {
2726 unsigned int i, ndst;
2727 const Elf_Sym *src;
2728 Elf_Sym *dst;
2729 char *s;
2730 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2731
2732 /* Set up to point into init section. */
2733 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2734
2735 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2736 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2737 /* Make sure we get permanent strtab: don't use info->strtab. */
2738 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2739 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2740
2741 /*
2742 * Now populate the cut down core kallsyms for after init
2743 * and set types up while we still have access to sections.
2744 */
2745 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2746 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2747 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2748 src = mod->kallsyms->symtab;
2749 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2750 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2751 if (i == 0 || is_livepatch_module(mod) ||
2752 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2753 info->index.pcpu)) {
2754 mod->core_kallsyms.typetab[ndst] =
2755 mod->kallsyms->typetab[i];
2756 dst[ndst] = src[i];
2757 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2758 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2759 KSYM_NAME_LEN) + 1;
2760 }
2761 }
2762 mod->core_kallsyms.num_symtab = ndst;
2763 }
2764 #else
2765 static inline void layout_symtab(struct module *mod, struct load_info *info)
2766 {
2767 }
2768
2769 static void add_kallsyms(struct module *mod, const struct load_info *info)
2770 {
2771 }
2772 #endif /* CONFIG_KALLSYMS */
2773
2774 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2775 {
2776 if (!debug)
2777 return;
2778 ddebug_add_module(debug, num, mod->name);
2779 }
2780
2781 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2782 {
2783 if (debug)
2784 ddebug_remove_module(mod->name);
2785 }
2786
2787 void * __weak module_alloc(unsigned long size)
2788 {
2789 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2790 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2791 NUMA_NO_NODE, __builtin_return_address(0));
2792 }
2793
2794 bool __weak module_init_section(const char *name)
2795 {
2796 return strstarts(name, ".init");
2797 }
2798
2799 bool __weak module_exit_section(const char *name)
2800 {
2801 return strstarts(name, ".exit");
2802 }
2803
2804 #ifdef CONFIG_DEBUG_KMEMLEAK
2805 static void kmemleak_load_module(const struct module *mod,
2806 const struct load_info *info)
2807 {
2808 unsigned int i;
2809
2810 /* only scan the sections containing data */
2811 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2812
2813 for (i = 1; i < info->hdr->e_shnum; i++) {
2814 /* Scan all writable sections that's not executable */
2815 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2816 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2817 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2818 continue;
2819
2820 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2821 info->sechdrs[i].sh_size, GFP_KERNEL);
2822 }
2823 }
2824 #else
2825 static inline void kmemleak_load_module(const struct module *mod,
2826 const struct load_info *info)
2827 {
2828 }
2829 #endif
2830
2831 #ifdef CONFIG_MODULE_SIG
2832 static int module_sig_check(struct load_info *info, int flags)
2833 {
2834 int err = -ENODATA;
2835 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2836 const char *reason;
2837 const void *mod = info->hdr;
2838
2839 /*
2840 * Require flags == 0, as a module with version information
2841 * removed is no longer the module that was signed
2842 */
2843 if (flags == 0 &&
2844 info->len > markerlen &&
2845 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2846 /* We truncate the module to discard the signature */
2847 info->len -= markerlen;
2848 err = mod_verify_sig(mod, info);
2849 }
2850
2851 switch (err) {
2852 case 0:
2853 info->sig_ok = true;
2854 return 0;
2855
2856 /* We don't permit modules to be loaded into trusted kernels
2857 * without a valid signature on them, but if we're not
2858 * enforcing, certain errors are non-fatal.
2859 */
2860 case -ENODATA:
2861 reason = "Loading of unsigned module";
2862 goto decide;
2863 case -ENOPKG:
2864 reason = "Loading of module with unsupported crypto";
2865 goto decide;
2866 case -ENOKEY:
2867 reason = "Loading of module with unavailable key";
2868 decide:
2869 if (is_module_sig_enforced()) {
2870 pr_notice("%s: %s is rejected\n", info->name, reason);
2871 return -EKEYREJECTED;
2872 }
2873
2874 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2875
2876 /* All other errors are fatal, including nomem, unparseable
2877 * signatures and signature check failures - even if signatures
2878 * aren't required.
2879 */
2880 default:
2881 return err;
2882 }
2883 }
2884 #else /* !CONFIG_MODULE_SIG */
2885 static int module_sig_check(struct load_info *info, int flags)
2886 {
2887 return 0;
2888 }
2889 #endif /* !CONFIG_MODULE_SIG */
2890
2891 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2892 static int elf_header_check(struct load_info *info)
2893 {
2894 if (info->len < sizeof(*(info->hdr)))
2895 return -ENOEXEC;
2896
2897 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2898 || info->hdr->e_type != ET_REL
2899 || !elf_check_arch(info->hdr)
2900 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2901 return -ENOEXEC;
2902
2903 if (info->hdr->e_shoff >= info->len
2904 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2905 info->len - info->hdr->e_shoff))
2906 return -ENOEXEC;
2907
2908 return 0;
2909 }
2910
2911 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2912
2913 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2914 {
2915 do {
2916 unsigned long n = min(len, COPY_CHUNK_SIZE);
2917
2918 if (copy_from_user(dst, usrc, n) != 0)
2919 return -EFAULT;
2920 cond_resched();
2921 dst += n;
2922 usrc += n;
2923 len -= n;
2924 } while (len);
2925 return 0;
2926 }
2927
2928 #ifdef CONFIG_LIVEPATCH
2929 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2930 {
2931 if (get_modinfo(info, "livepatch")) {
2932 mod->klp = true;
2933 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2934 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2935 mod->name);
2936 }
2937
2938 return 0;
2939 }
2940 #else /* !CONFIG_LIVEPATCH */
2941 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2942 {
2943 if (get_modinfo(info, "livepatch")) {
2944 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2945 mod->name);
2946 return -ENOEXEC;
2947 }
2948
2949 return 0;
2950 }
2951 #endif /* CONFIG_LIVEPATCH */
2952
2953 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2954 {
2955 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2956 return;
2957
2958 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2959 mod->name);
2960 }
2961
2962 /* Sets info->hdr and info->len. */
2963 static int copy_module_from_user(const void __user *umod, unsigned long len,
2964 struct load_info *info)
2965 {
2966 int err;
2967
2968 info->len = len;
2969 if (info->len < sizeof(*(info->hdr)))
2970 return -ENOEXEC;
2971
2972 err = security_kernel_load_data(LOADING_MODULE);
2973 if (err)
2974 return err;
2975
2976 /* Suck in entire file: we'll want most of it. */
2977 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2978 if (!info->hdr)
2979 return -ENOMEM;
2980
2981 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2982 vfree(info->hdr);
2983 return -EFAULT;
2984 }
2985
2986 return 0;
2987 }
2988
2989 static void free_copy(struct load_info *info)
2990 {
2991 vfree(info->hdr);
2992 }
2993
2994 static int rewrite_section_headers(struct load_info *info, int flags)
2995 {
2996 unsigned int i;
2997
2998 /* This should always be true, but let's be sure. */
2999 info->sechdrs[0].sh_addr = 0;
3000
3001 for (i = 1; i < info->hdr->e_shnum; i++) {
3002 Elf_Shdr *shdr = &info->sechdrs[i];
3003 if (shdr->sh_type != SHT_NOBITS
3004 && info->len < shdr->sh_offset + shdr->sh_size) {
3005 pr_err("Module len %lu truncated\n", info->len);
3006 return -ENOEXEC;
3007 }
3008
3009 /* Mark all sections sh_addr with their address in the
3010 temporary image. */
3011 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3012
3013 #ifndef CONFIG_MODULE_UNLOAD
3014 /* Don't load .exit sections */
3015 if (module_exit_section(info->secstrings+shdr->sh_name))
3016 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3017 #endif
3018 }
3019
3020 /* Track but don't keep modinfo and version sections. */
3021 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3022 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3023
3024 return 0;
3025 }
3026
3027 /*
3028 * Set up our basic convenience variables (pointers to section headers,
3029 * search for module section index etc), and do some basic section
3030 * verification.
3031 *
3032 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3033 * will be allocated in move_module().
3034 */
3035 static int setup_load_info(struct load_info *info, int flags)
3036 {
3037 unsigned int i;
3038
3039 /* Set up the convenience variables */
3040 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3041 info->secstrings = (void *)info->hdr
3042 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3043
3044 /* Try to find a name early so we can log errors with a module name */
3045 info->index.info = find_sec(info, ".modinfo");
3046 if (info->index.info)
3047 info->name = get_modinfo(info, "name");
3048
3049 /* Find internal symbols and strings. */
3050 for (i = 1; i < info->hdr->e_shnum; i++) {
3051 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3052 info->index.sym = i;
3053 info->index.str = info->sechdrs[i].sh_link;
3054 info->strtab = (char *)info->hdr
3055 + info->sechdrs[info->index.str].sh_offset;
3056 break;
3057 }
3058 }
3059
3060 if (info->index.sym == 0) {
3061 pr_warn("%s: module has no symbols (stripped?)\n",
3062 info->name ?: "(missing .modinfo section or name field)");
3063 return -ENOEXEC;
3064 }
3065
3066 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3067 if (!info->index.mod) {
3068 pr_warn("%s: No module found in object\n",
3069 info->name ?: "(missing .modinfo section or name field)");
3070 return -ENOEXEC;
3071 }
3072 /* This is temporary: point mod into copy of data. */
3073 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3074
3075 /*
3076 * If we didn't load the .modinfo 'name' field earlier, fall back to
3077 * on-disk struct mod 'name' field.
3078 */
3079 if (!info->name)
3080 info->name = info->mod->name;
3081
3082 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3083 info->index.vers = 0; /* Pretend no __versions section! */
3084 else
3085 info->index.vers = find_sec(info, "__versions");
3086
3087 info->index.pcpu = find_pcpusec(info);
3088
3089 return 0;
3090 }
3091
3092 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3093 {
3094 const char *modmagic = get_modinfo(info, "vermagic");
3095 int err;
3096
3097 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3098 modmagic = NULL;
3099
3100 /* This is allowed: modprobe --force will invalidate it. */
3101 if (!modmagic) {
3102 err = try_to_force_load(mod, "bad vermagic");
3103 if (err)
3104 return err;
3105 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3106 pr_err("%s: version magic '%s' should be '%s'\n",
3107 info->name, modmagic, vermagic);
3108 return -ENOEXEC;
3109 }
3110
3111 if (!get_modinfo(info, "intree")) {
3112 if (!test_taint(TAINT_OOT_MODULE))
3113 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3114 mod->name);
3115 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3116 }
3117
3118 check_modinfo_retpoline(mod, info);
3119
3120 if (get_modinfo(info, "staging")) {
3121 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3122 pr_warn("%s: module is from the staging directory, the quality "
3123 "is unknown, you have been warned.\n", mod->name);
3124 }
3125
3126 err = check_modinfo_livepatch(mod, info);
3127 if (err)
3128 return err;
3129
3130 /* Set up license info based on the info section */
3131 set_license(mod, get_modinfo(info, "license"));
3132
3133 return 0;
3134 }
3135
3136 static int find_module_sections(struct module *mod, struct load_info *info)
3137 {
3138 mod->kp = section_objs(info, "__param",
3139 sizeof(*mod->kp), &mod->num_kp);
3140 mod->syms = section_objs(info, "__ksymtab",
3141 sizeof(*mod->syms), &mod->num_syms);
3142 mod->crcs = section_addr(info, "__kcrctab");
3143 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3144 sizeof(*mod->gpl_syms),
3145 &mod->num_gpl_syms);
3146 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3147 mod->gpl_future_syms = section_objs(info,
3148 "__ksymtab_gpl_future",
3149 sizeof(*mod->gpl_future_syms),
3150 &mod->num_gpl_future_syms);
3151 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3152
3153 #ifdef CONFIG_UNUSED_SYMBOLS
3154 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3155 sizeof(*mod->unused_syms),
3156 &mod->num_unused_syms);
3157 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3158 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3159 sizeof(*mod->unused_gpl_syms),
3160 &mod->num_unused_gpl_syms);
3161 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3162 #endif
3163 #ifdef CONFIG_CONSTRUCTORS
3164 mod->ctors = section_objs(info, ".ctors",
3165 sizeof(*mod->ctors), &mod->num_ctors);
3166 if (!mod->ctors)
3167 mod->ctors = section_objs(info, ".init_array",
3168 sizeof(*mod->ctors), &mod->num_ctors);
3169 else if (find_sec(info, ".init_array")) {
3170 /*
3171 * This shouldn't happen with same compiler and binutils
3172 * building all parts of the module.
3173 */
3174 pr_warn("%s: has both .ctors and .init_array.\n",
3175 mod->name);
3176 return -EINVAL;
3177 }
3178 #endif
3179
3180 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3181 &mod->noinstr_text_size);
3182
3183 #ifdef CONFIG_TRACEPOINTS
3184 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3185 sizeof(*mod->tracepoints_ptrs),
3186 &mod->num_tracepoints);
3187 #endif
3188 #ifdef CONFIG_TREE_SRCU
3189 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3190 sizeof(*mod->srcu_struct_ptrs),
3191 &mod->num_srcu_structs);
3192 #endif
3193 #ifdef CONFIG_BPF_EVENTS
3194 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3195 sizeof(*mod->bpf_raw_events),
3196 &mod->num_bpf_raw_events);
3197 #endif
3198 #ifdef CONFIG_JUMP_LABEL
3199 mod->jump_entries = section_objs(info, "__jump_table",
3200 sizeof(*mod->jump_entries),
3201 &mod->num_jump_entries);
3202 #endif
3203 #ifdef CONFIG_EVENT_TRACING
3204 mod->trace_events = section_objs(info, "_ftrace_events",
3205 sizeof(*mod->trace_events),
3206 &mod->num_trace_events);
3207 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3208 sizeof(*mod->trace_evals),
3209 &mod->num_trace_evals);
3210 #endif
3211 #ifdef CONFIG_TRACING
3212 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3213 sizeof(*mod->trace_bprintk_fmt_start),
3214 &mod->num_trace_bprintk_fmt);
3215 #endif
3216 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3217 /* sechdrs[0].sh_size is always zero */
3218 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3219 sizeof(*mod->ftrace_callsites),
3220 &mod->num_ftrace_callsites);
3221 #endif
3222 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3223 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3224 sizeof(*mod->ei_funcs),
3225 &mod->num_ei_funcs);
3226 #endif
3227 #ifdef CONFIG_KPROBES
3228 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3229 &mod->kprobes_text_size);
3230 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3231 sizeof(unsigned long),
3232 &mod->num_kprobe_blacklist);
3233 #endif
3234 mod->extable = section_objs(info, "__ex_table",
3235 sizeof(*mod->extable), &mod->num_exentries);
3236
3237 if (section_addr(info, "__obsparm"))
3238 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3239
3240 info->debug = section_objs(info, "__dyndbg",
3241 sizeof(*info->debug), &info->num_debug);
3242
3243 return 0;
3244 }
3245
3246 static int move_module(struct module *mod, struct load_info *info)
3247 {
3248 int i;
3249 void *ptr;
3250
3251 /* Do the allocs. */
3252 ptr = module_alloc(mod->core_layout.size);
3253 /*
3254 * The pointer to this block is stored in the module structure
3255 * which is inside the block. Just mark it as not being a
3256 * leak.
3257 */
3258 kmemleak_not_leak(ptr);
3259 if (!ptr)
3260 return -ENOMEM;
3261
3262 memset(ptr, 0, mod->core_layout.size);
3263 mod->core_layout.base = ptr;
3264
3265 if (mod->init_layout.size) {
3266 ptr = module_alloc(mod->init_layout.size);
3267 /*
3268 * The pointer to this block is stored in the module structure
3269 * which is inside the block. This block doesn't need to be
3270 * scanned as it contains data and code that will be freed
3271 * after the module is initialized.
3272 */
3273 kmemleak_ignore(ptr);
3274 if (!ptr) {
3275 module_memfree(mod->core_layout.base);
3276 return -ENOMEM;
3277 }
3278 memset(ptr, 0, mod->init_layout.size);
3279 mod->init_layout.base = ptr;
3280 } else
3281 mod->init_layout.base = NULL;
3282
3283 /* Transfer each section which specifies SHF_ALLOC */
3284 pr_debug("final section addresses:\n");
3285 for (i = 0; i < info->hdr->e_shnum; i++) {
3286 void *dest;
3287 Elf_Shdr *shdr = &info->sechdrs[i];
3288
3289 if (!(shdr->sh_flags & SHF_ALLOC))
3290 continue;
3291
3292 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3293 dest = mod->init_layout.base
3294 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3295 else
3296 dest = mod->core_layout.base + shdr->sh_entsize;
3297
3298 if (shdr->sh_type != SHT_NOBITS)
3299 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3300 /* Update sh_addr to point to copy in image. */
3301 shdr->sh_addr = (unsigned long)dest;
3302 pr_debug("\t0x%lx %s\n",
3303 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3304 }
3305
3306 return 0;
3307 }
3308
3309 static int check_module_license_and_versions(struct module *mod)
3310 {
3311 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3312
3313 /*
3314 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3315 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3316 * using GPL-only symbols it needs.
3317 */
3318 if (strcmp(mod->name, "ndiswrapper") == 0)
3319 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3320
3321 /* driverloader was caught wrongly pretending to be under GPL */
3322 if (strcmp(mod->name, "driverloader") == 0)
3323 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3324 LOCKDEP_NOW_UNRELIABLE);
3325
3326 /* lve claims to be GPL but upstream won't provide source */
3327 if (strcmp(mod->name, "lve") == 0)
3328 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3329 LOCKDEP_NOW_UNRELIABLE);
3330
3331 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3332 pr_warn("%s: module license taints kernel.\n", mod->name);
3333
3334 #ifdef CONFIG_MODVERSIONS
3335 if ((mod->num_syms && !mod->crcs)
3336 || (mod->num_gpl_syms && !mod->gpl_crcs)
3337 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3338 #ifdef CONFIG_UNUSED_SYMBOLS
3339 || (mod->num_unused_syms && !mod->unused_crcs)
3340 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3341 #endif
3342 ) {
3343 return try_to_force_load(mod,
3344 "no versions for exported symbols");
3345 }
3346 #endif
3347 return 0;
3348 }
3349
3350 static void flush_module_icache(const struct module *mod)
3351 {
3352 /*
3353 * Flush the instruction cache, since we've played with text.
3354 * Do it before processing of module parameters, so the module
3355 * can provide parameter accessor functions of its own.
3356 */
3357 if (mod->init_layout.base)
3358 flush_icache_range((unsigned long)mod->init_layout.base,
3359 (unsigned long)mod->init_layout.base
3360 + mod->init_layout.size);
3361 flush_icache_range((unsigned long)mod->core_layout.base,
3362 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3363 }
3364
3365 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3366 Elf_Shdr *sechdrs,
3367 char *secstrings,
3368 struct module *mod)
3369 {
3370 return 0;
3371 }
3372
3373 /* module_blacklist is a comma-separated list of module names */
3374 static char *module_blacklist;
3375 static bool blacklisted(const char *module_name)
3376 {
3377 const char *p;
3378 size_t len;
3379
3380 if (!module_blacklist)
3381 return false;
3382
3383 for (p = module_blacklist; *p; p += len) {
3384 len = strcspn(p, ",");
3385 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3386 return true;
3387 if (p[len] == ',')
3388 len++;
3389 }
3390 return false;
3391 }
3392 core_param(module_blacklist, module_blacklist, charp, 0400);
3393
3394 static struct module *layout_and_allocate(struct load_info *info, int flags)
3395 {
3396 struct module *mod;
3397 unsigned int ndx;
3398 int err;
3399
3400 err = check_modinfo(info->mod, info, flags);
3401 if (err)
3402 return ERR_PTR(err);
3403
3404 /* Allow arches to frob section contents and sizes. */
3405 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3406 info->secstrings, info->mod);
3407 if (err < 0)
3408 return ERR_PTR(err);
3409
3410 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3411 info->secstrings, info->mod);
3412 if (err < 0)
3413 return ERR_PTR(err);
3414
3415 /* We will do a special allocation for per-cpu sections later. */
3416 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3417
3418 /*
3419 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3420 * layout_sections() can put it in the right place.
3421 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3422 */
3423 ndx = find_sec(info, ".data..ro_after_init");
3424 if (ndx)
3425 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3426 /*
3427 * Mark the __jump_table section as ro_after_init as well: these data
3428 * structures are never modified, with the exception of entries that
3429 * refer to code in the __init section, which are annotated as such
3430 * at module load time.
3431 */
3432 ndx = find_sec(info, "__jump_table");
3433 if (ndx)
3434 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3435
3436 /* Determine total sizes, and put offsets in sh_entsize. For now
3437 this is done generically; there doesn't appear to be any
3438 special cases for the architectures. */
3439 layout_sections(info->mod, info);
3440 layout_symtab(info->mod, info);
3441
3442 /* Allocate and move to the final place */
3443 err = move_module(info->mod, info);
3444 if (err)
3445 return ERR_PTR(err);
3446
3447 /* Module has been copied to its final place now: return it. */
3448 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3449 kmemleak_load_module(mod, info);
3450 return mod;
3451 }
3452
3453 /* mod is no longer valid after this! */
3454 static void module_deallocate(struct module *mod, struct load_info *info)
3455 {
3456 percpu_modfree(mod);
3457 module_arch_freeing_init(mod);
3458 module_memfree(mod->init_layout.base);
3459 module_memfree(mod->core_layout.base);
3460 }
3461
3462 int __weak module_finalize(const Elf_Ehdr *hdr,
3463 const Elf_Shdr *sechdrs,
3464 struct module *me)
3465 {
3466 return 0;
3467 }
3468
3469 static int post_relocation(struct module *mod, const struct load_info *info)
3470 {
3471 /* Sort exception table now relocations are done. */
3472 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3473
3474 /* Copy relocated percpu area over. */
3475 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3476 info->sechdrs[info->index.pcpu].sh_size);
3477
3478 /* Setup kallsyms-specific fields. */
3479 add_kallsyms(mod, info);
3480
3481 /* Arch-specific module finalizing. */
3482 return module_finalize(info->hdr, info->sechdrs, mod);
3483 }
3484
3485 /* Is this module of this name done loading? No locks held. */
3486 static bool finished_loading(const char *name)
3487 {
3488 struct module *mod;
3489 bool ret;
3490
3491 /*
3492 * The module_mutex should not be a heavily contended lock;
3493 * if we get the occasional sleep here, we'll go an extra iteration
3494 * in the wait_event_interruptible(), which is harmless.
3495 */
3496 sched_annotate_sleep();
3497 mutex_lock(&module_mutex);
3498 mod = find_module_all(name, strlen(name), true);
3499 ret = !mod || mod->state == MODULE_STATE_LIVE;
3500 mutex_unlock(&module_mutex);
3501
3502 return ret;
3503 }
3504
3505 /* Call module constructors. */
3506 static void do_mod_ctors(struct module *mod)
3507 {
3508 #ifdef CONFIG_CONSTRUCTORS
3509 unsigned long i;
3510
3511 for (i = 0; i < mod->num_ctors; i++)
3512 mod->ctors[i]();
3513 #endif
3514 }
3515
3516 /* For freeing module_init on success, in case kallsyms traversing */
3517 struct mod_initfree {
3518 struct llist_node node;
3519 void *module_init;
3520 };
3521
3522 static void do_free_init(struct work_struct *w)
3523 {
3524 struct llist_node *pos, *n, *list;
3525 struct mod_initfree *initfree;
3526
3527 list = llist_del_all(&init_free_list);
3528
3529 synchronize_rcu();
3530
3531 llist_for_each_safe(pos, n, list) {
3532 initfree = container_of(pos, struct mod_initfree, node);
3533 module_memfree(initfree->module_init);
3534 kfree(initfree);
3535 }
3536 }
3537
3538 static int __init modules_wq_init(void)
3539 {
3540 INIT_WORK(&init_free_wq, do_free_init);
3541 init_llist_head(&init_free_list);
3542 return 0;
3543 }
3544 module_init(modules_wq_init);
3545
3546 /*
3547 * This is where the real work happens.
3548 *
3549 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3550 * helper command 'lx-symbols'.
3551 */
3552 static noinline int do_init_module(struct module *mod)
3553 {
3554 int ret = 0;
3555 struct mod_initfree *freeinit;
3556
3557 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3558 if (!freeinit) {
3559 ret = -ENOMEM;
3560 goto fail;
3561 }
3562 freeinit->module_init = mod->init_layout.base;
3563
3564 /*
3565 * We want to find out whether @mod uses async during init. Clear
3566 * PF_USED_ASYNC. async_schedule*() will set it.
3567 */
3568 current->flags &= ~PF_USED_ASYNC;
3569
3570 do_mod_ctors(mod);
3571 /* Start the module */
3572 if (mod->init != NULL)
3573 ret = do_one_initcall(mod->init);
3574 if (ret < 0) {
3575 goto fail_free_freeinit;
3576 }
3577 if (ret > 0) {
3578 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3579 "follow 0/-E convention\n"
3580 "%s: loading module anyway...\n",
3581 __func__, mod->name, ret, __func__);
3582 dump_stack();
3583 }
3584
3585 /* Now it's a first class citizen! */
3586 mod->state = MODULE_STATE_LIVE;
3587 blocking_notifier_call_chain(&module_notify_list,
3588 MODULE_STATE_LIVE, mod);
3589
3590 /*
3591 * We need to finish all async code before the module init sequence
3592 * is done. This has potential to deadlock. For example, a newly
3593 * detected block device can trigger request_module() of the
3594 * default iosched from async probing task. Once userland helper
3595 * reaches here, async_synchronize_full() will wait on the async
3596 * task waiting on request_module() and deadlock.
3597 *
3598 * This deadlock is avoided by perfomring async_synchronize_full()
3599 * iff module init queued any async jobs. This isn't a full
3600 * solution as it will deadlock the same if module loading from
3601 * async jobs nests more than once; however, due to the various
3602 * constraints, this hack seems to be the best option for now.
3603 * Please refer to the following thread for details.
3604 *
3605 * http://thread.gmane.org/gmane.linux.kernel/1420814
3606 */
3607 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3608 async_synchronize_full();
3609
3610 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3611 mod->init_layout.size);
3612 mutex_lock(&module_mutex);
3613 /* Drop initial reference. */
3614 module_put(mod);
3615 trim_init_extable(mod);
3616 #ifdef CONFIG_KALLSYMS
3617 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3618 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3619 #endif
3620 module_enable_ro(mod, true);
3621 mod_tree_remove_init(mod);
3622 module_arch_freeing_init(mod);
3623 mod->init_layout.base = NULL;
3624 mod->init_layout.size = 0;
3625 mod->init_layout.ro_size = 0;
3626 mod->init_layout.ro_after_init_size = 0;
3627 mod->init_layout.text_size = 0;
3628 /*
3629 * We want to free module_init, but be aware that kallsyms may be
3630 * walking this with preempt disabled. In all the failure paths, we
3631 * call synchronize_rcu(), but we don't want to slow down the success
3632 * path. module_memfree() cannot be called in an interrupt, so do the
3633 * work and call synchronize_rcu() in a work queue.
3634 *
3635 * Note that module_alloc() on most architectures creates W+X page
3636 * mappings which won't be cleaned up until do_free_init() runs. Any
3637 * code such as mark_rodata_ro() which depends on those mappings to
3638 * be cleaned up needs to sync with the queued work - ie
3639 * rcu_barrier()
3640 */
3641 if (llist_add(&freeinit->node, &init_free_list))
3642 schedule_work(&init_free_wq);
3643
3644 mutex_unlock(&module_mutex);
3645 wake_up_all(&module_wq);
3646
3647 return 0;
3648
3649 fail_free_freeinit:
3650 kfree(freeinit);
3651 fail:
3652 /* Try to protect us from buggy refcounters. */
3653 mod->state = MODULE_STATE_GOING;
3654 synchronize_rcu();
3655 module_put(mod);
3656 blocking_notifier_call_chain(&module_notify_list,
3657 MODULE_STATE_GOING, mod);
3658 klp_module_going(mod);
3659 ftrace_release_mod(mod);
3660 free_module(mod);
3661 wake_up_all(&module_wq);
3662 return ret;
3663 }
3664
3665 static int may_init_module(void)
3666 {
3667 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3668 return -EPERM;
3669
3670 return 0;
3671 }
3672
3673 /*
3674 * We try to place it in the list now to make sure it's unique before
3675 * we dedicate too many resources. In particular, temporary percpu
3676 * memory exhaustion.
3677 */
3678 static int add_unformed_module(struct module *mod)
3679 {
3680 int err;
3681 struct module *old;
3682
3683 mod->state = MODULE_STATE_UNFORMED;
3684
3685 again:
3686 mutex_lock(&module_mutex);
3687 old = find_module_all(mod->name, strlen(mod->name), true);
3688 if (old != NULL) {
3689 if (old->state != MODULE_STATE_LIVE) {
3690 /* Wait in case it fails to load. */
3691 mutex_unlock(&module_mutex);
3692 err = wait_event_interruptible(module_wq,
3693 finished_loading(mod->name));
3694 if (err)
3695 goto out_unlocked;
3696 goto again;
3697 }
3698 err = -EEXIST;
3699 goto out;
3700 }
3701 mod_update_bounds(mod);
3702 list_add_rcu(&mod->list, &modules);
3703 mod_tree_insert(mod);
3704 err = 0;
3705
3706 out:
3707 mutex_unlock(&module_mutex);
3708 out_unlocked:
3709 return err;
3710 }
3711
3712 static int complete_formation(struct module *mod, struct load_info *info)
3713 {
3714 int err;
3715
3716 mutex_lock(&module_mutex);
3717
3718 /* Find duplicate symbols (must be called under lock). */
3719 err = verify_exported_symbols(mod);
3720 if (err < 0)
3721 goto out;
3722
3723 /* This relies on module_mutex for list integrity. */
3724 module_bug_finalize(info->hdr, info->sechdrs, mod);
3725
3726 module_enable_ro(mod, false);
3727 module_enable_nx(mod);
3728 module_enable_x(mod);
3729
3730 /* Mark state as coming so strong_try_module_get() ignores us,
3731 * but kallsyms etc. can see us. */
3732 mod->state = MODULE_STATE_COMING;
3733 mutex_unlock(&module_mutex);
3734
3735 return 0;
3736
3737 out:
3738 mutex_unlock(&module_mutex);
3739 return err;
3740 }
3741
3742 static int prepare_coming_module(struct module *mod)
3743 {
3744 int err;
3745
3746 ftrace_module_enable(mod);
3747 err = klp_module_coming(mod);
3748 if (err)
3749 return err;
3750
3751 blocking_notifier_call_chain(&module_notify_list,
3752 MODULE_STATE_COMING, mod);
3753 return 0;
3754 }
3755
3756 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3757 void *arg)
3758 {
3759 struct module *mod = arg;
3760 int ret;
3761
3762 if (strcmp(param, "async_probe") == 0) {
3763 mod->async_probe_requested = true;
3764 return 0;
3765 }
3766
3767 /* Check for magic 'dyndbg' arg */
3768 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3769 if (ret != 0)
3770 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3771 return 0;
3772 }
3773
3774 /* Allocate and load the module: note that size of section 0 is always
3775 zero, and we rely on this for optional sections. */
3776 static int load_module(struct load_info *info, const char __user *uargs,
3777 int flags)
3778 {
3779 struct module *mod;
3780 long err = 0;
3781 char *after_dashes;
3782
3783 err = elf_header_check(info);
3784 if (err)
3785 goto free_copy;
3786
3787 err = setup_load_info(info, flags);
3788 if (err)
3789 goto free_copy;
3790
3791 if (blacklisted(info->name)) {
3792 err = -EPERM;
3793 goto free_copy;
3794 }
3795
3796 err = module_sig_check(info, flags);
3797 if (err)
3798 goto free_copy;
3799
3800 err = rewrite_section_headers(info, flags);
3801 if (err)
3802 goto free_copy;
3803
3804 /* Check module struct version now, before we try to use module. */
3805 if (!check_modstruct_version(info, info->mod)) {
3806 err = -ENOEXEC;
3807 goto free_copy;
3808 }
3809
3810 /* Figure out module layout, and allocate all the memory. */
3811 mod = layout_and_allocate(info, flags);
3812 if (IS_ERR(mod)) {
3813 err = PTR_ERR(mod);
3814 goto free_copy;
3815 }
3816
3817 audit_log_kern_module(mod->name);
3818
3819 /* Reserve our place in the list. */
3820 err = add_unformed_module(mod);
3821 if (err)
3822 goto free_module;
3823
3824 #ifdef CONFIG_MODULE_SIG
3825 mod->sig_ok = info->sig_ok;
3826 if (!mod->sig_ok) {
3827 pr_notice_once("%s: module verification failed: signature "
3828 "and/or required key missing - tainting "
3829 "kernel\n", mod->name);
3830 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3831 }
3832 #endif
3833
3834 /* To avoid stressing percpu allocator, do this once we're unique. */
3835 err = percpu_modalloc(mod, info);
3836 if (err)
3837 goto unlink_mod;
3838
3839 /* Now module is in final location, initialize linked lists, etc. */
3840 err = module_unload_init(mod);
3841 if (err)
3842 goto unlink_mod;
3843
3844 init_param_lock(mod);
3845
3846 /* Now we've got everything in the final locations, we can
3847 * find optional sections. */
3848 err = find_module_sections(mod, info);
3849 if (err)
3850 goto free_unload;
3851
3852 err = check_module_license_and_versions(mod);
3853 if (err)
3854 goto free_unload;
3855
3856 /* Set up MODINFO_ATTR fields */
3857 setup_modinfo(mod, info);
3858
3859 /* Fix up syms, so that st_value is a pointer to location. */
3860 err = simplify_symbols(mod, info);
3861 if (err < 0)
3862 goto free_modinfo;
3863
3864 err = apply_relocations(mod, info);
3865 if (err < 0)
3866 goto free_modinfo;
3867
3868 err = post_relocation(mod, info);
3869 if (err < 0)
3870 goto free_modinfo;
3871
3872 flush_module_icache(mod);
3873
3874 /* Now copy in args */
3875 mod->args = strndup_user(uargs, ~0UL >> 1);
3876 if (IS_ERR(mod->args)) {
3877 err = PTR_ERR(mod->args);
3878 goto free_arch_cleanup;
3879 }
3880
3881 dynamic_debug_setup(mod, info->debug, info->num_debug);
3882
3883 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3884 ftrace_module_init(mod);
3885
3886 /* Finally it's fully formed, ready to start executing. */
3887 err = complete_formation(mod, info);
3888 if (err)
3889 goto ddebug_cleanup;
3890
3891 err = prepare_coming_module(mod);
3892 if (err)
3893 goto bug_cleanup;
3894
3895 /* Module is ready to execute: parsing args may do that. */
3896 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3897 -32768, 32767, mod,
3898 unknown_module_param_cb);
3899 if (IS_ERR(after_dashes)) {
3900 err = PTR_ERR(after_dashes);
3901 goto coming_cleanup;
3902 } else if (after_dashes) {
3903 pr_warn("%s: parameters '%s' after `--' ignored\n",
3904 mod->name, after_dashes);
3905 }
3906
3907 /* Link in to sysfs. */
3908 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3909 if (err < 0)
3910 goto coming_cleanup;
3911
3912 if (is_livepatch_module(mod)) {
3913 err = copy_module_elf(mod, info);
3914 if (err < 0)
3915 goto sysfs_cleanup;
3916 }
3917
3918 /* Get rid of temporary copy. */
3919 free_copy(info);
3920
3921 /* Done! */
3922 trace_module_load(mod);
3923
3924 return do_init_module(mod);
3925
3926 sysfs_cleanup:
3927 mod_sysfs_teardown(mod);
3928 coming_cleanup:
3929 mod->state = MODULE_STATE_GOING;
3930 destroy_params(mod->kp, mod->num_kp);
3931 blocking_notifier_call_chain(&module_notify_list,
3932 MODULE_STATE_GOING, mod);
3933 klp_module_going(mod);
3934 bug_cleanup:
3935 /* module_bug_cleanup needs module_mutex protection */
3936 mutex_lock(&module_mutex);
3937 module_bug_cleanup(mod);
3938 mutex_unlock(&module_mutex);
3939
3940 ddebug_cleanup:
3941 ftrace_release_mod(mod);
3942 dynamic_debug_remove(mod, info->debug);
3943 synchronize_rcu();
3944 kfree(mod->args);
3945 free_arch_cleanup:
3946 module_arch_cleanup(mod);
3947 free_modinfo:
3948 free_modinfo(mod);
3949 free_unload:
3950 module_unload_free(mod);
3951 unlink_mod:
3952 mutex_lock(&module_mutex);
3953 /* Unlink carefully: kallsyms could be walking list. */
3954 list_del_rcu(&mod->list);
3955 mod_tree_remove(mod);
3956 wake_up_all(&module_wq);
3957 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3958 synchronize_rcu();
3959 mutex_unlock(&module_mutex);
3960 free_module:
3961 /* Free lock-classes; relies on the preceding sync_rcu() */
3962 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3963
3964 module_deallocate(mod, info);
3965 free_copy:
3966 free_copy(info);
3967 return err;
3968 }
3969
3970 SYSCALL_DEFINE3(init_module, void __user *, umod,
3971 unsigned long, len, const char __user *, uargs)
3972 {
3973 int err;
3974 struct load_info info = { };
3975
3976 err = may_init_module();
3977 if (err)
3978 return err;
3979
3980 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3981 umod, len, uargs);
3982
3983 err = copy_module_from_user(umod, len, &info);
3984 if (err)
3985 return err;
3986
3987 return load_module(&info, uargs, 0);
3988 }
3989
3990 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3991 {
3992 struct load_info info = { };
3993 loff_t size;
3994 void *hdr;
3995 int err;
3996
3997 err = may_init_module();
3998 if (err)
3999 return err;
4000
4001 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4002
4003 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4004 |MODULE_INIT_IGNORE_VERMAGIC))
4005 return -EINVAL;
4006
4007 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4008 READING_MODULE);
4009 if (err)
4010 return err;
4011 info.hdr = hdr;
4012 info.len = size;
4013
4014 return load_module(&info, uargs, flags);
4015 }
4016
4017 static inline int within(unsigned long addr, void *start, unsigned long size)
4018 {
4019 return ((void *)addr >= start && (void *)addr < start + size);
4020 }
4021
4022 #ifdef CONFIG_KALLSYMS
4023 /*
4024 * This ignores the intensely annoying "mapping symbols" found
4025 * in ARM ELF files: $a, $t and $d.
4026 */
4027 static inline int is_arm_mapping_symbol(const char *str)
4028 {
4029 if (str[0] == '.' && str[1] == 'L')
4030 return true;
4031 return str[0] == '$' && strchr("axtd", str[1])
4032 && (str[2] == '\0' || str[2] == '.');
4033 }
4034
4035 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4036 {
4037 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4038 }
4039
4040 /*
4041 * Given a module and address, find the corresponding symbol and return its name
4042 * while providing its size and offset if needed.
4043 */
4044 static const char *find_kallsyms_symbol(struct module *mod,
4045 unsigned long addr,
4046 unsigned long *size,
4047 unsigned long *offset)
4048 {
4049 unsigned int i, best = 0;
4050 unsigned long nextval, bestval;
4051 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4052
4053 /* At worse, next value is at end of module */
4054 if (within_module_init(addr, mod))
4055 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4056 else
4057 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4058
4059 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4060
4061 /* Scan for closest preceding symbol, and next symbol. (ELF
4062 starts real symbols at 1). */
4063 for (i = 1; i < kallsyms->num_symtab; i++) {
4064 const Elf_Sym *sym = &kallsyms->symtab[i];
4065 unsigned long thisval = kallsyms_symbol_value(sym);
4066
4067 if (sym->st_shndx == SHN_UNDEF)
4068 continue;
4069
4070 /* We ignore unnamed symbols: they're uninformative
4071 * and inserted at a whim. */
4072 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4073 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4074 continue;
4075
4076 if (thisval <= addr && thisval > bestval) {
4077 best = i;
4078 bestval = thisval;
4079 }
4080 if (thisval > addr && thisval < nextval)
4081 nextval = thisval;
4082 }
4083
4084 if (!best)
4085 return NULL;
4086
4087 if (size)
4088 *size = nextval - bestval;
4089 if (offset)
4090 *offset = addr - bestval;
4091
4092 return kallsyms_symbol_name(kallsyms, best);
4093 }
4094
4095 void * __weak dereference_module_function_descriptor(struct module *mod,
4096 void *ptr)
4097 {
4098 return ptr;
4099 }
4100
4101 /* For kallsyms to ask for address resolution. NULL means not found. Careful
4102 * not to lock to avoid deadlock on oopses, simply disable preemption. */
4103 const char *module_address_lookup(unsigned long addr,
4104 unsigned long *size,
4105 unsigned long *offset,
4106 char **modname,
4107 char *namebuf)
4108 {
4109 const char *ret = NULL;
4110 struct module *mod;
4111
4112 preempt_disable();
4113 mod = __module_address(addr);
4114 if (mod) {
4115 if (modname)
4116 *modname = mod->name;
4117
4118 ret = find_kallsyms_symbol(mod, addr, size, offset);
4119 }
4120 /* Make a copy in here where it's safe */
4121 if (ret) {
4122 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4123 ret = namebuf;
4124 }
4125 preempt_enable();
4126
4127 return ret;
4128 }
4129
4130 int lookup_module_symbol_name(unsigned long addr, char *symname)
4131 {
4132 struct module *mod;
4133
4134 preempt_disable();
4135 list_for_each_entry_rcu(mod, &modules, list) {
4136 if (mod->state == MODULE_STATE_UNFORMED)
4137 continue;
4138 if (within_module(addr, mod)) {
4139 const char *sym;
4140
4141 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4142 if (!sym)
4143 goto out;
4144
4145 strlcpy(symname, sym, KSYM_NAME_LEN);
4146 preempt_enable();
4147 return 0;
4148 }
4149 }
4150 out:
4151 preempt_enable();
4152 return -ERANGE;
4153 }
4154
4155 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4156 unsigned long *offset, char *modname, char *name)
4157 {
4158 struct module *mod;
4159
4160 preempt_disable();
4161 list_for_each_entry_rcu(mod, &modules, list) {
4162 if (mod->state == MODULE_STATE_UNFORMED)
4163 continue;
4164 if (within_module(addr, mod)) {
4165 const char *sym;
4166
4167 sym = find_kallsyms_symbol(mod, addr, size, offset);
4168 if (!sym)
4169 goto out;
4170 if (modname)
4171 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4172 if (name)
4173 strlcpy(name, sym, KSYM_NAME_LEN);
4174 preempt_enable();
4175 return 0;
4176 }
4177 }
4178 out:
4179 preempt_enable();
4180 return -ERANGE;
4181 }
4182
4183 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4184 char *name, char *module_name, int *exported)
4185 {
4186 struct module *mod;
4187
4188 preempt_disable();
4189 list_for_each_entry_rcu(mod, &modules, list) {
4190 struct mod_kallsyms *kallsyms;
4191
4192 if (mod->state == MODULE_STATE_UNFORMED)
4193 continue;
4194 kallsyms = rcu_dereference_sched(mod->kallsyms);
4195 if (symnum < kallsyms->num_symtab) {
4196 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4197
4198 *value = kallsyms_symbol_value(sym);
4199 *type = kallsyms->typetab[symnum];
4200 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4201 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4202 *exported = is_exported(name, *value, mod);
4203 preempt_enable();
4204 return 0;
4205 }
4206 symnum -= kallsyms->num_symtab;
4207 }
4208 preempt_enable();
4209 return -ERANGE;
4210 }
4211
4212 /* Given a module and name of symbol, find and return the symbol's value */
4213 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4214 {
4215 unsigned int i;
4216 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4217
4218 for (i = 0; i < kallsyms->num_symtab; i++) {
4219 const Elf_Sym *sym = &kallsyms->symtab[i];
4220
4221 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4222 sym->st_shndx != SHN_UNDEF)
4223 return kallsyms_symbol_value(sym);
4224 }
4225 return 0;
4226 }
4227
4228 /* Look for this name: can be of form module:name. */
4229 unsigned long module_kallsyms_lookup_name(const char *name)
4230 {
4231 struct module *mod;
4232 char *colon;
4233 unsigned long ret = 0;
4234
4235 /* Don't lock: we're in enough trouble already. */
4236 preempt_disable();
4237 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4238 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4239 ret = find_kallsyms_symbol_value(mod, colon+1);
4240 } else {
4241 list_for_each_entry_rcu(mod, &modules, list) {
4242 if (mod->state == MODULE_STATE_UNFORMED)
4243 continue;
4244 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4245 break;
4246 }
4247 }
4248 preempt_enable();
4249 return ret;
4250 }
4251
4252 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4253 struct module *, unsigned long),
4254 void *data)
4255 {
4256 struct module *mod;
4257 unsigned int i;
4258 int ret;
4259
4260 module_assert_mutex();
4261
4262 list_for_each_entry(mod, &modules, list) {
4263 /* We hold module_mutex: no need for rcu_dereference_sched */
4264 struct mod_kallsyms *kallsyms = mod->kallsyms;
4265
4266 if (mod->state == MODULE_STATE_UNFORMED)
4267 continue;
4268 for (i = 0; i < kallsyms->num_symtab; i++) {
4269 const Elf_Sym *sym = &kallsyms->symtab[i];
4270
4271 if (sym->st_shndx == SHN_UNDEF)
4272 continue;
4273
4274 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4275 mod, kallsyms_symbol_value(sym));
4276 if (ret != 0)
4277 return ret;
4278 }
4279 }
4280 return 0;
4281 }
4282 #endif /* CONFIG_KALLSYMS */
4283
4284 /* Maximum number of characters written by module_flags() */
4285 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4286
4287 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4288 static char *module_flags(struct module *mod, char *buf)
4289 {
4290 int bx = 0;
4291
4292 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4293 if (mod->taints ||
4294 mod->state == MODULE_STATE_GOING ||
4295 mod->state == MODULE_STATE_COMING) {
4296 buf[bx++] = '(';
4297 bx += module_flags_taint(mod, buf + bx);
4298 /* Show a - for module-is-being-unloaded */
4299 if (mod->state == MODULE_STATE_GOING)
4300 buf[bx++] = '-';
4301 /* Show a + for module-is-being-loaded */
4302 if (mod->state == MODULE_STATE_COMING)
4303 buf[bx++] = '+';
4304 buf[bx++] = ')';
4305 }
4306 buf[bx] = '\0';
4307
4308 return buf;
4309 }
4310
4311 #ifdef CONFIG_PROC_FS
4312 /* Called by the /proc file system to return a list of modules. */
4313 static void *m_start(struct seq_file *m, loff_t *pos)
4314 {
4315 mutex_lock(&module_mutex);
4316 return seq_list_start(&modules, *pos);
4317 }
4318
4319 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4320 {
4321 return seq_list_next(p, &modules, pos);
4322 }
4323
4324 static void m_stop(struct seq_file *m, void *p)
4325 {
4326 mutex_unlock(&module_mutex);
4327 }
4328
4329 static int m_show(struct seq_file *m, void *p)
4330 {
4331 struct module *mod = list_entry(p, struct module, list);
4332 char buf[MODULE_FLAGS_BUF_SIZE];
4333 void *value;
4334
4335 /* We always ignore unformed modules. */
4336 if (mod->state == MODULE_STATE_UNFORMED)
4337 return 0;
4338
4339 seq_printf(m, "%s %u",
4340 mod->name, mod->init_layout.size + mod->core_layout.size);
4341 print_unload_info(m, mod);
4342
4343 /* Informative for users. */
4344 seq_printf(m, " %s",
4345 mod->state == MODULE_STATE_GOING ? "Unloading" :
4346 mod->state == MODULE_STATE_COMING ? "Loading" :
4347 "Live");
4348 /* Used by oprofile and other similar tools. */
4349 value = m->private ? NULL : mod->core_layout.base;
4350 seq_printf(m, " 0x%px", value);
4351
4352 /* Taints info */
4353 if (mod->taints)
4354 seq_printf(m, " %s", module_flags(mod, buf));
4355
4356 seq_puts(m, "\n");
4357 return 0;
4358 }
4359
4360 /* Format: modulename size refcount deps address
4361
4362 Where refcount is a number or -, and deps is a comma-separated list
4363 of depends or -.
4364 */
4365 static const struct seq_operations modules_op = {
4366 .start = m_start,
4367 .next = m_next,
4368 .stop = m_stop,
4369 .show = m_show
4370 };
4371
4372 /*
4373 * This also sets the "private" pointer to non-NULL if the
4374 * kernel pointers should be hidden (so you can just test
4375 * "m->private" to see if you should keep the values private).
4376 *
4377 * We use the same logic as for /proc/kallsyms.
4378 */
4379 static int modules_open(struct inode *inode, struct file *file)
4380 {
4381 int err = seq_open(file, &modules_op);
4382
4383 if (!err) {
4384 struct seq_file *m = file->private_data;
4385 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4386 }
4387
4388 return err;
4389 }
4390
4391 static const struct proc_ops modules_proc_ops = {
4392 .proc_flags = PROC_ENTRY_PERMANENT,
4393 .proc_open = modules_open,
4394 .proc_read = seq_read,
4395 .proc_lseek = seq_lseek,
4396 .proc_release = seq_release,
4397 };
4398
4399 static int __init proc_modules_init(void)
4400 {
4401 proc_create("modules", 0, NULL, &modules_proc_ops);
4402 return 0;
4403 }
4404 module_init(proc_modules_init);
4405 #endif
4406
4407 /* Given an address, look for it in the module exception tables. */
4408 const struct exception_table_entry *search_module_extables(unsigned long addr)
4409 {
4410 const struct exception_table_entry *e = NULL;
4411 struct module *mod;
4412
4413 preempt_disable();
4414 mod = __module_address(addr);
4415 if (!mod)
4416 goto out;
4417
4418 if (!mod->num_exentries)
4419 goto out;
4420
4421 e = search_extable(mod->extable,
4422 mod->num_exentries,
4423 addr);
4424 out:
4425 preempt_enable();
4426
4427 /*
4428 * Now, if we found one, we are running inside it now, hence
4429 * we cannot unload the module, hence no refcnt needed.
4430 */
4431 return e;
4432 }
4433
4434 /*
4435 * is_module_address - is this address inside a module?
4436 * @addr: the address to check.
4437 *
4438 * See is_module_text_address() if you simply want to see if the address
4439 * is code (not data).
4440 */
4441 bool is_module_address(unsigned long addr)
4442 {
4443 bool ret;
4444
4445 preempt_disable();
4446 ret = __module_address(addr) != NULL;
4447 preempt_enable();
4448
4449 return ret;
4450 }
4451
4452 /*
4453 * __module_address - get the module which contains an address.
4454 * @addr: the address.
4455 *
4456 * Must be called with preempt disabled or module mutex held so that
4457 * module doesn't get freed during this.
4458 */
4459 struct module *__module_address(unsigned long addr)
4460 {
4461 struct module *mod;
4462
4463 if (addr < module_addr_min || addr > module_addr_max)
4464 return NULL;
4465
4466 module_assert_mutex_or_preempt();
4467
4468 mod = mod_find(addr);
4469 if (mod) {
4470 BUG_ON(!within_module(addr, mod));
4471 if (mod->state == MODULE_STATE_UNFORMED)
4472 mod = NULL;
4473 }
4474 return mod;
4475 }
4476 EXPORT_SYMBOL_GPL(__module_address);
4477
4478 /*
4479 * is_module_text_address - is this address inside module code?
4480 * @addr: the address to check.
4481 *
4482 * See is_module_address() if you simply want to see if the address is
4483 * anywhere in a module. See kernel_text_address() for testing if an
4484 * address corresponds to kernel or module code.
4485 */
4486 bool is_module_text_address(unsigned long addr)
4487 {
4488 bool ret;
4489
4490 preempt_disable();
4491 ret = __module_text_address(addr) != NULL;
4492 preempt_enable();
4493
4494 return ret;
4495 }
4496
4497 /*
4498 * __module_text_address - get the module whose code contains an address.
4499 * @addr: the address.
4500 *
4501 * Must be called with preempt disabled or module mutex held so that
4502 * module doesn't get freed during this.
4503 */
4504 struct module *__module_text_address(unsigned long addr)
4505 {
4506 struct module *mod = __module_address(addr);
4507 if (mod) {
4508 /* Make sure it's within the text section. */
4509 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4510 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4511 mod = NULL;
4512 }
4513 return mod;
4514 }
4515 EXPORT_SYMBOL_GPL(__module_text_address);
4516
4517 /* Don't grab lock, we're oopsing. */
4518 void print_modules(void)
4519 {
4520 struct module *mod;
4521 char buf[MODULE_FLAGS_BUF_SIZE];
4522
4523 printk(KERN_DEFAULT "Modules linked in:");
4524 /* Most callers should already have preempt disabled, but make sure */
4525 preempt_disable();
4526 list_for_each_entry_rcu(mod, &modules, list) {
4527 if (mod->state == MODULE_STATE_UNFORMED)
4528 continue;
4529 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4530 }
4531 preempt_enable();
4532 if (last_unloaded_module[0])
4533 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4534 pr_cont("\n");
4535 }
4536
4537 #ifdef CONFIG_MODVERSIONS
4538 /* Generate the signature for all relevant module structures here.
4539 * If these change, we don't want to try to parse the module. */
4540 void module_layout(struct module *mod,
4541 struct modversion_info *ver,
4542 struct kernel_param *kp,
4543 struct kernel_symbol *ks,
4544 struct tracepoint * const *tp)
4545 {
4546 }
4547 EXPORT_SYMBOL(module_layout);
4548 #endif