]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/mutex.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/mingo/mutex-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / mutex.c
1 /*
2 * kernel/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * Also see Documentation/mutex-design.txt.
14 */
15 #include <linux/mutex.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20
21 /*
22 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
23 * which forces all calls into the slowpath:
24 */
25 #ifdef CONFIG_DEBUG_MUTEXES
26 # include "mutex-debug.h"
27 # include <asm-generic/mutex-null.h>
28 #else
29 # include "mutex.h"
30 # include <asm/mutex.h>
31 #endif
32
33 /***
34 * mutex_init - initialize the mutex
35 * @lock: the mutex to be initialized
36 *
37 * Initialize the mutex to unlocked state.
38 *
39 * It is not allowed to initialize an already locked mutex.
40 */
41 void fastcall __mutex_init(struct mutex *lock, const char *name)
42 {
43 atomic_set(&lock->count, 1);
44 spin_lock_init(&lock->wait_lock);
45 INIT_LIST_HEAD(&lock->wait_list);
46
47 debug_mutex_init(lock, name);
48 }
49
50 EXPORT_SYMBOL(__mutex_init);
51
52 /*
53 * We split the mutex lock/unlock logic into separate fastpath and
54 * slowpath functions, to reduce the register pressure on the fastpath.
55 * We also put the fastpath first in the kernel image, to make sure the
56 * branch is predicted by the CPU as default-untaken.
57 */
58 static void fastcall noinline __sched
59 __mutex_lock_slowpath(atomic_t *lock_count __IP_DECL__);
60
61 /***
62 * mutex_lock - acquire the mutex
63 * @lock: the mutex to be acquired
64 *
65 * Lock the mutex exclusively for this task. If the mutex is not
66 * available right now, it will sleep until it can get it.
67 *
68 * The mutex must later on be released by the same task that
69 * acquired it. Recursive locking is not allowed. The task
70 * may not exit without first unlocking the mutex. Also, kernel
71 * memory where the mutex resides mutex must not be freed with
72 * the mutex still locked. The mutex must first be initialized
73 * (or statically defined) before it can be locked. memset()-ing
74 * the mutex to 0 is not allowed.
75 *
76 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
77 * checks that will enforce the restrictions and will also do
78 * deadlock debugging. )
79 *
80 * This function is similar to (but not equivalent to) down().
81 */
82 void fastcall __sched mutex_lock(struct mutex *lock)
83 {
84 /*
85 * The locking fastpath is the 1->0 transition from
86 * 'unlocked' into 'locked' state.
87 *
88 * NOTE: if asm/mutex.h is included, then some architectures
89 * rely on mutex_lock() having _no other code_ here but this
90 * fastpath. That allows the assembly fastpath to do
91 * tail-merging optimizations. (If you want to put testcode
92 * here, do it under #ifndef CONFIG_MUTEX_DEBUG.)
93 */
94 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
95 }
96
97 EXPORT_SYMBOL(mutex_lock);
98
99 static void fastcall noinline __sched
100 __mutex_unlock_slowpath(atomic_t *lock_count __IP_DECL__);
101
102 /***
103 * mutex_unlock - release the mutex
104 * @lock: the mutex to be released
105 *
106 * Unlock a mutex that has been locked by this task previously.
107 *
108 * This function must not be used in interrupt context. Unlocking
109 * of a not locked mutex is not allowed.
110 *
111 * This function is similar to (but not equivalent to) up().
112 */
113 void fastcall __sched mutex_unlock(struct mutex *lock)
114 {
115 /*
116 * The unlocking fastpath is the 0->1 transition from 'locked'
117 * into 'unlocked' state:
118 *
119 * NOTE: no other code must be here - see mutex_lock() .
120 */
121 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
122 }
123
124 EXPORT_SYMBOL(mutex_unlock);
125
126 /*
127 * Lock a mutex (possibly interruptible), slowpath:
128 */
129 static inline int __sched
130 __mutex_lock_common(struct mutex *lock, long state __IP_DECL__)
131 {
132 struct task_struct *task = current;
133 struct mutex_waiter waiter;
134 unsigned int old_val;
135
136 debug_mutex_init_waiter(&waiter);
137
138 spin_lock_mutex(&lock->wait_lock);
139
140 debug_mutex_add_waiter(lock, &waiter, task->thread_info, ip);
141
142 /* add waiting tasks to the end of the waitqueue (FIFO): */
143 list_add_tail(&waiter.list, &lock->wait_list);
144 waiter.task = task;
145
146 for (;;) {
147 /*
148 * Lets try to take the lock again - this is needed even if
149 * we get here for the first time (shortly after failing to
150 * acquire the lock), to make sure that we get a wakeup once
151 * it's unlocked. Later on, if we sleep, this is the
152 * operation that gives us the lock. We xchg it to -1, so
153 * that when we release the lock, we properly wake up the
154 * other waiters:
155 */
156 old_val = atomic_xchg(&lock->count, -1);
157 if (old_val == 1)
158 break;
159
160 /*
161 * got a signal? (This code gets eliminated in the
162 * TASK_UNINTERRUPTIBLE case.)
163 */
164 if (unlikely(state == TASK_INTERRUPTIBLE &&
165 signal_pending(task))) {
166 mutex_remove_waiter(lock, &waiter, task->thread_info);
167 spin_unlock_mutex(&lock->wait_lock);
168
169 debug_mutex_free_waiter(&waiter);
170 return -EINTR;
171 }
172 __set_task_state(task, state);
173
174 /* didnt get the lock, go to sleep: */
175 spin_unlock_mutex(&lock->wait_lock);
176 schedule();
177 spin_lock_mutex(&lock->wait_lock);
178 }
179
180 /* got the lock - rejoice! */
181 mutex_remove_waiter(lock, &waiter, task->thread_info);
182 debug_mutex_set_owner(lock, task->thread_info __IP__);
183
184 /* set it to 0 if there are no waiters left: */
185 if (likely(list_empty(&lock->wait_list)))
186 atomic_set(&lock->count, 0);
187
188 spin_unlock_mutex(&lock->wait_lock);
189
190 debug_mutex_free_waiter(&waiter);
191
192 DEBUG_WARN_ON(list_empty(&lock->held_list));
193 DEBUG_WARN_ON(lock->owner != task->thread_info);
194
195 return 0;
196 }
197
198 static void fastcall noinline __sched
199 __mutex_lock_slowpath(atomic_t *lock_count __IP_DECL__)
200 {
201 struct mutex *lock = container_of(lock_count, struct mutex, count);
202
203 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE __IP__);
204 }
205
206 /*
207 * Release the lock, slowpath:
208 */
209 static fastcall noinline void
210 __mutex_unlock_slowpath(atomic_t *lock_count __IP_DECL__)
211 {
212 struct mutex *lock = container_of(lock_count, struct mutex, count);
213
214 DEBUG_WARN_ON(lock->owner != current_thread_info());
215
216 spin_lock_mutex(&lock->wait_lock);
217
218 /*
219 * some architectures leave the lock unlocked in the fastpath failure
220 * case, others need to leave it locked. In the later case we have to
221 * unlock it here
222 */
223 if (__mutex_slowpath_needs_to_unlock())
224 atomic_set(&lock->count, 1);
225
226 debug_mutex_unlock(lock);
227
228 if (!list_empty(&lock->wait_list)) {
229 /* get the first entry from the wait-list: */
230 struct mutex_waiter *waiter =
231 list_entry(lock->wait_list.next,
232 struct mutex_waiter, list);
233
234 debug_mutex_wake_waiter(lock, waiter);
235
236 wake_up_process(waiter->task);
237 }
238
239 debug_mutex_clear_owner(lock);
240
241 spin_unlock_mutex(&lock->wait_lock);
242 }
243
244 /*
245 * Here come the less common (and hence less performance-critical) APIs:
246 * mutex_lock_interruptible() and mutex_trylock().
247 */
248 static int fastcall noinline __sched
249 __mutex_lock_interruptible_slowpath(atomic_t *lock_count __IP_DECL__);
250
251 /***
252 * mutex_lock_interruptible - acquire the mutex, interruptable
253 * @lock: the mutex to be acquired
254 *
255 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
256 * been acquired or sleep until the mutex becomes available. If a
257 * signal arrives while waiting for the lock then this function
258 * returns -EINTR.
259 *
260 * This function is similar to (but not equivalent to) down_interruptible().
261 */
262 int fastcall __sched mutex_lock_interruptible(struct mutex *lock)
263 {
264 /* NOTE: no other code must be here - see mutex_lock() */
265 return __mutex_fastpath_lock_retval
266 (&lock->count, __mutex_lock_interruptible_slowpath);
267 }
268
269 EXPORT_SYMBOL(mutex_lock_interruptible);
270
271 static int fastcall noinline __sched
272 __mutex_lock_interruptible_slowpath(atomic_t *lock_count __IP_DECL__)
273 {
274 struct mutex *lock = container_of(lock_count, struct mutex, count);
275
276 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE __IP__);
277 }
278
279 /*
280 * Spinlock based trylock, we take the spinlock and check whether we
281 * can get the lock:
282 */
283 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
284 {
285 struct mutex *lock = container_of(lock_count, struct mutex, count);
286 int prev;
287
288 spin_lock_mutex(&lock->wait_lock);
289
290 prev = atomic_xchg(&lock->count, -1);
291 if (likely(prev == 1))
292 debug_mutex_set_owner(lock, current_thread_info() __RET_IP__);
293 /* Set it back to 0 if there are no waiters: */
294 if (likely(list_empty(&lock->wait_list)))
295 atomic_set(&lock->count, 0);
296
297 spin_unlock_mutex(&lock->wait_lock);
298
299 return prev == 1;
300 }
301
302 /***
303 * mutex_trylock - try acquire the mutex, without waiting
304 * @lock: the mutex to be acquired
305 *
306 * Try to acquire the mutex atomically. Returns 1 if the mutex
307 * has been acquired successfully, and 0 on contention.
308 *
309 * NOTE: this function follows the spin_trylock() convention, so
310 * it is negated to the down_trylock() return values! Be careful
311 * about this when converting semaphore users to mutexes.
312 *
313 * This function must not be used in interrupt context. The
314 * mutex must be released by the same task that acquired it.
315 */
316 int fastcall mutex_trylock(struct mutex *lock)
317 {
318 return __mutex_fastpath_trylock(&lock->count,
319 __mutex_trylock_slowpath);
320 }
321
322 EXPORT_SYMBOL(mutex_trylock);
323
324
325