]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/panic.c
UBUNTU: Ubuntu-raspi2-4.10.0-1003.5
[mirror_ubuntu-zesty-kernel.git] / kernel / panic.c
1 /*
2 * linux/kernel/panic.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
10 */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27 #include <linux/bug.h>
28
29 #define PANIC_TIMER_STEP 100
30 #define PANIC_BLINK_SPD 18
31
32 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
33 static unsigned long tainted_mask;
34 static int pause_on_oops;
35 static int pause_on_oops_flag;
36 static DEFINE_SPINLOCK(pause_on_oops_lock);
37 bool crash_kexec_post_notifiers;
38 int panic_on_warn __read_mostly;
39
40 int panic_timeout = CONFIG_PANIC_TIMEOUT;
41 EXPORT_SYMBOL_GPL(panic_timeout);
42
43 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
44
45 EXPORT_SYMBOL(panic_notifier_list);
46
47 static long no_blink(int state)
48 {
49 return 0;
50 }
51
52 /* Returns how long it waited in ms */
53 long (*panic_blink)(int state);
54 EXPORT_SYMBOL(panic_blink);
55
56 /*
57 * Stop ourself in panic -- architecture code may override this
58 */
59 void __weak panic_smp_self_stop(void)
60 {
61 while (1)
62 cpu_relax();
63 }
64
65 /*
66 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
67 * may override this to prepare for crash dumping, e.g. save regs info.
68 */
69 void __weak nmi_panic_self_stop(struct pt_regs *regs)
70 {
71 panic_smp_self_stop();
72 }
73
74 /*
75 * Stop other CPUs in panic. Architecture dependent code may override this
76 * with more suitable version. For example, if the architecture supports
77 * crash dump, it should save registers of each stopped CPU and disable
78 * per-CPU features such as virtualization extensions.
79 */
80 void __weak crash_smp_send_stop(void)
81 {
82 static int cpus_stopped;
83
84 /*
85 * This function can be called twice in panic path, but obviously
86 * we execute this only once.
87 */
88 if (cpus_stopped)
89 return;
90
91 /*
92 * Note smp_send_stop is the usual smp shutdown function, which
93 * unfortunately means it may not be hardened to work in a panic
94 * situation.
95 */
96 smp_send_stop();
97 cpus_stopped = 1;
98 }
99
100 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
101
102 /*
103 * A variant of panic() called from NMI context. We return if we've already
104 * panicked on this CPU. If another CPU already panicked, loop in
105 * nmi_panic_self_stop() which can provide architecture dependent code such
106 * as saving register state for crash dump.
107 */
108 void nmi_panic(struct pt_regs *regs, const char *msg)
109 {
110 int old_cpu, cpu;
111
112 cpu = raw_smp_processor_id();
113 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
114
115 if (old_cpu == PANIC_CPU_INVALID)
116 panic("%s", msg);
117 else if (old_cpu != cpu)
118 nmi_panic_self_stop(regs);
119 }
120 EXPORT_SYMBOL(nmi_panic);
121
122 /**
123 * panic - halt the system
124 * @fmt: The text string to print
125 *
126 * Display a message, then perform cleanups.
127 *
128 * This function never returns.
129 */
130 void panic(const char *fmt, ...)
131 {
132 static char buf[1024];
133 va_list args;
134 long i, i_next = 0;
135 int state = 0;
136 int old_cpu, this_cpu;
137 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
138
139 /*
140 * Disable local interrupts. This will prevent panic_smp_self_stop
141 * from deadlocking the first cpu that invokes the panic, since
142 * there is nothing to prevent an interrupt handler (that runs
143 * after setting panic_cpu) from invoking panic() again.
144 */
145 local_irq_disable();
146
147 /*
148 * It's possible to come here directly from a panic-assertion and
149 * not have preempt disabled. Some functions called from here want
150 * preempt to be disabled. No point enabling it later though...
151 *
152 * Only one CPU is allowed to execute the panic code from here. For
153 * multiple parallel invocations of panic, all other CPUs either
154 * stop themself or will wait until they are stopped by the 1st CPU
155 * with smp_send_stop().
156 *
157 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
158 * comes here, so go ahead.
159 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
160 * panic_cpu to this CPU. In this case, this is also the 1st CPU.
161 */
162 this_cpu = raw_smp_processor_id();
163 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
164
165 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
166 panic_smp_self_stop();
167
168 console_verbose();
169 bust_spinlocks(1);
170 va_start(args, fmt);
171 vsnprintf(buf, sizeof(buf), fmt, args);
172 va_end(args);
173 pr_emerg("Kernel panic - not syncing: %s\n", buf);
174 #ifdef CONFIG_DEBUG_BUGVERBOSE
175 /*
176 * Avoid nested stack-dumping if a panic occurs during oops processing
177 */
178 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
179 dump_stack();
180 #endif
181
182 /*
183 * If we have crashed and we have a crash kernel loaded let it handle
184 * everything else.
185 * If we want to run this after calling panic_notifiers, pass
186 * the "crash_kexec_post_notifiers" option to the kernel.
187 *
188 * Bypass the panic_cpu check and call __crash_kexec directly.
189 */
190 if (!_crash_kexec_post_notifiers) {
191 printk_nmi_flush_on_panic();
192 __crash_kexec(NULL);
193
194 /*
195 * Note smp_send_stop is the usual smp shutdown function, which
196 * unfortunately means it may not be hardened to work in a
197 * panic situation.
198 */
199 smp_send_stop();
200 } else {
201 /*
202 * If we want to do crash dump after notifier calls and
203 * kmsg_dump, we will need architecture dependent extra
204 * works in addition to stopping other CPUs.
205 */
206 crash_smp_send_stop();
207 }
208
209 /*
210 * Run any panic handlers, including those that might need to
211 * add information to the kmsg dump output.
212 */
213 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
214
215 /* Call flush even twice. It tries harder with a single online CPU */
216 printk_nmi_flush_on_panic();
217 kmsg_dump(KMSG_DUMP_PANIC);
218
219 /*
220 * If you doubt kdump always works fine in any situation,
221 * "crash_kexec_post_notifiers" offers you a chance to run
222 * panic_notifiers and dumping kmsg before kdump.
223 * Note: since some panic_notifiers can make crashed kernel
224 * more unstable, it can increase risks of the kdump failure too.
225 *
226 * Bypass the panic_cpu check and call __crash_kexec directly.
227 */
228 if (_crash_kexec_post_notifiers)
229 __crash_kexec(NULL);
230
231 bust_spinlocks(0);
232
233 /*
234 * We may have ended up stopping the CPU holding the lock (in
235 * smp_send_stop()) while still having some valuable data in the console
236 * buffer. Try to acquire the lock then release it regardless of the
237 * result. The release will also print the buffers out. Locks debug
238 * should be disabled to avoid reporting bad unlock balance when
239 * panic() is not being callled from OOPS.
240 */
241 debug_locks_off();
242 console_flush_on_panic();
243
244 if (!panic_blink)
245 panic_blink = no_blink;
246
247 if (panic_timeout > 0) {
248 /*
249 * Delay timeout seconds before rebooting the machine.
250 * We can't use the "normal" timers since we just panicked.
251 */
252 pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
253
254 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
255 touch_nmi_watchdog();
256 if (i >= i_next) {
257 i += panic_blink(state ^= 1);
258 i_next = i + 3600 / PANIC_BLINK_SPD;
259 }
260 mdelay(PANIC_TIMER_STEP);
261 }
262 }
263 if (panic_timeout != 0) {
264 /*
265 * This will not be a clean reboot, with everything
266 * shutting down. But if there is a chance of
267 * rebooting the system it will be rebooted.
268 */
269 emergency_restart();
270 }
271 #ifdef __sparc__
272 {
273 extern int stop_a_enabled;
274 /* Make sure the user can actually press Stop-A (L1-A) */
275 stop_a_enabled = 1;
276 pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
277 }
278 #endif
279 #if defined(CONFIG_S390)
280 {
281 unsigned long caller;
282
283 caller = (unsigned long)__builtin_return_address(0);
284 disabled_wait(caller);
285 }
286 #endif
287 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
288 local_irq_enable();
289 for (i = 0; ; i += PANIC_TIMER_STEP) {
290 touch_softlockup_watchdog();
291 if (i >= i_next) {
292 i += panic_blink(state ^= 1);
293 i_next = i + 3600 / PANIC_BLINK_SPD;
294 }
295 mdelay(PANIC_TIMER_STEP);
296 }
297 }
298
299 EXPORT_SYMBOL(panic);
300
301 /*
302 * TAINT_FORCED_RMMOD could be a per-module flag but the module
303 * is being removed anyway.
304 */
305 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
306 { 'P', 'G', true }, /* TAINT_PROPRIETARY_MODULE */
307 { 'F', ' ', true }, /* TAINT_FORCED_MODULE */
308 { 'S', ' ', false }, /* TAINT_CPU_OUT_OF_SPEC */
309 { 'R', ' ', false }, /* TAINT_FORCED_RMMOD */
310 { 'M', ' ', false }, /* TAINT_MACHINE_CHECK */
311 { 'B', ' ', false }, /* TAINT_BAD_PAGE */
312 { 'U', ' ', false }, /* TAINT_USER */
313 { 'D', ' ', false }, /* TAINT_DIE */
314 { 'A', ' ', false }, /* TAINT_OVERRIDDEN_ACPI_TABLE */
315 { 'W', ' ', false }, /* TAINT_WARN */
316 { 'C', ' ', true }, /* TAINT_CRAP */
317 { 'I', ' ', false }, /* TAINT_FIRMWARE_WORKAROUND */
318 { 'O', ' ', true }, /* TAINT_OOT_MODULE */
319 { 'E', ' ', true }, /* TAINT_UNSIGNED_MODULE */
320 { 'L', ' ', false }, /* TAINT_SOFTLOCKUP */
321 { 'K', ' ', true }, /* TAINT_LIVEPATCH */
322 };
323
324 /**
325 * print_tainted - return a string to represent the kernel taint state.
326 *
327 * 'P' - Proprietary module has been loaded.
328 * 'F' - Module has been forcibly loaded.
329 * 'S' - SMP with CPUs not designed for SMP.
330 * 'R' - User forced a module unload.
331 * 'M' - System experienced a machine check exception.
332 * 'B' - System has hit bad_page.
333 * 'U' - Userspace-defined naughtiness.
334 * 'D' - Kernel has oopsed before
335 * 'A' - ACPI table overridden.
336 * 'W' - Taint on warning.
337 * 'C' - modules from drivers/staging are loaded.
338 * 'I' - Working around severe firmware bug.
339 * 'O' - Out-of-tree module has been loaded.
340 * 'E' - Unsigned module has been loaded.
341 * 'L' - A soft lockup has previously occurred.
342 * 'K' - Kernel has been live patched.
343 *
344 * The string is overwritten by the next call to print_tainted().
345 */
346 const char *print_tainted(void)
347 {
348 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
349
350 if (tainted_mask) {
351 char *s;
352 int i;
353
354 s = buf + sprintf(buf, "Tainted: ");
355 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
356 const struct taint_flag *t = &taint_flags[i];
357 *s++ = test_bit(i, &tainted_mask) ?
358 t->c_true : t->c_false;
359 }
360 *s = 0;
361 } else
362 snprintf(buf, sizeof(buf), "Not tainted");
363
364 return buf;
365 }
366
367 int test_taint(unsigned flag)
368 {
369 return test_bit(flag, &tainted_mask);
370 }
371 EXPORT_SYMBOL(test_taint);
372
373 unsigned long get_taint(void)
374 {
375 return tainted_mask;
376 }
377
378 /**
379 * add_taint: add a taint flag if not already set.
380 * @flag: one of the TAINT_* constants.
381 * @lockdep_ok: whether lock debugging is still OK.
382 *
383 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
384 * some notewortht-but-not-corrupting cases, it can be set to true.
385 */
386 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
387 {
388 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
389 pr_warn("Disabling lock debugging due to kernel taint\n");
390
391 set_bit(flag, &tainted_mask);
392 }
393 EXPORT_SYMBOL(add_taint);
394
395 static void spin_msec(int msecs)
396 {
397 int i;
398
399 for (i = 0; i < msecs; i++) {
400 touch_nmi_watchdog();
401 mdelay(1);
402 }
403 }
404
405 /*
406 * It just happens that oops_enter() and oops_exit() are identically
407 * implemented...
408 */
409 static void do_oops_enter_exit(void)
410 {
411 unsigned long flags;
412 static int spin_counter;
413
414 if (!pause_on_oops)
415 return;
416
417 spin_lock_irqsave(&pause_on_oops_lock, flags);
418 if (pause_on_oops_flag == 0) {
419 /* This CPU may now print the oops message */
420 pause_on_oops_flag = 1;
421 } else {
422 /* We need to stall this CPU */
423 if (!spin_counter) {
424 /* This CPU gets to do the counting */
425 spin_counter = pause_on_oops;
426 do {
427 spin_unlock(&pause_on_oops_lock);
428 spin_msec(MSEC_PER_SEC);
429 spin_lock(&pause_on_oops_lock);
430 } while (--spin_counter);
431 pause_on_oops_flag = 0;
432 } else {
433 /* This CPU waits for a different one */
434 while (spin_counter) {
435 spin_unlock(&pause_on_oops_lock);
436 spin_msec(1);
437 spin_lock(&pause_on_oops_lock);
438 }
439 }
440 }
441 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
442 }
443
444 /*
445 * Return true if the calling CPU is allowed to print oops-related info.
446 * This is a bit racy..
447 */
448 int oops_may_print(void)
449 {
450 return pause_on_oops_flag == 0;
451 }
452
453 /*
454 * Called when the architecture enters its oops handler, before it prints
455 * anything. If this is the first CPU to oops, and it's oopsing the first
456 * time then let it proceed.
457 *
458 * This is all enabled by the pause_on_oops kernel boot option. We do all
459 * this to ensure that oopses don't scroll off the screen. It has the
460 * side-effect of preventing later-oopsing CPUs from mucking up the display,
461 * too.
462 *
463 * It turns out that the CPU which is allowed to print ends up pausing for
464 * the right duration, whereas all the other CPUs pause for twice as long:
465 * once in oops_enter(), once in oops_exit().
466 */
467 void oops_enter(void)
468 {
469 tracing_off();
470 /* can't trust the integrity of the kernel anymore: */
471 debug_locks_off();
472 do_oops_enter_exit();
473 }
474
475 /*
476 * 64-bit random ID for oopses:
477 */
478 static u64 oops_id;
479
480 static int init_oops_id(void)
481 {
482 if (!oops_id)
483 get_random_bytes(&oops_id, sizeof(oops_id));
484 else
485 oops_id++;
486
487 return 0;
488 }
489 late_initcall(init_oops_id);
490
491 void print_oops_end_marker(void)
492 {
493 init_oops_id();
494 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
495 }
496
497 /*
498 * Called when the architecture exits its oops handler, after printing
499 * everything.
500 */
501 void oops_exit(void)
502 {
503 do_oops_enter_exit();
504 print_oops_end_marker();
505 kmsg_dump(KMSG_DUMP_OOPS);
506 }
507
508 struct warn_args {
509 const char *fmt;
510 va_list args;
511 };
512
513 void __warn(const char *file, int line, void *caller, unsigned taint,
514 struct pt_regs *regs, struct warn_args *args)
515 {
516 disable_trace_on_warning();
517
518 pr_warn("------------[ cut here ]------------\n");
519
520 if (file)
521 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
522 raw_smp_processor_id(), current->pid, file, line,
523 caller);
524 else
525 pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
526 raw_smp_processor_id(), current->pid, caller);
527
528 if (args)
529 vprintk(args->fmt, args->args);
530
531 if (panic_on_warn) {
532 /*
533 * This thread may hit another WARN() in the panic path.
534 * Resetting this prevents additional WARN() from panicking the
535 * system on this thread. Other threads are blocked by the
536 * panic_mutex in panic().
537 */
538 panic_on_warn = 0;
539 panic("panic_on_warn set ...\n");
540 }
541
542 print_modules();
543
544 if (regs)
545 show_regs(regs);
546 else
547 dump_stack();
548
549 print_oops_end_marker();
550
551 /* Just a warning, don't kill lockdep. */
552 add_taint(taint, LOCKDEP_STILL_OK);
553 }
554
555 #ifdef WANT_WARN_ON_SLOWPATH
556 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
557 {
558 struct warn_args args;
559
560 args.fmt = fmt;
561 va_start(args.args, fmt);
562 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
563 &args);
564 va_end(args.args);
565 }
566 EXPORT_SYMBOL(warn_slowpath_fmt);
567
568 void warn_slowpath_fmt_taint(const char *file, int line,
569 unsigned taint, const char *fmt, ...)
570 {
571 struct warn_args args;
572
573 args.fmt = fmt;
574 va_start(args.args, fmt);
575 __warn(file, line, __builtin_return_address(0), taint, NULL, &args);
576 va_end(args.args);
577 }
578 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
579
580 void warn_slowpath_null(const char *file, int line)
581 {
582 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
583 }
584 EXPORT_SYMBOL(warn_slowpath_null);
585 #endif
586
587 #ifdef CONFIG_CC_STACKPROTECTOR
588
589 /*
590 * Called when gcc's -fstack-protector feature is used, and
591 * gcc detects corruption of the on-stack canary value
592 */
593 __visible void __stack_chk_fail(void)
594 {
595 panic("stack-protector: Kernel stack is corrupted in: %p\n",
596 __builtin_return_address(0));
597 }
598 EXPORT_SYMBOL(__stack_chk_fail);
599
600 #endif
601
602 core_param(panic, panic_timeout, int, 0644);
603 core_param(pause_on_oops, pause_on_oops, int, 0644);
604 core_param(panic_on_warn, panic_on_warn, int, 0644);
605 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
606
607 static int __init oops_setup(char *s)
608 {
609 if (!s)
610 return -EINVAL;
611 if (!strcmp(s, "panic"))
612 panic_on_oops = 1;
613 return 0;
614 }
615 early_param("oops", oops_setup);